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s A\ bstract

In this paper we will classify patterns using a modified Perceptron algorithm
(Dumitrache et al., 1999). The generalization uses the eigenvalues and the
eigenvectors of the sample covariance matrix, as we did for classifying patterns using
PCR (Ciuiu 2007b).We shall also define measurements for the cohesion of the
obtained classes and of the separation between them.

The first economic application considered in the paper is a consumer behavior model
(Jula 2003), and the second is the same financial application for classifying banks
(Ciuiu, 2007a, Ciuiu, 2007b), where we have used regression for classification.
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s ] . introduction

The Perceptron algorithm (Dumitrache et al., 1999) is used for classifying patterns

represented by points in R* in m classes. For two classes we consider the hyper-
plane:

k
A, +XA, - X, =0, (1
i-1
and the point X R¥ is in the first class if in the above relation we have “>” instead of
“=" and in the second class if we have “<” instead of “=".
In the classical Perceptron learning algorithm with two classes we consider a sample
X(l),...,X(") and arbitrary starting values of (Aj)j:—k )
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Consider the obtained result y(i) € {— 1,1} with the signification that y(i) =1if X is
in the first class and y(i) =—1 in the contrary case. Setting A, =0 and denoting by
t(i) the desired result (we know the class of X(i)), the Perceptron learning algorithm
modifies the values of Aj (Dumitrache et al., 1999) by the formula:

A« A, +a-(t(i)—y(i))xgi), (2)
where: X(i) is the current point, y(i) is the obtained result using the current Aj, t

the desired result and a. € (0,1) is the learning factor.

In the case of m classes, there is a hyper-plane that separates each class from the
other ones. If these hyper-planes are given by Agr) with 1< j<k and 1<r<m,

and the point X(i) from the class r is classified in the class t # I we have, with the
above significations (Kong and Kosko, 1992),

Al A 4o X
J J
AU AL g xD"
J J

J

(2)

One may see that (2’) is the generalization of (2) because at each moment we

haveA(jz) = —Agl) = —A,;. In fact, in (2) and (2') the coefficient of Xgi) is a-ERR,,

where

ERR =ERR, =t —y® (3)
in the case of formula (2), and
ERR, =1
3)
ERR, =-1

in the case of formula (2).

Such artificial neural networks using Perceptron can be used to forecast the exchange
rate of euro versus RON (Nastac et al., 2007). In this case, we do not setA =0:the
biases are modified in the same way as the other coefficients. Another dlﬁerence in

Nastac et al., (2007) is that the error is not discrete as in (3) and (3’): it is continuous,
as one may see in the following formula:

_100 1[0 =0 ,,
ERR =ERR, = = z |o | f(p). 3
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where: T is the number of time steps (days), ORp is the real output at time step p,
decreases with the number of time steps p.

In the next section, we shall modify this algorithm by reading first all the learning

is the forecast output at time step p and f(p) = T%p is a weight function that

sequenceX(l),...,X(n), the values of A; being computed using the sample

covariance matrix. Therefore, we will have the same separators for all classes: the
eigenvectors of the covariance matrix.

Let be n points in R": X(l),...,X(”). The orthogonal linear variety of the dimension k

(O<k<p) is that linear variety with the minimum sum of the squares of Euclidean
distances. We know (Saporta, 1990) that this linear variety contains the gravity center
of n given points and it is generated by the eigenvectors of the sample covariance
matrix corresponding to the first maximum k eigenvalues. These eigenvectors are
called principal components, and for that the orthogonal regression is also called
principal components regression (PCR).

The principal components analysis is used to simplify the computations in the
discriminant analysis by using the Kolmogoroff distance (Saporta and Mahjoub, 1990),
and the PCR is used to find the eigenvalues end eigenvectors (Costinescu and Ciuiu,
2007) of a symmetric matrix and in for pattern classification (Ciuiu, 2007b). For pattern
classification we can also use linear and polynomial regression (Ciuiu, 2007a).

s 2. Classification using SCP

We consider n points X(l),X(Z),...,X(”) in R*. In the classical Perceptron algorithm

we have a hyper-plane, and we change the coordinates using the exchange theorem
starting from the perpendicular to the hyper-plane. The two obtained classes depend
on the sign of this component in the new coordinates. In order to have a good
classification, we must have large distances to the hyper-plane.

