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CHAPTER 1: Introduction

A tsunami is an incredible, unpredictable, and deadly mass of moving water that

can cause an extreme amount of damage. Unlike the movies, a tsunami is barely

noticeable as it emanates from its source and heads out through the ocean or sea.

People can be sitting in a boat at sea and never notice a very large tsunami rolling

under them as a tsunami may only raise the ocean a couple meters. However, the

ocean may rise a couple meters for several minutes as the tsunami passes through. It

is only when the tsunami nears land that its deadly form is truly noticeable, and by

then it is typically too late for those who see it.

One way for a tsunami to form is from an earthquake [13], [14]. Earthquakes

are the result of two or more tectonic plates moving against each other [10]. One

specific type of earthquake is when one tectonic plate is moving under another. Due

to friction, the plates hold onto each other until there is so much built up energy that

they give way violently and release all that energy in a springboard type movement.

If the site of the earthquake happens to be under water, it may push the water in an

upward motion or drag it in a downward motion creating a resulting tsunami.

Because a shock wave travels through the earth faster than through the water, it

can be felt hundreds of miles away long before a following tsunami. This earthquake

ripples through the ocean floor disturbing the water above the disturbance, resulting

in a precursor disturbance wave that can be measured by buoys floating on the water

[9]. The data collected by sensors on these buoys can be used to accurately predict

the size of the following tsunami and when the tsunami will hit land. This prediction

can be used to give people an advanced warning of tsunamis, and possibly save many

lives.

The data collected from the impact of the precursor waves on the buoys is an
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imitation of the forcing done by the earthquake. We will use new multiplicatively

advanced functions in conjunction with the data from the precursor wave to model

the forcing on the tsunami. There are then three parts that need to be considered

[9]. The first is how to use this forcing to predict how a tsunami will form. For this,

the wave equation can be used [9], [11]. Once the tsunami is formed, it will travel in

the ocean for a period of time. For this second part, the Korteweg-de Vries equation

(KdV equation) will be used as a propagation model [2], [9]. The third and final part

of the tsunami is the approach to land [1], [9]. A run-up equation will be defined for

this last part of the model.

In this thesis, we derive each equation associated with each stage of our model.

We then describe, in detail, the numerical scheme associated with each equation. We

will use a modified version of a forcing term previously used to model tsunamis [9].

The new forcing term is designed to match the 2011 Japanese tsunami precursor wave

with greater accuracy This model, with the new forcing term, is then used to model

the tsunami’s course until it runs into land at Wake Island. The model will then be

compared to actual data collected from at Wake Island.



CHAPTER 2: The Wave Equation

2.1 1-Dimensional Wave Equation

A forced wave equation is a wave equation used where there is a force acting upon

a fluid, creating waves. We first derive the 1-dimensional wave equation which is a

linear partial differential equation which we use to model tsunamis in their first stage

of existence. Let H(x, t) be the wave height at position x and time t.

a b

T

T
T sin θb

T sin θa

θb

θa

Figure 2.1: Diagram for tension T

Assume that the amplitude of the wave is not large, and furthermore assume the

spacial gradient ∇H = ∂H
∂x

= Hx is small with |∇H|2 negligible. Also assume there is

no horizontal tension in the wave. Let [a, b] be an arbitrary small interval as shown

in Figure 2.1. Then the net vertical tension of the wave is

T sin θb − T sin θa , (2.1)

where θb is the angle between the outer tangent vector (1, ∂H
∂x

) at x = b and hori-
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zontal and θa is the angle between the outer tangent vector (−1,−∂H
∂x

) at x = a and

horizontal. Now we can estimate sinα ≈ tanα = sinα
cosα

in (2.1) to get the net vertical

tension

T tan θb − T tan θa = THx(b, t)− THx(a, t) =

∫ b

a

[THx(x)]xdx ,

to order O(|∇H|2).

Note that the approximate sin θ =
∂H
∂x√

1+( ∂H
∂x

)2
≈ tan θ =

∂H
∂x

1
= ∂H

∂x
is consistent

with |∂H
∂x
|2 = |∇H|2 ≈ 0. Looking now at the force equation F = ma we can use the

density function ρ(x) = ρ to get

F = ρ(x)dx Htt(x, t) , (2.2)

where ρ(x)dx is mass of an element at x and Htt(x, t) its acceleration. The integral of

(2.2) over [a, b] is the total force, and thus we obtain the homogeneous wave equation

∫ b

a

ρ(x)Htt(x, t)dx =

∫ b

a

(THx(x))xdx ,

where the total force = the net vertical force. Adding in an acceleration term f(x, t)

due to an external forcing gives

∫ b

a

ρ(x)Htt(x, t)dt =

∫ b

a

(THx(x))xdx+

∫ b

a

ρf(x, t)dx . (2.3)

We can assume that the density function ρ and the tension T are both constant.

Note that the integrands of (2.3) must be equal since [a, b] is arbitrarily small, thus

ρHtt = T (Hxx) + ρf
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Htt =
T

ρ
Hxx + f ,

and we have derived the wave equation in one dimension. Namely, for c2 = T
ρ
, where

c is the speed of the wave.

Htt − c2Hxx = f . (2.4)

2.2 The Wave Equation in Higher Dimensions.

We can derive the wave equation in higher dimensions by using an analogue of the

one dimensional case. Let R be an arbitrarily small region in Rn with ~n a unit

outer normal to the boundary ∂R. Let H(x1, x2, ..., xn, t) be the height of the wave

at time t in the ~en+1 direction above ~x = (x1, x2, ..., xn), where en+1 is a unit vector

perpendicular to the x1, x2, ..., xn hyperplane. Then∇H ·~n is the directional derivative

of H in the direction ~n.

We next compute the net vertical tension on the surface H(R) above R along

with its boundary H(∂R) above the boundary ∂R. Let ~N be an outer unit normal

to H(∂R) in the tangent space to H(R). Let T be a scalar measuring tension per

unit volume in H(∂R). The tension acting on a boundary volume element is then

T ~N . The net vertical tension is obtained by first computing the vertical component

of the tension vector T ( ~N) in the direction ~en+1, namely T ( ~N · ~en+1), and second,

integrating T ( ~N · ~en+1) on H(∂R)

∫
H(∂R)

(
T
(
~N · ~en+1

))
dVn−1 , (2.5)

where T is the tension per unit boundary volume. We estimate (2.5) up to order

|∇H|2 terms by noting that if ~n is an outer unit normal to ∂R then ~N ≈ (~n,∇H · ~n).
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This follows because if ~x is any tangent vector to ∂R then (~x,∇H · ~x) is tangent to

H(∂R), resulting in

(~n,∇H · ~n) · (~x,∇H · ~x) = ~n · ~x+ (∇H · ~n)(∇H · ~x)

= 0 + (∇H · ~n)(∇H · ~x)

≈ 0 up to order O(|∇H|2) . (2.6)

Furthermore (~n,∇H · ~n) is perpendicular to the normal vector to the graph of H,

(∇H,−1), as

(~n,∇H · ~n) · (∇H,−1) = ∇H · ~n−∇H · ~n = 0 .

Thus (~n,∇H · ~n) lies in the tangent surface to H(R), perpendicular to H(∂R) (to

order O(|∇H|2)). Now,

| (~n,∇H · ~n) | =
√
~n · ~n+ (∇H · ~n)2 =

√
1 + (∇H · ~n)2

Thus the unit vector

(~n,∇H · ~n)√
1 + (∇H · ~n)2

≈ (~n,∇H · ~n)√
1

= (~n,∇H · ~n) to order O(|∇H|2)

hence we use (~n,∇H · ~n) in place of ~N in (2.5) to obtain∫
H(∂R)

T
(
~N · ~en+1

)
dVn−1 ≈

∫
H(∂R)

T (~n,∇H · ~n) · ~en+1 dVn−1

=

∫
H(∂R)

T (∇H · ~n) dVn−1 . (2.7)

Again, under the assumption that |∇H|2 is small

dVn−1 on H(∂R) ≈ dVn−1 on ∂R

and (2.7) becomes ∫
∂R

T∇H · ~n dVn−1
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which by the divergence theorem gives

T

∫
∂R

div(∇H) dVn−1

as the net vertical tension on the surface H(R) above R. We assume any horizontal

tension is negligible. Then the total force on the element H(R),
∫
R
ρHtt(~x, t)dVn,

should be the sum of the net vertical tension and any external forcing due to f . Thus

∫
R

ρHtt(~x, t)dVn = T

∫
R

div(∇H)dVn +

∫
R

ρf(~x, t)dVn . (2.8)

Since (2.8) holds,
∫
R
ρHtt(~x, t)dVn =

∫
R

[Tdiv(∇H) + ρf(~x, t)] dVn−1 for all R we

have

ρHtt(~x) = Tdiv(∇H) + ρf(~x) ,

where

Htt(~x) =
T

ρ
div(∇H) + f(~x)

=
T

ρ

(
∂

∂x1

,
∂

∂x2

, ...,
∂

∂xn

)
·
(
∂H

∂x1

,
∂H

∂x2

, ...,
∂H

∂xn

)
+ f(~x)

=
T

ρ
(∇ · ∇H) +

f

ρ
=
T

ρ

(
∂2H

∂x2
1

+
∂2H

∂x2
2

+ ...+
∂2H

∂x2
n

)
+ f(~x) .

Thus we have obtained the wave equation,

Htt − c2(Hx1x1 +Hx2x2 + ...+Hxnxn) = f(~x) , (2.9)

in dimension n, where c2 = T
ρ

and c is the speed of the wave.



CHAPTER 3: Korteweg-de Vries Equation

3.1 Introduction

The Korteweg-de Vries, or KdV, equation gets its name from two men named Diederik

Korteweg and Gustav de Vries who first published a paper about the equation in 1895

[4]. Although the equation is named after them, there were experiments done by Scott

Russel that relate to the KdV equation as early as 1834, long before Korteweg and

de Vries published their paper.

The KdV equation is a wave equation first used to model solitary waves flowing in

a channel. The KdV equation is a variant of the wave equation that incorporates an

extra non-linear term as well as a dispersion term. These non-linear and dispersion

terms are negligible in the first stage of a tsunami, hence, the wave equation is used

in the early stage. These non-linear and dispersion terms become more significant

as the tsunami flows for some time t over the relatively constant depth of the ocean.

Hence the KdV equation is used at this stage.

3.2 1-Dimensional Korteweg-de Vries Equation

We now derive the KdV, equation. We expand on the work of [3]. We can first set up

our system where z is our vertical direction, and x is our horizontal direction. The

velocity of the fluid is ~v = (dx
dt
, dz
dt

). We must first assume that the fluid is irrotational,

that is,

∇× ~v = 0 . (3.1)

This implies the existence of a potential function φ, with ~v = (φx, φz) since our region

is assumed to be simply connected. Thus ~v = ∇φ. We next assume that the fluid is
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incompressible, namely,

∇ · ~v = div ~v = 0 . (3.2)

And thus

0 = ∇ · ∇φ = φxx + φzz . (3.3)

So the potential function is harmonic.

We next assume the density function ρ of the fluid is constant. Thus

∇ρ = 0 ρt = 0 . (3.4)

Now (3.4) together with (3.2) imply the conservation of mass, namely,

∂tρ+∇ · (ρ~v) = 0 . (3.5)

We remark that (3.5) holds more generally (without the assumption of (3.4) and

(3.2)) via the statement

∂

∂t

∫
R

ρ dV = −
∫
∂R

ρ~v · ~n dS (3.6)

where the rate of change of mass in a region R equals the rate of flow of mass into

the region R across the boundary ∂R. The divergence theorem applied to the flux

integral in (3.6) then implies (3.5) in general.

In addition to conservation of mass in (3.5), one has Euler’s equation [5],

∂

∂t
(ρ~v) + ~v · ∇(ρ~v) = −∇P + ρ~f , (3.7)
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which under the assumptions (3.2) and (3.4) simplifies to

ρ
∂

∂t
(~v) + ρ~v · ∇~v = −∇P + ρ~f , (3.8)

where P is the internal pressure and ρf is any external forcing effect. Note that

the basic principal behind Euler’s Equation is the force law. In our case f will be

acceleration due to gravity ~f = −g(0, 1) yielding

~f = −g∇z . (3.9)

Thus,

∂

∂t
(~v) + ~v · ∇~v = −∇P

ρ
− g∇z , (3.10)

where

~v · ∇~v = (~v · ∇v1, ~v · ∇v2) .

Now, by Lemma 4.1 on page 47 below,

~v · ∇~v =
1

2
∇
(
|~v|2
)
− ~v ×∇× ~v (3.11)

which becomes under (3.1)

~v · ∇~v =
1

2
∇
(
|~v|2
)
.

And so (3.10) reduces to

∂

∂t
(~v) +

1

2
∇
(
|~v|2
)

= −∇P
ρ
− g∇z ,
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or equivalently, using the fact that ~v = ∇φ,

∇
[
φt +

1

2
|∇φ|2 +

P

ρ
+ gz

]
= 0 .

Thus

φt +
1

2
|∇φ|2 +

P

ρ
+ gz = B(t) . (3.12)

At the surface z = h + aH(x, t), where a is the amplitude of the wave and h is

the undisturbed water level, the pressure P vanishes (since no water lies above the

surface to create pressure). Thus (3.12) reduces to

φt +
1

2
|∇φ|2 + g(h+ aH) = B(t)

or

φt +
1

2
|∇φ|2 + gaH = B(t)− gh . (3.13)

On the bottom, there should be no vertical component to the velocity, so

φz =
dz

dt
= 0 at z = 0 . (3.14)

Finally, at the surface z = h+ aH, by differentiating with respect to t and using the

chain rule, one has

dz

dt
= φz = a∇H · ∇φ+ aHt . (3.15)

Thus the equations governing our fluid are (3.3) , (3.13), (3.14), and (3.15), which

can be written as

φxx + φzz = 0 ∀x, z, t 0 ≤ z ≤ h+ aH(x, t) , (3.16)
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φz = aHxφx + aHt at z = h+ aH , (3.17)

φt +
1

2

(
φ2
x + φ2

z

)
+ gaH = B(t)− gh at z = h+ aH, (3.18)

and

φz = 0 at z = 0 . (3.19)

We deploy these to obtain the KdV equation.

We see by Remark 3.1 below that the solution to the linearized versions of (3.16)-

(3.19) is of form (3.73) which is expressed as c(k, z) · cos(k[x−
√
ght]). This exhibits

this solution as a wave moving with velocity
√
gh. Furthermore, in a tsunami setting

we should expect a large wavelength λ, and that for amplitude a above the depth of the

ocean h, both
(
a
h

)
and

(
h
λ

)
should be reasonably small. We retain these assumptions

when looking at the non-linear equations from (3.16)-(3.19).

