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ABSTRACT

Testing Dynamic Oligopolistic Interaction: Evidence from the Semiconductor
Industry

by Christine Zulehner*

This paper analyzes the impact of a dynamic specification on the estimation of the
conduct parameter in an oligopolistic market. Various empirical studies have shown that
in the semiconductor industry, in particular in the Dynamic Random Access Memory
(DRAM) market, one has to account for dynamic elements as learning-by-doing within
firms and learning spillovers among them. Therefore this market seems to be
appropriate to investigate whether firms behave strategically in a dynamic sense and
how open-loop or closed-loop as equilibrium concepts alter the size of the estimated
parameters. I apply a structural oligopolistic model of dynamic nonprice competition
that incorporates learning-by-doing and spillovers. Theory shows that learning-by-doing
and learning spillovers have important consequences for firm behavior. Whether firms
in the DRAM industry take the strategic effects of learning-by-doing and learning
spillovers actually into account when choosing their output strategies, is answered with
empirical evidence. Using quarterly data from 1974-1996 at the firm level, I estimate
demand and pricing relations for three different generations of DRAM chips. The
empirical results show that the game theoretic specification has an important impact
and that firms behave strategically. The assumption of an open-loop specification would
underestimate the conduct parameter on average about 50%.

Keywords: Oligopoly, dynamic games, semiconductor industry
JEL Classifications: L13, L63, C73

                                                
* I would like to thank Dennis C. Mueller, Lars-Hendrik Röller, Ralph Siebert and Frank Verboven

for helpful discussions and suggestions and the participants of the economic seminar at the WZB,
of the CIE 99 Summerschool in Copenhagen and of the EARIE 99 conference in Turino for useful
comments. The usual disclaimer applies.



ZUSAMMENFASSUNG

Testen dynamischer oligopolistischer Interaktion: Empirische Evidenz aus der
Halbleiterindustrie

In diesem Arbeitspapier wird der Einfluß einer dynamischen Spezifikation auf die
Schätzung des Verhaltensparameters in einem oligopolistischen Marktes untersucht.
Verschiedene empirische Studien haben gezeigt, daß die Halbleiterindustrie, im
speziellen der Dynamic Random Access Memory (DRAM) Markt, von dynamischen
Elementen wie Learning-by-doing in Unternehmen und Learning spillovers zwischen
Unternehmen geprägt ist. Das wirft die Frage auf, ob sich Unternehmen in einem
dynamischen Sinne strategisch verhalten und wie open-loop beziehungsweise closed-
loop als Gleichgewichtskonzepte die Größe der geschätzten Parameter verändern. In
diesem Papier wird ein strukturelles oligopolistisches Modell in einem dynamischen
Kontext betrachtet, indem Unternehmen Mengen setzten und Learning-by-doing und
Learning spillovers relevant sind. Die Theorie zeigt, daß Learning-by-doing und
Learning spillovers wichtige Konsequenzen für das Verhalten von Unternehmen haben.
Ob die Unternehmen in der DRAM Industrie tatsächlich die strategischen Effekte aus
Learning-by-doing und Learning spillovers in Betracht ziehen, wird auf empirische
Weise versucht zu beantworten. Unter der Verwendung vierteljährlicher
firmenspezifischer Daten der Jahre 1974-1996 werden die Nachfrage- und die
Angebotsgleichung für drei Generationen von DRAMs geschätzt. Die Schätzergebnisse
zeigen, daß die spieltheoretische Spezifikation einen wichtigen Einfluß hat und daß sich
Unternehmen strategisch in einem dynamischen Sinne verhalten. So unterschätzt die
Annahme einer open-loop Gleichgewichtslösung den Verhaltensparameter im
Durchschnitt um 50% unterschätzen.



1 Introduction

In studying repeated games strategies are considered in which past play inuences current

and future strategies. Usually economists focus their attention on equilibria in a smaller

class of Markov or state-space strategies. In this case the past inuences the current play

only through its e�ect on a state variable that summerizes the direct e�ect of the past

on the current enviroment. There are two strategy concepts. Firms either use open-loop

or closed-loop strategies. The terms open-loop and closed-loop are used to distinguish

between two di�erent information structures in multi-stage games. Open-loop strategies

are functions of calendar time only. In an open-loop equilibrium players simultaneously

commit themselves to entire paths of history. In a closed-loop information structure players

can condition their play on the history of the game. The term closed-loop equilibrium

usually means subgame-perfect equilibrium of the game, where players can observe and

respond to their opponents' actions at the end of each period. Closed-loop strategies

consider the state-space variable(s) as a strategic variable(s).

The objective of this paper is �rst to empirically investigate whether �rms act strategically,

in the sense of using closed-loop strategies, when they formulate their output strategies.

And if they do, what is the sign of this strategic e�ect. Do �rms consider future output

of other �rms as strategic substitutes or as strategic complements. The second issue of

this paper is to analyze how the di�erent equilibrium concepts in state-space games in-

uence the estimated parameters in a structural model of dynamic quantity competition.

The industry, I concentrate on, is the semiconductor industry, in particular the Dynamic

Random Access Memory (DRAM) market. DRAMs are memory components (chips) and

are classi�ed into generation. Various empirical papers have shown, that in this industry

one has to account for dynamic elements like learning-by-doing within �rms and learning

spillovers among �rms (see e.g. Irwin and Klenow [13], Gruber [10], Briest and Wilson [4]

and Siebert [19]). Therefore this market seems to be appropriate to investigate whether

�rms behave strategically in a dynamic sense and how open-loop or closed-loop as equilib-
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rium concepts alter the size of the estimated parameters, where the main point of interest

lies on cost-price margins. Another reason why I direct my attention to that particu-

lar industry is, that semiconductors are an important input to several high-technology

industries. And DRAMs are usually thought of as technology drivers.

In learning-by-doing models �rms learn either from their own experience, from the experi-

ence of other �rms, or both. Learning-by-doing introduces an intertemporal component to

�rms decisions. Under the assumption that an appropriate measure of experience is past

cumulative output, current production adds to the �rm's stock of experience. Increases

in the �rm's stock of experience reduce �rm's unit costs in future periods. Theoretical

research demonstrate that learning can have sizable impact on cost and strategic decisions

and market performance (e.g. Spence [20], Fudenberg and Tirole [7]). If the �rm's expe-

rience is completely proprietary, its optimal strategy is to overproduce in early periods in

order to invest in future cost reduction. Incumbent �rms can exploit the learning curve

and will have an absolute cost advantage over potential entrants. Thus entry barriers can

be erected. However, if there are spillovers among �rms the incentives for overproducing

diminish.

A lot of empirical studies have been made for the DRAM market. Most of the papers

investigate, whether learning-by-doing and spillovers are prevalent in that industry and

when yes, how large are these e�ects. The di�erent setups vary to certain degree. Bald-

win and Krugman [1] did a simulation study for the 16K generation and this was the

pioneering attempt to incorporate learning economies into a stylized empirical model of

the semiconductor industry. Flamm [6] also completed a simulation study, but on the 1MB

generation. Further he used another theoretical model allowing for closed-loop strategies

in capacity and open-loop strategies in output. However, his simulations were extremely

sensitive to the speci�cation of some parameters. These two papers deal with calibrating

theoretical models. Another part of the semiconductor literature considers econometric

models. Gruber [9], [10] estimated reduced form relation assuming constant cost-price

margins and he found economies of scale rather than learning-by-doing e�ects for var-
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ious generations of DRAMs. Irwin and Klenow [13] implemented a recursive dynamic

speci�cation. They assumed constant returns to scale, Cournot behavior and used �xed

elasticities of demand. Their results are learning-by-doing within and learning spillovers

among �rms, but no spillovers among generations. Briest and Wilson [4] estimated both

a demand and a pricing relation of a dynamic game with open-loop strategies. Neglecting

learning spillovers among �rms they showed learning-by-doing to be smaller in the pres-

ence of economies of scale and estimated markups. Siebert [19] used a dynamic model

with closed-loop strategies and allowed for multiproduct �rms and �rms' dynamics over

the product cycle. He found that learning spillovers and economies of scale e�ects and

that multiproduct �rms behave as if in perfect competition. Learning by doing, learning

spillovers and economies of scale vary over the product cycle.