If we want small ones, we have to use the principal components regression (PCR), but
the orthogonal regression hyper-plane contains the gravity center of the points and it
is generated by the corresponding eigenvectors of the maximum K —1 eigenvalues
(Saporta, 1990). Therefore, we can build in an analogous manner the hyper-plane
used in the Perceptron algorithm: the only difference is that it is generated by the
corresponding eigenvectors of the minimum Kk —1 eigenvalues. This idea comes from
the fact that the average of the square of distances in PCR is given by the smallest
eigenvalue. In our case, this average becomes the highest one.

First, we compute the sample covariance matrix £, we move the origin in the gravity
center of the points, G, and next we change the coordinates to the eigenvectors of .
Let us suppose the corresponding eigenvalues are ordered increasingly. If the matrix
U has these eigenvectors in rows the new coordinates are:

y(') =U. X(') (4)
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In the following, we separate the k eigenvectors in sec secondary components (the
first ones) and princ = k —sec principal components. Continuing the analogy to the
PCR, where the orthogonal linear variety of the dimension dim is generated by the
corresponding eigenvectors of the highest dim eigenvalues (Ciuiu, 2007b), in the
algorithm presented in the paper we use the linear variety of the dimension dim that
contains the gravity center G and it is generated by the corresponding eigenvectors of
the smallest dim eigenvalues. G is the new origin of the coordinate system. The
reason for the linear variety containing G as a new origin is the desired equidistance
of the algorithm to all the classes. The secondary components are defined also by
analogy with the principal components used in PCR.

The classes are built by the signs of the principal components: two points are in the
same class if and only if they have the same signs on the principal components. In the
following, we present two measurements of our classification.

Definition 1. Let C be a class obtained as above. The cohesion of the class C is the
sum of the second sample moments of C on the principal components minus the sum
of the sample variances on the secondary ones.

Definition 2. Let C; and C,be two classes obtained as above. The separation
between C; and C, is the sum of the second sample moments of C; U C, on the
principal components for which the sign changes from C; to C, minus the sum of the

sample variances on the secondary ones.

Remark 1. The sample moments and variances in the above two definition are
computed using the points from the class in the case of cohesion, and from the two
classes in the case of separation. For both cases we consider the new coordinates,
where the covariances are equal to 0.

— 3, Margins for cohesions and separations

For lower and upper margins for cohesions and separations we will denote by Sec
the set of the secondary components, by Princthe set of the principal components
and by Sep(C;,C,) the set of the components that separate C; and C,. We also
use the following notations:

Sszec = 2 4
ieSec
S[ZJrinc = z Ai ' (5)
) iePrinc
Ssep (C17 C2)= > A

ieSep(Cl,Cz)

where: C; and C, are two distinct classes and the eigenvalues of the sample
covariance matrixare 4; <A, <...< A .

The cohesion of the class C with m points is:
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cot()=4- = IIf -2 » ¥x-G(c)f

iePrincjeC ieSec jeC

=% 2 34 2 3f+ 2 (6 <)>

iePrincjeC

where: G; (C) is the component i of the gravity center of the class C.

It results that

coh(C)> -1 v z(x@)zz—— s2_and

M ieSec jeC
1 n
coh(C)< o epzrmc EC (X(J)) H S2rine» and from here
_E Sgec < COh(C) SSrlnc (6')

If the first "<" in (6") is, in fact, “=" we must have all the points of the class with the
principal coordinates equal to 0 (see the first term in the definition of the cohesion).
This cannot be fulfilled because in this case the class can be attached to another
class. If the second "<" in (6) is, in fact, “=" we must have all the points of the other
classes with the principal coordinates equal to 0, because the sum of squares on the
principal components for the class is equal to those for al the points. This cannot be
fulfilled because in this case we can have only one class.

