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Abstract 
Multicriteria portfolio optimization started with the Markowitz mean-variance model 
(Markowitz 1952, 1959). This model assumes that the goal of an average or 
standard investor is to maximize the unknown return on investment. In this paper we 
propose a risk model related to insurance industry. The optimality criteria we 
propose for insurer’s portfolio optimization are based on the well-known Markowitz 
model, yet imposing scalarization on the components of the objective function. 
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1. Introduction 
Multicriteria portfolio optimization started with the Markowitz mean-variance model 
(Markowitz 1952, 1959). This model assumes that an average or standard investor 
seeks to maximize the unknown return on investment. The Markowitz model, which 
is considered the classical approach to portfolio optimization, is based on two 
opposed optimization criteria: firstly, the risk of a portfolio – which could be 
measured, for example, by its variance, should be minimized, and, then, the 
expected return of the portfolio has to be maximized. A possible deterministic 
equivalent to the mean-variance model is the stochastic optimization problem, with 
the objective to maximize the expected return subject to a constraint on its variance. 
In this context, an efficient solution is a portfolio which has the property that when 
moving to a portfolio with higher return, variance will also increase, and when 
moving to a portfolio with smaller variance, return will decrease too. 
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In what follows we apply some scalarization techniques on a risk model related to 
insurance industry. The optimality criteria we propose for insurer’s portfolio 
optimization are based on the well-known Markowitz model, yet imposing, as 
previously mentioned, classical and new techniques of scalarization on the objective 
function. In Section 2, we remind some definitions and the scalarization methods, 
while in Section 3, we present an insurer portfolio optimization model based on a 
study of Schnieper (2000). In Section 4 we apply the scalarization methods 
presented in Section 2 for the insurance company simple model, similar to the 
classical Markowitz model. Moreover, following the lines from Engau and Wicek 
(2005) and other authors (Preda and Sudradjat 2006, 2007), we prove some results 
concerning the relationships between optimal portfolios generated by the scalarized 
models and optimal portfolios generated by the initial model. The paper concludes to 
some final remarks presented in Section 5. 

2. Definitions and scalarization methods 

Let mD R⊂  be a feasible set of portfolios and f  be a vector-valued objective 

function qmf RR →:  composed of q  real-valued objective functions, 

( )qfff ,..,1= , where RR →m
if : , qi ,...,1= . For myy R∈', . 'yy >  denotes 

'ii yy >  for all mi ,..,1= . 'yy>  denotes 'ii yy ≥  for all mi ,..,1= . 'yy ≥  denotes 

'yy>  but 'yy ≠ . The relations < , ≤  and < are defined in the obvious way. Let 

{ }0>∈=> yy mm RR . The sets m
≥R , m

>R  are defined accordingly. 

The vector portfolio problem is given by  
( ) ( ) ( )( )αα

α qD
ffVPP ,..., min: 1∈

, 

where the minimization is understood as finding the set of efficient solutions in D . 
Definition 2.1. Consider the ( )VPP . A feasible portfolio D∈α̂  is called 

(i) a weakly efficient portfolio if there does not exist D∈α  such that 
( ) ( )αα ˆff < ; 

(ii) an efficient portfolio if there does not exist D∈α  such that 
( ) ( )αα ˆff ≤ . 

A feasible portfolio D∈α  is evaluated by the q  objective functions producing the 
outcome ( )αf .  

The set of all attainable outcomes for all feasible portfolios in the objective space is 
denoted by  

( ) qDfY R⊂= . 
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The image ( ) Yf ∈α  of a (weakly) efficient portfolio is called a (weak) Pareto 
outcome. 

Definition 2.2. Consider the ( )VPP  and let q
>∈ Rε . A point D∈α̂  is called a 

properly efficient portfolio if 
(i) α̂  is an efficient portfolio for ( )VPP  

and 
(ii) there exists 0>M  such that for each { }qi ,..,1∈  and D∈α  with 

( ) ( )αα ˆii ff <  and { }qj ,..,1∈  that verifies ( ) ( )αα jj ff <ˆ , we have 

( ) ( )
( ) ( ) M

ff
ff

jj

ii <
−
−

αα
αα
ˆ

ˆ
. 

Given the ( )VPP , one can formulate a scalarized (single objective) portfolio problem 
( )SPP .  

