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ABSTRACT

Bargaining Power of a Coalition in Parallel Bargaining: Advantage of Multiple
Cable System Operators

by Suchan Chae and Paul Heidhues*

The paper shows that integrating two players on the same side of two independent
bilateral monopoly markets can increase their bargaining power. A leading example of
such a situation is bargaining between cable operators and broadcasters regarding the
carriage of broadcasters� signals on cable systems in two separate markets. From the
modeling point of view, one innovation the paper introduces is to generate a coalition�s
preferences by aggregating the preferences of its members.

ZUSAMMENFASSUNG

Die Verhandlungsmacht einer Koalition in parallelen Verhandlungen: Die Vorteile
aus Unternehmenszusammenschlüssen regionaler Kabelbetreiber in den USA

Ausgehend von zwei unabhängigen bilateralen Monopolen, werden in diesem Beitrag
die Auswirkungen von horizontalen Unternehmenszusammenschlüssen auf die Ver-
handlungsmacht einer Marktseite untersucht. Als Beispiel einer solchen Marktstruktur
wird das Verhandlungsproblem zwischen US-amerikanischen Kabelbetreibern und
lokalen Fernsehstationen in zwei von einander unabhängigen Märkten betrachtet. Es
wird gezeigt, daß sich ein Zusammenschluß auf einer Marktseite lohnen kann, weil sich
hierdurch die Verhandlungsmacht der integrierten Unternehmung erhöhen kann. Ver-
handelt ein horizontal integriertes Unternehmen in mehreren Märkten, so nimmt es in
jedem einzelnen Markt die Verhandlungslösung der anderen Märkte als gegeben an.
Würde die Verhandlung in einem Markt scheitern, bekäme das integrierte Unternehmen
immer noch Zahlungen von den anderen Märkten. Falls dies das Unternehmen glaub-
würdig höhere Forderungen stellen läßt, erhöht dies die Verhandlungsmacht des inte-
grierten Unternehmens, was als fall-back position Effekt bezeichnet wird. Des weiteren
zeigt der Artikel, daß das Aufteilen des Verhandlungsrisikos auf mehrere Personen
deren Verhandlungsmacht erhöhen kann, was als risk-sharing Effekt bezeichnet wird.
Aus verhandlungstheoretischer Sicht werden in diesem Artikel erstmalig die Präferen-
zen einer Koalition durch die Aggregation der Präferenzen ihrer Mitglieder hergeleitet.

                                                
* We have benefited from the careful reading of an earlier version and insightful comments by

Roman Inderst and Christian Wey.
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1 . INTRODUCTION

 

T

 

HIS PAPER IS ORIGINALLY MOTIVATED

 

 by a topical issue in the television industry. We ana-

lyze the issue using a bargaining model that has elements not considered before. The theoretical 

framework we develop here would be useful in addressing similar issues in other industries as 

well. 

The Cable Television Consumer Protection and Competition Act of 1992 (Cable Act of 1992 

hereinafter) allowed a broadcaster to demand compensation from the cable operator that carries 

the broadcaster’s signal. Before this legislation, a cable operator could freely retransmit programs 

which were initially broadcast over the air.
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One interesting issue is whether there are gains from forming coalitions among cable system 

operators across local markets. Some authors such as Waterman (1996) and Chipty (1994) have 

argued, without proving it, that multiple cable system operators (or MSOs) have an advantage 

over unintegrated cable system operators in negotiations with broadcasters. Policy makers also 

seem to be concerned about the “market power” of integrated cable systems. For instance, the 

Cable Act of 1992 orders the Federal Communications Commission to establish a reasonable limit 

on the number of subscribers an MSO can reach.
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 Similar restrictions limit the across-local-mar-

ket integration of local distributors in other industries, such as movie theater chains. 

 

2. Broadcasters had been lobbying for this legislation for some time. To their disappointment, however, they 
received little compensation from cable operators. Chae (1996) analyzes this problem using a bargaining 
model and provides an explanation for what happened. 

3. Congress of the United States (1992), Section 11(c).
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It is not clear, however, that MSOs have any advantage. Even though some bargaining models 

generate gains from forming coalitions in certain environments,
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 there is no bargaining theory we 

are aware of that explains the advantage of integration across 

 

independent

 

 markets. In this paper, 

we consider two initially separate local markets and investigate the effect of integration between 

two players on the same side of the two markets, say the cable operators. 

The integrated cable operator or the MSO bargains with the broadcasters in the two markets 

simultaneously. We adapt the Nash bargaining solution to this “parallel” bargaining problem. In 

effect, we generalize the Nash solution in two separate directions. First, we generalize it to a situ-

ation where one party is a coalition of two players. Second, we generalize it to a situation where 

one party bargains with opponents on two fronts. 

Regarding the generalization of the Nash solution to a situation where one party is a coali-

tion, our approach differs from existing models. Existing models either assume that the coalition’s 

preferences are the same as those of an agent to whom the negotiation is delegated
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 or assume that 

the coalition’s preferences are the same as those of a representative player (assuming that all play-

ers in the coalition have the same preferences).

 

6

 

 By contrast, we assume that the coalition’s pref-

erences are aggregated from its members’ preferences. 

The solution depends on the contract within the coalition of cable operators. We consider two 

types of the internal contract, one where they can costlessly write a binding contract and the other 

where no commitment on how to split future payoffs between the members of the coalition is pos-

 

4. See, for example, Horn and Wolinsky (1988a, 1988b) and Jun (1989).
5. See the literature on strategic delegation referenced, for instance, in Segendorff (1998). 
6. See, for example, Jun (1989).
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sible. We show, for each type of contract, that the across-market integration is profitable under 

certain conditions. 

There are two intuitive explanations for the results. First, when the integrated party negotiates 

with each of the other parties, it takes the outcome of the bargaining with the other party as given. 

This increases the integrated party’s fall-back position. To the extent that this makes the integrated 

party bolder in bargaining, it increases its share. This explanation can be called the 

 

fall-back posi-

tion effect

 

. Second, splitting the risk of a breakdown between two members of a coalition can 

make both of them bolder. This increases the coalition’s share. This explanation can be called the 

 

risk-sharing effect

 

. 

If we define 

 

bargaining power

 

 as the relative advantage of a player due to certain characteris-

tics of the player or bargaining environments, we may say that forming a coalition increases bar-

gaining power. If we define 

 

market power 

 

as one’s ability to affect market prices to one’s 

advantage, the results of this paper support the view that across-local-market integration increases 

market power. In our model, this increase in the market power is due to an increase in bargaining 

power. 

In  Section 2, we introduce the concept of 

 

risk concession

 

, based on Zeuthen (1930)’s pio-

neering work. We then define the Nash solution in terms of marginal risk concessions.  Section 3 

then extends the framework to the case of an integrated player bargaining in two markets. In Sub-

section 3.2, we solve this parallel bargaining problem for the case where no-commitment is possi-

ble in the within-coalition contract. Then we identify conditions under which the members of the 

coalition gain from integration. In Subsection 3.3, we solve the parallel bargaining problem for 

the case where the members of the coalition can write a binding within-coalition contract. Under 



 

4

 

the additional assumption that agents are risk averse, we show that integration is profitable if cer-

tain aggregation conditions are met. Section 4 provides the conclusion.
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2 . PRELIMINARIES ON THE BARGAINING SOLUTION

 

 In order to be able to generalize the Nash solution to a bargaining situation involving a coali-

tion, we need to identify the defining characteristic of the solution which is generalizable. In the 

risk-preference framework, the Nash solution is equivalent to the solution proposed by Zeuthen 

(1930). The latter is defined as follows: If there are two different positions currently maintained 

by two negotiating parties, each party has a maximum probability such that the party is willing to 

risk the probability of a breakdown by insisting on her current position rather than accepting the 

other party’s position. A party whose maximum such probability is not greater than the other’s has 

to make some concession. Thus, the negotiation stops at a single point where the two probabilities 

are both equal to zero. Even though Nash introduced his solution by certain axioms requiring 

some desirable properties of the solution in the utility space, it turns out that Zeuthen’s solution 

yields the Nash solution in the utility space if the preferences of the negotiating parties are repre-

sented by expected utility functions.
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In this paper, we will use Zeuthen’s idea to generalize the Nash solution to situations involv-

ing a coalition. In a pie-splitting problem, Zeuthen’s solution equalizes what we call the “marginal 

risk concessions” of two players. Thus we will need to define the marginal risk concession of a 

coalition in order to prescribe a solution for a situation where at least one of the negotiating par-

ties is a coalition of players. 