For the separation between C; and C,, sep(C,,C, ), we obtain the same margins
as in (6’), if in this case m becomes the number of points in the classes C; and C,.
To obtain these margins, the sums from (6) on i € Princare in the separation case on
i €Sep(C,,C,), and we take into account that S2,) <S2. , but S3 =S2.  only if

sep — “princ’ sep princ
all the principal components separate the classes. Otherwise, we obtain better
borders:

- Sszec _sep(Cl,C ) 32 (Cl’CZ)' (7)

sep

If the first "<" in (7) is in fact "=" we must have all the points of the two classes with
the coordinates that separate the classes equal to 0, for analogues reasons as for the
cohesions. This cannot be fulfilled because in this case the classes can be grouped in
only one class.

Suppose that the second "<" in (7) is, in fact, "=" and we have at least 3 classes. It
results that the points from C; UC, have the same values for each secondary

component and for another class C; the components that separate C; and C, must

be 0. In this case, we can delete first the components that separate C; and C, to
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classify the points using the other components (there exists at least one other
principal component to separate, for instance, C; and Cj). An obtained class will be

C, UC, and the other classes are the class from the previous classification. Then,

we can use the deleted components to separate C; and C,. If we have only two
classes and we set to 0 the secondary components (the same value, if we have at
least 3 classes, becomes 0 because this is the gravity center) the second "<" in (7) is

=", as we can see from computation.

In the following, we consider as fixed 4; <A, <...< A, , the number of secondary
components being s with 0<s<k and the number of principal components
beingp =Kk —s.

Definition 3. Let C be a given class with m points. The proximity to border of the
cohesion for the class C is the value %9 if coh(C)<0 and ME) in the

“Osec n'sprinc
contrary case.
Definition 4. Let C; and C, be two given classes with m points together. The

proximity to border of the separation for the classes C; and C, is the value

m-sep(C,,C,) . < m-sep(C,,C,) .
g if sep(C,,C;)<0 and neLcc) the contrary case.

We denote by proxl(C) the proximity to border of the cohesion for the class C and
by proxz(Cl,Cz) the proximity to border of the separation for the classes C; and
CZ -
First, we will give an example so that prox,(C)—> -1 and
2
n 'Ssec ~(prox1(C)+1)
m

— 0. For this, we must have S%, > 0.

Instead of n, we take the number of points as N, -N- 2P The first class, C,, has

m =n, -(n—1) points so that for this class we have X_I = X_J =X+ X; =0 for any

ij with 0<i< j<s, the sample variance of X; is Siz = (%— (n_ll)z ) A; for i :]E,

and X; =¢; fori=s+1K.
If p >1, we choose one of the principal components, say Xt, and we build other

2P _1 classes with m points such the first condition is further fulfilled, the sample

variances on the secondary components become Si2 =m and the third

condition is fulfilled only for i=1: the other principal components have the same
absolute value, but all the possible signs.
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For each class from the already 2P defined classes we define a new class with ny

points so that the first two conditions of the last prl —1 classes are fulfilled, and we
have X; =—(n—1)4, if i >s and X; = /3 in the corresponding class.

By computation, we can prove that for all the n,-n- 2Pt points the first condition is

fulfilled, and for any secondary component we have Siz = /;. If we consider the last

2 _ 4

condition for the principal components we obtain ¢; == . The cohesion of the first

. _ n-2°1 2 Sgec SSnnc
class is coh(C,)= — e Sgpe 5 +

ap T The desired condition for this cohesion

can be checked by computation.