Let DS ⊆  be a subset of the feasible set D , U  a set of auxiliary variables and Π  
a set of parameters, ( )SfT =  denote the set of attainable outcomes for the ( )SPP  
and  

R→Π××UTs :  
be a scalarizing function. Then the ( )SPP  associated with the ( )VPP  is given by  

( ) ( )( )π
α

,,s min:
S

uxfSPP
Uu∈

∈
, 

where Π∈π  is a vector of parameters chosen by the decision maker. 

Definition 2.3. Consider the ( )SPP . A point ( ) USu ×∈ˆ,α̂  is called 

(i) an optimal portfolio if ( )( ) ( )( )παπα ,,,ˆ,ˆ ufsufs <  for all ( ) USu ×∈,α ; 

the outcome ( ) Tfy ∈= α̂ˆ  is called optimal; 
(ii) strictly optimal portfolio if ( )( ) ( )( )παπα ,,,ˆ,ˆ ufsufs <  for all 

( ) USu ×∈,α ; the outcome ( ) Tfy ∈= α̂ˆ  is called strictly optimal. 
The scalarization methods which we took into account in Section 4 are the following: 

a) Weighted-sum scalarization.  Here DS = , YT = , Φ=U  and q
>=Π R ; 

RR →×
=
>
qYs : , ( )( ) ( )∑

=

α=α
q

i
ii fwwfs

1

, , where ( )qwww ,...,1= . 

b) Constrained-objective scalarization.  Here DS = , { }qiyYyT ii ,..,2, =<∈= δ , 

Φ=U  and 1−= qRΠ ; R∈δi , qi ,..,2= ; RR →× 1: q-Ts , ( )( ) ( )α=δα 1, ffs , 
( )qδδ=δ ,..,2 . 
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c) Guddat scalarization.  Here DS = , ( ){ }qifyYyT ii ,..,1,0 =<∈= α , Φ=U  and 

qD
=
>×= RΠ , D∈α0 ; RR →⎟

⎠
⎞

⎜
⎝
⎛ ××

=
>
qDTs : , ( ) ( )( ) ( )∑

=

=
q

i
ii fwwfs

1

0 ,, ααα . 

d) Benson scalarization  (this is a particular case of Guddat scalarization). Here 
DS = , { }qiyyYyT ,..,1,0 =<∈= , Φ=U , Y=Π , ( ) ( )( )00

1
0 ,..., αα= qffy , 

D∈α0 ; R→× DTs : , ( )( ) ( )∑
=

α=αα
q

i
iffs

1

0, . 

e) Min-max scalarization  (this is a special case of Tchebycheff-norm scalarization). 
Here DS = , YT = , ΦΠ ==U ; R→Ys : , ( )( ) ( )αα iqi

ffs
≤≤

=
1
max . 

f) Tchebycheff-norm scalarization.  Here DS = , YT = , Φ=U , qq
>×= RRΠ ; 

( ) RRR →×× >
qqYs : , ( ) ( )( ) ( )( )iiiqi

rfwwrfs −=
≤≤

αα
1
max,, . 

g) Gasimov scalarization.  DS = , YT = , Φ=U , qRR ×=Π , 

RRRR →⎟
⎠
⎞

⎜
⎝
⎛ ×××

=
>
qqYs : , ( ) ( )( ) ( ) ( )( )∑∑

==

−+−=
q

i
iii

q

i
ii rfwrfqwrafs

11

,,, ααα . 

3. Schnieper's underwriting risk model 
The profit and loss account of an insurance company typically details items like 
earned premiums (net of reinsurance), investment income and realized capital gains, 
and expenditure positions as incurred claims (net of reinsurance recoveries), 
expenses, dividends to policyholders, dividends to shareholders. Moreover, the 
premium is divided into its different components: pure risk premium, loading for 
expenses, loading for profit. 
As in Schneiper (2000), in what follows we will assume that: expenses and loading 
for expenses are identical and therefore cancelled out; dividends to policyholders 
are accounted for as claims; also we could ignore the dividends to shareholders; the 
period under consideration is the financial year of the company; payments pertaining 
to a given period are made at the end of the period; the premium written in a given 
period is earned in that period, i.e. the company has no unearned premium reserves.  
Moreover we consider the following model assumptions (Schneiper (2000)): all 
random variables appearing in the model have finite second order moments; the 
pure risk premium is the present value of the expected loss payments; the loss 
reserves are equal to the present values of expected future loss payments; the 
discount factors used to assess the pure risk premium and the loss reserves are 
based on the yield curve as defined by the bond market; the assets of the company 
are assessed at market value. 
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The notation used here are the same as in Schnieper (2000): S~  stands for the total 