Given the reviewed literature the contribution of this paper is to test a dynamic closed-loop

speci�cation, to compare the estimated parameters with those of the open-loop speci�ca-

tion and investigate the inuence of the equilibrium concept on learning-by-doing, learning

spillovers, economies of scale and the conduct parameter.

The implication of learning by doing in production technology for market conduct and

performance can be modeled within a dynamic oligopoly game. Thus the consequences

of �rms' using experience as a strategic variable can be considered. I apply the model to

the DRAM market. Departing from a dynamic oligopoly game the �rst order conditions

for the open-loop and the closed-loop equilibrium are derived in order to implement an

econometric model. The closed-loop speci�cation then enables me to evaluate the e�ect of

�rm's strategy on the objective function of other �rms in future periods. I assume a single

product market. A structural econometric approach is used for evaluating market power,

learning-by-doing, learning spillovers, economies of scale and strategic behavior. The

methodology involves a speci�cation of demand and marginal cost functions and hypothe-

ses about the strategic interactions of the participants. Di�erent behavioral assumption

about �rms in the DRAM market are tested and the parameters for the demand and

the cost functions, including the parameters for market power, learning-by-doing e�ects,
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learning spillovers, economies of scales and strategic behavior are estimated.

Section 2 contains a description of the DRAM market. In Section 3 I set up the theoretical

model allowing �rms to have open-loop and closed-loop strategies. The implemented

econometric model is given in Section 4. The data and the estimation procedure are

discussed in Section 5. Estimation results for three di�erent DRAM generations are also

provided in this section. Conclusions are given in Section 6.

2 The DRAM Market

In this section I give a short description of the DRAM industry. More detailed descrip-

tions of that industry can be found in e.g. Gruber [12], [11], Irwin and Klenow [13] and

Flamm [6]. DRAM stands short for Dynamic Random Access Memory devices. These are

memory components (chips) designed for storage and retrieval of information in binary

form. One characteristic of DRAMs is that they loose memory once they are switched o�.

They are classi�ed into 'generations' according to their storage capacity in terms of binary

information units (BITS). DRAMs are a relatively homogeneous standardized products.

There are hardly any di�erences among quality. However, di�erent generations of DRAMs

represent di�erentiated products. DRAMs are part of the semiconductor industry, in par-

ticular of memory chips. Semiconductors are a key input for electronic goods. The main

segments are computers, consumer electronics, communications equipment, industrial ap-

plications and cars (Gruber [11]). DRAMs are used when memory storage need not to be

permanent.

Memory chips like DRAMs are produced in batches on silicon wafers. The production

of semiconductors requires a complex sequence of photolithographic transfer of circuit

patterns from photo masks onto the wafer and of etching processes. The manufacturing

process has to be very precise in terms of temperature, dust, vibration levels and other

determinants. It is of fundamental importance that this process occurs in clean rooms, as

even tiny dust particles on the wafer surface interrupt the connecting pattern and thus
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the chip useless. The raw silicon wafer itself has to be free from any imperfections. The

wafer, once processed, is cut and the single chips are then assembled. The wafer processing

stage is the most critical and also the most costly. The main cost determinant of a chip

is the silicon material. Learning-by-doing takes place over the entire product cycle. In

the beginning of the chip production a large proportion of the output is usually defective

and has to be discarded. The yield rate, which is measured by the ratio of usable chips to

the total number of chips on the wafer, is very low then. Later on the yield rate increases

as �rms learn. Thus the necessary amount of silicon and �rms' cost decrease at the

same time. Therefore the use of the traditional measure of learning, namely cumulative

output, �ts this pattern very well. Part of the semiconductor production knowledge can

be viewed as plant speci�c, because of the diÆculty of production knowledge transfer even

within one �rm. However, there are several research and production joint ventures among

�rms. Thus learning spillovers seem to be of some importance in that industry. Further

as capital expenditures for a state of the art production facility are very high, a �rm's

primary concern is ensuring the ability to expand output as a means of spreading the �xed

costs over a larger base to take advantage of the bene�ts of economies of scale.

Table 1 shows in which year which generation of DRAMs were in the market. The very

�rst generation of DRAMs, namely the 4K generation, emerged in 1974 and stayed in the

market until 1985. Two years after the start o� of the 4K generation the 16K generation

was on the market. On average two to three years after one generation has emerged the

following generations goes on market. The last generation - 64MB - went on the market

in 1995 and is still at the beginning of its product cycle. Two exceptions are the 2MB and

the 8MB generations. These are byproducts and do not follow the general pattern.

One of the most interesting features of the DRAM market is the price decline at the

beginning of a new generation (see Figure 1). This price decline is very extreme. Within

the �rst year the price for e.g. the 256K (1MB) generation fell about 60% (70%). Life cycles

of di�erent semiconductor industries and generations are surprisingly comparable and

short-lived, very much �tting standard product cycles. After introducing a new generation
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into the market, sales begin to take o� slowly but at an increasing rate. Later on the

growth rate falls but sales continue to grow until the peak of the life cycle is reached (see

Figure 2). The time between introduction of a new chip and the peak in sales is relatively

short compared to other products. Di�erent generations overlap form one generation to

the other. Entry into one generation occurs in the growth phase but not in the decline

phase (see Figures 3 to 5). Out of the description of the DRAM market one can conclude

that learning-by-doing, learning spillovers and economies of scale are evident. Thus a

theoretical model should take care of these features.

3 The theoretical model

In this section I present two models and implications of the theoretical models for the

estimations. In these two models �rms are assumed to maximize their pro�ts over the

product cycle. The �rst model considers the case of learning-by-doing within each �rm.

The law of motion for the state variable (i.e. cumulative output) describes how cumulative

output evolves over time within each �rm. The second model allows �rms not only to learn

from their own experience, but also from learning spillovers from other �rms. Therefore

the law of motion for the state variable describes the industry experience vector (i.e.

cumulative output vector). Both models I solve for equilibria in open-loop and closed-

loop strategies, respectively. I divide into a model with learning-by-doing and a model

with learning-by-doing and learning spillovers, because it is then easier to explain all the

di�erent e�ects that occur in that model. In fact, the model with learning-by-doing is

included in the other model.

In studying repeated games strategies are considered in which past play inuences current

and future strategies. Usually economists focus their attention on equilibria in a smaller

class of Markov or state-space strategies. In this case the past inuences the current play

only through its e�ect on a state variable that summarizes the direct e�ect of the past on

the current environment. I will use two strategy concepts. Firms can either use open-loop
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or closed-loop strategies. The terms open-loop and closed-loop are used to distinguish

between two di�erent information structures in multi-stage games. Open-loop strategies

are functions of calendar time only. In an open-loop equilibrium players simultaneously

commit themselves to entire paths of history. Thus the open-loop equilibria are really

static, in that there is only one decision point for each player. The open-loop equilibria

are just like Cournot-Nash equilibria, but with a larger strategy space (Fudenberg and

Tirole [8]). In a closed-loop information structure players can condition their play at time

t on the history of the game until that date. The term closed-loop equilibrium usually

means subgame-perfect equilibrium of the game, where players can observe and respond to

their opponents' actions at the end of each period. Open-loop strategies are not perfect, as

they ignore deviations by subsets of positive measure (Fudenberg and Tirole [7]). An other

information structure would be feedback strategies. These strategies are like closed-loop

strategies, but do not depend on the initial value of the state-space variable as closed-loop

strategies do (see e.g. Feichtinger and Hartl [5]).