If we want to give an analogue example for separation, we must have at least two
principal components. The only conditions from the example of cohesions that we
modify are those regarding the sample variances. We choose the first two from the

first 2P classes and for both we set the sample variances for i:]E as

Sizz[%—z(nfl)z)%i. For the other classes we set for the secondary

A

2 .
components S = "2 2na)

We can prove that in this case, for all the nl-n-Zn_l points, we have
Z:x_J-:xi-xj:o for 0<i<j<k and Sizz/li for i=1k. The separation

between these classes is sep(C,,C, )= — ”f_pf .S2,

Sszec + Szep (Cl 1 CZ )

+ - —
2(n-1y n-1

. The desired conditions can be also checked by computation.
If we take in the above example with proxl(C)—> —1 only one principal component
we have only two classes, and we obtain by

computation coh(C, )= (n—1)-S3 S It results that prox,(C,)—»1 and

princ ~ n-1°

n 'SrZJrinc -(1-prox,(C,))— SrZJrinc . We notice that the second limit in the case of C,

is for the difference between the proximity and —1 multiplied by the minimum
cohesion. In the case of C2, the second limit is for the difference between the
proximity and 1 multiplied by the maximum cohesion.

For the example with prox,(C;,C,)— -1 we take p=2, and we obtain
analogously 4 classes and sep(C,C,)=(n —1)-852ep (C4,C,)- E(Snse—_“lj . It results that
prox,(C;,C,)—1and n-sep(C;,C,)-
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(1_ proxz(C3 ,Cy )) - sep(C3 ,Cy )

From (6’), it results that for each class the minimum cohesion is increasing by the
number of points, and the maximum one is decreasing. Both borders have the same
values for the same number of points.

The results from the examples in the next section are obtained by our C++ program
called "percepDlg.cpp".

s 4. Economic applications

Example 1. Consider the following consumer behavior model with 25 customers,
where X; represents the advertisement, X, represents the prices and X; represents
the sales (Jula 2003):

X, |3 2 08 25 2 14 25 25 3 14 1 12 16

X, (113 28 15 02 18 4 18 2 05 28 32 25 13

X1 2 05 15 3 1 0 21 18 3 0705 1 14

X118 1 28 35 26 24 34 16 19 35 16 3

X,122 35 11 0 02 2 12 3 3 06 32 03

X312 08 23 35 38 18 26 08 12 42 08 25

If we consider two secondary components and one principal component we obtain the
following two classes:

C, =1{.,4,7,8,9,16,17,18,19,20, 23,25} with 12 customers, and
C, =1{2,3,5,6,10,11,12,13,14,15,21,22, 24} with 13 customers.

The cohesions of the two classes are 2.97208 and 2.14801, respectively, the
minimum cohesions are —0.63964 and —0.59044, respectively, the maximum
cohesions are 5.90636 and 5.4511, respectively, and the proximities to border are
0.50329 and 0.39405, respectively.
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The separation between the classes is 2.52754 , the minimum separation between
the classes is —0.30703, the maximum separation between the classes is 2.83457 ,

and the proximity to border is 0.89168 .

If we consider one secondary component and two principal components we obtain the
following 4 classes:

C, = {1,7,8,16,17,19,20,23} with 8 customers,
C, = {2,6,21, 22,24} with 5 customers,
C; =1{3,5,10,11,12,13,14,15} with 8 customers and

C,= {4,9,18, 25} with 4 customers.

The cohesions of the four classes are 2.66277, 3.54305, 2.09161 and 4.45726,
respectively, the minimum cohesions of the classes are —0.31024, —0.49638,
—0.31024 and —0.62047, respectively, the maximum cohesions of the classes are
9.50726, 15.21162, 9.50726 and 19.01453, respectively, and the proximities to
border are 0.28088, 0.23292, 0.22 and 0.23441, respectively.

The separations between classes alphabetically ordered (between the classes
1 and 2, between the classes 1 and 3,..., between the classes 2 and 3, and so on)
are: 2.85538, 2.37717, 0.03508, 0.17624, 3.94918 and 2.60534, respectively,
the minimum separations between classes alphabetically ordered are —0.19091,
—0.15512, —0.20682, —0.19091, —0.27577 and —0.20682 , respectively, the
maximum separations between classes alphabetically ordered are 5.4511, 4.75363,
0.43282, 0.39952, 8.4509 and 5.90536, respectively, and the proximities to
borders alphabetically ordered are 0.52382, 0.50007, 0.08105, 0.44112,
0.446731 and 0.44118, respectively.