claims amount pertaining to the current accident year; ( )SE ~
: the mathematical 

expectation of the total claims amount, that is the pure risk premium; l  is the profit 

loading for assuming the underwriting risk S~ ; L∆~  means increase in claim amounts 

in respect of claims pertaining to previous accident years; A∆
~

 is investment income 
plus realized capital gains plus unrealized capital gains; u  represents the capital 

(economic value) of the company at the beginning of the financial year; u∆~  is the 
increase in capital (in economic value) during the financial year (return of the 
company during the financial year). 
Obviously, we have the following relation: 

( ) ALSSEu ∆+∆−−+=∆ ~~~~~
l , 

and ( )SES ~~
−  stands for underwriting risk, ( )LEL ∆−∆ ~~

 for loss reserve risk, 

( )AEA ∆−∆ ~~
 is the asset risk and ( )uEu ∆−∆ ~~

 is the total risk of the company. 

In what it follows we discuss an underwriting risk, considering that the assets of the 
company are split between liability fund and capital fund,  

UL AAA += . 

This means that some of the assets, LA , cover the liabilities of the company, and 

the rest of the assets, UA , match the equity of the company. Moreover, we assume 
that there is no loss reserve risk (amount and time of payment in respect to 
outstanding losses are perfectly known to the company) and no asset risk. 
Therefore, the liability fund, i.e. those assets which cover the liabilities perfectly 
match the amounts and maturities of the liabilities. The liabilities are discounted with 
the discount factors corresponding to the liability fund. As a consequence, any 
change in the yield curve will have a perfectly offsetting effect on L∆

~
 and LA∆− ~

 

and the capital fund is invested in the risk free rate of return: uAU 0
~ ρ∆ =  

(Schnieper, 2000). 
Now, the total return of the company is given by  

( ) ( ) uSSEAALSSEu UL 0
~~~~~~~~ ρ+−+=∆+∆+∆−−+=∆ ll . 

The objective is to provide a method to optimize the portfolio of the company. Thus, 
the company considers the excess return on equity provided by the insurance 
portfolio  

( ) ( )
u

SSE
u

uuu
~~~~ 0 −+

=
−∆

=
lρδ . 



 On Insurer Portfolio Optimization. An Underwriting Risk Model 

 Romanian Journal of Economic Forecasting – 1/2008  
 

107

  

We consider ∑
=

=
m

i
iXS

1

~~
, where iX~ , mi ,1∈ , are m  individual risks (policies, lines 

of business). 

The company manages its portfolio by defining for each risk ( )ii XEX ~~ −  the share 

[ ]1,0∈iα  it wants to retain and by ceding ( ) ( )( )iii XEX ~~1 −−α  to its reinsurers. It is 
assumed that the company also cedes a proportional share of the corresponding 
profit ( ) ii lα−1  to its reinsurers (Schnieper, 2000). 

The return of the net retained portfolio is thus 

( )( ) uXXEu
m

i
iiii 0

1
net

~~~ ρα +−+=∆ ∑
=

l  

and the corresponding excess return on equity is  

( ) ( )∑
=

−+
=

−∆
=

m

i

iii
iu u

XXE
u

uu
1

0net
~~~~ lαραδ . 

Denoting ( ) ( )( )αδαµ uu E ~
=  and ( ) ( )( )αδασ uu Var ~2 = , it is assumed that the 

owners of the company have two objectives: 

• maximization of the expected value ( )αµu  of the company return on equity; 

• minimization of the risk as measured by ( )ασ 2
u , 

an approach similar to Markowitz model. 

Instead of taking ( )ασ 2
u  as the measure of the risk, we can take some other 

measures, for example, those mentioned in Section 5. Let us denote by ( )αρu  the 
generic risk measure.  
The insurer's problem is  

( ) ( ) ( )( )αµαρ
α uuD

MPP −
∈

, min:  

where the feasible set is [ ]{ }miD i
m ,1,1,0 =∈∈= αα R . 