3.1 Model with learning-by-doing

Competition in an industry characterized by learning-by-doing can be modeled as a dy-

namic game, as learning-by-doing introduces an intertemporal component to �rm's deci-

sions. In the theoretical model �rms are modeled to maximize their pro�t over the product

cycle. Assume there are i = 1; : : : ; n �rms and t = 1; : : : ; T discrete time periods1. At the

beginning of each period, �rms choose quantities of a homogeneous output, qit. Firm i's

cost in period t, Cit := C(qit; xit;Wit), is a function of current output, �rm i's experience

and input prices. Experience is assumed to be measured by past cumulative output. Thus,

�rm i's stock of experience is xit :=
Pt�1

s=1 qis. Output choices play an additional role as

investment into experience. The more output is produced today, the lower unit costs will

be tomorrow. Each �rm i chooses qit in order to maximize intertemporal pro�ts de�ned

1Appendix C gives an overview of the used notation.
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as

Maxqit�i =
TX
t=1

Æt�1 fPt � qit �C(qit; xit;Wit)g

s.t. xit = xit�1 + qit+1

xi0 = 0 (1)

where Æ is the discount rate, qt :=
Pn

i=1 qit is industry output and Pt := P (qt) is the inverse

market demand function for a given generation. Firms are assumed to move simultaneously

like in a Cournot game.

The necessary conditions for an open-loop Nash equilibrium of (1) are

Pt +
@Pt
@qt

�
@qt
@qit

� qit =
@Cit

@qit
+

TX
s=t+1

Æs�t �
@Cis

@xis
�
@xis
@qit

(2)

for all i = 1; : : : ; n and t = 1; : : : ; T . The left-hand side term of equation (2) is the standard

Cournot marginal revenue. The �rst term of the right-hand side is the contemporaneous

e�ect of output on marginal cost, the standard marginal cost without learning-by-doing.

The second term is the discounted future cost saving of learning-by-doing gained through

the contemporaneous output decision. In case of learning-by-doing e�ects, this term should

be negative 2. Both terms together denote dynamic marginal cost. Firms set marginal

revenue equal to dynamic marginal costs, which lie below static marginal cost and increase

output in order to bene�t from learning-by-doing and reduce future costs.

The necessary conditions for a closed-loop Nash equilibrium of (1) are

Pt +
@Pt
@qt

�
@qt
@qit

� qit =
@Cit

@qit
+

TX
s=t+1

Æs�t �
@Cis

@xis
�
@xis
@qit

(3)

�
TX

s=t+1

Æs�t �
@Ps
@qs

� qis �
@qs
@qis

�
@qis
@xis

�
@xis
@qit

for all i = 1; : : : ; n and t = 1; : : : ; T . The �rst terms of equation (3) are again the stan-

dard �rst order condition from the static Cournot problem without learning-by-doing.
2A positive term would mean 'forgetting'.
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With closed-loop strategies learning-by-doing creates an explicit intertemporal link be-

tween strategies �rms employ today and the competitive environment in which �rms �nd

themselves tomorrow. Firms anticipate correctly that pro�ts from the next period forward

will be simultaneously determined by the output decisions of all �rms in the current period

and by a similar set of decisions in all subsequent periods. The last term in the �rst line

of Equation (3) is the discounted future cost saving of learning-by-doing gained through

�rm's contemporaneous output decision. This e�ect is the direct e�ect of �rm's output

choices on its payo�s. In case of learning-by-doing e�ects, this term should be negative.

Both terms together denote dynamic marginal cost. The terms in the second line show

the strategic e�ect. These e�ects arise from the intertemporal nature of strategies due to

learning-by-doing. Changes in �rm i's strategy at time t a�ect �rm i's objective function

in period s = t+1; : : : ; T through xis. This is true for all �rms i. When learning-by-doing

reduces future costs, qit and qis will be strategic substitutes and �rms may, by overinvest-

ing in experience, erect entry barriers (see e.g. Spence [20], Fudenberg and Tirole [7] ).

Firms set marginal revenue equal to dynamic marginal costs, and they consider also the

strategic e�ect. In case of strategic substitutes this e�ect has the same sign of the direct

e�ect, i.e. future cost savings can be strengthened by the strategic e�ect. If there is no

learning-by-doing and therefore no strategic e�ect, open-loop and closed-loop equilibrium

result in the same �rst-order conditions.

3.2 Model with learning-by-doing and learning spillovers

This model now incorporates not only propriety learning but also learning spillovers among

�rms. It is a similar model Jarmin [14] applied to the early rayon industry. Firms'

maximization problem is the same as before, only the cost function will additionally depend

on the experience of all other �rms. Thus �rm i's cost in period t, Cit := C(qit;Xt;Wit),

are now a function of current output, input prices, �rm i's experience and experience of

all �rms other than i. Xt is the vector of cumulative output of each �rm i, representing

the experience gain due to the learning-by-doing within the own �rm and among other
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�rms in the industry. Experience is assumed to be measured by past cumulative output.

Each �rm i choose qit in order to maximize intertemporal pro�ts de�ned as

Maxqit�i =
TX
t=1

Æt�1 fPt � qit �C(qit;Xt;Wit)g

s.t. Xt = Xt�1 +Qt�1

X0 = 0 (4)

where Æ is the discount rate, qt :=
Pn

i=1 qit is industry output and Pt := P (qt) is the

inverse market demand function for a given generation.

The necessary conditions for a open-loop Nash equilibrium of (4) are

Pt +
@Pt
@qt

�
@qt
@qit

� qit =
@Cit

@qit
+

TX
s=t+1

Æs�t �
nX

j=1

@Cis

@xjs
�
@xjs
@qit

(5)

for all i = 1; : : : ; n and t = 1; : : : ; T . The di�erence of equation (5) to the �rst-order

condition of the model with learning-by-doing lies in the second term on the righthand

side. Discounted future cost savings through the contemporaneous output decision are not

only due to own experience but also to learning spillovers from other �rms. The righthand

side again denotes dynamic marginal cost. Firms set marginal revenue equal to dynamic

marginal cost, which lie below static marginal cost and increase output in order to bene�t

from learning-by-doing and spillovers and reduce future cost.

The necessary conditions for a closed-loop Nash equilibrium of (4) are

Pt +
@Pt
@qt

�
@qt
@qit

� qit =
@Cit

@qit
+

TX
s=t+1

Æs�t �
nX

j=1

@Cis

@xjs
�
@xjs
@qit

(6)

�
TX

s=t+1

Æs�t �
@Ps
@qs

� qis �
nX

j=1

@qs
@qjs

�
@qjs
@xis

�
@xis
@qit

for all i = 1; : : : ; n and t = 1; : : : ; T .

The �rst terms of equation (6) are again the standard �rst order condition from the

static Cournot problem without learning-by-doing and without spillovers. With closed-
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loop strategies learning-by-doing and spillovers create an explicit intertemporal link be-

tween strategies �rms employ today and the competitive environment in which �rms �nd

themselves tomorrow. Firms anticipate correctly that pro�ts from the next period forward

will be simultaneously determined by the output decisions of all �rms in the current period

and by a similar set of decisions in all subsequent periods. The last term in the �rst line

of Equation (6) is the discounted future cost saving of learning-by-doing and spillovers

gained through �rm's contemporaneous output decision. This e�ect is the direct e�ect of

�rm's output choices on its payo�s. In case of learning-by-doing and spillovers, this term

should be negative. Both terms together denote dynamic marginal cost. The terms in the

second line show the strategic e�ect. These e�ects arise from the intertemporal nature of

strategies due to learning-by-doing and spillovers. Changes in �rm i's strategy at time t

a�ect �rm j 6= i's objective function in period s = t+ 1; : : : ; T through xis. When learn-

ing is proprietary, qit and qjs will be strategic substitutes and incumbent �rms may, by

overinvesting in experience, erect entry barriers (Spence [20], Fudenberg and Tirole [7]).