Example 2. We have the following 29 banks, where X, is the annual interest for an
account without term, X; is the annual interest for an account with one-month term, X3
is the annual interest for an account with three-month term, X, is the annual interest
for an account with six-month term, X5 is the annual interest for an account with nine-
month term and X; is the annual interest for an account with one-year term (Ciuiu,
2007a, Ciuiu, 2007b).

ABN-Amro Romania 0.25% 3.5% 3.75% 3.75% 0%  3.75%
Alpha Bank 0.1% 6.25% 6.5% 7% %  7.25%
Banc Post 0% 7.25% 7.25% 7.15% 0% 7.15%
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Banca Comerciala 1% 75% 755% 7.6% 7.75%% 7.8%
Carpatica

BCR 0.25% 6% 6.25% 6.5% 6.75% 7.5%
Banca ltalo-Romena 0% 5.5% 5.75% 6% 6.15% 6.25%
Banca Roméneascé 0.7%% 7.3% 7.75% 8.05% 8.1% 8.1%
Banca Transilvania 0.25% 7.5% 7.5% 75% 7.75% 7.75%
Bank Leumi Romania 0.25% 7.5% 5% 7.75% 7.75% 8%
Blom Bank Egypt 0.1% 6% 6.5% 6.5% 6. 75% 7%

BRD-Groupe Société 0.25%  5.5% 5.6% 5.65% 5.65% 5.75%

Générale

C.R. Firenze Romania 0.1% 6.5%  6.75% 7% 7.25% 7.5%

CEC 025% 7% 7%  725% 0%  7.25%
Citibank Romania 1%  4.28% 4.28% 4.28% 3.87% 3.46%
Emporiki Bank 05% 675% 7% 725% 7% 7%

Finansbank 01% 75% 8% 8% 8%  85%
HVB-biriac Bank 0.1% 64% 63% 62% 61% 6.1%
ING Bank 6.85% 55% 575% 6%  6.25% 6.5%
Libra Bank 0% 8%  81% 7.6% 7.6% 85%
Mind Bank 025% 7% 7%  7.25% 75% 7.75%
OTP Bank 025% 625% 65% 7% 1% 7.25%
Piraeus Bank 05% 7%  7.1% 7.25% 7.1% 7.35%
Pro Credit Bank 7%  75% 7.65% 7.7% 0%  7.85%
Raiffeisen Bank 025% 4%  425% 45% 4.6% 4.75%

Romanian International 0.25% 6.5% 6.75% 7% 75% 7.75%
Bank

Romexterra 0.25% 75% 7.75% 7.75% 8.1% 8.1%
San Paolo IMI Bank 0.1% 6.5% 6.7% 6.8% 7% 7.2%
Uni Credit Romania 0.1% 5% 5%  5.25% 5.5%  5.5%
Volksbank 0.1% 45% 4.75% 4.5% 3.5% 3.25%

In the above table the null values have the signification that we cannot open such
accounts with those banks.

If we consider five secondary components and one principal component we obtain the
following 2 classes:

C, ={ABN-Amro Romania, Banc Post, Banca Italo-Romena, BRD-Groupe Société
Générale, CEC, Citibank Romania, HVB-Tiriac Bank, ING Bank, Pro Credit Bank,
Raiffeisen Bank, Uni Credit Romania, Volksbank} with 12 banks, and C, ={Alpha

Bank, Banca Comerciala Carpatica, BCR, Banca Romaneasca, Banca Transilvania,
Bank Leumi Romania, Blom Bank Egypt, C.R. Firenze Romania, Emporiki Bank,
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Finansbank, Libra Bank, Mind Bank, OTP Bank, Piraesus Bank, Romanian

International Bank, Romexterra, San Paolo IMI Bank} with 17 banks.

The cohesions of the 2 classes are —1.11317 and 5.06516, respectively, the
minimum cohesions are —15.91748 and —11.23587, respectively, the maximum
cohesions are 21.87761 and 15.44302, respectively, and the proximities to border
are —0.06993 and 0.32799, respectively.