There is another direction in which we need to generalize the Zeuthen-Nash solution in order 

to be able to analyze a bargaining situation involving a coalition. In certain situations, a coalition 

 

7.  This was shown by Harsanyi (1956).
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may be able to write an internal contract to divide up the spoil from bargaining with another party. 

Since this external bargaining can result in an agreement or a breakdown, the internal contract has 

to specify how the spoil is divided for each contingency. Thus, during the internal bargaining pro-

cess, the members of a coalition face the problem of bargaining over a contingent pie. We will 

generalize the Zeuthen-Nash solution to this contingent-pie problem by requiring that the players 

optimally share risks across different states of nature. 

The necessary generalizations will be done in the next section. In this section, we will briefly 

(but carefully) look at a standard two-person bargaining problem to introduce our framework, ter-

minology, and notation, which we will use in the next section. 

 

 2.1.

 

 Preferences over Lotteries

 

A lottery , where  is the set of nonnegative real numbers, is a discrete prob-

ability function: there exist  such that  and  if 

. The lottery space, denoted 

 

L

 

(

 

R

 

+

 

), is the set of all lotteries equipped with the fol-

lowing operation: for any  and , the lottery 

:  is defined by 

 for any . 

As is well known, the lottery space is a convex linear space, that is, satisfies the following 

properties
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:

 

L1. 

 

8. See Herstein and Milnor (1953).

l : R+ 0 1,[ ]→ R+

x1 … xn R+∈, , l x1( ) … l xn( )+ + 1= l x( ) 0=

x x1 … xn, ,{ }∉

l m, L R+( )∈ p 0 1,[ ]∈

p l• 1 p–( ) m•⊕ R+ 0 1,[ ]→

p l• 1 p–( ) m•⊕( ) x( ) p l x( )⋅ 1 p–( ) m x( )⋅+= x R+∈

1 l• 0 m•⊕ l=
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L2. 
L3.

 

 

We will identify a number  with a sure lottery  such that .
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 A 

player has a complete and transitive preference relation 

 

Ý

 

 on the lottery space that satisfies the 

following three axioms:

 

ASSUMPTION 1:

 

 (Smoothness) If m 

 

Þ

 

 l 

 

Þ

 

 n, where m 

 

B

 

 n, there exists a unique number 

 such that

(i) ,

(ii) Let  for . Then  is a smooth function of x such 

that . 

 

ASSUMPTION 2:

 

 (Independence) If , then for any m and any , 

.

 

ASSUMPTION 3:

 

 (Monotonicity) If  (where ), then  

 

B

 

 .

 

It is well known that an expected utility function exists under the assumptions of continuity 

and independence. Replacing continuity with smoothness yields a stronger set of axioms, and thus 

an expected utility function exists under our assumptions. We introduce the smoothness assump-

 

9.  We will use the notation  only if it is necessary to make the conceptual distinction between 

 

x

 

 and .

p l• 1 p–( ) m•⊕ 1 p–( ) m• p l•⊕=

q p l• 1 p–( ) m•⊕( )• 1 q–( ) m•⊕ qp( ) l• 1 qp–( ) m•⊕=

x R+∈ x̃ L R+( )∈ x̃ x( ) 1=

x̃ x̃

h l m n, ,( ) 0 1,[ ]∈

l h l m n, ,( ) m 1 h l m n, ,( )–{ }⊕• n•∼

ĥ x m n, ,( ) h x̃ m n, ,( )= x R+∈ ĥ x m n, ,( )

∂ĥ
∂x
------ x m n, ,( ) 0>

l l ′∼ p 0 1,[ ]∈

p l• 1 p–( ) m•⊕ p l ′• 1 p–( ) m•⊕∼

x y> x y R+∈, x̃ ỹ
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tion because we need it to define the concept of marginal risk concession.10 A la Herstein and Mil-

nor (1953), we can represent a player’s preferences by a utility function.

 PROPOSITION 2.1:  There exists a unique function V:  that satisfies 

, and 

(i) l B m if and only if V(l) > V(m),

(ii) ,

(iii) Put  for . Then  is a smooth function of x such that  

for x > 0.

The proof of the proposition is similar to Herstein and Milnor’s (1953) and thus will be omitted 

here. One may call the function V the von Neumann-Morgenstern utility function over lotteries 

and the function v the von Neumann-Morgenstern utility function over prizes. The following 

proposition is obvious:

 PROPOSITION 2.2:  If   lÝ 1 then , and if l B 1 then 

.

In order to understand the concept of risk concession, which will be introduced in the next 

subsection, it is necessary to study the certainty equivalent of a lottery. 

10.A smooth function is one that is differentiable as many times as one wants. For the results of this paper, it 

is sufficient that the function  is three times differentiable with respect to .ĥ x m n, ,( ) x

L R+( ) R→

V 0( ) 0 V 1( ), 1= =

V p l• 1 p–( ) m•⊕( ) pV l( ) 1 p–( )V m( )+=

v x( ) V x̃( )= x R+∈ v x( ) v′ x( ) 0>

V l( ) h l 1 0, ,( )=

V l( ) 1 h 1 l 0, ,( )⁄=
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 DEFINITION 2.1:  The certainty equivalent of a lottery  is a sure payoff 

 that satisfies .

 PROPOSITION 2.3:  Let y B z. Then  is a smooth function of p such that 

.

PROOF:  is a smooth function of p such that  because it is the 

inverse function of , which is a smooth function of x such that .

 Q.E.D.

 PROPOSITION 2.4:  Let y > z. If , one has 

.

PROOF: By  Assumption 1, there exists some p such that

 . 

We have only to show that . But this follows from .

Q.E.D.

p y• 1 p–( ) z•⊕

s p y z, ,( ) R+∈ s p y z, ,( ) p y• 1 p–( ) z•⊕∼

s p y z, ,( )

p∂
∂s

p y z, ,( ) 0>

x s p y z, ,( )=
p∂

∂s
p y z, ,( ) 0>

p ĥ x y z, ,( )=
∂ĥ
∂x
------ x y z, ,( ) 0>

y x z≥ ≥

x s
v x( ) v z( )–
v y( ) v z( )–
-------------------------- y z, , 

 =

x p y• 1 p–( ) z•⊕∼

p
v x( ) v z( )–
v y( ) v z( )–
--------------------------= v x( ) pv y( ) 1 p–( )v z( )+=



10

 PROPOSITION 2.5:  Let y > z. Then .

PROOF: Differentiating the expression in Proposition 2.4 with respect to x, one obtains

.

Setting  yields 

,

from which the desired equality follows. Q.E.D.

 2.2. Two-Person Bargaining Problem

 DEFINITION 2.2:  A bargaining problem , where  and 

, is a situation where two players  split a pie of size  if they can agree on their 

shares, and receive the breakdown payoffs  otherwise.

In order to introduce the solution to the bargaining problem, we first need to focus on some 

properties of preferences. For simplicity, we will drop the subscripts for players until we need 

them. 