Spillovers reduce the ability of incumbents to deter entry by accumulating experience.

Firms set marginal revenue equal to dynamic marginal costs, and they consider also the

strategic e�ect.

3.3 Some implications for estimation

The term �1it :=
@qt
@qit

de�nes the conduct parameter and measures the market power of

�rm i in an industry (see e.g. Bresnahan [3]). The price-cost markup can be de�ned as

P�MCi

P
:= � �i

�1
� sit, with

1

�1
= @Pt

@qt
� qt
Pt

and sit =
qit
qt

representing the elasticity of demand

and market shares, respectively. In a competitive market a change in �rm i's output

would not have any consequences on prices. Firms price according to their marginal costs.

Thus the conduct parameter and the price-cost markup would be both equal to zero. In

a Cournot game a change in �rm i's output has impact on prices. Firms price higher

than their marginal costs and the conduct parameter would be one, the price-cost markup

equal to 1

�1
. If �rms maximize joint pro�ts, the conduct parameter would be equal to
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the number of �rms in the industry and the price-cost markup also that times higher. In

empirical studies the conduct parameter is often estimated. Parameter values other than

above described then indicate for example, whether market behavior is more competitive

than Cournot in case of a value lower than one, or more collusive than Cournot in case

of a value greater than one. The conduct parameter is important for determining �rms'

behavior in an industry.3

In the model with learning-by-doing and spillovers I de�ne the term �2it :=
@qjs
@xis

� @xis
@qit

as

the strategic parameter.4 It varies over �rms and measures how a change in �rm i's output

at time t changes �rm j's output at time s; s > t. If �rm i's experience is proprietary

and it behaves rationally, the expected sign of the strategic parameter is negative. qit

and qjs are then strategic substitutes. If �rm i's experience bene�ts no one, the estimate

of this parameter should be zero. The expected sign of the strategic parameter when i

rival bene�t from its experience is ambiguous. If learning spillovers are strong enough, the

strategic parameter could be positive. And if this strategic parameter is positive, then qit

and qjs are strategic complements.

The term DMC = SMC+CMC denotes dynamic marginal cost with statically marginal

cost SMC = @Cit

@qit
and cumulative marginal cost CMCit =

PT
s=t+1 Æ

s�t �
Pn

j=1
@Cis

@xjs
�
@xjs
@qit

.

The �rst term indicates the contemporaneous marginal cost, whereas the second expression

refers to the intertemporal e�ect of learning-by-doing and spillovers. If learning-by-doing

and/or spillovers are present, then the intertemporal e�ect will be negative. The derivative

of DMC with respect to qit is equal to @DMC = @SMC + @CMC. With economies of

scale the �rst term is negative and consistent learning curves and spillovers imply the

second term to be negative as well (see also Berndt [2] and Jarmin[14]). This results in a

negative derivative of dynamic marginal cost.

Comparing the outputs of the open-loop and closed-loop equilibria in the model with

learning-by-doing and learning spillovers, leads us to following corollary.

3For a thorough discussion on conjectural variation see for e.g. Martin [15].
4See also Jarmin [14] for a discussion on that parameter.
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Corollary 1. Assuming a linear demand function the output in a closed-loop equilibrium

is greater (smaller) than in an open-loop equilibrium for all �rms and for points in time,

i� qit and qjs are strategic substitutes (complements) for all and across all �rms in the

industry and for all s = t+ 1; : : : ; T .

Proof. The proof is shown when qit and qjs are strategic substitutes, i.e. the strategic

parameter @qis
@xjs

�
@xjs
@qit

< 0 for 8i; j and 8s = t + 1; : : : ; T . For the case of strategic

complements the proof is analogous.

At equilibrium the �rst-order conditions (5) and (6) in open-loop and closed-loop strate-

gies, respectively, are equal to zero with identity; i.e. FOCO(qOit ) � 0 and FOCC(qCit � 0.

Evaluating the �rst-order conditions in closed-loop strategies at qOit gives:

FOCC(qOit ) = FOCO(qOit )�
TX

s=t+1

Æs�t �
@Ps
@qs

(qOit ) � q
O
is �

nX
j=1

@qs
@qjs

�
@qjs
@xis

�
@xis
@qit

(qOit )

(7)

I�
@qis
@xjs

�
@xjs
@qit

< 0;

then
TX

s=t+1

Æs�t �
@Ps
@qs

(qOit ) � q
O
is �

nX
j=1

@qs
@qjs

�
@qjs
@xis

�
@xis
@qit

(qOit ) > 0; (8)

as Æ > 0;
@Ps
@qs

(qOit ) < 0; qOis > 0 and
@qs
@qjs

> 0:

From equation (7) and inequality (8) it follows then that

FOCC(qOit ) > 0 8i; t (9)

and this is equivalent with qCit > qOit ;8i; t.

This corollary states the equivalence of strategic substitutability (complementarity) and

that then the output path in closed-loop strategies is greater than the output path in

open-loop strategies. Fudenberg and Tirole [7] have already shown for a two period game,

that the output in closed-loop equilibrium is always higher than that in the open-loop

13



equilibrium. Given this corollary and the �rst order conditions the consequences for the

estimations can be written down.

In fact, the �rst order conditions give following advice for empirical testing. The di�er-

ence between open-loop and closed-loop �rst order conditions can be pinned down by the

strategic parameter �2it. If this term is not equal zero, we can conclude that �rms use

closed-loop strategies. On other hand if this term equals zero, nothing can be said. The

situations where �rms either use open-loop strategies or closed-loop strategies without a

strategic impact cannot be distinguished. If there is strategic interaction, two possibil-

ities emerge: i) �2it < 0, i.e. qit and qjs are then strategic substitutes. There is either

only learning-by-doing or learning-by-doing and not large enough learning spillovers. That

means the learning-by-doing e�ect still exceeds the learning spillovers. ii) �2it > 0, i.e. qit

and qjs are then strategic complements. Here we have learning-by-doing and large enough

learning spillovers. The learning spillovers are larger than learning-by-doing e�ects. The

sign and the signi�cance of �2it can be tested.

From the corollary (1) the implications on the estimates of various parameters can be

explored, when the true strategies are closed-loop but one estimates the open-loop spec-

i�cation. How does the estimate of the conduct parameter change? An other question I

want to address is, how do dynamic marginal cost change in a closed-loop equilibrium com-

pared to an open-loop. Further the implications for the estimation of economies of scale,

learning-by-doing and learning spillovers are asked and stated in the following corollary.

Corollary 2. If qit and qis are strategic substitutes (complements) for all and across all

�rms in the industry and the closed-loop speci�cation is true, then in an open-loop speci-

�cation

i) the estimated conduct parameter �1it; i = 1; : : : ; n would be underestimated (overesti-

mated); or

ii) dynamic marginal cost DMCit would be underestimated (overestimated); or

iii) economies of scale, learning-by-doing and learning spillovers would be overestimated

(underestimated).
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Proof. The proof is shown for the case of strategic substitutes, i.e. the strategic parameter

@qjs
@xis

� @xis
@qit

< (>) 0 for 8i; j and 8s = t+ 1; : : : ; T . The arguments for the other case are

analogous.

i) I denote now the conduct parameter in the open-loop setting with �O1it and that in the

closed-loop setting with �C1it. Setting qOit = qCit and subtracting then equation (6) from

equation (5) and transforming gives

@qt
@qit

O

=
@qt
@qit

C

+

8<
:

TX
s=t+1

Æs�t �
@Ps
@qs

� qis �
nX

j=1

@qs
@qis

�
@qis
@xis

�
@xis
@qit

9=
; =

�
@Pt
@qt

� qit

�
(10)

If qit and qis are strategic substitutes the inequality (8) is true and the second term of the

righthand side of equation (10) is negative and gives an underestimated conduct parameter

in the open-loop speci�cation.

ii) Now I denote dynamic marginal cost with respect to their equilibrium, DMCC and

DMCO. Arguing like in i) gives

DMCO(qit) = DMCC(qit)� Æs�t �
@Ps
@qs

� qis �
nX

j=1

@qs
@qjs

�
@qjs
@xis

�
@xis
@qit

: (11)

The second term on the righthand side of equality (11) is positive and therefore dynamical

marginal cost are underestimated in the open-loop speci�cation.

iii) follows from ii).