The separation between the classes is 2.46626, the minimum separation between
the classes is — 6.58654 , the maximum separation between the classes is 9.05281,
and the proximity to border is 0.27243.

If we consider four secondary components and two principal components we obtain
the following 4 classes:

C1 ={ABN-Amro Romania, Banca ltalo-Romena, BRD-Groupe Société Générale,
Citibank Romania, HVB-Tiriac Bank, Raiffeisen Bank, Uni Credit Romania, Volksbank}
with 8 banks, C, ={Alpha Bank, BCR, Blom Bank Egypt, C.R. Firenze Romania,
Emporiki Bank, Mind Bank, OTP Bank, Romanian International Bank, San Paolo IMI
Bank} with 9 banks, C; ={Banc Post, CEC, ING Bank, Pro Credit Bank} with 4

banks and C 4 ={Banca Comerciald Carpatica, Banca Roméneascd, Banca
Transilvania, Bank Leumi Romania, Finansbank, Libra Bank, Piraeus Bank,
Romexterra} with 8 banks.

The cohesions of the 4 classes are 19.06344, 2.47738, 16.92442 and 9.32004,
respectively, the minimum cohesions of the classes are —8.65729, —7.69537,
—17.31458 and —8.65729, respectively, the maximum cohesions of the classes are
48.03535, 42.69809, 96.0707 and 48.03535, respectively, and the proximities to
border are 0.39686, 0.05802, 0.17617 and 0.19402 , respectively.

The separations between alphabetically ordered classes are: 8.22855, 4.34508,
1413648, 6.90053, 0.07626 and 4.48739, respectively, the minimum
separations between alphabetically ordered classes are: —4.07402, —5.77153,
—4.32805, —5.32756, —4.07402 and —5.77153, respectively, the maximum
separations between alphabetically ordered classes are: 15.44302, 10.14595,
24.01767, 29.56021, 7.16185 and 21.87761, respectively, and the proximities to
alphabetically ordered borders are: 0.53283, 0.42826, 0.58859, 0.23344,
0.01065 and 0.20511, respectively.

If we consider three secondary components and three principal components, we
obtain the following eight classes:

C, ={ABN-Amro Romania, HVB-Tiriac Bank} with 2 banks, C, ={Alpha Bank, Blom
Bank Egypt, C.R. Firenze Romania, Mind Bank, San Paolo IMI Bank} with 5 banks,
C; ={Banc Post, CEC} with 2 banks, C, ={Banca Comerciald Carpatica, Banca
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Roméneasca} with 2 banks, Cg ={BCR, Emporiki Bank, OTP Bank, Romanian

International Bank} with 4 banks, Cg ={Banca Italo-Romena, BRD-Groupe Société
Générale, Citibank Romania, Raiffeisen Bank, Uni Credit Romania, Volksbank} with
6 banks, C7 ={Banca Transilvania, Bank Leumi Romania, Finansbank, Libra Bank,

Piraeus Bank, Romexterra} with 6 banks and Cg ={ING Bank, Pro Credit Bank} with
2 banks.

The cohesions of the eight classes are 33.53253, 2.74579, 35.22195, 9.7789,
2.18437, 15.09169, 9.61425 and 58.47459, respectively, the minimum cohesions
of the classes are: —2.48642, —0.99497, —2.48742, —2.48742, —1.24371,
—0.82914, —0.82914 and —2.48642, respectively, the maximum cohesions of
the classes are: 224.28314, 89.71326, 224.28314, 224.28314, 112.14157 ,
74.76105, 74.76105 and 224.28314 , respectively, and the proximities to borders
are: 0.14951, 0.03061, 0.15704, 0.0436, 0.01948, 0.20187, 0.1286 and
0.26072 , respectively.