We now record the effects on (3.16), (3.17), (3.18), and (3.19) of a series of suc-

cessive change in variables to obtain a dimensionless system. First, we can use scaled

variables. Let

x̄ =
x

λ
, z̄ =

z

h
, φ̄ =

h φ

λa
√
gh

and t̄ =
t
√
gh

λ
. (3.20)

By Proposition 3.2 , equations (3.16), (3.17), (3.18), and (3.19) transform under (3.20)
to:

0 = ε2φ̄x̄x̄ + φ̄z̄z̄ (3.21)

at z̄ = 1 + αH −→ φ̄z̄ = ε2
{
αφ̄x̄Hx̄ +Ht̄

}
(3.22)
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at z̄ = 1 + αH −→ φ̄t̄ +
1

2
α

{(
φ̄x̄
)2

+
1

ε2
(
φ̄z̄
)2
}

+H =
B̃(t̄)− gh

ga
(3.23)

at z̄ = 0 −→ φ̄z̄ = 0 (3.24)

for ε = h
λ
, α = a

h
, and B̃(t̄) = B

(
λ√
gh
· t̄
)

= B(t).

Next we can incorporate B̃(t̄)−gh
ag

into the potential φ̄ in (3.23) by taking

B̂(t̄) =

∫ t̄

0

B̃(s)− gh
ga

ds

and letting (φ̄new) = φ̄ − B̂(t̄). Then all spacial derivatives of (φ̄new)s̄ = φ̄s̄ (for

s̄ = x̄, z̄) and one has (φ̄new)t̄ = φ̄t̄ − B̂t̄ = φ̄t̄ −
[
B̃(t̄)−gh

ah

]
. Thus from (3.21) we have

0 = ε2(φ̄new)x̄x̄ + (φ̄new)z̄z̄ , (3.25)

and, at the surface, from (3.22) we have

(φ̄new)z̄ = ε2
{
α(φ̄new)x̄Hx̄ +Ht̄

}
. (3.26)

Similarly, using (3.23) at the surface, we have

(φ̄new)t̄ +
1

2
α

{[
(φ̄new)x̄

]2
+

1

ε2
[
(φ̄new)z̄

]2}
+H = 0 , (3.27)

where the net effect is that the new potential (φ̄new)t̄ makes (3.27) a homogeneous

version of (3.23). At the bottom using (3.24) we get

(φ̄new)z̄ = 0 at z̄ = 0 . (3.28)

So we can drop all subscripts new from here on, and we assume φ̄new = φ̄.

We proceed with the next change of variables to obtain dimensionless equations:

let
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X =
α1/2

ε
(x̄+ (α− 1)t̄) , τ =

α3/2

ε
t̄ , ψ =

α1/2

ε
φ̄ and Z = z̄ . (3.29)

By Proposition 3.3, equations (3.25), (3.26), (3.27), and (3.28) transform under (3.29)
to

0 = αψXX + ψZZ (3.30)

ψZ = α2ψXHX + (α2 − α)HX + α2Hτ at Z = 1 + αH (3.31)

αψX − ψX + αψτ +
1

2
{αψ2

X + ψ2
Z}+H = 0 at Z = 1 + αH (3.32)

ψZ = 0 at Z = 0 (3.33)

Since both ψ and H are expressed in terms of X and τ , they both depend on α, thus

we can expand each in terms of α to obtain

ψ = ψ0 + αψ1 + α2ψ2 +O(α3) (3.34)

and

H = H0 + αH1 +O(α2) . (3.35)

We can now substitute (3.34) and (3.35) into (3.30), (3.31), (3.32), and (3.33).

For (3.30), one obtains

0 = α
(
ψ0XX + αψ1XX + α2ψ2XX +O(α3)

)
+
(
ψ0ZZ + αψ1ZZ + α2ψ2ZZ +O(α3)

)
,

and rearranging we get
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0 = ψ0ZZ + α (ψ0XX + ψ1ZZ) + α2 (ψ1XX + ψ2ZZ) +O(α3) ,

which gives for various orders of α:

O(α0) ψ0ZZ = 0 (3.36)

O(α1) ψ1ZZ = −ψ0XX (3.37)

O(α2) ψ2ZZ = −ψ1XX . (3.38)

By Proposition 3.4, equations (3.36), (3.37), and (3.38) in conjunction with the
bottom boundary condition (3.33) imply

(3.36) and (3.33) ⇒ ψ0 = B0(X, τ) (3.39)

(3.37) and (3.33) ⇒ ψ1 = −Z
2

2
B0XX +B1(X, τ) (3.40)

(3.38) and (3.33) ⇒ ψ2 =
Z4

4!
B0XXXX −

Z2

2
B1XX +B2(X, τ) . (3.41)

By Proposition 3.5 below, to leading orders O(α0) and O(α1), equation (3.32) at
the surface gives

O(α0) : H0 = ψ0X = B0X (3.42)

O(α1) : 0 = H1 +B0X +
1

2
B0XXX −B1X +B0τ +

1

2
B2

0X . (3.43)

By Proposition 3.6 below, to leading orders O(α1) and O(α2), equation (3.31) at

the surface gives

O(α1) : H0X = B0XX (3.44)

O(α2) : −H0B0XX +
1

6
B0XXXX −B1XX

= −H1X +H0X +H0τ +B0XH0X .

(3.45)

From (3.45) one obtains, by moving the H1X term over,
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−H0B0XX +
1

6
B0XXXX +H1X −B1XX = H0X +H0τ +B0XH0X . (3.46)

By differentiating (3.43) we get

0 = H1X +B0XX +
1

2
B0XXXX −B1XX +B0τX +B0XB0XX

H1X −B1XX = −1

2
B0XXXX −B0XX −B0τX −B0XB0XX .

(3.47)

Using (3.47) we can replace H1X −B1XX in (3.46) to get

−H0B0XX +
1

6
B0XXXX −

1

2
B0XXXX −B0τX −B0XB0XX −B0XX

= H0X +H0τ +B0XH0X .

(3.48)

We can rewrite (3.48) as

−H0B0XX −
1

3
B0XXXX −B0τX −B0XB0XX −B0XX

= H0X +H0τ +B0XH0X .

(3.49)

Now from (3.42), we can substitute B0X = H0 into (3.49) to get

−H0H0X −
1

3
H0XXX −H0τ −H0H0X −H0X = H0X +H0τ +H0H0X ,

which reduces to
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0 = 2H0τ + 3H0H0X +
1

3
H0XXX + 2H0X .

Dividing through by 2 gives

0 = H0X +H0τ +
3

2
H0H0X +

1

6
H0XXX .

Thus

HX+Hτ +
3

2
HHX +

1

6
HXXX

=H0X +H0τ +
3

2
H0H0X +

1

6
H0XXX

+ α

[
H1X +H1τ +

3

2
[H0H1X +H1H0X ] +

1

6
H1XXX

]
+O(α2)

=0 +O(α) .

(3.50)

So the scaled wave H(X, τ) = H0 + αH1 + O(α2) satisfies the KdV equation at the

0th order in α. Thus

0 = HX +Hτ +
3

2
HHX +

1

6
HXXX +O(α) .

So, for α small it is reasonable to assume

0 = HX +Hτ +
3

2
HHX +

1

6
HXXX , (3.51)

which is the KdV equation in the form that is very commonly used.

We are interested in a transform of the KdV equation in (3.51). By Proposition

3.7 we see that (3.51) transforms under the appropriate change of variables, (3.99),
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into

0 = Ĥτ̂ + ÂĤX̂ +
3

2
B̂ĤĤX̂ +

1

6
ĈĤX̂X̂X̂ , (3.52)

where Â, B̂, and Ĉ are arbitrary constants. This is a more general form of the KdV

equation.

We can now choose the arbitrary constants to be as follows:

Â =
√
gh , B̂ =

a

h
= α and Ĉ =

(
h

λ

)2

= ε2

and obtain the KdV equation in the form we are interested in, namely,

0 = Ĥτ̂ +
√
ghĤX̂ +

3

2
αĤĤX̂ +

1

6
ε2ĤX̂X̂X̂ . (3.53)

This form of the KdV equation is chosen because it is consistent with that used in

[9].

Remark 3.1. Given the equations from (3.16)-(3.19) namely,

φxx + φzz = 0 ∀x, z, t 0 ≤ z ≤ h+ aH(x, t) , (3.54)

φz = aHxφx + aHt , at z = h+ aH (3.55)

φt +
1

2

(
φ2
x + φ2

z

)
+ gaH = B(t)− gh , at z = h+ aH (3.56)

and
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φz = 0 at z = 0 , (3.57)

one can linearize these equations (3.54)-(3.57) and obtain

φxx + φzz = 0 ∀x, z, t 0 ≤ z ≤ h+ aH(x, t) , (3.58)

φz = aHt , at z = h+ aH (3.59)

φt + gaH + gh = 0 , at z = h+ aH (3.60)

and

φz = 0 at z = 0 , (3.61)

where:

(i) B(t) has been absorbed into the potential function φ, that is, a new term φ is

φ−
∫ t
t0
B(s)ds,

(ii) the non-linear term aHxφx is dropped from (3.55) , and

(iii) the non-linear term 1
2
(φ2

x + φ2
z) is dropped from (3.56) .

Now, (3.59) gives φz = aHt, and antidifferentiating (3.60) with respect to t gives

φtt + agHt = 0 . (3.62)



20

Substituting (3.59) into (3.62) yields

φtt + gφz = 0 . (3.63)

Next assume that the potential φ has the form

φ = Y (z) sin(kx− ωt) .

Then,

φxx = −k2Y (z) sin(kx− ωt)

and

φzz = Yzz(z) sin(kx− ωt) . (3.64)

Then (3.58) becomes

0 = φxx + φzz =
[
−k2Y (z) + Yzz(z)

]
sin(kx− ωt)

or

Yzz(z)− k2Y (z) = 0 . (3.65)

Since ekz and e−kz both satisfy (3.65), we have

Y (z) = Aekz +Be−kz .

Thus

φ = (Aekz +Be−kz) sin(kx− ωt) .
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(3.61) then gives

0 = φz|z=0 = ((kAekz − kBe−kz)|z=0 sin(kx− ωt)

so

0 = (kA− kB) sin(kx− ωt) .

Thus

kA− kB = 0

and so

A = B .

Thus

φ = (Aekz + Ae−kz) sin(kx− ωt)

or

φ = 2A cosh(kz) sin(kx− ωt) . (3.66)

Next, at z = h+ aH, (3.63) gives

0 = φtt + gφz = −ω22A cosh(kz) sin(kx− ωt) + gk2A sinh(kz) sin(kx− ωt) .

Thus

ω22A cosh(kz) sin(kx− ωt) = gk2A sinh(kz) sin(kx− ωt) ,

so

ω2 = gk tanh(kz) at z = h+ aH ,
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and therefore

ω2 = gk tanh(k(h+ aH)) .

Thus,

ω2 = gk tanh
(
kh
(

1 +
a

h
H
))

. (3.67)

To recover (aH) from the linearized problem we rely on (3.60), that is,

aH =
−φt − gh

g
= −φt

g
− h . (3.68)

Differentiating (3.66) with respect to t and substituting into (3.68) yields

aH = −1

g
{2A cosh(kz)(−ω) cos(kx− ωt)} − h (3.69)

which is a wave with wavelength λ = 2π
k

and ω the angular frequency relative to

cos(t). Thus a longer wavelength λ corresponds to a smaller wavenumber k = 2π
λ

, so

substituting for k in (3.67) yields

ω2 = gk tanh

(
2π
h

λ

[
1 +

(a
h

)
H
])

. (3.70)

It is reasonable to assume for a tsunami wave in the ocean that the amplitude term

a is small when compared to the ocean depth h. Thus we assume that a
h

is small and

obtain from (3.67) and (3.70)

ω2 ≈ gk tanh(kh) = gk tanh

(
2π

(
h

λ

))
. (3.71)

Furthermore, since tsunamis generate a longer wavelength profile, it is reasonable to

assume that λ is large when compared to h. Then we assume k and kh are small,
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also h
λ

is small, to use tanh(x) ≈ x for small x. We then obtain from (3.71) that

ω2 ≈ gkkh or ω2 ≈ gk2π

(
h

λ

)

giving

ω ≈ k
√
gh or ω ≈

√
gk2π

(
h

λ

)
(3.72)

which exhibits ω to be low frequency in addition to the longer wavelength λ profile.

Substituting (3.72) into (3.69) shows

aH = −1

g

{
2A cos(kz)(−ω) cos(kx− k

√
ght)

}
− h

or

aH =
ω

g

{
2A cos(kz) cos

(
k
[
x−

√
ght
])}
− h (3.73)

which is a long length wave traveling at velocity c =
√
gh.

Proposition 3.2. Equations (3.16), (3.17), (3.18), and (3.19) transform under (3.20)
to:

0 = ε2φ̄x̄x̄ + φ̄z̄z̄

at z̄ = 1 + αH −→ φ̄z̄ = ε2
{
αφ̄x̄Hx̄ +Ht̄

}
at z̄ = 1 + αH −→ φ̄t̄ +

1

2
α

{(
φ̄x̄
)2

+
1

ε2
(
φ̄z̄
)2
}

+H =
B̃(t̄)− gh

ga

at z̄ = 0 −→ φ̄z̄ = 0

for ε = x
λ

, α = a
h

, and B̃(t̄) = B
(

λ√
gh
· t̄
)

= B(t).

Proof. Recall from (3.20) that

x̄ =
x

λ
, z̄ =

z

h
, φ̄ =

h φ

λa
√
gh

, t̄ =
t
√
gh

λ
.

By the chain rule
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∂

∂x
=

∂

∂x̄
· ∂x̄
∂x

=
∂

∂x̄
· 1

λ
,

∂

∂z
=

∂

∂z̄
· ∂z̄
∂z

=
∂

∂z̄
· 1

h
∂

∂t
=

∂

∂t̄
· ∂t̄
∂t

=
∂

∂t̄
·
√
gh

λ
,

(3.74)

Then from (3.74) we have

φt =

√
gh

λ
φt̄ , φx =

1

λ
φx̄ and φz =

1

h
φz̄ . (3.75)

Since φ =
(

h
λa
√
gh

)−1

φ̄ in (3.20) we have

φt =

√
gh

λ

(
h

λa
√
gh

)−1

φ̄t̄ = agφ̄t̄ , φx =
1

λ

(
h

λa
√
gh

)−1

φ̄x̄

and φz =
1

h

(
h

λa
√
gh

)−1

φ̄z̄ .

(3.76)

Furthermore, by repeated application of (3.74),

φxx =
1

λ2
φx̄x̄ and φzz =

1

h2
φz̄z̄

and

φxx =
1

λ2
φx̄x̄ =

1

λ2

(
h

λa
√
gh

)−1

φ̄x̄x̄ and φzz =
1

h2
φz̄z̄ =

1

h2

(
h

λa
√
gh

)−1

φ̄z̄z̄ .