During the process of bargaining, a player typically faces a gamble 

, where x + d ( ) is her payoff in the event of an agreement, d ( ) 

is her payoff in the event of a breakdown, and  the breakdown probability.11 We will denote 

such a gamble simply by . 

∂s
∂p
------ 1 y z, ,( ) v y( ) v z( )–

v′ y( )
--------------------------=

1
∂s
∂p
------ v x( ) v z( )–

v y( ) v z( )–
-------------------------- y z, , 

  v′ x( )
v y( ) v z( )–
--------------------------⋅=

x y=

1
∂s
∂p
------ 1 y z, ,( ) v′ y( )

v y( ) v z( )–
--------------------------⋅=

i( j ), π di d j,( ), ,〈 〉 di d j, 0≥

π di d j+> i( j ), π

di d j,( )

p x d+( )• 1 p–( ) d•⊕ d≥ 0≥

1 p–

p x d+ d ), ,(
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 DEFINITION 2.3:  The risk concession of a player facing a gamble  is the 

amount the player is willing to pay to avoid the chance of a breakdown. It will be denoted and 

defined as . 

 DEFINITION 2.4:  The marginal risk concession of a player facing a pair of payoffs 

 is the rate of change in risk concession as the breakdown probability approaches zero:

.

It will be denoted .

 PROPOSITION 2.6: One has . 

PROOF: By Definitions 2.3 and 2.4, 

. 

Using L’Hopital’s rule, we get 

. 

By Proposition 2.5, . Q.E.D.

11.Throughout this paper, we will use the term “gamble” for a lottery which is a probability mix of an agree-
ment payoff and a breakdown payoff. 

p x d+ d ), ,(

c p x d+ d, ,( ) x d s p x d+ d,,( )–+=

x d d,+( )

c p x d+ d ), ,(
1 p)–(

---------------------------------
p 1→
lim

µ x d d,+( )

µ x( d d,+ ) v x d+( ) v d( )–
v′ x d+( )

-------------------------------------=

µ x( d d,+ ) x d s p x d+ d, ,( )–+
1 p)–(

---------------------------------------------------
p 1→
lim=

µ x d+( d, ) ∂s
∂p
------ 1 x d+ d, ,( )=

∂s
∂p
------ 1 x d+ d, ,( ) v x d+( ) v d( )–

v′ x d+( )
-------------------------------------=
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Note that  is a smooth function of x and d. In addition to Assumptions 1-3, we 

make the following assumption throughout this paper:

ASSUMPTION 4:  is increasing in x for all x > 0.

 Assumption 4 holds for a very general class of preferences. The class includes all preferences 

exhibiting risk aversion or risk neutrality. It also includes preferences that can be represented by 

utility functions with constant relative risk aversion.

 PROPOSITION 2.7:  The marginal risk concession  is increasing in x > 0 if and 

only if  decreases in x > 0. 

PROOF: For x > 0, one has 

, 

from which follows the desired result. Q.E.D.

That  Assumption 4 holds for all risk averse or risk neutral preferences, that is, those with 

, can be easily seen from Proposition 2.7, for 

.

That  Assumption 4 is also satisfied by all utility functions v with constant relative risk aversion is 

shown in  Appendix A. In particular, the concavity of the function  is not a necessary condi-

tion for  Assumption 4.

µ x d+( d, )

µ x d d,+( )

µ x d d,+( )

xd
d

v x d+( ) v d( )–( )log

xd
d

v x d+( ) v d( )–( )log v′ x d+( )
v x d+( ) v d( )–
------------------------------------- 1

µ x d d,+( )
---------------------------= =

v″( ) 0≤

x
2

2

d

d
v x d+( ) v d( )–( )log v′ ′ x d+( ) v x d+( ) v d( )–[ ] v′ x d+( )[ ] 2

–

v x d+( ) v d( )–[ ] 2
-----------------------------------------------------------------------------------------------------=

v x( )
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We will now define the Nash bargaining solution in terms of players’ marginal risk conces-

sions and state two properties of the Nash solution that will be used in  Section 3.

 DEFINITION 2.5:  The Nash solution of a bargaining problem  is a vec-

tor  such that  and 

.

The Nash solution will be denoted 

.

 PROPOSITION 2.8:  There exists a unique Nash solution to the bargaining problem 

.

PROOF: The Nash solution satisfies the following equation

.

If one sets , the left hand side of the above equation is zero while the right hand side is 

positive. If one sets , the left hand side of the above equation is positive and the 

right hand side is equal to zero. Since, by Proposition 2.6 and Assumption 4, the left hand side is 

continuously increasing in  while the right hand side is continuously decreasing in , there 

exists a unique solution. Q.E.D.

i( j ), π di d j,( ), ,〈 〉

xi di xj d j )+,+( xi di xj d j π=+ + +

µi xi di di, ) µ j x j d j d j, )+(=+(

N i( j ), π di d j,( ), ,〈 〉 Ni i( j ), π di d j,( ), ,〈 〉 N j i( j ), π di d j,( ), ,〈 〉( , )=

i( j ), π di d j,( ), ,〈 〉

µi xi di di, ) µ j π xi– di– dj,( )=+(

xi 0=

xi π di– dj–=

xi xi
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 PROPOSITION 2.9:   is an increasing and smooth function of  for 

.

PROOF: Follows from the proof of Proposition 2.8. Q.E.D.

In the time-preference framework, Chae (1993) defines the Nash solution as a payoff vector 

equalizing “marginal impatience” among all players and establishes propositions analogous to the 

above two propositions. The mathematical structure of the proofs of the above two propositions is 

essentially the same as that of the corresponding propositions in Chae (1993). 

 2.3. Bargaining over a Contingent Pie

In Subsection 3.3, we need to deal with a bargaining situation where players bargain over a 

contingent pie whose size depends on the realized state of nature. Thus in this subsection, we will 

extend the analysis of the previous subsection to cover such a situation. For the analyses of 

Subsection 3.3, we will assume that players are risk averse, that is, they prefer the expected value 

of a gamble to the gamble itself. Thus we will make the same assumption in this subsection. 

Suppose that there are two states of nature,  and , which occur with probabilities  and 

, respectively. Two players have to agree on how to split the pie  in each state  

in order to avoid the chance of a breakdown. The contingent pie  is equivalent to the 

lottery , where we assume that there exists some division of  

that both players prefer to their break-down payoffs. We define the bargaining problem over this 

contingent pie as follows:

Ni i( j ), π di d j,( ), ,〈 〉 π

i 1 2,=

σ τ q

1 q– πs
s σ τ,{ }∈

π πσ πτ,( )=

q πσ• 1 q–( ) πτ•⊕ π π σ πτ,( )=
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 DEFINITION 2.6:  A contingent-pie bargaining problem , where  

 and there exist some contingent payoffs  such that Bi , Bj , and 

, is a situation where two players have to agree on how to split a contingent pie  in 

order to avoid a breakdown.

 Note that the breakdown position of each player is a non-contingent payoff. Without much 

loss of generality, we assume that players bargain over Pareto efficient splits of the contingent pie. 

That is, we require that in each state of nature the entire pie is split between the two players and 

that players share risks optimally across different states of nature. When players are risk averse, 

this entails that the marginal rates of substitution between different states of nature, as formally 

defined below, are equalized across players. 

For any  such that , define  for sufficiently small  by the follow-

ing indifference relation:

.

 DEFINITION 2.7:  The marginal rate of substitution for a fair gamble between x and y is 

denoted and defined by .

 PROPOSITION 2.10:  .