The separations between alphabetically ordered classes are: 10.71519,
5.89402, 21.62663, 11.91814, 0.03937, 15.32456, 26.0841, 8.68152,
0.32871, -0.09373, 6.72446, 0.18815, 18.66331, 16.99085, 13.185,
9.07563, 10.12034, 14.95782, 0.10486, 13.48898, 0.12341, 8.57439,
6.76371, 0.1971, 14.82534, 12.35024, 11.33962, and 13.60276, respectively,
the minimum separations between alphabetically ordered classes are: —0.71069,
-1.24371, -1.24371, -0.82914, -0.62186, -0.62186, —1.24371,
—-0.71069, -0.71069, -0.55276, -0.45226, -0.45226, -0.71069,
-1.24371, -0.82914, -0.62186, -0.62186, -—1.24371, -0.82914,
-0.62186, -0.62186, -1.24371, -0.49748, -0.49748, -0.82914,
—0.41457, —0.62186, and —0.62186, respectively, the maximum separations
between alphabetically ordered classes are: 37.50448, 30.43786, 112.14157,
54.46914, 8.03544, 48.03535, 46.50873, 54.89754, 26.57642, 7.14261,
29.71044, 11.06831, 64.0809, 81.70371, 74.76105, 23.25437, 32.81642,
16.07087, 20.29191, 48.03535, 8.03544, 65.63284, 26.25314, 18.60349,
64.04713, 37.38052, 15.21893, and 40.85186, respectively, and the proximities
to alphabetically ordered borders are: 0.2857, 0.19364, 0.19285, 0.21881,
0.0049, 0.31903, 0.56084, 0.15814, 0.01237, —0.16956, 0.22633, 0.017,
0.29125, 0.20796, 0.17636, 0.39028, 0.30839, 0.93074, 0.00517, 0.28081,
0.01536, 0.13064, 0.25763, 0.01059, 0.23148, 0.33039, 0.7451 and
0.33298, respectively.

If we consider two secondary components and four principal components we obtain
the following 14 classes, and the 2 “ignored” classes to 16 are, with the signs from
the last component (corresponding to the maximum eigenvalue) to the first principal
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component (corresponding to the fourth eigenvalue in decreasing order), + ——+ and
+++-.

If we consider one secondary component and five principal components we obtain the
following 20 classes, and the 12 “ignored” classes to 32 are, with the signs from the
last component to the first principal component, - ———+, ———++, —4+———,
—+—++, —++—+, —+++—, +——+—-, +—++—, ++———, +++——and
+++ —+. In this case, we have “ignored” classes for objective reasons (the number
of points is less than the maximum number of classes: 29 < 32), but as one may see

for two secondary components, we have 14 <16 <29, and we have 2 “ignored”
classes. One may see that both signs codes for the two “ignored” classes (+——+
and +++ —) in the case of two secondary components are each a prefix for two
“‘ignored” classes in the case of one secondary component: between the “ignored”
classes in the last case we have + ——+—, +——++, +++——and +++—+.

] 5 Conclusions

The method presented in this paper can be connected to the methods starting from
PCR and k-means (Ciuiu, 2007b). It works in each model where we can use
regression, or the classical Perceptron algorithm, including economic applications
(Nastac et al., 2007).

If we put together the results from this paper and those where we use PCR we can
conclude that the principal components group the points in the same class, and the
secondary ones separate the points in different classes. The analogy is that in both
papers (this and Ciuiu, 2007b), we start from known algorithms for neural networks
(Perceptron, respectively k-means). The differences are that in contrast to the results
obtained using regression (Ciuiu, 2007a, Ciuiu, 2007b) we can have classes with only
one point, and we have not different axes for different classes: the classes depend on
the signs of principal components. In fact, there exists also a common starting point
for Perceptron, k-means and Bayes (Kong and Kosko, 1992): this is the discriminant
surface, which is a hyper-plane in the case of Perceptron, the Euclidean distance to
the gravity center of the classes multiplied by —1 in the case of k-means, and the
posterior probability to have a point in a given class in the case of Bayes.