Remark 3.1. The total investment constraint of the Markowitz model 1
1

=∑
=

m

i
iα  

would be meaningless in this context, and therefore it was dropped out (Schnieper, 
2000). 
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4. Scalarization methods applied on insurer 
portfolio optimization problem 

Now we apply different types of scalarization for this problem. Unless otherwise 
specified, we consider the initial capital (equity) u  given. 
Remark 4.1. In what it follows, for proving the next results, we will use the same 
approach as other authors, for example, Engau and Wiecek (2005). 

4.1. Weighted-sum scalarization 
A portfolio by weighted-sum scalarization is the optimal solution of 

( ) ( ) ( ){ }αµαρ
α uuDw wwPWS 21min: −

∈
, 

where 0, 21 >ww  are given weighting parameter. As we mentioned in Section 2, 

DS = , YT = , Φ=U  and 2
>=Π R  

We have the following result. 
Proposition 4.1.1.  Given the ( )MPP  , 

(i) If D∈α̂  is strictly optimal for the ( )wPWS , then α̂  is efficient for the 
( )MPP . 

(ii) If D∈α̂  is optimal for the ( )wPWS , then α̂  is weakly efficient for the 
( )MPP . 

(iii) If D∈α̂  is optimal for the ( )wPWS  with 2
>∈Rw , then α̂  is efficient for 

the ( )MPP . 