Corollary (2) describes empirically testable hypotheses, which are derived from a theoret-

ical model. Thus if e.g. strategic substitutability is prevalent in an industry an open-loop

setup would underestimate the conduct parameter, dynamic marginal cost and would

overestimate economies of scale, learning-by-doing and learning spillovers.

4 Econometric Implementation

For the empirical implementation I now consider the model with learning-by-doing and

with learning spillovers. The empirical model of the DRAM industry consists of a demand
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equation and of two pricing relations for each �rm based on equations (5) and (6). This

gives two systems of equations, one for the model open-loop strategies and one in closed-

loop strategies. For estimation structure has to be placed on the demand and on the cost

function, as demand and cost parameters enter the pricing relations. Also econometric

error terms have to be introduced in order to estimate the model.

4.1 Inverse demand equation

The elasticity of demand play an important role in the pricing relations. The inverse

demand function is speci�ed as

ln(Pt) = �0 + �1 � ln(qt) + �2 � ln(q
S1
t ) + �3 � ln(q

S2
t ) + �4 � ln(Yt) + �5 � t+ �t; (12)

where �i; i = 1; : : : ; 5 are the parameters to be estimated. Pt is the average selling price

of a chip at time t , qt is the output of the chip at time t, qS1t and qS1t are respective

quantities of substitute semiconductors, Yt is a vector of other nonprice demand shifters

and t is a time trend. The parameters to be estimated reect the own elasticity of demand,

cross elasticities of demand, the e�ect of demand shifters on a DRAM generation, and a

trend that captures the e�ect of time a particular generation has been on the market. As

substitute semiconductors I take the proceeding and the following generation of DRAMs.

4.2 Pricing relations

The empirical model of pricing is a generalized �rst order condition which allows market

structure to be estimated rather than imposed. The econometric implementation of the

open-loop equilibrium goes in one line with Brist and Wilson [4]. However, they do not

consider learning spillovers and neither input prices. Additionally, I set up the �rst-order

conditions in closed-loop strategies in an analogous way. Then I compare the two estimated

parameter sets.
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4.2.1 Speci�cation of the marginal cost function

The empirical pricing relations require expressions for marginal cost. These expressions

include parameters that measure learning-by-doing and learning spillovers. The marginal

cost function I approximate with a Cobb-Douglas type function. Marginal cost look like

MCit = 1i + 2i � ln(qit) + 3i � ln(xit) + 4i � ln(
X
l 6=i

t�1X
j=0

qlj) +
X
h

hi � ln(P
I
hit) (13)

for i; j = 1; : : : ; n and t = 1; : : : ; T . Like Brist and Wilson [4] I allow for nonconstant

returns to scale in the empirical marginal cost function, too. Learning-by-doing is mea-

sured by cumulative output xit. Learning spillovers are assumed to be symmetric and are

de�ned by past cumulative output of other �rms (
P

l 6=i

Pt�1
j=0 qlj). P I

h1it
denote various

input prices, i.e. price for silicon, for energy, for wages and for capital.

4.2.2 Equilibrium relation

Structure has to be placed also on the contemporaneous and on the dynamic e�ects con-

tained in the �rst order conditions. I then test the e�ect of a �rm's strategy on the objective

functions of other �rms in future periods by comparing the open-loop speci�cation with

the closed-loop speci�cation. However, the model would be overparameterized if all terms

that measure future e�ects were to be estimated. Following Roberts and Samuelson [18]

and Jarmin [14], I capture all dynamic e�ects that occur two or more periods into the

future via a �rm speci�c constant. For the open-loop equilibrium relation the �rm-speci�c

constants are de�ned as follows

�1ij =
TX

s=t+1

Æs�t �
@Cis

@xjs
�
@xjs
@qit

�1i =
nX

j=1

�1ij :
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In the closed-loop equilibrium relation they are de�ned as

�2ij =
TX

s=t+2

Æs�t �
@Ps
@qs

� qis �
nX

j=1

@qs
@qjs

�
@qjs
@xis

�
@xis
@qit

�
TX

s=t+1

nX
j=1

@Cis

@xjs
�
@xjs
@qit

�
@Cis

@qit

�2i =
nX

j=1

�2ij :

Firm speci�c �xed e�ects capture di�erent 'things' in these two settings, respectively.

I then specify the following strategic parameters

�1i =
@qt
@qit

�2ij =
@qjt+1
@xit+1

�
@xit+1
@qit

�2i =
nX

j=1

�2ij

where �1i reects the conduct parameter. If, for example, it is zero, then competitive prices

result, is the conduct parameter equal to one, Cournot prices result. �2 captures the e�ect

of �rms' strategy on the objective function of other �rms in the next period and it appears

in the closed-loop speci�cation only. If �rm i's experience is proprietary and it behaves

rationally, the expected sign for �2i is negative. qit and qjt+1 are then strategic substitutes.

The econometric model of the pricing relations is then for the open-loop equilibrium

Pt = 1i + 2i � ln(qit) + 3i � ln(xit) + 4i � ln(
X
l 6=i

t�1X
j=0

qlj) +
X
h

hi � ln(P
I
hit)

+ �1i � �1 � �1i � Pt � sit + �it (14)

and for the closed-loop equilibrium

Pt = 1i + 2i � ln(qit) + 3i � ln(xit) + 4i � ln(
X
l 6=i

t�1X
j=0

qlj) +
X
h

hi � ln(P
I
hit)

+ �2i � �1 � �1i � Pt � sit � �1 � �1i � �2 � Pt+1 � sit+1 + �it (15)

for i; j = 1; : : : ; n and t = 1; : : : ; T and where sit =
qit
qt
.
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5 Estimation results

Two systems of equations are estimated, namely equations (12) and (14) for the open-

loop equilibrium and equations (12) and (15) for the closed-loop equilibrium. I run the

estimations for three di�erent generations of DRAMs, namely the 64K, the 256K, and the

1MB generation.5 This selection relies primarily on the fact that not all generations of

DRAMS were in the market for a long period of time (see Table 1). Thus I do not consider

generations, which give too less data points. Especially, the generations 64K and 256K

are of further interest as these were under dumping investigations by the US Commerce

Department and the International Trade Commission (see e.g. Flamm [6]).

In Table 2 all �rms which produce the 64k, 256K or 1MB generation of DRAMs are listed

with their respective market shares. The Her�ndahl Indices for each year are given for

these generations in Table 4.

For estimating the demand and price relations for three di�erent generations I use single

equation techniques, in particular 2SLS for the estimations. The instruments in the inverse

demand equation consist of the exogenous variables in the demand equation and summary

measures from the supply side, like average market share, number of �rms in the industry,

and cumulative world output. I also include lagged prices as instruments. For the pricing

relation I use exogenous variables in the speci�cation, the age of the generation, the

nonprice demand shifters, and lagged (input) prices as instruments.