For the algorithm, we must have at least one secondary component. Of course, if we
want to have only principal components, we can increase the dimension of the space
by 1, and this new component is set to a constant value. The new component is for
the new higher dimension space the only secondary component, and it is called "bias"
in neural networks (Dumitrache et al., 1999, Kong and Kosko, 1992). If we set the new
component, bias, as the only secondary component in the examples from the previous
section, we see that we have no “ignored” class in the first example, and in the second
example there are only 5 new classes. The prefix property found in the second
example can be also checked in the case of setting bias as the only secondary
component.

The cohesion of the class measures the power of grouping the points in the same
class. If it is negative, the points in that class are closer to the gravity center (the origin
in the new coordinates system) on the principal components than the variance on the
secondary ones. The proximity to border is useful for comparing classifications of two
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sets of points with different measure orders or with different numbers of secondary
components.

The separation between two classes measures the power of separating the classes. If
it is negative, the classes are closer to each other than the variance on the secondary
components. The proximity of separations to borders was introduced for the same
reason as for cohesions.

In the case of separation, we need at least two principal components in the examples
of the section 3 because if we have only one principal component we have only two
classes, and the separation between them is
Sep(Cl,Cz)zsgrinC -SZ. :S§ep (C;,C,)-S%.. In this case, it results that

|Sep(C1,C2X does not tend to 1 if Ssrinc #0 and S2. #0.If S2_ =0, it is obvious

that prox,(C,,C,)=1. In the first example in section 4 we still have the proximity to

border prox ,(C,,C, )= 0.89168 , which is very close to 1 even if we have p=1.

This can be explained by the eigenvalues of the sample covariance matrix, which are
A4, =0.09928, A, =0.20775 and A; =2.83457 . By computation, we can check

that 2=~ = 0.89168.

It is an open problem to find theoretical examples for the maximum proximities more
general than those from the third section (with more than one principal component in
the case of cohesions, and more than two in the case of separations).

If we increase the number of principal components, the number of classes also
increases. In this case, one may see that the number of negative cohesions
decreases, and the number of proximities to borders of the cohesions between 0 and
0.1 increases. In none of the examples in section 4 we have proximities to borders of
cohesions between 0.9 and 1. However, from the theoretical consideration of section

3, we can only have one such proximity to borders and the involving class has the
main part of the sum of squares on principal components. In this case, the proximity

between 0.9 and 1 disappears when a new principal component separates the
above class.

The minimum of proximities to borders of cohesions between 0.1 and 0.9 generally
decreases, but it can increase when it begins to “ignore” classes. Their maximum
generally decreases, but it can increase when a negative cohesion disappears. The
difference between the above maximum and minimum generally decreases, but it can
also increase when a negative cohesion disappears. Another increase in this

difference is when the number of classes increases from 14 to 20, but the increase
in this case is only 0.0123 , and it can be explained by the same number of
proximities to borders of cohesions between 0.1 and 0.9: 3.

The negative separations appear only in the second example, and one may say the

same thing about the proximities to borders of the separations between 0.9 and 1.
The first appearances can be seen when the number of principal components is
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maximum, so that we have no “ignored” classes. The first number swings, and the

second number turns 0 from 1 immediately. The number of the proximities to borders
of the separations between 0 and 0.1 increases, the minimum of the proximities to
borders of the separations between 0.1 and 0.9 generally decreases, the only
increase is from 14 to 20 classes, which is very small: 0.00001. The maximum
generally decreases, but it can increase when negative separations and proximity to
borders between 0.9 and 1 appear. The same thing can be said about the difference
between maximum and minimum.

When we set the bias as the only secondary component, all the cohesions and
separations are positive. In both cases, we have no proximity to borders between 0.9
and 1, and in the first example we have no proximity to borders of separation between
0 and 0.1. In the second example, there are 222 such proximities, but in this case
we have almost one point in each class: the 29 banks are in 25 classes. In the first
example, one may remark the decreases in the above minimums and maximums, and
the increase in the difference. The significant increase is in the case of separations. In

the second example, the above maximums, minimums and differences are close to
the case of two secondary components (only one without bias).
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