Example 4.1.1.1 Let consider now that ( ) ( )( )αδσαρ α uu Var== 2 . Since 

( ) ( )∑
=

−+
=

m

i

iii
iu u

XXE

1

~~~ lααδ , we get ( ) ( )( ) ( )
u

R
u

E

m

i
ii

uu
α

α
αδαµ ===

∑
=1~

l

 

and 

( ) ( )( ) ( )
22

1

2

2 ~
u

V
u

Var

m

i
ijji

uu
α

σαα
αδασ ===

∑
= , 

where ( )jiij XX ~,~cov=σ , and therefore ( ) ( )[ ]
u

V
u

2
1

αασ = . 

Next, we choose γ−= 11w  and γ22 =w , where [ ]1,0∈γ . 

                                                            
1 We use the notations from Schnieper (2000). 
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Remark 4.1.1. For 0=γ  we obtain the minimum variance-model, for 1=γ , we get 
the maximum mean-model and for ( )1,0∈γ , we obtain the model from Markowitz 
(1952) or Schneiper (2000). 
Now we let u  to vary and propose the following optimization process in 3 steps, 
similar to the one proposed by Schnieper (2000): 
1. Maximize the following function: 

[ ]
( )∑∑

==
∈

−−
m

ji
ijji

m

i
ii

m 1,

2

11,0,..,
1max

1
σααγαγ

αα
l  

or maximize the risk return ratio (Sharpe’s ratio) 

[ ]
( )

( )[ ]2
11,0,..,1

max
α

α
αα V

R
m ∈

. 

Remark 4.1.2. (Schnieper, 2000) The models simplify if the risks are uncorrelated. 
In general, the above ratio is maximized for a whole set of admissible values of α . 
Let 1β  be the set of those values. 

2. The second step requires the maximization of the net expected profit:  

∑
=∈

m

i
ii

11

max lα
βα

. 

Let Mα  denote the net retentions for which the above requirement is satisfied. Let 

( )MRR α=  and ( )MVV α= . 

3. The optimal amount of equity is defined by the solution of  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−− ∑∑

==

m

ji
ijji

m

i
iiu uu 1,

2
2

1

1112max σααγαγ l . 

The optimal amount of equity is thus 

R
Vu

γ
γ−

=
1

. 

Example 4.1.2. Suppose again that ( ) ( )( )αδσαρ α uu Var== 2 , γ−= 11w  and 
γ22 =w , where ( )1,0∈γ . As in Schnieper (2000), we assume that there are two 

uncorrelated risks with expected profit 1l  and 2l  respectively, and standard 

deviation 1σ  and 2σ . We have 
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( ) ( )( )
( )( )

∑∑
∑

==

= ==

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−+

==
2

1

2

1

2

1 1
~~

~

i
ii

i
ii

i
iiii

uu uu

XXE
EE λαα

α
αδαµ l

l

, 

where 
u

i
i

l
=λ , and 

( ) ( )( )
( )( )

∑∑
∑

==

= ==

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−+

==
2

1

22
2

1

22
2

2

12 1
~~

~

i
ii

i
ii

i
iiii

uu uu

XXE
VarVar τασα

α
αδασ

l

 

where 
u

i
i

στ = . 

The objective is  

[ ]
( ) ( ) ( )[ ]uu

ii

2
2,1,1,0

12max αα
α

σγγµ −−
∈∈

, 

which leads to the unconstrained optimum  

21 i

i
i τ

λ
γ

γα
−

= . 

Without any loss of generality we assume 
2
2

2
2
1

1

τ
λ

τ
λ

> , and we make the following case 

distinction (Schnieper, 2000): 

a)  
1

2
1

1 λ
τ

γ
γ

<
−

 (note that ( ]1,0
1

∈
− γ
γ

 if ⎥⎦
⎤

⎜
⎝
⎛∈γ

2
1,0 ). 

Remark 4.1.3. We could consider that τ
γ

γ
=

−1
 - the risk tolerance. 

In this case, 1
1 2

<
− i

i

τ
λ

γ
γ

 for 2,1∈i , and then iα ’s are defined as above, that is 

21 i

i
i τ

λ
γ

γα
−

= . Moreover, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
= 2

2

2
2

2
1

2
1

1 τ
λ

τ
λ

γ
γµα  

and 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

= 2
2

2
2

2
1

2
1

2
2

1 τ
λ

τ
λ

γ
γσα . 

Here, ( )αα σµ ,  describes a straight line as τ  varies. 

b)  
2

2
2

1

2
1

1 λ
τ

γ
γ

λ
τ

<
−

< .  

In this case, 1
1 2

1

1 >
− τ

λ
γ

γ
 and 1

1 2
2

2 <
− τ

λ
γ

γ
, therefore 11 =α  and 2

2

2
2 1 τ

λ
γ

γα
−

= . 

Moreover, 

2
2

2
2

1 1 τ
λ

γ
γλµα −

+=  

and 

2
2

2
2

2
2
1

2

1 τ
λ

γ
γτσα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+= . 

Here, ( )αα σµ ,  describes a hyperbole as τ  varies. 

c)  
2

2
2

1 λ
τ

γ
γ

>
−

. 

In this case, 1
1 2

1

1 >
− τ

λ
γ

γ
 and 1

1 2
2

2 >
− τ

λ
γ

γ
, therefore 11 =α  and 12 =α . Moreover, 

21 λλµα +=  
and 

2
2

2
1

2 ττσα += , 
which means that the efficient frontier degenerates into a single point. 

4.2. Constrained-objective scalarization 
A portfolio by constrained-objective scalarization is the optimal solution of 

( ) ( ) ( ){ }δαµαρ
αδ >

∈ uuD
PCO min: , 

where R∈δ  being a given lower bound for ( )αµu . 
The relationships between optimal solutions of this scalarization and efficient 