PROOF: From Definition 2.7 and the equality

i( j ), π di d j,( ), ,〈 〉

di d j R+∈, yi yj, yi di yj d j

yi yj+ π= π

x y R+∈, x y 0> > ξq δ( ) δ

q x• 1 q–( ) y•⊕ q x δ–( )• 1 q–( ) y ξq δ( )+( )•⊕∼

m x y,( ) ξ′ 1
2
---

0( )=

m x y,( ) v′ x( )
v′ y( )
------------=
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,

follows the result. Q.E.D.

Under the assumption of risk aversion, one can denote and characterize the set of Pareto effi-

cient splits of the contingent pie  as 

using player i ‘s contingent payoff to denote the split of the contingent pie. The set is a one-

dimensional manifold, that is, a smooth curve. Since the bargaining will break down if either 

player is not given a contingent payoff that will make her at least as well off as at the breakdown 

point, the relevant part of PE is the core 

C = { ;  Þi  and  Þ j }.

In the Edgeworth Box of Figure 1, PE is the solid curve from the south-west corner to the north-

east corner, and C is the thick part. 

ξ′ q 0( ) q
1 q–( )

---------------- v′ x( )
v′ y( )
------------⋅=

π πσ πτ,( )=

PE yi
σ

yi
τ,( );  q

1 q–
------------m

i
yi

σ
yi

τ,( ) q
1 q–
------------m

j
πσ

y– i
σ

πτ
y– i

τ
,( )=

 
 
 

=

yi
σ

yi
τ,( );  mi yi

σ
yi

τ,( ) mj πσ
y– i

σ
πτ

y– i
τ

,( )=
 
 
 

=

yi PE∈ yi di π yi– dj
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 PROPOSITION 2.11: Suppose . If  then .

PROOF: Assume otherwise, that is  and . Then risk aversion implies

  and , 

which is impossible because both  and  are Pareto efficient. Q.E.D.

During the process of bargaining over a contingent pie , a player typically faces 

a gamble , where  is her contingent payoff in the 

event of an agreement, di ( ) is her payoff in the event of a breakdown, and  the break-

down probability. For simplicity, we will denote such a gamble by . Note here that the 

contingent payoff  is equivalent to the lottery . 

FIGURE 1

πτ

yi
σ

yi
τ

πσ
di

di

d j

d j

yi yi
ˆ, C∈ yi

σ
ŷi

σ> yi
τ

ŷi
τ>

yi
σ

ŷi
σ> yi

τ
ŷi

τ≤

vi ′ yi
σ( )

vi ′ yi
τ( )

----------------
vi ′ ŷi

σ( )

vi ′ ŷi
τ( )

----------------<
vj ′ πσ

y– i
σ

( )
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As was the case in the bargaining problem over a non-contingent pie, the extent to which a 

player is willing to concede in order to avoid the chance of a breakdown plays an important role in 

finding the solution for a bargaining problem over a contingent pie. In order to formalize this 

notion, we have to first introduce the analogue of certainty equivalent. 

 DEFINITION 2.8:  For any gamble  where , the 

breakdown-free contingent payoff is defined as a contingent lottery 

 that satisfies

,

i.e.,

 DEFINITION 2.9:  The risk concession of a player facing a gamble , where 

, is the amount, along the core, of contingent payoff the player is willing to pay to avoid the 

chance of a breakdown. It will be denoted and defined as 

. 

p yi di ), ,( yi xi
σ

di+ xi
τ

di+,( )= C∈

si p yi di ), ,( si
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p yi di ) si
τ

p yi di ), ,(,, ,(( )= C∈

si p yi di ), ,( p yi• 1 p–( ) di•⊕∼

q si
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τ
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∼
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ci p yi di ), ,( yi si p yi di ), ,(–=
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 DEFINITION 2.10:  The marginal risk concession along the core, of a player facing a pair 

, where , is the rate of change of the risk concession as the breakdown probability 

approaches zero:

.

It will be denoted . 

The marginal risk concession is well defined because, under the assumption of risk aversion, 

C is a smooth curve. In  Appendix B, we derive the following:

 PROPOSITION 2.12: One has

,

,

 where  is the slope (and  its inverse) of the C curve at .
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Now we can introduce the Nash solution for a contingent-pie bargaining problem.

 DEFINITION 2.11:  The Nash solution to a contingent-pie bargaining problem 

 is a vector , where , that satisfies the following equation:

.

To prove existence and uniqueness of the Nash solution for a contingent-pie bargaining prob-

lem, the following definition is useful:

 DEFINITION 2.12: The marginal risk concession in terms of sure payoff in state  of a 

player facing a pair  is defined and denoted as

.

 measures the rate of change of the amount, measured in terms of sure payoff in 

state , player i is willing to give up in order to avoid the chance of a breakdown as the break-

down probability approaches zero. In  Appendix C, we show the following: 

 PROPOSITION 2.13:  if and only if 

.
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 Appendix D derives the following proposition:

 PROPOSITION 2.14:  is increasing in  along the C curve.

 PROPOSITION 2.15:  If both players are risk averse, there exists a unique Nash solution 

for the contingent-pie bargaining problem .

The proof, shown in  Appendix E, is similar to that of Proposition 2.8.

In the non-contingent pie case, the Nash solution is often motivated as the limit of the Rubin-

stein solution for a strategic bargaining model.12 Since we introduced the contingent-pie bargain-

ing problem in this subsection, it is perhaps our duty to provide a similar motivation for the Nash 

solution for this case. In  Appendix F, we will introduce the Rubinstein solution for our contin-

gent-pie bargaining problem and show that the Rubinstein solution equalizes the risk concessions 

of the two players. Since the Nash solution equalizes the marginal risk concessions of the two 

players, one can see easily that the Nash solution is the limit of the Rubinstein solution as the 

breakdown probability goes to zero. 

12. Rubinstein’s alternating-offer model in the time-preference framework can be converted to a similar 
model where after every offer there is an exogenous probability that the game ends. This setup replaces 
the time cost of rejecting an offer by the risk that the game may terminate. See Binmore, Rubinstein, and 
Wolinsky (1986). 

µ̂i
σ

yi di, )( yi

i( j ), π di d j,( ), ,〈 〉
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In  Appendix G, we relate the above definition of the Nash solution for a contingent-pie bar-

gaining problem to the standard definition representing players’ preferences by von Neumann-

Morgenstern utility functions as in Nash (1950). 
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3 . PARALLEL BARGAINING

In this section, we will investigate the consequences of integrating one type of players across 

different markets. Consider two separate bilateral monopoly markets A and B. As a leading exam-

ple, we will consider markets where broadcasters and cable operators negotiate over the terms of 

carrying broadcast channels on cable systems. In market A, cable TV operator a and broadcaster 

 bargain over the split of , their net gain from carrying the broadcast channel on the cable 

system. In market B, cable TV operator b and broadcaster  bargain over the split of their surplus 

. In the event of a breakdown of bargaining, the profit position of player i (= a, , b, ) is . 

Formally, we have two parallel bargaining problems  and 

. 

In the benchmark case where players in markets A and B are independent firms, we posit that 

the solutions to the bargaining problems in markets A and B are the Nash solutions 

 and , where we have, without loss of generality, nor-

malized the initial fall back positions to be zero. 

In what follows, we will investigate how the integration of cable operators across the two 

markets affects their and the broadcasters’ payoffs. The integration pits the coalition of cable 

operators against the broadcasters of markets A and B as illustrated in Table I. 