The estimates of the demand equation with their respective standard errors in parenthesis

are reported in Table (5) for three di�erent generations of DRAMs. This table further

gives the results of a General Method of Moments estimation, which has been conducted

because of poor Durbin-Watson statistics in the 2SLS estimations. However, the esti-

mated parameters do not di�er substantially. Each generation's own demand elasticity

is negative and signi�cant. The estimates across generations with respect to their own

demand elasticity range from �0:3370 to �0:7607 and �0:6192 for 64K, 256K and 1MB,

5In Section D a detailed description of the used data is given.
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respectively. The results for the elasticities of one's generation own demand are in one

line with previous literature (see e.g. Flamm [6] or Brist and Wilson [4]). The elasticities

of a previous generation are positive and signi�cant, those of the following generations

are negative and are signi�cant for the 64K and the 256K generation. The nonprice de-

mand shifters have the right sign and are signi�cant for the 64K and the 256K generation.

The remaining demand determinant, the time trend, should be negative, suggesting that

buyers substitute away from the generation as time elapses. The estimations results show

that for the 64K and the 256K generation.

For the pricing relation I estimate the two speci�cations: The �rst one assumes non-

constant returns to scale, learning by doing, learning spillovers and a estimated conduct

parameter, corresponding the open-loop equilibrium. The other speci�cation has an ad-

ditional strategic interaction parameter and reects the closed-loop equilibrium relation.

Table 6 contains parameter estimates for the open-loop and the closed-loop pricing re-

lations for all estimated generations. Economies of scale are measured by the logarithm

of current output (LQI). The coeÆcient of this variable is signi�cantly negative for both

speci�cations and for all generations estimated. It is smaller in the open-loop setting than

in the closed-loop setting. Contemporaneous output has a signi�cant e�ect on marginal

cost in the 64K, 256K and 1MB generation. However, in an open-loop setting one would

slightly underestimate this e�ect.

Now consider the parameter that measures learning-by-doing. The parameter is negative

and signi�cant for 254K and 1MB. The learning-by-doing parameter in the open-loop

setting is smaller in absolute values than in the closed-loop speci�cation. This is true

for all generations. Learning spillovers are signi�cant in the 64K and 256K generation.

The estimated conduct parameter �1 of the 64K generation equals 4:169 in the open-loop

and 9:513 in the closed-loop speci�cation. In case of the 256K (1MB) generation this

parameter has a value of 1:412 (1:748) in the open-loop speci�cation and 2:687 (2:903)

in the closed-loop speci�cation. These results indicate on the one hand above Cournot

pricing and on the other hand an underestimation of this parameter in the open-loop
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setting. The coeÆcients are all signi�cant at the 5% level. The coeÆcient of the second

strategic parameter �2 is signi�cantly negative for all estimated generations suggesting

that �rms react strategically on the objective function of other �rms in the next period.

The negative sign of these parameters suggests qit and qjs to be strategic substitutes.

6 Conclusions

In this article, I develop and estimate an empirical model that incorporates the strategic

implications of learning by doing and learning spillovers. I derive a structural model from

a dynamic oligopoly game. I then estimate the model with �rm-level data from the DRAM

semiconductor industry. The estimation results support economies of scale, learning by

doing and learning spillovers. Further they suggest that �rms consider the reactions of

their rivals when formulating their output strategies.
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A Appendix: Tables

Table 1: Generations of DRAM in the market over time

Year 4K 16K 64K 256K 1MB 2MB 4MB 8MB 16MB 64MB

1974 x - - - - - - - - -

1975 x - - - - - - - - -

1976 x x - - - - - - - -

1977 x x - - - - - - - -

1978 x x - - - - - - - -

1979 x x x - - - - - - -

1980 x x x - - - - - - -

1981 x x x - - - - - - -

1982 x x x x - - - - - -

1983 x x x x - - - - - -

1984 x x x x - - - - - -

1985 x x x x - - - - - -

1986 - - x x x - - - - -

1987 - - x x x - - - - -

1988 - - x x x - x - - -

1989 - - x x x - x - - -

1990 - - x x x - x - - -

1991 - - x x x - x - x -

1992 - - x x x x x - x -

1993 - - x x x x x - x -

1994 - - x x x x x - x -

1995 - - x x x x x - x x

1996 - - - x x x x x x x
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Table 2: Market shares for the 64K, 256K and 1MB generation in % averaged over the
product cycle

Firm 64K 256K 1MB

Advanced Micro Devices 0.13 - -

AT&T Microelectronics - 1.21 0.68

Fairchild 0.00 - -

Fujitsu 11.53 7.85 4.39

G-Link - - 0.06

Hitachi 7.50 15.90 3.76

Hyundai 0.13 2.15 2.29

IBM Microelectronics - - 0.29

Inmos 0.55 0.07 -

Intel 0.92 0.42 0.28

LG Semicon - 0.76 1.54

Matsusihu 14.18 2.45 1.32

Micron 4.03 2.33 2.09

Mitsubishi 5.36 5.15 6.11

Mosel Vitalic 0.01 1.12 1.19

Mostek 2.01 0.04 -

Motorola 6.66 0.53 1.94

National Semiconductor 0.14 0.01 -

NEC 6.07 16.08 4.33

Nippon Steel - 1.23 1.53

OKI 8.90 6.28 3.18

Samsung 17.86 6.15 5.27

Sanyo - 1.74 1.88

Sharp 0.61 1.25 0.63

Siemens 0.73 0.68 2.60

STC-ITT 0.10 - -

Texas Instruments 11.31 6.58 3.55

Toshiba 1.28 3.81 18.71
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Table 3: Summary statistics for the 64k, 256K, and 1MB generation

Variable Statistic 64K 256K 1MB

Industry price Mean 13.0212 11.8362 14.5490
Std. dev. 30.7383 27.2328 22.0765
Min. 0.750 1.624 3.132
Max. 135.000 150.000 110.000
Nobs 68 57 46

Industry output Mean 38717563 88039188 103296567
Std. dev. 60386120 83457093 6357646
Min. 3000 10000 11000
Max. 264395000 242412000 215632700
Nobs 68 57 46

Firm output Mean 3799125 5734476 6692453
Std. dev. 5855855 7726461 6357646
Min. 1000 3000 1000
Max. 31525000 39000000 31500000
Nobs 693 817 710

Table 4: Her�ndahl indices for the 64K, 256K and 1MB generation over the product cycle

Year 64K 256K 1MB

1979 0.525 - -
1980 0.264 - -
1981 0.177 - -
1982 0.128 1.000 -
1983 0.108 0.265 -
1984 0.092 0.213 -
1985 0.091 0.164 0.964
1986 0.099 0.135 0.369
1987 0.106 0.102 0.337
1988 0.170 0.091 0.151
1989 0.261 0.078 0.104
1990 0.309 0.085 0.094
1991 0.218 0.092 0.080
1992 0.296 0.110 0.073
1993 0.319 0.118 0.070
1994 0.370 0.131 0.084
1995 0.344 0.133 0.087
1996 - 0.290 0.093

Average 0.228 0.201 0.209
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Table 5: Parameter estimates for the inverse demand equation
Two-stage least square estimation

Variable 64K 256K 1MB

Constant -60.2666�� -193.1450�� -88.9195
(22.44) (19.83) (74.04)

LQ -0.3370�� -0.7607�� -0.6192��

(0.02) (0.06) (0.21)
LQS1 0.0295�� 0.7953� 0.7904��

(0.01) (0.14) (0.46)
LQS2 -0.0243� -0.0244�� -0.0017

(0.01) (0.01) (0.01)
GNP 2.7940�� 7.6425�� 3.2758

(0.91) (0.75) (2.90)
TIME -0.3640�� -0.1767�� 0.1512

(0.06) (0.06) (0.25)