Therefore, (3.16) gives

0 = φxx + φzz =

(
h

λa
√
gh

)−1

· 1

λ2
φ̄x̄x̄ +

(
h

λa
√
gh

)−1

· 1

h2
φ̄z̄z̄

⇒ 0 =
1

λ2
φ̄x̄x̄ +

1

h2
φ̄z̄z̄
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⇒ 0 =
h2

λ2
φ̄x̄x̄ + φ̄z̄z̄ .

Finally (3.16) transforms to

0 = ε2φ̄x̄x̄ + φ̄z̄z̄ where ε =
h

λ
,

giving (3.21). As a consequence of (3.74), we have

Hx = Hx̄
∂x̄

∂x
= Hx̄ ·

1

λ
and Ht = Ht̄

∂t̄

∂t
= Ht̄ ·

√
gh

λ
. (3.77)

We can substitute (3.77) into (3.17) with (3.76) to get

φz = aHxφx + aHt

⇒ φ̄z̄

(
h

λa
√
gh

)−1
1

h
= aHx̄ ·

1

λ

(
h

λa
√
gh

)−1
1

λ
φ̄x̄ + aHt̄

√
gh

λ

⇒ φ̄z̄

(
h

λa
√
gh

)−1
1

h
= a

(
h

λa
√
gh

)−1
1

λ2
φ̄x̄Hx̄ +

a

λ

(
h

λa
√
gh

)−1√
gh

(
h

λa
√
gh

)
Ht̄

⇒ φ̄z̄
1

h
=

a

λ2
φ̄x̄Hx̄ +

√
gh

h

λ2
√
gh
Ht̄

⇒ φ̄z̄ =
ha

λ2
φ̄x̄Hx̄ +

h2

λ2
Ht̄

⇒ φ̄z̄ =
h2

λ2

{a
h
φ̄x̄Hx̄ +Ht̄

}
⇒ φ̄z̄ = ε2

{
αφ̄x̄Hx̄ +Ht̄

}
,

where α = a
h

and ε = h
λ
. Thus (3.17) has transformed to (3.22). Next, we can

substitute (3.75) and (3.76) into (3.18) to get

φt +
1

2

(
φ2
x + φ2

z

)
+ gaH = B(t)− gh

⇒ agφ̄t̄ +
1

2

([
a
√
gh

h
φ̄x̄

]2

+

[
λa
√
gh

h2
φ̄z̄

]2
)

+ gaH = B(t)− gh .

Now B̃ ( t̄ ) ≡ B
(

λ√
gh

[
t
√
gh
λ

])
= B(t)
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⇒ agφ̄t̄ +
1

2

{
a2gh

h2

[
φ̄x̄
]2

+
λ2a2gh

h4

[
φ̄z̄
]2}

+ gaH = B̃(t̄)− gh

⇒ φ̄t̄ +
1

2

{
a

h

(
φ̄x̄
)2

+
a

h

λ2

h2

(
φ̄z̄
)2
}

+H =
B̃(t̄)− gh

ga

⇒ φ̄t̄ +
1

2
α

{(
φ̄x̄
)2

+
1

ε2
(
φ̄z̄
)2
}

+H =
B̃(t̄)− gh

ga
.

Thus (3.18) has transformed to (3.23). Next, from (3.19) using (3.76) we get

φz = 0 at z = 0

⇒ λa
√
gh

h2
φ̄z̄ = 0 at z̄ = 0

⇒ φ̄z̄ = 0 at z̄ = 0 .

Thus (3.19) has transformed to (3.24).

Proposition 3.3. Equations (3.25), (3.26), (3.27), and (3.28) transform under (3.29)
to

0 = αψXX + ψZZ

ψZ = α2ψXHX + (α2 − α)HX + α2Hτ at Z = 1 + αH

αψX − ψX + αψZ +
1

2
{αψ2

X + ψ2
Z}+H = 0 at Z = 1 + αH

ψZ = 0 at Z = 0

Proof. Recall from (3.29) that

X =
α1/2

ε
(x̄+ (α− 1)t̄) , Z = z̄, τ =

α3/2

ε
t̄, and ψ =

α1/2

ε
φ̄ .

Assume α1/2 = kε for some k ∈ R. Then

∂

∂x̄
=

∂

∂X

∂X

∂x̄
=

∂

∂X

α1/2

ε
, and

∂

∂z̄
=

∂

∂Z

∂Z

∂z̄
=

∂

∂Z
(3.78)
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∂

∂t̄
=

∂

∂X

∂X

∂t̄
+

∂

∂τ

∂τ

∂t̄
=

∂

∂X

α1/2

ε
(α− 1) +

∂

∂τ

α3/2

ε
. (3.79)

Now from (3.25), (3.78) and (3.79)

0 = ε2φ̄ x̄x̄ + φ̄ z̄z̄

0 = ε2
∂

∂x̄

∂

∂x̄
φ̄+

∂

∂z̄

∂

∂z̄
φ̄

0 = ε2
α

ε2
∂

∂X

∂

∂X
φ̄+

∂

∂Z

∂

∂Z
φ̄

0 = ε2
α

ε2
φ̄XX + φ̄ZZ

0 = α
ε

α1/2
ψXX +

ε

α1/2
ψZZ

0 = αψXX + ψZZ .

Thus (3.25) has transformed to (3.30). Next, apply (3.78), (3.79) and (3.29) to (3.26)

to get

φ̄ z̄ = ε2
{
αφ̄ x̄Hx̄ +Ht̄

}
φ̄ Z = ε2

{
α

(
α1/2

ε
φ̄X

α1/2

ε
HX

)
+
α1/2

ε
(α− 1)HX +

α3/2

ε
Hτ

}
φ̄ Z =

{
α2φ̄XHX +

(
α3/2 − α1/2

)
εHX + α3/2εHτ

}
ε

α1/2
ψ Z =

{
α2 ε

α1/2
ψXHX +

(
α3/2 − α1/2

)
εHX + α3/2εHτ

}
ψ Z = α2ψXHX +

(
α2 − α

)
HX + α2Hτ when Z = 1 + αH .

Thus (3.26) has transformed to (3.31). Now from (3.27) we can obtain the Bernoulli

equation as follows:

φ̄ t̄ +
1

2
α

{(
φ̄ x̄

)2
+

1

ε2
(
φ̄ z̄

)2
}

+H = 0

⇒ α1/2

ε
(α− 1)φ̄X +

α3/2

ε
φ̄τ +

1

2
α

{(
α1/2

ε
φ̄X̄

)2

+
1

ε2
(
φ̄Z
)2

}
+H = 0

⇒ ε

α1/2

(
α1/2

ε
(α− 1)ψX

)
+
α3/2

ε

ε

α1/2
ψτ

+
1

2
α

{(
α1/2

ε

ε

α1/2
ψX

)2

+
1

ε2

( ε

α1/2
ψZ

)2
}

+H = 0
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⇒ (α− 1)ψX + αψτ +
1

2
α

{
(ψX)2 +

1

α
(ψZ)2

}
+H = 0

⇒ αψX − ψX + αψτ +
1

2

{
αψ2

X + ψ2
Z

}
+H = 0 at Z = 1 + αH .

This gives (3.32).

We can examine (3.28) and obtain the following:

φ̄ z̄ = 0 at z̄ = 0

⇒ φ̄ Z = 0 at Z = 0

⇒ ε

α1/2
ψ Z = 0 at Z = 0

⇒ ψ Z = 0 at Z = 0

This gives (3.33).

Proposition 3.4. Equations (3.36), (3.37), and (3.38) in conjunction with the bottom
boundary condition (3.33) imply the following:

(3.36) and (3.33) ⇒ ψ0 = B0(X, τ)

(3.37) and (3.33) ⇒ ψ1 = −Z
2

2
B0XX +B1(X, τ)

(3.38) and (3.33) ⇒ ψ2 =
Z4

4!
B0XXXX −

Z2

2
B1XX +B2(X, τ) .

Proof. Antidifferentiate (3.36) once with respect to Z to get ψ0Z = C0(X, τ) and

again to get

ψ0 = B0(X, τ) + ZC0(X, τ) . (3.80)

Now (3.33) gives

0 = ψZ = ψ0Z + αψ1Z + α2ψ2Z +O(α3) for Z = 0 ,

so for Z = 0

0 = ψ0Z = ψ1Z = ψ2Z . (3.81)
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Thus by (3.80) 0 = ψ0Z = C0(X, τ) for all Z. Thus, (3.36), (3.80), and (3.81) imply

that

ψ0 = B0(X, τ) .

Note that ψ0 does not depend on Z, nor does ψ0XX = B0XX . Next, anti-differentiating

(3.37) once with respect to Z gives

ψ1Z = (−ψ0XX)Z +D(X, τ) . (3.82)

Then, from (3.81) we get

ψ1Z = 0 = 0 +D(X, τ) at Z = 0 ,

so D(X, τ) = 0 for all Z. Thus,

ψ1Z = −Zψ0XX . (3.83)

Anti-differentiating again with respect to Z gives

ψ1 = −Z
2

2
ψ0XX +B1(X, τ)

and (3.39) implies ψ0XX = B0XX , so

ψ1 = −Z
2

2
B0XX +B1 . (3.84)

Next (3.38) gives ψ2ZZ = −ψ1XX so, by (3.84) one obtains

ψ2ZZ =
Z2

2
B0XXXX −B1XX . (3.85)
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Anti-differentiating with respect to Z gives

ψ2Z =
Z3

3!
B0XXXX − ZB1XX + E(X, τ) . (3.86)

Now from (3.81) at Z = 0, we get

ψ2Z |Z=0 = 0 = 0− 0 + E

and so we get that E = 0 for all Z. Thus,

ψ2Z =
Z3

3!
B0XXXX − ZB1XX .

Anti-differentiating once more with respect to Z, we get

ψ2 =
Z4

4!
B0XXXX −

Z2

2
B1XX +B2(X, τ) .

Proposition 3.5. The leading orders O(α0) and O(α1) of equation (3.32) at the
surface give:

O(α0) : H0 = ψ0X = B0X

O(α1) : 0 = H1 +B0X +
1

2
B0XXX −B1X +B0τ +

1

2
B2

0X

Proof. At Z = 1 + αH, (3.32) gives

H + αψX − ψX + αψτ +
1

2

{
αψ2

X + ψ2
Z

}
= 0 ,

and then (3.34) and (3.35) give
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0 =H0 + αH1 +O(α2) + αψ0X + α2ψ1X + α3ψ2X +O(α4)

− ψ0X − αψ1X − α2ψ2X −O(α3)

+ αψ0τ + α2ψ1τ + α3ψ2τ +O(α4)

+ α
1

2

[
ψ0X + αψ1X + α2ψ2X +O(α3)

]2
+

1

2

[
ψ0Z + αψ1Z + α2ψ2Z +O(α3)

]2
,

and we get

0 = H0 + αH1 +O(α2)

+ αψ0X + α2ψ1X + α3ψ2X +O(α4)

−ψ0X − αψ1X − α2ψ2X −O(α3)

+ αψ0τ + α2ψ1τ + α3ψ2τ +O(α4)

+ α
1

2
ψ2

0X + α2ψ0Xψ1X +O(α3)

+
1

2
ψ2

0Z + αψ0Zψ1Z +O(α2) .

Therefore,

0 =

[
H0 − ψ0X +

1

2
ψ2

0Z

]
+ α

[
H1 + ψ0X − ψ1X + ψ0τ +

1

2
ψ2

0X + ψ0Zψ1Z

]
+O(α2) .

(3.87)

Thus, from the α0 term of (3.87), we get
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0 = H0 − ψ0X +
1

2
ψ2

0Z (3.88)

and from the α1 term of (3.87),

0 = H1 + ψ0X − ψ1X + ψ0τ +
1

2
ψ2

0X + ψ0Zψ1Z (3.89)

at Z = 1 + αH.

Thus from (3.88), (3.81), and (3.39) we get

0 = H0 −B0X +
1

2
02

= H0 −B0X .

(3.90)

Thus

H0 = ψ0X = B0X . (3.91)

Furthermore,

ψ0τ = B0τ . (3.92)

Also, (3.40) gives

ψ1 = −Z
2

2
B0XX +B1 ,

and differentiating with respect to X we have

ψ1X = −Z
2

2
B0XXX +B1X .

Thus,
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ψ1X |Z=1+αH = −1

2
(1 + 2αH + α2H2)B0XXX +B1X . (3.93)

Now the α and α2 terms in (3.93) create O(α2) and O(α3) terms in (3.87), or higher

order terms in (3.89) so we can drop both terms in these settings to obtain

ψ1X |Z=1+αH = −1

2
B0XXX +B1X . (3.94)

Next, from (3.89), (3.91), (3.81), (3.92), and (3.94), we get

0 = H1 +B0X −
(
−1

2
B0XXX +B1X

)
+B0τ +

1

2
B2

0X + 0 ,

so

0 = H1 +B0X +
1

2
B0XXX −B1X +B0τ +

1

2
B2

0X .

Proposition 3.6. The leading orders O(α1) and O(α2) of equation (3.31) at the

surface give thw following:

O(α1) : H0X = B0XX

O(α2) : −H0B0XX +
1

6
B0XXXX −B1XX

= −H1X +H0X +H02 +B0XH0X

Proof. At Z = 1 + αH = 1 + αH0 + α2H1 + O(α3), the kinematic equation (3.31)

gives

ψZ = α2ψXHX + α2HX − αHX + α2Hτ .
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Thus, substituting in (3.34) and (3.35) gives

ψ0Z + αψ1Z+α2ψ2Z +O(α3)

=− α[H0X + αH1X +O(α2)]

+ α2[H0X + αH1X +O(α2)]

+ α2[H0τ + αH1τ +O(α2)]

+ α2[ψ0X + αψ1X + α2ψ2X +O(α3)][H0X + αH1X +O(α2)] .

(3.95)

Now, from (3.40) and (3.41) we have

ψ0Z + αψ1Z+α2ψ2Z +O(α3)

= 0 + α(−ZB0XX) + α2

(
1

6
Z3B0XXXX − ZB1XX

)
+O(α3) .

At Z = 1 + αH we expand using (3.35) and get

ψ0Z + αψ1Z+α2ψ2Z +O(α3)

=− α[1 + αH0 + α2H1 +O(α3)]B0XX

+ α2 1

6
[1 + αH0 + α2H1 +O(α3)]3B0XXXX

− α2[1 + αH0 + α2H1 +O(α3)]B1XX + 0 +O(α3) .

Moving the α3 terms into O(α3), we have
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ψ0Z + αψ1Z + α2ψ2Z +O(α3)

= −αB0XX − α2H0B0XX +O(α3)

+
1

6
α2B0XXXX +O(α3)

− α2B1XX +O(α3) .

Thus, we have

ψ0Z + αψ1Z+α2ψ2Z +O(α3)

=− αB0XX + α2

[
−H0B0XX +

1

6
B0XXXX −B1XX

]
+O(α3) .