â πA

b̂

πB
â b̂ di

a â,( ) πA
da dâ,( ), ,〈 〉

b( b̂), πB
db d

b̂
,( ), ,〈 〉

N a( â) πA
0 0,( ), , ,〈 〉 N b( b̂) πB

0 0,( ), , ,〈 〉
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In order to analyze bargaining between a coalition and its opponents on two fronts, we need 

to modify the above solution in two different directions. First, we need to specify how the bargain-

ing in one market affects the bargaining in another market. In this regard, we imagine a situation 

where the two bargaining problems are settled simultaneously rather than sequentially and assume 

that when players bargain in one market, they take the outcome of bargaining in the other market 

as given. Second, we need to extend the definition of the Nash solution to a bargaining problem 

between a coalition and a player. Since the Nash solution is one where the marginal risk conces-

sions of two players are equalized, we will have to define the marginal risk concession of a coali-

tion. This will be defined essentially as the sum of the marginal risk concessions of the two 

members of the coalition. This makes sense because the risk concession of the coalition measures 

how much the coalition is willing to give up to avoid the chance of a breakdown, and the amount 

the coalition is willing to concede will be quite naturally the sum of the amounts the members of 

the coalition are willing to concede. We emphasize here that our notion of risk concession is a nat-

ural extension of Zeuthen’s idea. 

TABLE I

before inte-
gration

after inte-
gration

market A

market B

a â↔ a b,{ } â↔

b b̂↔ a b,{ } b̂↔
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 3.1. Simultaneous Nash Solution

We will denote the coalition of cable operators {a, b} simply by c. If the bargaining between 

the coalition and an opponent breaks down, the coalition receives a payoff . If the bargaining 

ends in an agreement, the coalition receives a payoff .

In general, the marginal risk concession of a coalition will be defined as the sum of the mar-

ginal risk concessions of the two members of the coalition. In order to measure the marginal risk 

concession of each member of the coalition, however, one needs to know how both  and 

 are split between a and b. 

Regarding the mechanism to divide a given pie between the two members of the coalition, we 

will consider two alternative scenarios. In the first scenario, we assume that the cable operators, 

when they are contemplating whether to form a coalition, cannot commit themselves to any divi-

sion of the coalition’s share of the pie. In this scenario, we are assuming in effect that it is either 

impossible or prohibitively costly to write a binding contract between the cable operators. In the 

second scenario, we assume that the cable operators, when they are contemplating whether to 

form a coalition, can make a binding agreement on how to split the coalition’s share. 

Denote the division scheme under either scenario by . The scheme has to spec-

ify the shares of a and b in both the agreement and breakdown states. Denote the agreement and 

breakdown states by  and , respectively. Then 

where 

dc

xc dc+

xc dc+

dc

S xc dc dc,+( )

σ τ

S xc dc dc,+( ) Sa xc dc dc,+( ) Sb xc dc dc,+( ),( )=
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 for .

The precise form of the division scheme  under each scenario will be introduced in 

Subsections 3.2 and 3.3. 

 DEFINITION 3.1:  Given a division scheme , the marginal risk concession of 

a coalition is defined as

Denote the coalition’s shares in markets A and B by  and , respectively. Then in market 

A, one has , for the coalition takes  as given. Similarly, in market 

B, one has .

 DEFINITION 3.2: A simultaneous Nash solution to the parallel bargaining problem with a 

one-sided coalition is a vector  that satisfies the following equations:

(1) ,

(2) ,

(3) ,
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(4) .

In the absence of a coalition, the payoffs of cable operators a and b are 

 and , respectively. To simplify the notation, let

The coalition will actually form only if each member of the coalition gains from joining the coali-

tion. Thus one may consider a stronger solution to the parallel bargaining problem.

 DEFINITION 3.3: A bona fide solution to the parallel bargaining problem with a one-sided 

coalition is a simultaneous Nash solution  where each member of the coalition 

gains from joining the coalition, i.e.,  for .

We will now consider some desirable properties of  that may or may not hold 

in particular environments as will be shown in the next two subsections. 

 CONDITION 1:  for .

 CONDITION 2:  is an increasing and smooth function of .
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 LEMMA 3.1:  If Conditions 1 and 2 are satisfied, there exists a simultaneous Nash solution 

to the parallel bargaining problem with a one-sided coalition.

PROOF: Taking  as given, equations (1) and (3) of Definition 3.2 define the Nash solution 

to the bargaining problem in market A. Substituting (3) into (1), one has

(5) .

By Conditions 1 and 2, as  increases from 0 to , the left hand side of (5) increases from 0 to 

a positive number while the right hand side decreases from a positive number to 0. Thus there 

exists a unique solution to (5). That is, for a given breakdown point , this bargaining problem 

has a unique solution, which determines the payoff for the coalition in market A, . We can thus 

define an implicit function . Since  and  are smooth, 

 is smooth and thus continuous in particular. 

Symmetrically, using equations (2) and (4), we can define a continuous function . 

Thus we have a continuous mapping  from  to itself. There-

fore, there exists a fixed point by Brower’s fixed point theorem. Q.E.D.

 CONDITION 3: The marginal risk concession of the coalition  is non-

increasing in .
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 LEMMA 3.2:  If Conditions 1, 2, and 3 are satisfied, the functions  and  in 

the proof of Lemma 3.1 are smooth and non-decreasing.

PROOF: Functions  and  are well defined and smooth by Conditions 1 and 2 

as shown in the proof of Lemma 3.1. Condition 3 guarantees that the functions  and 

 are non-decreasing as can be seen from equation (5) in the proof of Lemma 3.1. Q.E.D.

 3.2. No-Commitment Solution

Consider the case where the cable operators can make no commitment as to the division of 

the coalition’s share of the pie. In this case, they bargain over the division of the total payoff the 

coalition receives after either an agreement is reached or the bargaining ends in a breakdown.

 DEFINITION 3.4: In the case where the members of a coalition can make no commitment 

as to the division of the coalition’s share of the pie, the division scheme is defined as

for .

Notice that the share each member of the coalition receives in each of the two states is deter-

mined through Nash bargaining inside the coalition. This feature is due to the assumption of no 

commitment. If the solution is different from the bargaining solution, one member of the coalition 

will have an incentive to renegotiate. One can combine Definitions 3.1 and 3.4.
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 PROPOSITION 3.1: In the case where the members of a coalition can make no commit-

ment as to the division of the coalition’s share of the pie, the marginal risk concession can be 

written as

.

 PROPOSITION 3.2:  If no commitment is possible regarding the division of the coalition’s 

share of the pie, Conditions 1 and 2 are satisfied. 

PROOF: That Condition 1 is satisfied is obvious from Definitions Proposition 3.1. By Prop-

osition 2.9,  is an increasing and smooth function of . Since the 

function  is an increasing and smooth function of its first argument, 

 is an increasing and smooth function of  

for each . This in turn implies that , which is the sum of  and , 

an increasing and smooth function of . Q.E.D.

 THEOREM 3.1: If no commitment is possible regarding the division of the coalition’s share 

of the pie, there exists a simultaneous Nash solution to the parallel bargaining problem with a 

one-sided coalition.

PROOF: Follows from Lemma 3.1 and Proposition 3.2. Q.E.D.

µc xc dc dc,+( ) µi N( i a( b) xc dc+ 0 0,( ), , ,〈 〉 Ni a( b) dc 0 0,( ), , ,〈 〉 ),
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We now want to show that forming a coalition can be profitable under certain conditions. In 

order to establish this, we need to make two additional assumptions:

 CONDITION 4:   is decreasing in  for all .

 CONDITION 5:  .

Alternatively, one may require the following two assumptions, weakening Condition 4 and 

strengthening Condition 5. 

CONDITION 4´:  is non-increasing in  for all .

CONDITION 5´:  for all .

Condition 4 says that the marginal risk concession of a player is decreasing in one’s fall-back 

position. Unlike  Assumption 4, Condition 4 is a relatively strong assumption and rules out, for 

instance, risk-neutral preferences. Condition 4´ relaxes Condition 4 to a weak inequality. 