R-squared 0.964 0.979 0.908
Durbin-Watson 0.571 0.905 1.138
Number of observations 68 53 46

General method of moments estimation

Variable 64K 256K 1MB

Constant -55.8031�� -178.3104�� -76.2658�

(11.32) (15.32) (41.85)
LQ -0.3447�� -0.6941�� -0.6160��

(0.02) (0.06) (0.12)
LQS1 0.0295�� 0.6384�� 0.7785��

(0.01) (0.14) (0.29)
LQS2 -0.0192� -0.0308�� -0.0001

(0.01) (0.01) (0.00)
GNP 2.6198�� 7.1540�� 2.7884�

(0.46) (0.56) (1.69)
TIME -0.3585�� -0.2224�� 0.1609

(0.03) (0.05) (0.16)

R-squared 0.984 0.950 0.907
Number of observations 68 53 46

�Signi�cant at the 10%level
��Signi�cant at the 5% level

Standard Errors in parenthesis.
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Table 6: Pricing relation results: Parameter estimates for the open-loop and for the closed-
loop model

64K 64K 256K 256K 1MB 1MB

Variable open-loop closed-loop open-loop closed-loop open-loop closed-loop

Constant 131.600�� 206.018�� 4.375 5.785 244.233�� 257.527��

(27.73) (35.60) (28.90) (30.41) (23.17) (23.55)

LQI -2.054�� -2.209�� -0.816�� -0.874�� -1.657�� -1.713��

(0.25) (0.26) (0.25) (0.25) (0.22) (0.22)

Learning -0.153 -0.422 -0.096 -0.341�� -0.510�� -0.680��

(0.31) (0.40) (0.21) (0.24) (0.23) (0.24)

Spillovers -0.812 -0.922�� -0.722� -0.447� 0.187 0.294
(0.35) (0.41) (0.22) (0.25) (0.26) (0.26)

�1 � �1 1.437�� 3.279�� 0.980�� 1.865�� 1.077�� 1.788��

(0.07) (0.88) (0.03) (0.21) (0.06) (0.14)

�1 4.169�� 9.513�� 1.412�� 2.687�� 1.748�� 2.903��

(0.20) (2.55) (0.04) (0.30) (0.10) (0.23)

�2 � �1 � �1 - -2.986�� - -1.538�� - -1.332��

- (1.14) - (0.33) - (0.19)

�2 - -0.911�� - -0.825�� - -0.745��

- (0.34) - (0.17) - (0.11)

Material -4.336� -6.713�� -2.940�� -3.224�� 1.068 1.014
(2.28) (2.37) (1.07) (1.12) (0.93) (0.94)

Energy 5.750�� 11.883�� 1.675 1.529 10.805 11.391��

(0.74) (2.60) (1.47) (1.53) (1.21) (1.23)

Labor -2.748�� -3.660�� 4.363� 4.499� -15.150�� -15.860��

(0.88) (0.99) (2.49) (2.63) (1.21) (1.63)

Capital -4.966�� -14.214�� 3.678�� 3.944�� -1.108 -1.960
(0.95) (2.70) (1.01) (1.60) (0.78) (0.80)

Other inputs 7.299�� 13.705�� -5.775�� -5.748�� 5.340�� 6.415��

(3.27) (3.43) (2.91) (3.05) (1.03) (1.15)

F-Test 90.667�� 81.792�� 118.407�� 105.303�� 77.928�� 81.321��

adj. R-squared 0.775 0.765 0.808 0.791 0.762 0.755
DW 0.772 0.809 0.710 0.725 0.920 1.041
Nobs 693 693 817 817 710 710

�Signi�cant at the 10%level
��Signi�cant at the 5% level

Standard Errors in parenthesis.
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B Appendix: Figures

Figure 1: Average selling prices in USD for di�erent generations of DRAMs, 1974-1996

Figure 2: Industry units shipped for di�erent generations of DRAMs, 1974-1996
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Figure 3: Firm speci�c output for the 64K generation, 1974-1996

Figure 4: Firm speci�c output for the 256K generation, 1974-1996

Figure 5: Firm speci�c output for the 1MB generation, 1974-1996
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C Appendix: Notation

qit : : : output of �rm i at time t,
i = 1; : : : ; n; t = 1; : : : ; T

qt :=
Pn

i=1 qit : : : industry output at time t

xit :=
Pt�1

s=1 qis : : : cumulative output of �rm i at time t

xt :=
Pn

i=1 xit : : : cumulative industry output at time t

x�it := (x1;t; : : : ; xi�1;t; xi+1;t; : : : ; xn;t) : : : vector of cumulative output of each
�rm except of �rm i at time t

Xt = (xit)
n
i=1 : : : industry experience vector at time t

Wit : : : vector of input prices at time t

Cit := C(qit; xit) : : : cost function of �rm i at time t

Pt := P (qt) : : : inverse demand function at time t

sit := Pt �
qit
qt

: : : price times shares of �rm i at time t
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D Appendix: Data description

The data used for estimating represent �rms producing DRAMs and are compiled by

Dataquest Inc. The data covers �rms' units shipped from the 4K generation to the 64MB

generation and the average selling price. These generations span a time period from

January 1974 to December 1996. The data are available at a quarterly basis. Table 1

shows in which year which generation of DRAMs were in the market. The very �rst

generation of DRAMs, namely the 4K generation, emerged in 1974 and stayed in the

market until 1985. Two years after the start o� of the 4K generation the 16K generation

was on the market. On average two to three years after one generation has emerged the

following generations goes on market. The last generation - 64MB - went on the market

in 1995 and is still at the beginning of its product cycle. Two exceptions are the 2MB

and the 8MB generations. These are byproducts and do not follow the general pattern.

From the �rm-level output data I construct three variables. Namely, current output,

own past cumulative output and other �rms' past cumulative output. Current output

serves as measure for economies of scale. The own cumulative output variable represents

learning-by-doing. The cumulative past output of all other �rms proxies learning spillovers.

Further I use price data for four important inputs - price of silicon, energy cost, wages for

production and user cost of capital. For the material cost I use the world market price of

silicon compiled by Metal Bulletin. Energy costs and wages of production are compiled in

the following way: according to each �rms production location the energy prices and the

industry wages (ISIC 3825) of the concerned location (country) is used. The source for

energy prices is OECD/IEA [17], that for industry wages OECD [16]. User cost of capital

is constructed for each �rm and year by exploiting �rms annual reports. As a nonprice

demand shifter I use a proportion of GNP directly attributed to electronic and electrical

equipment from the OECD [16]. A time variable also enters the demand equation as a

proxy for the incremental changes in a generation over the life cycle. As substitutes for one

generation I assume its proceeding and following generation. Table 3 gives some summary

statistics.