(3.96)

Now substituting (3.96) into (3.95) we get

−αB0XX + α2

[
−H0B0XX +

1

6
B0XXXX −B1XX

]
+O(α3)

= −αH0X − α2H1X +O(α3)

+ α2H0X +O(α3)

+ α2H0τ +O(α3)

+ α2ψ0XH0X +O(α3) .

So matching α1 terms implies B0XX = H0X which is consistant with (3.90). Matching

α2 terms implies

−H0B0XX +
1

6
B0XXXX −B1XX = −H1X +H0X +H0τ + ψ0XH0X .
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Substituting ψ0X = B0X from (3.92) gives

−H0B0XX +
1

6
B0XXXX −B1XX = −H1X +H0X +H0τ +B0XH0X . (3.97)

Proposition 3.7. (3.51) can be transformed into

0 = Ĥτ̂ + ÂĤX̂ +
3

2
B̂ĤĤX̂ +

1

6
ĈĤX̂X̂X̂

under the appropriate change of variables, where Â, B̂, and Ĉ are arbitrary constants.

Proof. From (3.51) we have

0 = HX +Hτ +
3

2
HHX +

1

6
HXXX . (3.98)

We can then perform a change of variables, namely

X̂ = BX ⇒ ∂

∂X
=

∂

∂X̂

∂X̂

∂X
=

∂

∂X̂
·B (3.99)

τ̂ = Cτ ⇒ ∂

∂τ
=

∂

∂τ̂

∂τ̂

∂τ
=

∂

∂τ̂
· C

Ĥ = L−1H +K ⇒ LĤ −KL = H .

Then (3.98) becomes

(LĤ −KL)X + (LĤ −KL)τ +
3

2
(LĤ −KL)(LĤ −KL)X +

1

6
(LĤ −KL)XXX = 0

or

BLĤX̂ + LCĤτ̂ +
3

2
(LĤ −KL)(LBĤX̂) +

1

6
LB3ĤX̂X̂X̂ = 0
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and therefore,

BL

{
1− 3

2
KL

}
ĤX̂ + LCĤτ̂ +

3

2
L2BĤĤX̂ +

1

6
LB3ĤX̂X̂X̂ = 0 .

Thus dividing by LC gives:

{
B

C

}{
1− 3

2
KL

}
ĤX̂ + Ĥτ̂ +

3

2
L

{
B

C

}
ĤĤX̂ +

1

6

{
B

C

}
B2ĤX̂X̂X̂ = 0 .

Now:

1. Choose C first

2. Choose B next, determining the coefficient of H̄X̄X̄X̄ as Ĉ =
{
B
C

}
B2

3. Choose L next, determining the coefficient of H̄H̄X̄ as B̂ = L
{
B
C

}
4. Choose K next, determining the coefficient of H̄X̄ as

{
B
C

}{
1− 3

2
KL
}

.

Thus we obtain a more general form of the KdV equation, namely,

0 = Ĥτ̂ + ÂĤX̂ +
3

2
B̂ĤĤX̂ +

1

6
ĈĤX̂X̂X̂

where Â, B̂, and Ĉ are arbitrary constants.



CHAPTER 4: 2-Dimensional Korteweg-de Vries Equation

We will derive the 2 dimensional KdV, equation. We expand on the work in [3]. We

set up our system such that z is our vertical direction, and x and y are our horizontal

directions. The velocity of the fluid is ~v = (dx
dt
, dy
dt
, dz
dt

). We must first assume that the

fluid is irrotational, i.e.,

∇× ~v = 0 . (4.1)

This implies the existence of a potential function φ, with ~v = (φx, φy, φz). Thus

~v = ∇φ. We next assume that the fluid is incompressible, namely,

∇ · ~v = div ~v = 0 . (4.2)

And thus

0 = ∇ · ∇φ = φxx + φyy + φzz . (4.3)

So the potential function is harmonic.

We next assume the density function ρ of the fluid is constant. Thus

∇ρ = 0 ρt = 0 . (4.4)

Now (4.4) together with (4.2) imply the conservation of mass

∂tρ+∇ · (ρ~v) = 0 . (4.5)

We remark that (4.5) holds more generally (without the assumption of (4.4) and
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(4.2)) via the statement

∂

∂t

∫
R

ρ dV = −
∫
∂R

ρ~v · ~n dS (4.6)

where the rate of change of mass in R equals the rate of flow of mass into R across

the boundary ∂R. The divergence theorem applied to the flux integral in (4.6) then

implies (4.5) in general.

In addition to conservation of mass in (4.5), one has Euler’s equation [5], (due to

the force law)

∂

∂t
(ρ~v) + ~v · ∇(ρ~v) = −∇P + ρ~f , (4.7)

which under the assumptions (4.2) and (4.4) simplifies to

ρ
∂

∂t
(~v) + ρ~v · ∇~v = −∇P + ρ~f (4.8)

where p is the internal pressure and ρf is any external forcing effect. In our case f

will be acceleration due to gravity ~f = −g(0, 0, 1) yielding

~f = −g∇z . (4.9)

Thus,

∂

∂t
(~v) + ~v · ∇~v = −∇P

ρ
− g∇z (4.10)

where

~v · ∇~v = (~v · ∇v1, ~v · ∇v2, ~v · ∇v3) .



40

Now by Lemma 4.1

~v · ∇~v =
1

2
∇
(
|~v|2
)
− ~v ×∇× ~v (4.11)

which becomes under (4.1)

~v · ∇~v =
1

2
∇
(
|~v|2
)
.

So (4.10) reduces to

∂

∂t
(~v) +

1

2
∇
(
|~v|2
)

= −∇P
ρ
− g∇z ,

or equivalently using the fact that ~v = ∇φ

∇
[
φt +

1

2
|∇φ|2 +

P

ρ
+ gz

]
= 0 .

Thus,

φt +
1

2
|∇φ|2 +

P

ρ
+ gz = B(t) . (4.12)

At the surface z = h+ aH(x, y, t), where a is the amplitude of the wave and h is

the undisturbed water level, the pressure P vanishes, and (4.12) reduces to

φt +
1

2
|∇φ|2 + g(h+ aH) = B(t)

or

φt +
1

2
|∇φ|2 + gaH = B(t)− gh . (4.13)

On the bottom, there should be no vertical component to the velocity, so

φz =
dz

dt
= 0 at z = 0 . (4.14)
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Finally, at the surface z = h + aH one has, by differentiating with respect to t and

using on the chain rule, one has

dz

dt
= φz = a∇H · ∇φ+ aHt . (4.15)

Thus the equations governing our fluid are (4.3), (4.13), (4.14), and (4.15). We can

rewrite these as:

φxx + φyy + φzz = 0 ∀x, y, z, t 0 ≤ z ≤ h+ aH(x, y, t) , (4.16)

φz = aHxφx + aHyφy + aHt , (4.17)

φt +
1

2

(
φ2
x + φ2

y + φ2
z

)
+ gaH = B(t)− gh , (4.18)

and

φz = 0 at z = 0 . (4.19)

We deploy these to obtain the KdV equation.

Analogous to the 1 dimensional case, we assume that h
λ

and a
h

are small with a

wave speed of
√
gh. We now record the effects on (4.16), (4.17), (4.18), and (4.19) of

a series of successive changes in variables to obtain a dimensionless system. First, we

use scaled variables. Let

x̄ =
x

λ
, ȳ =

y

λ
, z̄ =

z

h
, φ̄ =

h φ

λa
√
gh

and t̄ =
t
√
gh

λ
. (4.20)
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By Proposition 4.2 , equations (4.16), (4.17), (4.18), and (4.19) transform under
(4.20) to the following:

0 = ε2φ̄x̄x̄ + ε2φ̄ȳȳ + φ̄z̄z̄ (4.21)

φ̄z̄ = ε2
{
αφ̄x̄Hx̄ + αφ̄ȳHȳ +Ht̄

}
at z̄ = 1 + αH (4.22)

φ̄t̄ +
1

2
α

{(
φ̄x̄
)2

+
(
φ̄ȳ
)2

+
1

ε2
(
φ̄z̄
)2
}

+H =
B̃(t̄)− gh

ga
at z̄ = 1 + αH(4.23)

φ̄z̄ = 0 at z̄ = 0 (4.24)

for ε = h
λ
, α = a

h
, and B̃(t̄) = B

(
λ√
gh
· t̄
)

= B(t).

Next we can incorporate B̃(t̄)−gh
ag

into the potential φ̄ in (4.23) by taking

B̂(t̄) =

∫ t̄

0

B̃(s)− gh
ga

ds

and letting (φ̄new) = φ̄ − B̂(t̄). Then all spacial derivatives of (φ̄new)s̄ = φ̄s̄ (for

s̄ = x̄, ȳ, z̄) and one has (φ̄new)t̄ = φ̄t̄− B̂t̄ = φ̄t̄−
[
B̃(t̄)−gh

ah

]
. Thus from (4.21) we have

0 = ε2(φ̄new)x̄x̄ + ε2(φ̄new)ȳȳ + (φ̄new)z̄z̄ , (4.25)

and, at the surface, from (4.22) we have

(φ̄new)z̄ = ε2
{
α(φ̄new)x̄Hx̄ + α(φ̄new)ȳHȳ +Ht̄

}
. (4.26)

Similarly, using (4.23) at the surface, we have

(φ̄new)t̄ +
1

2
α

{[
(φ̄new)x̄

]2
+
[
(φ̄new)ȳ

]2
+

1

ε2
[
(φ̄new)z̄

]2}
+H = 0 , (4.27)

where (4.27) has become a homogeneous version of (4.18). At the bottom using (4.24)

we get
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(φ̄new)z̄ = 0 at z̄ = 0 . (4.28)

So we can drop all subscripts new from here on and assume φ̄new = φ̄.

We proceed with the next change of variables to obtain dimensionless equations:

let

X =
α1/2

ε
(x̄+ (α− 1)t̄) , Y =

α

ε
ȳ , τ =

α3/2

ε
t̄ , ψ =

α1/2

ε
φ̄ , Z = z̄ . (4.29)

By Proposition 4.3, equations (4.25), (4.26), (4.27), and (4.28) transform under (4.29)
to

0 = αψXX + α2ψY Y + ψZZ (4.30)

ψZ = α2ψXHX + α3ψYHY + (α2 − α)HX + α2Hτ at Z = 1 + αH (4.31)

αψX − ψX + αψτ +
1

2
{αψ2

X + α2ψ2
Y + ψ2

Z}+H = 0 at Z = 1 + αH (4.32)

ψZ = 0 at Z = 0 . (4.33)

Since both ψ and H are expressed in terms of X and τ , they both depend on α. Thus

we assume that we can expand each in terms of α to obtain

ψ = ψ0 + αψ1 + α2ψ2 +O(α3) (4.34)

and

H = H0 + αH1 +O(α2) . (4.35)

We can now substitute (4.34) and (4.35) into (4.30), (4.31), (4.32), and (4.33).

For (4.30), one obtains
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0 = α
(
ψ0XX + αψ1XX + α2ψ2XX +O(α3)

)
+ α2

(
ψ0Y Y + αψ1Y Y + α2ψ2Y Y +O(α3)

)
+
(
ψ0ZZ + αψ1ZZ + α2ψ2ZZ +O(α3)

)
and rearranging we get

0 = ψ0ZZ + α (ψ0XX + ψ1ZZ) + α2 (ψ1XX + ψ0Y Y + ψ2ZZ) +O(α3)

which gives for various orders of α:

O(α0) ψ0ZZ = 0 (4.36)

O(α1) ψ1ZZ = −ψ0XX (4.37)

O(α2) ψ2ZZ = −ψ1XX − ψ0Y Y . (4.38)

By Proposition 4.4, equations (4.36), (4.37), and (4.38) in conjunction with the
bottom boundary condition (4.33) imply

(4.36), (4.33) ⇒ ψ0 = B0(X, Y, τ) (4.39)

(4.37), (4.33) ⇒ ψ1 = −Z
2

2
B0XX +B1(X, Y, τ) (4.40)

(4.38), (4.33) ⇒ ψ2 =
Z4

4!
B0XXXX −

Z2

2
B1XX −

Z2

2
ψ0Y Y +B2(X, Y, τ) .(4.41)

By Proposition 4.5 below, to leading orders O(α0) and O(α1), equation (4.32) at
the surface gives

O(α0) : H0 = ψ0X = B0X (4.42)

O(α1) : 0 = H1 +B0X +
1

2
B0XXX −B1X +B0τ +

1

2
B2

0X . (4.43)

By Proposition 4.6 below, to leading orders O(α1) and O(α2), equation (4.31) at
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the surface gives

O(α1) : H0X = B0XX (4.44)

O(α2) : −H0B0XX +
1

6
B0XXXX −B1XX − ψ0Y Y

= −H1X +H0X +H0τ +B0XH0X

(4.45)

From (4.45) one obtains, by moving the H1X term over,

−H0B0XX +
1

6
B0XXXX − ψ0Y Y +H1X −B1XX = H0X +H0τ +B0XH0X . (4.46)

By differentiating (4.43) with respect to X we get

0 = H1X +B0XX +
1

2
B0XXXX −B1XX +B0τX +B0XB0XX

H1X −B1XX = −1

2
B0XXXX −B0XX −B0τX −B0XB0XX .

(4.47)

Using (4.47) we can replace H1X −B1XX in (4.46) to get

−H0B0XX +
1

6
B0XXXX − ψ0Y Y −

1

2
B0XXXX −B0τX −B0XB0XX −B0XX

= H0X +H0τ +B0XH0X .

(4.48)

We can rewrite (4.48) as

−H0B0XX −
1

3
B0XXXX − ψ0Y Y −B0τX −B0XB0XX −B0XX

= H0X +H0τ +B0XH0X .

(4.49)
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Now from (4.72) we can substitute B0X = H0 into (4.49) to get

−H0H0X −
1

3
H0XXX − ψ0Y Y −H0τ −H0H0X −H0X = H0X +H0τ +H0H0X ,

or

0 = 2H0τ + 3H0H0X +
1

3
H0XXX + 2H0X + ψ0Y Y .

So the scaled wave H(X, Y, τ) = H0 +αH1 +O(α2) satisfies a variant of the KdV

at the 0th order in α due to the ψ0Y Y term. Thus, for α small, it is reasonable to

assume that

0 = 2Hτ + 3HHX +
1

3
HXXX + 2HX + ψY Y . (4.50)

From (4.42) it is reasonable to assume when α is small that

H = ψX . (4.51)

Differentiating (4.50) with respect to X gives

0 =

[
2Hτ + 3HHX +

1

3
HXXX + 2HX

]
X

+ ψY Y X ,

and by (4.51)

0 =

[
2Hτ + 3HHX +

1

3
HXXX + 2HX

]
X

+HY Y .