Condition 5 says that when the breakdown point is equal to zero, doubling the amount of stake at 

least doubles the marginal risk concession of a player. Condition 5´ requires that doubling the 

amount of stake more than doubles the marginal risk concession of a player. 

Note that preferences that can be represented by von Neumann-Morgenstern utility functions 

with constant relative aversion, i.e.,  where , satisfy Conditions 4 and 5, while 

preferences that can be represented by von Neumann-Morgenstern utility functions with constant 

µi xi di di, )+( di xi 0>

2µi xi 0,( ) µi 2xi 0,( )≤

µi xi di di, )+( di xi 0>
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absolute aversion, i.e., , satisfy Conditions 4´ and 5´. In  Appendix H, 

we will show Condition 4 is in fact satisfied by a broad class of utility functions that exhibit con-

stant hyperbolic absolute risk aversion (HARA), which include the class of utility functions with 

constant relative aversion. 

The main issue of this paper is whether there are gains from forming a coalition. We will first 

show that forming a coalition is profitable under the above assumptions. 

 THEOREM 3.2:  Suppose that either Conditions 4 -5 or Conditions 4´ -5´ are satisfied. A 

coalition of players with identical preferences will gain as a whole in each market. Formally, if 

 is a simultaneous Nash solution, then  and .

PROOF: If cable operators have identical preferences, they will split any payoff of the coali-

tion equally. Thus Proposition 3.1 implies that 

. 

But, if Conditions 4 and 5 are satisfied, one has

(6)

since . Therefore, no  can satisfy equations (1) and (3) in Definition 3.2, for in this 

case one would have
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 which is absurd. A symmetric argument applies to market B, which completes the proof under 

Conditions 4 and 5. 

If Conditions 4´ and 5´ are satisfied instead, the weak and strict inequalities in (6) are 

exchanged. The proof is the same otherwise. Q.E.D.

There are two intuitive explanations as to why forming a coalition is profitable. In fact, the 

proof of the above proposition is based on these two explanations. Depending on which pair of 

conditions, 4-5 or 4´-5´, is used, greater emphasis is placed on either of the two explanations. 

The first explanation, which is highlighted by Conditions 4 and 5, is as follows: When bar-

gaining in one market, the breakdown point of the coalition is the outcome of the other market. 

Thus, if bargaining on one frontier breaks down, the coalition still receives some payoff from bar-

gaining on the other frontier. Due to Condition 4, this lowers the coalition’s marginal risk conces-

sion and thus the coalition can credibly demand a larger share of the pie. This phenomenon may 

be called the fall-back position effect.

The second explanation, which is highlighted by Conditions 4´ and 5´, is as follows: The two 

members of the coalition share the spoils from each market. Due to Condition 5´, dividing a given 

payment between two players leads to a lower marginal risk concession than giving the undivided 
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payment to one player. This increases the bargaining power of the coalition. This phenomenon 

may be called the risk-sharing effect.

It is interesting to note that when players with constant relative aversion form a coalition, 

there is a positive fall-back position effect but zero risk sharing effect, while when players with 

constant absolute aversion form a coalition, there is a positive risk sharing but zero fall-back posi-

tion effect. 

Theorem 3.2 shows that forming a coalition is profitable. But a profitable coalition may not 

form if there is no mechanism to divide the gains of the coalition between its members so that 

each member will gain. If they could write a binding contract regarding the division of the gains, a 

profitable coalition will always form. This case will be studied in the next subsection. 

In the current subsection, we do not allow commitment by the members of a coalition regrad-

ing the internal division of a pie. Thus the amount an agent can receive when bargaining alone 

becomes irrelevant once he decides to join the coalition. Even in this no-commitment case, how-

ever, there are some cases where profitable coalitions will actually form. For instance, if , 

cable operators with identical preferences will both benefit from forming a coalition.

 THEOREM 3.3: Suppose either Conditions 4 -5 or Conditions 4´ -5´ are satisfied. Suppose 

that two cable operators have identical preferences, two broadcasters have identical preferences, 

and . Then there exists a simultaneous Nash solution. Furthermore, any simultaneous 

Nash solution is a bona fide solution to the parallel bargaining problem.

na nb=

πA πB
=



35

PROOF: By Proposition 3.2, Conditions 1 and 2 are satisfied. By Condition 4 or 4´, 

Condition 3 is also satisfied. Thus, by Lemma 3.2, the functions  and  in the proof 

of Lemma 3.1 are smooth and increasing. Furthermore, since the cable operators have identical 

preferences, the broadcasters have identical preferences, and , the functions  and 

 are identical. Therefore, there exists a simultaneous Nash solution  such 

that .

Since  and  by Theorem 3.2 and  by the symmetry of preferences 

and market sizes, one has 

 for .

Therefore,  is a bona fide solution to the parallel bargaining problem.Q.E.D.

In the scenario we studied in this subsection, the members of a coalition split the spoil after it 

is realized because they cannot make a commitment regarding the split. In this case, it is relatively 

easy for the players to reach a simultaneous Nash solution once a coalition forms. But it is more 

difficult to insure that each member of the coalition has an incentive to join a coalition. In the 

alternative scenario we will study in the next subsection, the members of a coalition can write a 

binding contract. In this case, it turns out that the opposite is true. It will be more difficult for the 

players to reach a simultaneous Nash solution (in the sense that establishing its existence requires 

stronger conditions). But the solution insures that each member gains from joining the coalition. 
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 3.3. Commitment Solution

We now consider the solution for the case where the cable operators can write a binding con-

tract when they integrate. The contract between the members of a coalition specifies how they 

would split the total payoffs in two possible states of nature, one in which bargaining with an out-

sider, in our example a broadcaster, ends in an agreement and another in which the bargaining 

breaks down. 

Throughout this subsection, we will assume the following:

ASSUMPTION 5: (Risk Aversion) Players prefer the expected value of a gamble to the 

gamble itself.

Recall that Assumption 4 introduced in Subsection 2.2 is satisfied for all risk averse players. 

Thus in this subsection, we do not need Assumption 4 as a separate assumption. 

As in Subsection 3.1, denote the agreement and breakdown states by  and , respectively. 

Let  and  be the probabilities of states by  and , respectively. Note that these probabili-

ties were irrelevant for the no-commitment solution of the previous subsection, for the within-coa-

lition bargaining occurs after either state is realized. If  and  are the coalition’s payoffs 

in the agreement and breakdown states, respectively, the contingent pie up for bargaining between 

the two members of the coalition is, by abuse of notation, 

.

When they bargain over this contingent pie, their respective breakdown points will be the payoffs 

they expect to receive when they do not join the coalition. Since we are using the Nash solution 

σ τ

q 1 q– σ τ

xc dc+ dc

π πσ πτ,( ) xc dc+ dc,( ) q xc dc+( )• 1 q–( ) dc•⊕= = =
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for any bargaining situation throughout this paper, the fall-back positions of cable operators a and 

b will be  and , respectively. 

We will assume that the within-coalition contract is the Nash solution of the contingent-pie 

bargaining problem . Let

 

 for . As explained in Subsection 2.3, the Nash solution  is a pair of con-

tingent shares such that the marginal risk concessions of the two members of the coalition are 

equalized and such that the allocation of the shares between the two members across the two 

states is Pareto efficient. That is, the Nash solution satisfies the two equations

(7) ,

(8)

in addition to the two feasibility constraints

(9)

(10)

In using equation (8) above as a necessary condition for Pareto efficiency, we have used the 

assumption ( Assumption 5) that the members of the coalition are risk averse. 