32



Bücher des Forschungsschwerpunkts Marktprozeß und Unternehmensentwicklung

Books of the Research Area Market Processes and Corporate Development

(nur im Buchhandel erhältlich/available through bookstores)

Horst Albach, Ulrike Görtzen, Rita Zobel (Hg.)
Information Processing as a Competitive
Advantage of Japanese Firms
1999, edition sigma

Dieter Köster
Wettbewerb in Netzproduktmärkten
1999, Deutscher Universitäts-Verlag/Gabler Verlag

Christian Wey
Marktorganisation durch Standardisierung: Ein
Beitrag zur Neuen Institutionenökonomik des
Marktes
1999, edition sigma

Horst Albach, Meinolf Dierkes, Ariane Berthoin
Antal, Kristina Vaillant (Hg.)
Organisationslernen � institutionelle und
kulturelle Dimensionen
1998, edition sigma

Lars Bergman, Chris Doyle, Jordi Gual, Lars
Hultkrantz, Damien Neven, Lars-Hendrik Röller,
Leonard Waverman
Europe�s Network Industries: Conflicting
Priorities - Telecommunications
Monitoring European Deregulation 1
1998, Centre for Economic Policy Research

Manfred Fleischer
The Inefficiency Trap
Strategy Failure in the
German Machine Tool Industry
1997, edition sigma

Christian Göseke
Information Gathering and Dissemination
The Contribution of JETRO to
Japanese Competitiveness
1997, Deutscher Universitäts-Verlag

Andreas Schmidt
Flugzeughersteller zwischen globalem
Wettbewerb und internationaler Kooperation
Der Einfluß von Organisationsstrukturen auf
die Wettbewerbsfähigkeit von
Hochtechnologie-Unternehmen
1997, edition sigma

Horst Albach, Jim Y. Jin, Christoph Schenk (eds.)
Collusion through Information Sharing?
New Trends in Competition Policy
1996, edition sigma

Stefan O. Georg
Die Leistungsfähigkeit japanischer Banken
Eine Strukturanalyse des Bankensystems in
Japan
1996, edition sigma

Stephanie Rosenkranz
Cooperation for Product Innovation
1996, edition sigma

Horst Albach, Stephanie Rosenkranz (eds.)
Intellectual Property Rights and Global
Competition - Towards a New Synthesis
1995, edition sigma.

David B. Audretsch
Innovation and Industry Evolution
1995, The MIT Press.

Julie Ann Elston
US Tax Reform and Investment: Reality and
Rhetoric in the 1980s
1995, Avebury

Horst Albach
The Transformation of Firms and Markets:
A Network Approach to Economic
Transformation Processes in East Germany
Acta Universitatis Upsaliensis, Studia Oeconomiae
Negotiorum, Vol. 34
1994, Almqvist & Wiksell International
(Stockholm).

Horst Albach
"Culture and Technical Innovation: A Cross-
Cultural Analysis and Policy
Recommendations"
Akademie der Wissenschaften zu Berlin (Hg.)
Forschungsbericht 9, S. 1-597
1994, Walter de Gruyter.

Horst Albach
Zerissene Netze. Eine Netzwerkanalyse des
ostdeutschen Transformationsprozesses
1993, edition sigma.

Zoltan J. Acs/David B. Audretsch (eds)
Small Firms and Entrepreneurship: An East-
West Perspective
1993, Cambridge University Press.

Anette Boom
Nationale Regulierungen bei internationalen
Pharma-Unternehmen: Eine theoretische
Analyse der Marktwirkungen
1993, Nomos Verlagsgesellschaft.



DISCUSSION PAPERS 1998

Horst Albach Unternehmensgründungen in Deutschland FS IV 98 - 1
Potentiale und Lücken

Dietmar Harhoff Vertical Organization, Technology Flows and R&D FS IV 98 - 2
Incentives - An Exploratory Analysis

Karel Cool Der Einfluß des tatsächlichen und des potentiellen FS IV 98 - 3
Lars-Hendrik Röller Wettbewerbs auf die Rentabilität von Unternehmen

Benoit Leleux der pharmazeutischen Industrie

Horst Albach Blühende Landschaften? FS IV 98 - 4
Ein Beitrag zur Transformationsforschung

Shiho Futagami Shukko in Japanese Companies and its Economic FS IV 98 - 5
Tomoki Waragai and Managerial Effects

Thomas Westphal

Dietmar Harhoff Lending Relationships in Germany: Empricial FS IV 98 - 6
Timm Körting Results from Survey Data

Johan Lagerlöf Are We Better Off if Our Politicians Know FS IV 98 - 7
How the Economy Works?

Justus Haucap Location Costs, Product Quality, and Implicit FS IV 98 - 8
Christian Wey Franchise Contracts

Jens Barmbold

Manfred Fleischer Patenting and Industrial Performance: The Case FS IV 98 - 9
of the Machine Tool Industry

Dieter Köster Was sind Netzprodukte? - Eigenschaften, FS IV 98 - 10
Definition und Systematisierung von Netzprodukten

Andreas Blume Coordination and Learning with a Partial Language FS IV 98 - 11

Andreas Blume An Experimental Investigation of Optimal Learning FS IV 98 - 12
Uri Gneezy in Coordination Games

Andreas Blume Learning in Sender-Receiver Games FS IV 98 - 13
Douglas V. DeJong

George R. Neumann
Nathan E. Savin

Hans Mewis The Stability of Information Cascades: How Herd FS IV 98 - 14
Behavior Breaks Down

Lars-Hendrik Röller The Incentives to Form Research Joint Ventures: FS IV 98 - 15
Mihkel M. Tombak Theory and Evidence

Ralph Siebert

Christine Zulehner Econometric Analysis of Cattle Auctions FS IV 98 - 16

Catherine Matraves Market Structure, R&D and Advertising FS IV 98 - 17
in the Pharmaceutical Industry



DISCUSSION PAPERS 1999

Suchan Chae Bargaining Power of a Coalition in Parallel Bargaining: FS IV 99 - 1
Paul Heidhues Advantage of Multiple Cable System Operators

Christian Wey Compatibility Investments in Duopoly with Demand FS IV 99 - 2
Side Spillovers under Different Degrees of Cooperation

Horst Albach Des paysages florissants? Une contribution FS IV 99 - 3
à la recherche sur la transformation

Jeremy Lever The Development of British Competition Law: FS IV 99 - 4
A Complete Overhaul and Harmonization

Damien J. Neven Union Power and Product Market Competition: FS IV 99 - 5
Lars-Hendrik Röller Evidence from the Airline Industry

Zhentang Zhang

Justus Haucap The Incentives of Employers� Associations to FS IV 99 - 6
Uwe Pauly Raise Rivals� Costs in the Presence of

Christian Wey Collective Bargaining

Jianbo Zhang Asymptotic Efficiency in Stackelberg Markets FS IV 99 - 7
Zhentang Zhang with Incomplete Information

Justus Haucap Standortwahl als Franchisingproblem FS IV 99 - 8
Christian Wey

Yasar Barut A Comparison of Multiple-Unit All-Pay and FS IV 99 - 9
Dan Kovenock Winner-Pay Auctions Under Incomplete

Charles Noussair Information

Jim Y. Jin Collusion with Private and Aggregate Information FS IV 99 - 10

Jos Jansen Strategic Information Revelation and Revenue Sharing FS IV 99 - 11
in an R&D Race with Learning Labs

Johan Lagerlöf Incomplete Information in the Samaritan's Dilemma: FS IV 99 - 12
The Dilemma (Almost) Vanishes

Catherine Matraves Market Integration and Market Structure in the FS IV 99 - 13
European Soft Drinks Industry: Always Coca-Cola?

Pinelopi Koujianou Goldberg The Evolution of Price Discrimination in the FS IV 99 - 14
Frank Verboven European Car Market

Olivier Cadot A Political Economy Model of Infrastructure FS IV 99 - 15
Lars-Hendrik Röller Allocation: An Empirical Assessment

Andreas Stephan

Holger Derlien Industriestandort mit Vorbildfunktion? FS IV 99 - 16
Tobias Faupel Das ostdeutsche Chemiedreieck

Christian Nieters





Absender/From:

Versandstelle - WZB
Reichpietschufer 50

D-10785  Berlin

BESTELLSCHEIN / ORDERFORM Bitte schicken Sie bei Ihren Bestellungen von WZB-Papers
unbedingt eine 1-DM-Briefmarke pro paper und einen an
Sie adressierten Aufkleber mit.   Danke.

Bitte schicken Sie mir aus der Liste der
Institutsveröffentlichungen folgende Papiere zu:

For each paper you order please send a "Coupon-
Réponse International" (international money order)
plus a self-addressed adhesive label.   Thank You.

Please send me the following papers from your Publication List:

Paper Nr./No. Autor/Author + Kurztitel/Short Title