This can be rewritten as
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0 =

[
HX +Hτ +

3

2
HHX +

1

6
HXXX

]
X

+
1

2
HY Y , (4.52)

which is the KdV equation in 2 dimensions in a commonly used form.

Now, by Proposition (4.7), equation (4.52) transforms under the appropriate

change of variables into

[
Ĥτ̂ + ÂĤX̂ +

3

2
B̂ĤĤX̂ +

1

6
ĈĤX̂X̂X̂

]
X̂

+
1

2
D̂ĤŶ Ŷ = 0 (4.53)

where Â, B̂, Ĉ, and D̂ are arbitrary constants with the stipulation that the sign of

Ĉ and the sign of D̂ must be the same. This is a more general form of the KdV

equation. We can then choose Â =
√
gh, B̂ = α, Ĉ = ε2, and D̂ = 2

√
gh to get a

specific form of the KdV that we are most interested in, namely

[
Ĥτ̂ +

√
ghĤX̂ +

3

2
αĤĤX̂ +

1

6
ε2ĤX̂X̂X̂

]
X̂

+
√
ghĤŶ Ŷ = 0 , (4.54)

which relates closely to (3.53).

Lemma 4.1.

~v ×∇× ~v + ~v · ∇~v =
1

2
∇
[
v2

1 + v2
2 + v2

3

]
Proof. We will prove this for the 2 dimensional case, and leave to the reader to show

the 1 dimensional case. We begin with

∇× ~v = det

(
i j k
Dx Dy Dz

v1 v2 v3

)
= (v3y − v2z,−v3x + v1z, v2x − v1y)
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so,

~v ×∇× ~v = det

(
i j k
v1 v2 v3

v3y − v2z −v3x + v1z v2x − v1y

)

=

(
v2[v2x − v1y]− v3[−v3x + v1z]
−v1[v2x − v1y] + v3[v3y − v2z]
v1[−v3x + v1z]− v2[v3y − v2z]

)
.

Next,

~v · ∇~v =

(
~v · ∇v1

~v · ∇v2

~v · ∇v3

)
=

(
v1v1x + v2v1y + v3v1z

v1v2x + v2v2y + v3v2z

v1v3x + v2v3y + v3v3z

)
. (4.55)

Thus,

~v ×∇× ~v + ~v · ∇~v

=

(
v2[v2x − v1y]− v3[−v3x + v1z]
−v1[v2x − v1y] + v3[v3y − v2z]
v1[−v3x + v1z]− v2[v3y − v2z]

)
+

( v1v1x + v2v1y + v3v1z
v1v2x + v2v2y + v3v2z
v1v3x + v2v3y + v3v3z

)
=

(
v1v1x + v2v2x + v3v3x
v1v1y + v2v2y + v3v3y
v1v1z + v2v2z + v3v3z

)

=

 1
2

[v2
1 + v2

2 + v2
3]x

1
2

[v2
1 + v2

2 + v2
3]y

1
2

[v2
1 + v2

2 + v2
3]z


=

1

2
∇
[
v2

1 + v2
2 + v2

3

]
.

Therefore

~v ×∇× ~v + ~v · ∇~v =
1

2
∇
[
v2

1 + v2
2 + v2

3

]
.

Proposition 4.2. Equations (4.16), (4.17), (4.18), and (4.19) transform under (4.20)
to the following:

0 = ε2φ̄x̄x̄ + ε2φ̄ȳȳ + φ̄z̄z̄

at z̄ = 1 + αH −→ φ̄z̄ = ε2
{
αφ̄x̄Hx̄ + αφ̄ȳHȳ +Ht̄

}
at z̄ = 1 + αH −→ φ̄t̄ +

1

2
α

{(
φ̄x̄
)2

+
(
φ̄ȳ
)2

+
1

ε2
(
φ̄z̄
)2
}

+H =
B̃(t̄)− gh

ga

at z̄ = 0 −→ φ̄z̄ = 0
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for ε = x
λ

, α = a
h

, and B̃(t̄) = B
(

λ√
gh
· t̄
)

= B(t).

Proof. Recall from (4.20) that

x̄ =
x

λ
, ȳ =

y

λ
, z̄ =

z

h
, φ̄ =

h φ

λa
√
gh

and t̄ =
t
√
gh

λ
.

By the chain rule

∂

∂x
=

∂

∂x̄
· ∂x̄
∂x

=
∂

∂x̄
· 1

λ
,

∂

∂y
=

∂

∂ȳ
· ∂ȳ
∂y

=
∂

∂ȳ
· 1

λ

∂

∂z
=

∂

∂z̄
· ∂z̄
∂z

=
∂

∂z̄
· 1

h
,

∂

∂t
=

∂

∂t̄
· ∂t̄
∂t

=
∂

∂t̄
·
√
gh

λ
.

(4.56)

Then from (4.56) we have

φt =

√
gh

λ
φt̄ , φx =

1

λ
φx̄ , φy =

1

λ
φȳ and φz =

1

h
φz̄ . (4.57)

Since φ =
(

h
λa
√
gh

)−1

φ̄ in (4.20) we have

φt =

√
gh

λ

(
h

λa
√
gh

)−1

φ̄t̄ = agφ̄t̄ , φx =
1

λ

(
h

λa
√
gh

)−1

φ̄x̄

φy =
1

λ

(
h

λa
√
gh

)−1

φ̄ȳ and φz =
1

h

(
h

λa
√
gh

)−1

φ̄z̄ .

(4.58)

Furthermore, by repeated application of (4.56),

φxx =
1

λ2
φx̄x̄ , φyy =

1

λ2
φȳȳ and φzz =

1

h2
φz̄z̄

and
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φxx =
1

λ2
φx̄x̄ =

1

λ2

(
h

λa
√
gh

)−1

φ̄x̄x̄ ,

φyy =
1

λ2
φȳȳ =

1

λ2

(
h

λa
√
gh

)−1

φ̄ȳȳ ,

φzz =
1

h2
φz̄z̄ =

1

h2

(
h

λa
√
gh

)−1

φ̄z̄z̄ .

Therefore, (4.16) gives

0 = φxx + φyy + φzz

⇒ 0 =

(
h

λa
√
gh

)−1

· 1

λ2
φ̄x̄x̄ +

(
h

λa
√
gh

)−1

· 1

λ2
φ̄ȳȳ +

(
h

λa
√
gh

)−1

· 1

h2
φ̄z̄z̄

⇒ 0 =
1

λ2
φ̄x̄x̄ +

1

λ2
φ̄ȳȳ +

1

h2
φ̄z̄z̄

⇒ 0 =
h2

λ2
φ̄x̄x̄ +

h2

λ2
φ̄ȳȳ + φ̄z̄z̄ .

Finally (4.16) transforms to

0 = ε2φ̄x̄x̄ + ε2φ̄ȳȳ + φ̄z̄z̄ where ε =
h

λ
,

giving (4.21).

As a consequence of (4.56), we have

Hx = Hx̄
∂x̄

∂x
= Hx̄ ·

1

λ
, Hy = Hȳ

∂ȳ

∂y
= Hȳ ·

1

λ
and Ht = Ht̄

∂t̄

∂t
= Ht̄ ·

√
gh

λ
. (4.59)

We can substitute (4.59) into (4.17) and use (4.58) to get

φz = aHxφx + aHyφy + aHt

⇒ φ̄z̄

(
h

λa
√
gh

)−1
1

h
= aHx̄ ·

1

λ

(
h

λa
√
gh

)−1
1

λ
φ̄x̄
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+aHȳ ·
1

λ

(
h

λa
√
gh

)−1
1

λ
φ̄ȳ + aHt̄

√
gh

λ

⇒ φ̄z̄

(
h

λa
√
gh

)−1
1

h
= a

(
h

λa
√
gh

)−1
1

λ2
φ̄x̄Hx̄ + a

(
h

λa
√
gh

)−1
1

λ2
φ̄ȳHȳ

+
a

λ

(
h

λa
√
gh

)−1√
gh

(
h

λa
√
gh

)
Ht̄

⇒ φ̄z̄
1

h
=

a

λ2
φ̄x̄Hx̄ +

a

λ2
φ̄ȳHȳ +

√
gh

h

λ2
√
gh
Ht̄

⇒ φ̄z̄ =
ha

λ2
φ̄x̄Hx̄ +

ha

λ2
φ̄ȳHȳ +

h2

λ2
Ht̄

⇒ φ̄z̄ =
h2

λ2

{a
h
φ̄x̄Hx̄ +

a

h
φ̄ȳHȳ +Ht̄

}
⇒ φ̄z̄ = ε2

{
αφ̄x̄Hx̄ + αφ̄ȳHȳ +Ht̄

}
,

where α = a
h

and ε = h
λ
. Thus (4.17) has transformed to (4.22).

Next, we can substitute into (4.18) using the change of variables described in

(4.57) and (4.58) and get

φt +
1

2

(
φ2
x + φ2

y + φ2
z

)
+ gaH = B(t)− gh

⇒ agφ̄t̄ +
1

2

([
a
√
gh

h
φ̄x̄

]2

+

[
a
√
gh

h
φ̄ȳ

]2

+

[
λa
√
gh

h2
φ̄z̄

]2
)

+ gaH = B(t)− gh .

Now B̃ ( t̄ ) ≡ B
(

λ√
gh

[
t
√
gh
λ

])
= B(t)

⇒ agφ̄t̄ +
1

2

{
a2gh

h2

[
φ̄x̄
]2

+
a2gh

h2

[
φ̄ȳ
]2

+
λ2a2gh

h4

[
φ̄z̄
]2}

+ gaH = B̃(t̄)− gh

⇒ φ̄t̄ +
1

2

{
a

h

(
φ̄x̄
)2

+
a

h

(
φ̄ȳ
)2

+
a

h

λ2

h2

(
φ̄z̄
)2
}

+H =
B̃(t̄)− gh

ga

⇒ φ̄t̄ +
1

2
α

{(
φ̄x̄
)2

+
(
φ̄ȳ
)2

+
1

ε2
(
φ̄z̄
)2
}

+H =
B̃(t̄)− gh

ga
.

Thus (4.18) has transformed to (4.23). Next, from (4.19) using (4.58) we get

φz = 0 at z = 0

⇒ λa
√
gh

h2
φ̄z̄ = 0 at z̄ = 0
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⇒ φ̄z̄ = 0 at z̄ = 0 .

Thus (4.19) has transformed to (4.24).

Proposition 4.3. Equations (4.25), (4.26), (4.27), and (4.28) transform under (4.29)
to

0 = αψXX + α2ψY Y + ψZZ

ψZ = α2ψXHX + α3ψYHY + (α2 − α)HX + α2Hτ at Z = 1 + αH

αψX − ψX + αψZ +
1

2
{αψ2

X + α2ψ2
Y + ψ2

Z}+H = 0 at Z = 1 + αH

ψZ = 0 at Z = 0

Proof. Recall from (4.29) that

X =
α1/2

ε
(x̄+ (α− 1)t̄) , Y =

α

ε
ȳ, Z = z̄, τ =

α3/2

ε
t̄, and ψ =

α1/2

ε
φ̄ .

Assume α1/2 = kε for some k ∈ R. Then

∂

∂x̄
=

∂

∂X

∂X

∂x̄
=

∂

∂X

α1/2

ε
,

∂

∂ȳ
=

∂

∂Y

∂Y

∂ȳ
=

∂

∂Y

α

ε
and

∂

∂z̄
=

∂

∂Z

∂Z

∂z̄
=

∂

∂Z
,

(4.60)

also

∂

∂t̄
=

∂

∂X

∂X

∂t̄
+

∂

∂τ

∂τ

∂t̄
=

∂

∂X

α1/2

ε
(α− 1) +

∂

∂τ

α3/2

ε
. (4.61)

Then from (4.25), (4.60) and (4.61)

0 = ε2φ̄ x̄x̄ + ε2φ̄ ȳȳ + φ̄ z̄z̄

0 = ε2
∂

∂x̄

∂

∂x̄
φ̄+ ε2

∂

∂ȳ

∂

∂ȳ
φ̄+

∂

∂z̄

∂

∂z̄
φ̄

0 = ε2
α

ε2
∂

∂X

∂

∂X
φ̄+ ε2

α2

ε2
∂

∂Y

∂

∂Y
φ̄+

∂

∂Z

∂

∂Z
φ̄

0 = ε2
α

ε2
φ̄XX + ε2

α2

ε2
φ̄Y Y + φ̄ZZ

0 = α
ε

α1/2
ψXX + α2 ε

α1/2
ψY Y +

ε

α1/2
ψZZ
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0 = αψXX + α2ψY Y + ψZZ .

which gives (4.30). Next, substitute into (4.26) to get

φ̄ z̄ = ε2
{
αφ̄ x̄Hx̄ + αφ̄ ȳHȳ +Ht̄

}
φ̄ Z = ε2

{
α

(
α1/2

ε
φ̄X

α1/2

ε
HX

)
+ α

(α
ε
φ̄Y

α

ε
HY

)
+
α1/2

ε
(α− 1)HX +

α3/2

ε
Hτ

}
φ̄ Z =

{
α2φ̄XHX + α3φ̄YHY +

(
α3/2 − α1/2

)
εHX + α3/2εHτ

}
ε

α1/2
ψ Z =

{
α2 ε

α1/2
ψXHX + α3 ε

α1/2
ψYHY +

(
α3/2 − α1/2

)
εHX + α3/2εHτ

}
ψ Z = α2ψXHX + α3ψYHY +

(
α2 − α

)
HX + α2Hτ when Z = 1 + αH ,

which gives (4.31).

Now from (4.27) we can obtain the Bernoulli equation as follows:

φ̄ t̄ +
1

2
α

{(
φ̄ x̄

)2
+
(
φ̄ ȳ

)2
+

1

ε2
(
φ̄ z̄

)2
}

+H = 0

⇒ α1/2

ε
(α− 1)φ̄X +

α3/2

ε
φ̄τ +

1

2
α

{(
α1/2

ε
φ̄x̄

)2

+
(α
ε
φ̄ȳ

)2

+
1

ε2
(
φ̄Z
)2

}
+H = 0

⇒ ε

α1/2

(
α1/2

ε
(α− 1)ψX

)
+
α3/2

ε

ε

α1/2
ψτ

+
1

2
α

{(
α1/2

ε

ε

α1/2
ψX

)2

+
(α
ε

ε

α1/2
ψY

)2

+
1

ε2

( ε

α1/2
ψZ

)2
}

+H = 0

⇒ (α− 1)ψX + αψτ +
1

2
α

{
(ψX)2 + α (ψY )2 +

1

α
(ψZ)2

}
+H = 0

⇒ αψX − ψX + αψτ +
1

2

{
+αψ2

X + α2ψ2
Y + ψ2

Z

}
+H = 0 at Z = 1 + αH .