Note here that there was no analogue to equation (8) in the no-commitment case of the previ-

ous subsection. Since players could not write a contract, the pie was split according to the Nash 

na Na a â) πA
0 0,( ), , ,(〈 〉= nb Nb b b̂) πB

0 0,( ), , ,(〈 〉=

a b,( ) πσ πτ,( ) na nb,( ), ,〈 〉

yi di,( ) q yi• 1 q–( ) di•⊕ Ni a b,( ) πσ πτ,( ) na nb,( ), ,〈 〉= =

i a b,= ya da yb db, , ,( )

µ̂a
σ

q ya• 1 q–( ) da•⊕ na,( ) µ̂b
σ

q yb• 1 q–( ) db•⊕ nb,( )=

ma ya da,( ) mb yb db,( )=

ya yb+ xc dc,+=

da db+ dc.=
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solution even in a breakdown state, for otherwise one of the players would have an incentive to 

renegotiate.

We are particularly interested in the Nash solution of the within-coalition bargaining for the 

limiting case where , the probability of the agreement state, approaches 1. In this case, equation 

(7) above will become 

.

The left hand side can be rewritten in utility terms as 

 .

Note that the expression on right hand side is the same as the marginal risk concession with non-

contingent pies introduced in Subsection 2.2. Thus one may write

.

Therefore, equation (7) can be replaced by

(11) .

This, together with equation (9) leads to

(12) .

Once  is determined this way,  can be determined from equations (8) and (10). 

q

µ̂a
σ

1 ya• 0 da•⊕ na,( ) µ̂b
σ

1 yb• 0 db•⊕ nb,( )=

µ̂a
σ

1 ya• 0 da•⊕ na,( )
vi ya( ) vi na( )–

vi ′ ya( )
-----------------------------------=

µ̂a
σ

1 ya• 0 da•⊕ na,( ) µa ya na,( )=

µa ya na,( ) µb yb nb,( )=

ya yb,( ) N a b,( ) xc dc+ na nb,( ), ,〈 〉=

ya yb,( ) da db,( )
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 DEFINITION 3.5: In the case where the members of a coalition can make commitment as 

to the division of the coalition’s share of the pie, the division scheme is defined as

,

where  satisfies (12), (8), and (10).

One can combine Definitions 3.1 and 3.5.

 PROPOSITION 3.3: In the case where the members of a coalition can make commitment as 

to the division of the coalition’s share of the pie, the marginal risk concession of the coalition can 

be written as

,

 where  satisfies (12) and  satisfies equations (8) and (10).

 

We want to show that in the commitment case, there exists a bona fide solution, that is, a 

simultaneous Nash solution where each member of the coalition gains from joining the coalition. 

In order to show this, it is necessary that  and  is well defined 

outside of the bona fide solution. In particular, it is necessary that  is 

defined even for the case where .

S xc dc dc,+( ) ya da yb db, , ,( )=

ya da yb db, , ,( )

µc xc dc dc,+( ) µa ya da,( ) µb yb db,( )+=

ya yb,( ) da db,( )

µc xc
A

xc
B

xc
B,+( ) µc xc

B
xc

A
xc

A,+( )

N a b,( ) xc
A

xc
B

+ na nb,( ), ,〈 〉

xc
A

xc
B

+ na nb+<
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In order to define  for the case where , we imagine the 

players sharing a loss so that (11) is satisfied, i.e.,

,

where  and . In other words, the marginal risk concession, which is nega-

tive in a situation where players have to share a loss, has to be equalized across players. We want 

to emphasize here that this is only a technical convention. There are no losses at a bona fide solu-

tion, whose existence we are going to establish, because the cable operators would not form a coa-

lition if there are losses. 

 PROPOSITION 3.4:  If commitment is possible regarding the division of the coalition’s 

share of the pie, Condition 1 is satisfied. 

PROOF: If , equations (8), (9), and (10) imply  by  Assumption 

5. Therefore,  and thus . Q.E.D.

For the commitment case we are analyzing in this subsection, Condition 2, which we needed 

for Lemma 3.1 may not hold in general. The reason is that as  increases, there are in general 

two effects. First, by Proposition 2.9, both players’ payoffs,  and , increase. This would 

increase their marginal risk concessions if  remained the same. But the change in  

also affects the marginal rate of substitution between the agreement and breakdown states. That is, 

N a b,( ) ya na nb,( ), ,〈 〉 ya na nb+<

v ya( ) v na( )–

v′ ya( )
--------------------------------

v yb( ) v nb( )–

v′ yb( )
--------------------------------=

0 ya na<≤ 0 yb nb<≤

xc 0= ya yb,( ) da db,( )=

µa ya da,( ) µb yb db,( ) 0= = µc dc dc,( ) 0=

xc

ya yb

da db,( ) ya yb,( )
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 is affected through equation (8). The direction of this effect on the marginal risk conces-

sion of the coalition is in general ambiguous.

 THEOREM 3.4: If commitment is possible regarding the division of the coalition’s share of 

the pie and Conditions 2 and 3 are satisfied, there exists a bona fide solution to the parallel bar-

gaining problem with a one-sided coalition.

PROOF: That there exists a simultaneous Nash solution follows from Lemma 3.1, Proposi-

tion 3.4, and the assumption that Condition 2 is satisfied. With the additional assumption that 

Condition 3 is satisfied, we can further show that there actually exists a simultaneous Nash solu-

tion where each member of the coalition gains from joining the coalition. 

 Functions  and  are smooth and non-decreasing by Conditions 2, 3, and 

Lemma 3.2, and are, respectively, bounded between  and  and between  and . Thus, as 

can be seen from Figure 2, there has to exist a simultaneous Nash solution such that  and 

 if one could establish  and . 

da db,( )

x̃c
A

xc
B( ) x̃c

B
xc

A( )

0 πA
0 πB

xc
A

na>

xc
B

nb> x̃c
A

nb( ) na> x̃c
B

na( ) nb>
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Thus we have only to show that 

(13) . 

By Proposition 3.3, 

where  satisfy 

(14) ,

(15) ,

(16) ,

(17) .

Note that equations (14) and (16) imply that  and . Thus

(18) .

Hence, equation (13) is satisfied if

FIGURE 2

xc
B

πB

x̃c
B

x̃c
A

nb

na πA xc
A

µc na nb nb,+( ) µa na 0,( )<

µc na nb nb,+( ) µa ya da,( ) µb yb db,( )+=

ya da yb db, , ,( )

µa ya na,( ) µb yb nb,( )=

ma ya da,( ) mb yb db,( )=

ya yb+ na nb+=

da db+ nb=
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(19)

which is eqiuvalent to 

(20)

or in utility form,

(21)

But equation (15) implies that equation (21) is equivalent to

(22)

But, by the concavity of , equation (17), and the concavity of , one has

(23)  Q.E.D.

Theorem 3.2, which established the profitability of a coalition for the no-commitment case, 

relied on two effects, the fall-back position effect and the risk-sharing effect. The proof of the 

above Theorem 3.4 reveals that similar effects are at work for the commitment case. The use of 

Condition 3 in establishing the monotonicity of the functions  and  indicates the 

presence of the fall-back position effect. For Theorem 3.2, the risk-sharing effect worked through 

Condition 5´. For Theorem 3.4, however, the risk-effect works through risk aversion as can be 

seen from the last part of the proof. 

µa na da,( ) µb nb db,( ) µa na 0,( ),<+

µb nb db,( ) µa na 0,( ) µa na da,( ),–<

vb nb( ) vb db( )–

vb′ nb( )
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va′ na( )
-----------------.<
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-----------------.<

vb va
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vb′ db( )
------------------------------------- nb db–( )< da

va da( )
va′ da( )
-----------------.<=
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B( ) x̃c

B
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 Overall, the ability to write a binding contract increases the opportunity to gain from forming 

a coalition. The coalition becomes a more effective bargainer than an individual if certain condi-

tions are met. Conditions 2 and 3 in Theorem 3.4 are aggregation conditions that require that the 

coalition’s aggregate preferences exhibit certain desirable properties.
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4 . CONCLUSION

In this paper, we have provided theoretical explanations for bargaining power due to integra-

tion across local markets. We extended the Nash solution to the case of parallel bargaining to 

illustrate why players might gain from integration in two alternative scenarios: one in which play-

ers who form a coalition cannot write a binding contract, and the other in which players can write 

a binding contract. We showed that the integration can increase bargaining power under certain 

conditions.