This gives (4.32). We can look at (4.28) and obtain the following:

φ̄ z̄ = 0 at z̄ = 0

⇒ φ̄ Z = 0 at Z = 0

⇒ ε

α1/2
ψ Z = 0 at Z = 0

⇒ ψ Z = 0 at Z = 0

This gives (4.33).

Proposition 4.4. Equations (4.36), (4.37), and (4.38) in conjunction with the bottom
boundary condition (4.33) imply the following:
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(4.36) and (4.33) ⇒ ψ0 = B0(X, Y, τ)

(4.37) and (4.33) ⇒ ψ1 = −Z
2

2
B0XX +B1(X, Y, τ)

(4.38) and (4.33) ⇒ ψ2 =
Z4

4!
B0XXXX −

Z2

2
B1XX −

Z2

2
ψ0Y Y +B2(X, Y, τ)

Proof. Antidifferentiate (4.36) once with respect to Z to get ψ0Z = C0(X, τ) and

again to get

ψ0 = B0(X, Y, τ) + ZC0(X, Y, τ) . (4.62)

Now (4.33) gives

0 = ψZ = ψ0Z + αψ1Z + α2ψ2Z +O(α3) for Z = 0 ,

so for Z = 0

0 = ψ0Z = ψ1Z = ψ2Z . (4.63)

Thus by (4.62) 0 = ψ0Z = C0(X, Y, τ) for all Z. Thus, (4.36), (4.62), and (4.63) imply

that

ψ0 = B0(X, Y, τ) .

Note that ψ0 does not depend on Z, nor does ψ0XX = B0XX . Next anti-differentiating

(4.37) once with respect to Z gives

ψ1Z = (−ψ0XX)Z +D(X, Y, τ) . (4.64)

Then, from (4.63) we get
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ψ1Z = 0 = 0 +D(X, Y, τ) at Z = 0

so D(X, Y, τ) = 0 for all Z. Thus,

ψ1Z = −Zψ0XX . (4.65)

Anti-differentiating again with respect to Z gives

ψ1 = −Z
2

2
ψ0XX +B1(X, Y, τ) (4.66)

and (4.39) implies ψ0XX = B0XX , so

ψ1 = −Z
2

2
B0XX +B1 ,

Next (4.38) gives ψ2ZZ = −ψ1XX − ψ0Y Y so, by (4.66) one obtains

ψ2ZZ =
Z2

2
B0XXXX −B1XX − ψ0Y Y . (4.67)

Anti-differentiating with respect to Z gives

ψ2Z =
Z3

3!
B0XXXX − ZB1XX − Zψ0Y Y + E(X, Y, τ) . (4.68)

Now, from (4.63) at Z = 0 we get

ψ2Z |Z=0 = 0 = 0− 0 + E

and so we get that E = 0 for all Z. Thus
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ψ2Z =
Z3

3!
B0XXXX − ZB1XX − Zψ0Y Y .

Anti-differentiating once more with respect to Z, we get

ψ2 =
Z4

4!
B0XXXX −

Z̄2

2
B1XX −

Z̄2

2
ψ0Y Y +B2(X, Y, τ) .

Proposition 4.5. The leading orders O(α0) and O(α1) of equation (4.32) at the
surface give

O(α0) : H0 = ψ0X = B0X

O(α1) : 0 = H1 +B0X +
1

2
B0XXX −B1X +B0τ +

1

2
B2

0X

Proof. At Z = 1 + αH (4.32) gives

H + αψX − ψX + αψτ +
1

2

{
αψ2

X + α2ψ2
Y + ψ2

Z

}
= 0 .

Then (4.34) and (4.35) give

0 =H0 + αH1 +O(α2) + αψ0X + α2ψ1X + α3ψ2X +O(α4)

− ψ0X − αψ1X − α2ψ2X −O(α3)

+ αψ0τ + α2ψ1τ + α3ψ2τ +O(α4)

+ α
1

2

[
ψ0X + αψ1X + α2ψ2X +O(α3)

]2
+ α2 1

2

[
ψ0Y + αψ1Y + α2ψ2Y +O(α3)

]2
+

1

2

[
ψ0Z + αψ1Z + α2ψ2Z +O(α3)

]2
,

and we get
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0 = H0 + αH1 +O(α2)

+ αψ0X + α2ψ1X + α3ψ2X +O(α4)

−ψ0X − αψ1X − α2ψ2X −O(α3)

+ αψ0τ + α2ψ1τ + α3ψ2τ +O(α4)

+ α
1

2
ψ2

0X + α2ψ0Xψ1X +O(α3)

+ α2ψ0Y +O(α3)

+
1

2
ψ2

0Z + αψ0Zψ1Z +O(α2) .

Therefore

0 =

[
H0 − ψ0X +

1

2
ψ2

0Z

]
+ α

[
H1 + ψ0X − ψ1X + ψ0τ +

1

2
ψ2

0X + ψ0Zψ1Z

]
+O(α2) .

(4.69)

Thus, from the α0 term of (4.69), we get

0 = H0 − ψ0X +
1

2
ψ2

0Z (4.70)

and from the α1 term of (4.69),

0 = H1 + ψ0X − ψ1X + ψ0τ +
1

2
ψ2

0X + ψ0Zψ1Z (4.71)

at Z = 1 + αH.

Thus from (4.70), (4.63), and (4.39) we get
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0 = H0 −B0X +
1

2
02

= H0 −B0X .

(4.72)

Thus,

H0 = ψ0X = B0X .

Furthermore,

ψ0τ = B0τ

from (4.39). Also (4.40) implies

ψ1 = −Z
2

2
B0XX +B1 ,

and differentiating with respect to X we have

ψ1X = −Z
2

2
B0XXX +B1X .

Thus

ψ1X |Z=1+αH = −1

2
(1 + 2αH + α2H2)B0XXX +B1X . (4.73)

Now the α and α2 terms in (4.73) create O(α2) and O(α3) terms in (4.69), or

higher order terms in (4.71) so we can drop both terms in these settings to obtain

ψ1X |Z=1+αH = −1

2
B0XXX +B1X . (4.74)
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Next, from (4.71), (4.63), (4.39), and (4.74), we get

0 = H1 +B0X −
(
−1

2
B0XXX +B1X

)
+B0τ +

1

2
B2

0X + 0

so,

0 = H1 +B0X +
1

2
B0XXX −B1X +B0τ +

1

2
B2

0X .

Proposition 4.6. The leading orders O(α1) and O(α2) of equation (4.31) at the

surface give:

O(α1) : H0X = B0XX

O(α2) : −H0B0XX +
1

6
B0XXXX −B1XX − ψ0Y Y

= −H1X +H0X +H02 +B0XH0X

Proof. At Z = 1+αH = 1+αH0 +α2H1 +O(α3) the kinematic equation (4.31) gives

ψZ = α2ψXHX + α2HX − αHX + α2Hτ + α3HY ψY .

Thus substituting in (4.34) and (4.35) gives
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ψ0Z + αψ1Z+α2ψ2Z +O(α3)

=− α[H0X + αH1X +O(α2)]

+ α2[H0X + αH1X +O(α2)]

+ α2[H0τ + αH1τ +O(α2)]

+ α3[ψ0Y + αψ1Y + α2ψ2Y +O(α3)][H0Y + αH1Y +O(α2)]

+ α2[ψ0X + αψ1X + α2ψ2X +O(α3)][H0X + αH1X +O(α2)] .

(4.75)

Now from (4.40) and (4.41) we have,

ψ0Z+αψ1Z + α2ψ2Z +O(α3)

= 0 + α(−ZB0XX) + α2

(
1

6
Z3B0XXXX − Zψ0Y Y − ZB1XX

)
+O(α3)

At Z = 1 + αH, we expand using (4.35) and get

ψ0Z + αψ1Z+α2ψ2Z +O(α3)

=− α[1 + αH0 + α2H1 +O(α3)]B0XX

+ α2 1

6
[1 + αH0 + α2H1 +O(α3)]3B0XXXX

− α2[1 + αH0 + α2H1 +O(α3)]ψ0Y Y

− α2[1 + αH0 + α2H1 +O(α3)]B1XX + 0 +O(α3) .

Moving the α3 terms into O(α3), we have
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ψ0Z + αψ1Z + α2ψ2Z +O(α3)

= −αB0XX − α2H0B0XX +O(α3)

+
1

6
α2B0XXXX +O(α3)

− α2ψ0Y Y +O(α3)

− α2B1XX +O(α3) .

Thus, we have

ψ0Z + αψ1Z+α2ψ2Z +O(α3)

=− αB0XX + α2

[
−H0B0XX +

1

6
B0XXXX − ψ0Y Y −B1XX

]
+O(α3) .

(4.76)

Now substituting (4.76) into (4.75) we get

−αB0XX + α2

[
−H0B0XX +

1

6
B0XXXX − ψ0Y Y −B1XX

]
+O(α3)

= −αH0X − α2H1X +O(α3)

+ α2H0X +O(α3)

+ α2H0τ +O(α3)

+ α2ψ0XH0X +O(α3) .

So matching α1 terms implies B0XX = H0X which is consistent with (4.72). Matching

α2 terms implies
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−H0B0XX +
1

6
B0XXXX − ψ0Y Y −B1XX = −H1X +H0X +H0τ + ψ0XH0X .

Substituting ψ0X = B0X from (4.39) gives

−H0B0XX +
1

6
B0XXXX − ψ0Y Y −B1XX = −H1X +H0X +H0τ +B0XH0X . (4.77)

Proposition 4.7. (4.52) transforms into

[
Ĥτ̂ + ÂĤX̂ +

3

2
B̂ĤĤX̂ +

1

6
ĈĤX̂X̂X̂

]
X̂

+
1

2
D̂ĤŶ Ŷ = 0 (4.78)

where Â, B̂, Ĉ, and D̂ are arbitrary constants with the stipulation that the sign of Ĉ

and the sign of D̂ must be the same.

Proof. From (4.50) we have

0 = 2Hτ + 3HHX +
1

3
HXXX + 2H0X + ψY Y

or

0 = Hτ +
3

2
HHX +

1

6
HXXX +HX +

1

2
ψY Y .

We can use the following to have a coordinate transformation:

X̂ = BX , Ŷ = DY , Ẑ = Z and τ̂ = Cτ
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along with ĥ = L−1H +K, or LĤ − LK = H, to obtain

0 = C(LĤ − LK)τ̂ + 3(LĤ − LK)B(LĤ − LK)X̂

+
1

3
B3(LĤ − LK)X̂X̂X̂ + 2B(LĤ − LK)X̂ +D2ψŶ Ŷ .

Therefore,

0 = BLĤX̂ + CLĤτ +
3

2

(
L2BĤĤX̂ − L

2KBĤX̂

)
+

1

6
LB3ĤX̂X̂X̂ +

1

2
D2ψȲ Ȳ

or

0 = BL

{
1− 3

2
KL

}
ĤX̂ + CLĤτ +

3

2
L2BĤĤX̂

+
1

6
LB3ĤX̂X̂X̂ +

1

2
D2ψȲ Ȳ .

Thus, dividing by CL yields

0 =
B

C

{
1− 3

2
KL

}
ĤX̂ + Ĥτ +

3

2
L
B

C
ĤĤX̂

+
1

6

B

C
B2ĤX̂X̂X̂ +

1

2

D2

CL
ψŶ Ŷ .

(4.79)

Next from (4.42) we have H0 = ψ0X , so for α small we have BX = H. Thus, we get{
LĤ −KL

}
= ψx{

LĤ −KL
}

= BψX̂

so {
LĤ −KL

}
Ŷ Ŷ

= BψX̂Ŷ Ŷ
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or

LĤŶ Ŷ = BψX̂Ŷ Ŷ . (4.80)

Differentiating (4.79) with respect to X̂ gives

0 =

[
B

C

{
1− 3

2
KL

}
ĤX̂ + Ĥτ +

3

2
L
B

C
ĤĤX̂ +

1

6

B

C
B2ĤX̂X̂X̂

]
X̂

+
1

2

D2

CL
ψŶ Ŷ X̂ .

(4.81)

Now substituting (4.80) into (4.79) gives

0 =

[
B

C

{
1− 3

2
KL

}
ĤX̂ + Ĥτ +

3

2
L
B

C
ĤĤX̂ +

1

6

B

C
B2ĤX̂X̂X̂

]
X̂

+
1

2

D2

CB
ĤŶ Ŷ .

Next

1. Choose C

2. Choose B to determine the coefficient of ĤX̄X̄X̄ , Ĉ = B
C
B2

3. Choose L to determine the coefficient of ĤĤX̄ , B̂ = LB
C

4. Choose K to determine the coefficient of H̄X̄ , Â = B
C

{
1− 3

2
KL
}

5. Choose D to determine the coefficient of H̄Ȳ Ȳ , D̂ = d2

CB
. Note that D̂ must

have the same sign as Ĉ.

Thus

0 =

[
ÂĤX̂ + Ĥτ +

3

2
B̂ĤĤX̂ +

1

6
ĈĤX̂X̂X̂

]
X̂

+
1

2
D̂ĤŶ Ŷ X̂
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for Â, B̂, Ĉ, and D̂ arbitrary but where the sign of Ĉ is the same as the sign of D̂.



CHAPTER 5: Run-Up Equation

The last part of a tsunami model is the run-up stage, where the depth of the ocean

begins to become shallow as the tsunami approaches land. For this final stage we

can use a variant of the KdV equation where the depth of the ocean h is no longer

constant, but rather a function of the horizontal directions. From (3.53) we have, for

the 1 dimensional KdV equation,

0 = Ĥτ̂ +
√
ghĤX̂ +

3

2
αĤĤX̂ +

1

6
ε2ĤX̂X̂X̂

To model the run-up phase of a wave we will let the depth of the water h be a

function h(X̂) of X̂ as shown in [1]. Since h is now a function of X̂, there is also

an aditional term, 1
2

(√
gh(X̂)

)
X̂

Ĥ. Thus, we can model a wave approaching some

sort of land where the depth of the water h is no longer constant [9] and get,

0 = Ĥτ̂ +

√
gh(X̂)ĤX̂ +

3

2
αĤĤX̂ +

1

6
ε2ĤX̂X̂X̂ +

1

2

(√
gh(X̂)

)
X̂

Ĥ (5.1)

We use (5.1) to simulate the run-up stage in our model.



CHAPTER 6: Numerical Approximations

6.1 Lax-Wendroff

Before we can make numerical approximations for the first stage of a tsunami, we

need to introduce the Lax-Wendroff correction term. Even though the wave equation

is linear, there are instabilities associated with it. To adjust for these instabilities,

we add in the Lax-Wendroff correction term. We now derive the Lax-Wendroff term

for each half wave equation. We choose ∆t and ∆x sufficiently small to meet any

stability criteria.

We begin with (2.4):

Htt − c2Hxx = f .

We re-write this as

f =

(
∂

∂t

)2

H − c2

(
∂

∂x

)2

H

f =

(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
H . (6.1)

We can now let H̃ =
(
∂
∂t

+ γ ∂
∂x

)
H. Thus (6.1) has become the coupled (paired)

PDEs, or half wave equations,

(
∂

∂t
− c ∂

∂x

)
H̃ = f (6.2)

and (
∂

∂t
+ c

∂

∂x

)
H = H̃ , (6.3)

where (6.2) is first solved for H̃ and then (6.3) is solved for H.

We first solve for the Lax-Wendroff term for half wave equations of the form
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(
∂

∂t
− c ∂

∂x

)
H̃ = f , (6.4)

which can be re-written as

∂

∂t
H̃ = c

∂

∂x
H̃ + f . (6.5)

Therefore

∂2H̃

∂t2
=

∂

∂t

(
∂H̃

∂t

)
=

∂

∂t

(
c
∂H̃

∂x
+ f

)

= c
∂

∂x

(
∂H̃

∂t

)
+
∂f

∂t

= c
∂

∂x

(
c
∂H̃

∂x
+ f

)
+
∂f

∂t

and thus

∂2H̃

∂t2
= c2∂

2H̃

∂x2
+ c

∂f

∂x
+
∂f

∂t
. (6.6)

Here we introduce the notation Gk
i to be a function G evaluated on the grid at the

ith stage of x, i∆x, and the kth stage of t, k∆t. We can then get a Taylor series

expansion of H̃, namely,

H̃k+1
i = H̃k

i +

(
∂H̃

∂t

)k

i

∆t+
1

2

(
∂2H̃

∂t2

)k

i

∆t2 +O(∆t3) . (6.7)

Now using (6.5) and (6.6) we get

H̃k+1
i = H̃k

i + ∆t

c(∂H̃
∂x

)k

i

+ fki


+

(∆t2)

2

c2

(
∂2H̃

∂x2

)k

i

+ c

(
∂f

∂x

)k
i

+

(
∂f

∂t

)k
i

+O(∆t3)

(6.8)
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Now, (
∂H̃

∂xi

)k

i

=
H̃k
i+1 − H̃k

i−1

2∆x
(6.9)

and (
∂2H̃

∂x2

)k

i

=
H̃k
i+1 − 2H̃k

i + H̃k
i−1

(∆x)2
. (6.10)

So substituting (6.9) and (6.10) into (6.8) yields

H̃k+1
i − H̃k

i =c∆t

[
H̃k
i+1 − H̃k

i−1

2∆x

]

+ ∆tfki +
(c∆t)2

2

[
H̃k
i+1 − 2H̃k

i + H̃k
i−1

(∆x)2

]

+
(∆t)2

2

[
c

(
∂f

∂x

)k
i

+

(
∂f

∂t

)k
i

]
,

which can be written as

H̃k+1
i = H̃k

i + ∆t

[
c
H̃k
i+1 − H̃k

i−1

2∆x
+ fki

]

+
(c∆t)2

2

[
H̃k
i+1 − 2H̃k

i + H̃k
i−1

(∆x)2

]

+
(∆t)2

2

[
c

(
fki+1 − fki−1

2∆x

)
+

(
fk+1
i − fk−1

i

2∆t

)]
.

(6.11)

In the case of an earthquake acting as a forcing, the higher order forcing terms

(∆t)2

2

[
c

(
fki+1 − fki−1

2∆x

)
+

(
fk+1
i − fk−1

i

2∆t

)]

are considered to be negligible, and so we obtain the Lax-Wendroff term for H̃, namely

(c∆t)2

2

[
H̃k
i+1 − 2H̃k

i + H̃k
i−1

(∆x)2

]
. (6.12)
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That is the Lax-Wendroff term (6.12) can be seen as a second order correction term

to Euler’s Method:

H̃k+1
i = H̃k

i + ∆t

[
c
H̃k
i+1 − H̃k

i−1

2∆x
+ fki

]
+

(c∆t)2

2

[
H̃k
i+1 − 2H̃k

i + H̃k
i−1

(∆x)2

]
(6.13)

We use (6.13) as our numerical approximation scheme.

We next solve for the Lax-Wendroff term for half wave equations of the form

(
∂

∂t
+ c

∂

∂x

)
H = H̃ (6.14)

which can be re-written as

∂

∂t
H = −c ∂

∂x
H + H̃ . (6.15)

Therefore

∂2H

∂t2
=

∂

∂t

(
∂H

∂t

)
=

∂

∂t

(
−c∂H

∂x
+ H̃

)
= −c ∂

∂x

(
∂H

∂t

)
+
∂H̃

∂t

= −c ∂
∂x

(
−c∂H

∂x
+ H̃

)
+
∂H̃

∂t

thus

∂2H

∂t2
= c2∂

2H

∂x2
− c∂H̃

∂x
+
∂H̃

∂t
. (6.16)

We can now express H as a Taylor series expansion, namely,

Hk+1
i = Hk

i +

(
∂H

∂t

)k
i

∆t+
1

2

(
∂2H

∂t2

)k
i

∆t2 +O(∆t3) . (6.17)
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Now using (6.15) and (6.16) we get

Hk+1
i = Hk

i + ∆t

[
−c
(
∂H

∂x

)k
i

+ H̃k
i

]

+
(∆t2)

2

c2

(
∂2H

∂x2

)k
i

− c

(
∂H̃

∂x

)k

i

+

(
∂H̃

∂t

)k

i

+O(∆t3) .

(6.18)

Now, (
∂H

∂xi

)k
i

=
Hk
i+1 −Hk

i−1

2∆x
(6.19)

and (
∂2H

∂x2

)k
i

=
Hk
i+1 − 2Hk

i +Hk
i−1

(∆x)2
. (6.20)

Substituting (6.19) and (6.20) into (6.18) yields

Hk+1
i −Hk

i =− c∆t
[
Hk
i+1 −Hk

i−1

2∆x

]
+ ∆tH̃k

i +
(c∆t)2

2

[
Hk
i+1 − 2Hk

i +Hk
i−1

(∆x)2

]

+
(∆t)2

2

−c(∂H̃
∂x

)k

i

+

(
∂H̃

∂t

)k

i

 ,

which can be written as

Hk+1
i = Hk

i + ∆t

[
−c

Hk
i+1 −Hk

i−1

2∆x
+ H̃k

i

]
+

(c∆t)2

2

[
Hk
i+1 − 2Hk

i +Hk
i−1

(∆x)2

]
+

(∆t)2

2

[
−c

(
H̃k
i+1 − H̃k

i−1

2∆x

)
+

(
H̃k+1
i − H̃k−1

i

2∆t

)]
.
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Now the higher order terms of H̃,

(∆t)2

2

[
−c

(
H̃k
i+1 − H̃k

i−1

2∆x

)
+

(
H̃k+1
i − H̃k−1

i

2∆t

)]

are considered to be negligible, so we obtain the Lax-Wendroff term for H, namely

(c∆t)2

2

[
Hk
i+1 − 2Hk

i +Hk
i−1

(∆x)2

]
. (6.21)

That is, the Lax-Wendroff term (6.21) can be seen as a second order correction term

to Euler’s Method:

Hk+1
i = Hk

i + ∆t

[
−c

Hk
i+1 −Hk

i−1

2∆x
+ H̃k

i

]
+

(c∆t)2

2

[
Hk
i+1 − 2Hk

i +Hk
i−1

(∆x)2

]
(6.22)

We use (6.22) as our approximation scheme.

6.2 Exposition of Wave Equation Numerical Approximation

We can now look at the one-dimensional wave equation and solve for a numerical

solution. We first solve (6.2):

(
∂

∂t
− c ∂

∂x

)
H̃ = f

which can be re-written as

∂

∂t
H̃ = c

∂

∂x
H̃ + f .

We now look at our position function at each step in time ∆t, and let x values

be chosen on a ∆x grid. For this we use Euler’s method with initial conditions at

t = 0 of f(x, 0) = 0 and H̃(x, 0) = 0. The initial condition gives H̃(i∆x, 0) = 0, for



73

all i, and for k∆t = 0. We then deploy the numerical scheme from (6.13) recursively.

Once H̃(i∆x, k∆t) is determined for all i and for fixed k, by (6.13) one obtains

H̃(i∆x, (k + 1)∆t) = H̃(i∆x, k∆t)

+

[
c

{
H̃((i+ 1)∆x, k∆t)− H̃((i− 1)∆x, k∆t)

2∆x

}
+ f(i∆x, k∆t)

]
∆t

+
(c∆t)2

2

[
H̃((i+ 1)∆x, k∆t)− 2H̃(i∆x, k∆t) + H̃((i− 1)∆x, k∆t)

(∆x)2

]
.

(6.23)

Thus one obtains H̃(i∆x, k∆t) for all i and for all k. With H̃ determined the initial

condition on H is H(i∆x, 0) = 0 for all i.

The next step is to solve (6.3) for H by deploying (6.22) recursively to

(
∂

∂t
+ c

∂

∂x

)
H = H̃ ,

H(i∆x, (k + 1)∆t) = H(i∆x, k∆t)

+

[
−c
{
H((i+ 1)∆x, k∆t)−H((i− 1)∆x, k∆t)

2∆x

}
+ H̃(i∆x, k∆t)

]
∆t

+
(c∆t)2

2

[
H((i+ 1)∆x, k∆t)− 2H(i∆x, k∆t) +H((i− 1)∆x, k∆t)

(∆x)2

]
,

(6.24)

which produces H for all steps of time.

6.3 Exposition of KdV Equation Numerical Approximation

For the numerical solution of the KdV equation in one dimension, we begin with the

equation from (3.53)
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0 = Ĥτ̂ +
√
ghĤX̂ +

3

2
αĤĤX̂ +

1

6
ε2ĤX̂X̂X̂ .

We can then rewrite this as

Ĥτ̂ = −
√
ghĤX̂ −

3

2
αĤĤX̂ −

1

6
ε2ĤX̂X̂X̂ . (6.25)

Once again, we look at the KdV equation throughout steps in time in a grid

pattern. First we get an estimation of each component of the KdV equation. We first

start off with ĤX̂ :

ĤX̂(X̂, k∆τ̂) ≈ Ĥ(X̂ + ∆X̂, k∆τ̂)− Ĥ(X̂ −∆X̂, k∆τ̂)

2∆X̂
(6.26)

Next, we obtain ĤX̂X̂ :

ĤX̂X̂(X̂, k∆τ̂) ≈
1

∆X̂

(
ĤX̂(X̂ + ∆X̂, k∆τ̂)− ĤX̂(X̂, k∆τ̂)

)
+ 1

∆X̂

(
ĤX̂(X̂, k∆τ̂)− ĤX̂(X̂ −∆X̂, k∆τ̂)

)
2

and simplifying gives

ĤX̂X̂(X̂, k∆τ̂) ≈

(
ĤX̂(X̂ + ∆X̂, k∆τ̂)− ĤX̂(X̂ −∆X̂, k∆τ̂)

)
2∆X̂

.

Now we can apply (6.26) and get
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ĤX̂X̂(X̂, k∆τ̂) ≈
1

2∆X̂

(
Ĥ(X̂ + 2∆X̂, k∆τ̂)− Ĥ(X̂, k∆τ̂)

)
− 1

2∆x

(
Ĥ(X̂, k∆τ̂)− Ĥ(X̂ − 2∆X̂, k∆τ̂)

)
2∆X̂

which simplifies to

ĤX̂X̂(X̂, k∆τ̂) ≈ Ĥ(X̂ + 2∆X̂, k∆τ̂)− 2Ĥ(X̂, k∆τ̂) + Ĥ(X̂ − 2∆X̂, k∆τ̂)

(2∆X̂)2
. (6.27)

Lastly we obtain HX̂X̂X̂ :

ĤX̂X̂X̂(X̂, k∆τ̂) ≈
1

∆X̂

(
ĤX̂X̂(X̂ + ∆X̂, k∆τ̂)− ĤX̂X̂(X̂, k∆τ̂)

)
2

+

1

∆X̂

(
ĤX̂X̂(X̂, k∆τ̂)− ĤX̂X̂(X̂ −∆X̂, k∆τ̂)

)
2

.

Simplifying gives

ĤX̂X̂X̂(X̂, k∆τ̂) ≈ ĤX̂X̂(X̂ + ∆X̂, k∆τ̂)− ĤX̂X̂(X̂ −∆X̂, k∆τ̂)

2∆X̂
.

Now, substituting with (6.27) we get
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ĤX̂X̂X̂(X̂, k∆τ̂) ≈
1

(2∆X̂)2

(
Ĥ(X̂ + 3∆X̂, k∆τ̂)− 2Ĥ(X̂ + ∆X̂, k∆τ̂) + Ĥ(X̂ −∆X̂, k∆τ̂)

)
2∆X̂

−
1

(2∆X̂)2

(
Ĥ(X̂ + ∆X̂, k∆τ̂)− 2Ĥ(X̂ −∆X̂, k∆τ̂) + Ĥ(X̂ − 3∆X̂, k∆τ̂)

)
2∆X̂

,

which simplifies to

ĤX̂X̂X̂(X̂, k∆τ̂) ≈

Ĥ(X̂ + 3∆X̂, k∆τ̂)− 3Ĥ(X̂ + ∆X̂, k∆τ̂) + 3Ĥ(X̂ −∆X̂, k∆τ̂)− Ĥ(X̂ − 3∆X̂, k∆τ̂)

(2∆X̂)3
.

(6.28)

We can now look at (6.25) and substitute in (6.26), (6.28) along with

Hτ̂
.
=
H(X̂, (k + 1)∆τ̂)−H(X̂, k∆τ̂)

∆τ̂
. (6.29)

Solving the resulting equation for H(X̂, (k + 1)∆τ̂) yields
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Ĥ(X̂, (k + 1)∆τ̂) =Ĥ(X̂, k∆t)

+∆τ̂

{
−
√
gh

(
Ĥ(X̂ + ∆X̂, k∆τ̂)− Ĥ(X̂ −∆X̂, k∆τ̂)

2∆X̂

)

−3

2
αĤ(X̂, k∆τ̂)

(
Ĥ(X̂ + ∆X̂, k∆τ̂)− Ĥ(X̂ −∆X̂, k∆τ̂)

2∆X̂

)

−1

6
ε2

(
Ĥ(X̂ + 3∆X̂, k∆τ̂)− 3Ĥ(X̂ + ∆X̂, k∆τ̂)

(2∆X̂)3

+
3Ĥ(X̂ −∆X̂, k∆τ̂)− Ĥ(X̂ − 3∆X̂, k∆τ̂)

(2∆X̂)3

)}
(6.30)

which produces Ĥ(X̂, (k+1)∆τ̂) for each step of time in the second stage, or traveling

stage of our model. Substituting X̂ = i∆x in (6.32) gives Ĥ(i∆x, k∆t) for all i and

k. The initial condition for Ĥ(i∆X̂, k̄∆τ̄) is Ĥ(i∆X̂, k̄∆t) = H(i∆x, k̄∆τ̄) where k̄

is the last time step of solving the numerical wave equation in Section 6.2.