From the policy standpoint, the results support the view that across-local-market integration 

increases market power. Integration leads to a redistribution of some of the gains from coopera-

tion within the local market from the unintegrated to the integrated players. Since, however, ratio-

nal players will always exhaust all possible gains from cooperation within the local market, there 

is no justification, within our model, for restricting the national size of an MSO in the cable televi-

sion industry or restricting the size of a theater chain in the movie industry. Even though integra-

tion may increase their market power, it does not affect aggregate welfare. An interesting open 

problem is to find a model where policy makers should be concerned about the MSOs’ and theater 

chains’ market power on efficiency grounds. 

Dept. of Economics-MS22, Rice University, Houston, Texas 77005, U.S.A.; chae@rice.edu; 

http://www.ruf.rice.edu/~chae/
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 APPENDIX A: Constant Relative Risk Aversion implies Assumption 4

If , one has 

and thus

.

It is easy to see that for all , the numerator, and hence the derivative, is positive. The follow-

ing manipulation shows that the numerator is also positive for all :

 APPENDIX B: Proof of Proposition 2.12

Define a function  such that . To derive , we will use the 

following proposition:

 PROPOSITION A.1: For any given Þi Þi , where  Bi , one has

.

v x( ) x
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PROOF: There exists some p such that

Rewriting this expression using the utility representation in Proposition 2.1, we obtain

,

i.e., 

.

Thus, by Definition 2.8, one obtains the proposition. Q.E.D.

PROOF OF PROPOSITION 2.12: From Definitions 2.9, 2.10, and the L’Hospital’s rule, 

we have 

. 

Totally differentiating both sides of the equality in Proposition A.1 with respect to  yields

.

Setting  and rewriting gives the desired expression.  can be derived similarly.

Q.E.D.
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σ• 1 q–( ) zi

τ
zi

σ( )•⊕ p q yi
σ• 1 q–( ) yi

τ•⊕{ }• 1 p–( ) di• .⊕∼

qvi zi
σ( ) 1 q–( )vi zi

τ
zi

σ( )( )+ p qvi yi
σ( ) 1 q–( )vi yi

τ( )+{ } 1 p–( )vi di( )+=

p
qvi zi

σ( ) 1 q–( )vi zi
τ

zi
σ( )( ) vi di( )–+

qvi yi
σ( ) 1 q–( )vi yi

τ( ) v–+ i di( )
--------------------------------------------------------------------------------------=

µi
σ

yi di,( )
si

σ
1 yi di, ,( )d

pd
--------------------------------=

zi
σ

1
sd i

σ

pd
--------

qvi zi
σ( ) 1 q–( )vi zi

τ
zi

σ( )( ) vi di( )–+

qvi yi
σ( ) 1 q–( )vi yi

τ( ) v–+ i di( )
-------------------------------------------------------------------------------------- yi di, ,









qvi ′ zi
σ( ) 1 q–( )vi ′ zi

τ
zi

σ( )( )
dzi

τ

dzi
σ--------+

qvi yi
σ( ) 1 q–( )vi yi

τ( ) v–+ i di( )
-------------------------------------------------------------------------------=

zi yi= µi
τ

yi di,( )



48

 APPENDIX C: Proof of Proposition 2.13

 From Proposition 2.12 and Definition 2.12, one has

, 

.

Along the C curve, one has , which proves the proposition.

 APPENDIX D: Proof of Proposition 2.14

 Differentiating  with respect to , gives

 

which is positive because .
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 APPENDIX E: Proof of Proposition 2.15

 Using Proposition 2.13, we have only to show that there exist a unique  satisfying

. 

From Proposition 2.14,  is increasing in . By Proposition 2.11, as  increases along 

the C curve, player j receives less in both states, and thus  decreases. If  ~i , the left 

hand side of the above equation is zero, and if  ~i , the right hand side is equal to zero. 

Since the left hand side is continuously increasing in  and the right hand side continuously 

decreasing in , there exist a unique solution.

 APPENDIX F: Rubinstein Solution for a Contingent-Pie Bargaining Problem

 DEFINITION A.1 : The Rubinstein solution to a contingent-pie bargaining problem 

 is a vector of payoffs, , where  such that 

(A.1) ,

(A.2) .

The Rubinstein solution consists of two pairs of payoff vectors. The first pair is the outcome 

that is realized when player i is the proposer in an alternating offer model and the second pair is 

yi
σ

µ̂i
σ

yi di, )( µ̂ j
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µ̂i
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yi di, )( yi yi

π yi– yi di
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i( j ), π di d j,( ), ,〈 〉 yi ŷ j,( ) ŷi yj,( ),( ) yi ŷi, C∈

ŷi si p yi di, ,( )=

ŷ j s p yj d j, ,( )=
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the outcome that is realized when player j is the proposer. Conditions (A.1) and (A.2) ensure that 

each player, when he is a responder, is indifferent between accepting an offer and rejecting it. If he 

rejects, he can become a proposer but he also risks a breakdown. Here one can easily see that the 

Rubinstein solution is the equilibrium outcome of a strategic bargaining model similar to the one 

in Rubinstein (1982). 

 PROPOSITION A.2: The Rubinstein solution for a contingent pie equalizes the players’ 

risk concessions.

PROOF: From conditions (A.1) and (A.2) in the definition of the Rubinstein solution and the 

fact that we work with elements of C only, it follows that

, 

.

Subtracting the second equation from the first one yields

. Q.E.D.

 APPENDIX G: Nash Solution in Utilities with a Contingent Pie 

In this appendix, we will show that the Nash solution for a contingent pie we defined in terms 

of preferences is equivalent to the Nash solution defined in terms of the von Neumann-Morgen-

stern utilities. Consider the bargaining problem  as defined in the text. Assume 

yi sj p yj d j, ,( )+ π=

si p yi di, ,( ) ŷ j+ π=

ci p yi di, ,( ) cj p yj di, ,( )=

i( j ), π di d j,( ), ,〈 〉
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that players’ preferences can be represented by concave von Neumann-Morgenstern utility func-

tions. Then the Nash solution can be found by the following optimization problem:

 The first order conditions for this maximization problem can be rearranged to yield the fol-

lowing two equations:

.

Note that the second equation equalizes the marginal rates of substitution between different states 

of nature across agents. Thus the second equation ensures that the outcome is an element of the 

PE curve. The first equation defines an outcome at which . 

 APPENDIX H: Example of Preferences Satisfying Condition 4

We will show that Condition 4 is satisfied by all preferences that can be represented by von 

Neumann-Morgenstern utility functions with constant hyperbolic absolute risk aversion (HARA), 

i.e.,
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 where .

Here we have not normalized the function  so that  and  as we did in the 

text. The limiting case where  corresponds to the logarithmic utility function, i.e., 

. The restriction  ensure that agents are risk averse. This class of utility 

function is broad and, for example, includes all utility functions with constant relative risk aver-

sion, i.e. , where . 

We want to show  for . One has

and thus
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First consider the case where . In this case, we have  if and only if 

This is equivalent to 

Note that for  the left hand side is equal to the right hand side. Furthermore,

, 

while

.

Thus we have , which establishes that  for . 

Similarly, one can show that Condition 4 is satisfied for the cases where  and .
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