6.4 Exposition of Run-up Equation Numerical Approximation

We are left to find a numerical scheme for the run-up stage of our model. To obtain

this, we begin with the run-up equation from (5.1),

0 = Ĥτ̂ +

√
gh(X̂)ĤX̂ +

3

2
αĤĤX̂ +

1

6
ε2ĤX̂X̂X̂ +

1

2

(√
gh(X̂)

)
X̂

Ĥ , (6.31)

where we note that the only difference between this equation and the KdV equation

is that h is a function of X̂ and the addition of the term 1
2

(√
gh(X̂)

)
X̂

Ĥ. We use

the same numerical scheme from the KdV numerics from (6.32), namely
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Ĥ(X̂, (k + 1)∆τ̂) =Ĥ(X̂, k∆t)

+∆τ̂

{
−
√
gh

(
Ĥ(X̂ + ∆X̂, k∆τ̂)− Ĥ(X̂ −∆X̂, k∆τ̂)

2∆X̂

)

−3

2
αĤ(X̂, k∆τ̂)

(
Ĥ(X̂ + ∆X̂, k∆τ̂)− Ĥ(X̂ −∆X̂, k∆τ̂)

2∆X̂

)

−1

6
ε2

(
Ĥ(X̂ + 3∆X̂, k∆τ̂)− 3Ĥ(X̂ + ∆X̂, k∆τ̂)

(2∆X̂)3

+
3Ĥ(X̂ −∆X̂, k∆τ̂)− Ĥ(X̂ − 3∆X̂, k∆τ̂)

(2∆X̂)3

)}
,

(6.32)

along with the numerical approximation for the additional term

1

2

(√
gh(X̂)

)
X̂

Ĥ =
1

2

(√
gh(X̂)

)
X̂

Ĥ(X̂, k∆τ) . (6.33)

Combining (6.32) and (6.33) and letting h be a function of X̂, we obtain
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Ĥ(X̂, (k + 1)∆τ̂) =Ĥ(X̂, k∆t)

+∆τ̂

{
−
√
gh(X̂)

(
Ĥ(X̂ + ∆X̂, k∆τ̂)− Ĥ(X̂ −∆X̂, k∆τ̂)

2∆X̂

)

−3

2
αĤ(X̂, k∆τ̂)

(
Ĥ(X̂ + ∆X̂, k∆τ̂)− Ĥ(X̂ −∆X̂, k∆τ̂)

2∆X̂

)

−1

6
ε2

(
Ĥ(X̂ + 3∆X̂, k∆τ̂)− 3Ĥ(X̂ + ∆X̂, k∆τ̂)

(2∆X̂)3

+
3Ĥ(X̂ −∆X̂, k∆τ̂)− Ĥ(X̂ − 3∆X̂, k∆τ̂)

(2∆X̂)3

)

+
1

2

(√
gh(X̂)

)
X̂

Ĥ(X̂, k∆τ)

}
(6.34)

.

Substituting X̂ = i∆x in (6.34) gives Ĥ(i∆x, k∆t) for all i and k. We use (6.34) to

model the run-up stage of our model.



CHAPTER 7: Transitioning Between Stages

We have now derived each stage of our model. It remains to discuss how these models

fit together. When an earthquake begins underwater, it produces a forcing on the

environment around it. This forcing produces a wave which can be modeled using

the forced wave equation. We can recall and analyze both half wave equations from

(6.2) and (6.3) namely (
∂

∂t
− c ∂

∂x

)
H̃ = f (7.1)

and (
∂

∂t
+ c

∂

∂x

)
H = H̃ . (7.2)

Note that f in (7.1) is the main forcing due to an earthquake. This forcing creates

a half wave H̃ that acts as the forcing in the other half wave equation (7.2). As the

forcing f dies down the wave H̃ proceeds on, and as it moves away its impact dissipates

as the force in (7.2). Once the earthquake retires as a forcing and the produced waves

move away from each other, natural dispersion and self-focusing terms previously

dismissed start to build up and have more impact on the effect of the wave. The

dispersion and self-focusing effects are what keeps the moving wave from dissipating

or enlarging. This is where the first transition from the wave equation to the KdV

equation takes place, as the wave equation does not have the dispersion and self-

focusing terms in it.

The KdV equation models the wave as it travels through the ocean, up to the

point where it hits land. As the KdV equation is a model for waves traveling along

a constant bottom, it makes sense for it to model a wave traveling in the relatively

constant depths of the ocean. As the wave approaches land where the depth of the

ocean is no long constant, it is clear there is need to switch to a different equation that
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does not require the bottom to be constant. At this stage we switch to the run-up

equation that allows for the depth of the ocean to vary. The three equations we will

deploy to model tsunamis are:

Wave: Ht + cHx = H̃

KdV: Ht + cHx +
3

2
αHHx +

1

6
ε2Hxxx = 0

Run-up: Ht + cHx +
3

2
αHHx +

1

6
ε2Hxxx +

1

2
cxH = 0 .

We can see that we initially use the wave equation when there is a forcing H̃.

Once this forcing dies down the non-linear (self-focusing) and dispersion terms start

to build up and have a greater impact on the wave. These terms are added on to

the wave equation to form the KdV equation. The KdV equation is then used while

the ocean floor remains relatively constant. As the wave approaches land, the ocean

floor drastically changes and thus an additional term is used to compensate for the

change. For this we add the additional term onto the KdV equation to obtain the

run-up equation. This shows a smooth transition between each stage of the model.



CHAPTER 8: Special q-Advanced Functions

Here we discuss the special q-advanced functions, where the parameter q satisfies

q > 1, see [6], [7], [8]. We start with

Kq(t) ≡
∞∑

k=−∞

(−1)ke−tq
k/
qk(k+1)/2 , for t ≥ 0, q > 1 , (8.1)

where Kq(t) ≡ 0 for t < 0. Kq depends on the parameter q > 1. Kq(t) is a wavelet

satisfying the multiplicatively advanced differential equation, or MADE, K ′q(t) =

Kq(qt) [6]. At any time t such that t ≤ 0, both Kq(t) and its derivatives K
(p)
q (t)

are flat. For values of t ≥ 0, both Kq(t) and its derivatives oscillate by first going

negative into a trough, then positive forming a crest before dampening down (see

Figure 8.1). Note the resemblance that Kq has to a tsunami profile. This indicates

that this function and its derivatives will be very useful in modeling tsunamis.

Figure 8.1: Kq (dark) and its derivative (light) for q=2

We describe two more wavelets (as in [8]) that will also be useful in modeling
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tsunamis, namely,

qCos(t) = Nq ·
∫ ∞

0

Kq(u)Kq(u− t) du = Nq

∞∑
j=−∞

(−1)j e−q
j |t|/qj

2

, (8.2)

qSin(t) = −Nq ·
∫ ∞

0

Kq(u)Kq(qu− qt) du =

(
t

|t|

)
Nq

∞∑
j=−∞

(−1)j e−q
j |t|/qj(j−1) ,(8.3)

where

Nq =

(
∞∑

j=−∞

(−1)j

qj2

)−1

.
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Figure 8.2: Left: y = qCos(t) for q = 1.5; Right: y = qSin(t) for q = 1.5.

The constant Nq is a normalization constant chosen such that qCos(0) = 1. In

addition to also being wavelets, qCos(t) and qSin(t) also satisfy the MADE criterion

[8]:

qCos
′′(t) ≡ −q qCos(qt) , qSin

′′(t) ≡ −q2
qSin(qt) . (8.4)

For q near 1, the MADEs in (8.4) approach f ′′(t) = −f(t) and, in fact, qCos(t)

approaches cos(t) and qSin(t) approaches sin(t) uniformly on compact sets as q → 1.



CHAPTER 9: Tsunami modeling with q-advanced functions

The q-advanced wavelets Kq(t) and qSin(t) have been used to construct wave height

Hq(x, t) and forcing terms Fq(x, t) in tsunami models, see [9], where

Hq(x, t) ≡ A ·Kq

(
t

τ

)
qSin(γ · x) (9.1)

and, by differentiating (9.1) twice with respect to t,

Fq(x, t) ≡ ρ
∂2Hq

∂t2
= ρ

A · q
τ 2

Kq

(
q2t

τ

)
qSin(γ · x) . (9.2)

Notice the similarity of the forcing function Fq to the wave height Hq.

The models discussed in this thesis have a clear difference to the ones previously

used. For example in [12], the following function used to model forcing from a land-

slide:

HTS ≡
A

γ
tanh

(
γx− t

τ

)
. (9.3)

This suggests that the landslide will not only provide the forcing associated with it,

but the landslide will continue happening for all time.

A second example is one in [14] which models earthquakes, namely,

HZWL ≡ (2Aγ) sech2(γx) tanh(γx) sin

(
πt

2τ

)
. (9.4)

This earthquake model again simulates an earthquake that quakes on forever. Both

of these models, despite their limitations, are still used to model the initial forcing of

tsunamis.

An advantage of (9.1) and (9.2) is that Fq is an L2 function with the consequence
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that the forcing terms damp down, a more realistic scenario. Another big advantage

of (9.1) and (9.2) is that the wave height function Hq is very similar to the forcing

function Fq. This implies that the forcing that creates a tsunami is very similar to

the tsunami itself. The previous models definitely do not have this attribute. As we

shall see, this Hq, Fq similarity endows our model with an early warning potential for

ocean shores sufficiently distant from the epicenter of the earthquake.



CHAPTER 10: Approximation of Precursor Wave and Forcing terms via

Special Functions

In the event of an earthquake, a vibration emanates from the epicenter disturbing the

ground in every direction. As the earthquake disturbance spreads out underwater,

the disturbance of the land creates a small forcing on the water above, creating what

we will refer to as a precursor wave that precedes the actual tsunami.

We will first take the height function used in [9], and modify it to produce a more

accurate forcing. We begin with the height equation Hq(x, t) from the precursor wave.

From (9.1):

Hq(x, t) ≡ A ·Kq

(
t

τ

)
qSin(γ · x)

which for the appropriate choice of A, q, and τ produces the following graph,

,

Figure 10.1: Precursor wave (red dashed) vs. height function Hq(x, t) (blue solid)
where the horizontal variable is time (min) and the vertical variable is height (m).

where the dashed red line is the precursor wave for the 2011 Japanese tsunami, and

the solid blue line is the Hq model. We clearly see that Hq matches the precursor

wave very well for the first and second troughs and the first crest. It then starts to

diverge at the second trough and continues to get worse until both dampen down
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almost completely.

We can now modify and improve the height equation for the precursor wave by

adding an additional term and delaying the time to produce a function that has a

better fit when compared to the precursor wave. We add in the a term that is a scaled

version of the original, along with a delay in time, namely,

Hq(x, t) ≡ A ·Kq

(
t

τ

)
qSin(γ · x) +B ·Kq

(
t− t0
τ

)
qSin(γ · x) . (10.1)

,

Figure 10.2: Precursor wave (red dashed) vs. new height function Hq(x, t) (purple
solid) where the horizontal variable is time (min) and the vertical variable is height
(m).

We can see by comparison of the 2011 Japanese tsunami precursor wave (repre-

sented as the red dashed line) and the new height function (represented as the purple

solid line) that, similar to the previous model, we have a great match on the first wave,

but where the previous data diverged, we now have equation (10.1) matching better.

Thus we have gained more accuracy in matching the height term to the precursor

wave.

This new height function, (10.1), then gives a new forcing function that we use to

model the creation of the 2011 Japanese tsunami, namely
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Fq(x, t) ≡ ρ
∂2Hq

∂t2
= ρ

A · q
τ 2

Kq

(
q2t

τ

)
qSin(γ ·x)+ρ

B · q
τ 2

Kq

(
q2t− t0

τ

)
qSin(γ ·x) .

(10.2)

When this improved forcing term is entered into the numerical approximation schemes,

we see improved accuracy in comparing the run-up model to actual data.



CHAPTER 11: Program Modeling of Special Functions in the Run-Up

Stage

We now have the capability to choose a forcing, and model a tsunami through each

stage of its existence. First, we can look at the model from [9] that uses the forcing

function (9.2)

Fq(x, t) ≡ ρ
∂2Hq

∂t2
= ρ

A · q
τ 2

Kq

(
q2t

τ

)
qSin(γ · x) .

As we saw in the previous chapter, this forcing was modeled from the height

function (9.1). This function, when compared to the precursor wave of the 2011

Japanese tsunami, matched very closely up to the second trough before it diverged.

The resulting model after being run through a computer program that simulates each

stage of a wave’s existence produced data that simulated a tsunami run-up onto Wake

Island. This model gave an extremely accurate depiction of the tsunami that actually

hit Wake Island in 2011. The figure below compares actual data collected from Wake

Island during the tsunami (depicted in dashed red), and simulated data obtained by

the model in [9] (in solid blue).

Figure 11.1: Data showing tsunami that hit Wake Island (red dashed) and the run-up
model (blue solid) for Wake Island shoal.
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Note that just like the precursor wave, the model matches very closely to the

actual tsunami data up to the second trough. In particular, the initial wave of the

tsunami is very accurately depicted in the model.

We can now use the new forcing from (10.2) to create a new model of the 2011

Japanese tsunami. We substitute the new forcing function,

Fq(x, t) ≡ ρ
∂2Hq

∂t2
= ρ

A · q
τ 2

Kq

(
q2t

τ

)
qSin(γ·x)+ρ

B · q
τ 2

Kq

(
q2(t− t0)

τ

)
qSin(γ·x) ,

into the forced wave equation, and run each stage as a program to obtain the simulated

Wake Island tsunami run-up.

Figure 11.2: Data showing tsunami that hit Wake Island (red dashed) and the new
run-up model (purple solid) for Wake Island shoal.

We can clearly see in figure 11.2 that in addition to matching the collected tsunami

data well up to the second trough, the new forcing function matches well up to the

third crest. So, we have obtained a more accurate model of the run-up stage of the

Japanese 2011 tsunami.



CHAPTER 12: Conclusions

We have gained a clear understanding of how each stage of a tsunami is modeled. We

have seen that a tsunami model can be produced from a precursor wave that travels

from its source at a much faster speed than the tsunami itself. We have also seen that

the special functions studied in [9] have clear advantages over previous models due

the more realistic characteristics of the functions and from the similarities that both

the special functions and their derivatives share with the shape of tsunamis. The

models that are produced from these precursor waves produce an accurate model for

the subsequent tsunami. The new, modified forms of the special functions studied in

this thesis were shown to produce an even more accurate model for a tsunami.

Since we can predict a tsunami with a precursor wave that travels at speeds far

greater then the following tsunami, this is an indication of a potential early warning

system for coastal cities sufficiently far from the epicenter of an earthquake creating

a tsunami.
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