decisions of the ( )MPP  are given below. 

Proposition 4.2.1.  Given the ( )MPP , 
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(i) If D∈α̂  is strictly optimal for the ( )δPCO , then α̂  is efficient for the 
( )MPP . 

(ii) If D∈α̂  is optimal for the ( )δPCO , then α̂  is weakly efficient for the 
( )MPP . 

Example 4.2.1 (Example 4.1.1. continued) Considering the notations and conditions 
from Example 4.1.1, the problem that have to be solved in this case is the following: 

[ ]
( )

δλαλα

τατα
αα

>+

+
∈

2211

2
2

2
2

2
1

2
11,0,

 s.t.

min
21 . 

An alternative model with respect to constrained objective scalarization is the 
following (minimization is considered for the second component of objective function: 

( ) ( ) ( ){ }'max:' ' δαραµ
αδ <

∈
uuD

PCO , 

where R∈'δ  being a given upper bound for the risk measure. 
The relationships between optimal solutions of this scalarization and efficient 
decisions of the ( )MPP  become: 

Proposition 4.2.2.  Given the ( )MPP , 

(i) If D∈α̂  is strictly optimal for the ( )''δPCO , then α̂  is efficient for the 
( )MPP . 

(ii) If D∈α̂  is optimal for the ( )''δPCO , then α̂  is weakly efficient for the 
( )MPP . 

Example 4.2.2. (Example 4.1.1. continued)  Considering the previous example, the 
problem to be solved now is 

[ ]
[ ]

δτατα

λαλα
αα

<+

+
∈

2
2

2
2

2
1

2
1

22111,0,

  s.t.

max
21 . 

4.3. Guddat scalarization 
We consider now the following problem 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }00
21, ,min:0 αµαµαραραµαρ

αα uuuuuuDw wwPG ><−
∈

, 

where Do ∈α  is a given feasible portfolio and 0, 21 >ww  are given weighting 
parameters. 

Denote ( ) ( )( )0, αµαρ u
o

u
oy −=  and observe that for this scalarization 

{ }oyyYyT <∈= , Φ=U  and 2
>×= RDΠ . 

Now we have the following result. 
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Proposition 4.3.1.  Given the ( )MPP ,  

(i) If D∈α̂  is strictly optimal for the ( )wPG ,0α
, then α̂  is efficient for the ( )MPP . 

(ii) If D∈α̂  is optimal for the ( )wPG ,0α
, then α̂  is weakly efficient for the ( )MPP . 

(iii) If D∈α̂  is optimal for the ( )wPG ,0α
 with mw >∈ R , then α̂  is efficient for the 

( )MPP . 

Example 4.3.1. (Example 4.1.1. continued)  In this case, the problem that has to be 
solved is  

[ ]
( ) ( )[ ]

( ) ( )
2

0
21

0
12211

2
2

20
2

2
1

20
1

2
2

2
2

2
1

2
1

22112
2
2

2
2

2
1

2
111,0,

       

  s.t.

min
21

λαλαλαλα

τατατατα

λαλατατα
αα

+>+

+<+

+−+
∈

ww

. 

4.4. Benson scalarization 
We consider the following problem which leads to the Benson optimal portfolio  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }o
uu

o
uuuuD

BP αµαµαραραµαρ
αα ><−

∈
  ,min:~

0 , 

where Do ∈α  is a given feasible portfolio. 

Note that ( ) ( )1,00
~

αα
= PGBP . Therefore, we can immediately derive the next result. 

Proposition 4.4.1.  Given the ( )MPP , if D∈α̂  is optimal for the ( )0
~

α
BP , then α̂  is 

efficient for the ( )MPP . 

Example 4.4.1. (Example 4.1.1. continued)  In this case, the problem that has to be 
solved is  

[ ]
( ) ( )[ ]

( ) ( )
2

0
21

0
12211

2
2

20
2

2
1

20
1

2
2

2
2

2
1

2
1

2211
2
2

2
2

2
1

2
11,0,

       

  s.t.

min
21

λαλαλαλα

τατατατα

λαλατατα
αα

+>+

+<+

+−+
∈

. 

The problem simplifies if we know that between 1α  and 2α  there is some linear (for 
example) relation, such ct=+ 21 αα . 

4.5. Min-max scalarization 
A min-max portfolio is the optimal solution of  

( ) ( ) ( )( )αµαρ
α uuD

PMM −
∈

,max min: . 

Observe that for this scalarization DS = , YT = , Φ=Π=U . We get the following 
properties. 
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Note in this case that ( ) ( )αµαρ uu −> , and therefore the problem becomes  

( ) ( )αρ
α uD

PMM  min:
∈

, 

the minimum-variance model. 
Example 4.5.1. (Example 4.1.1. continued)  Then the problem to be solved is  

[ ]
( )2

2
2
2

2
1

2
11,0, 21

min τατα
αα

+
∈

. 

4.6. Tchebycheff-norm scalarization 
A Tchebycheff-norm portfolio is the optimal solution of  

( ) ( )( ) ( )( ){ }2211, ,max min: rwrwPTN uuDwr −αµ−−αρ
∈α

, 

where 2R∈r  is a given reference or utopia point (Steuer (1986)) and 2
>∈Rw  is a 

given weighting parameter. 
Remark 4.6.1. The min-max scalarization discussed previously is a special case of 
the weighted Tchebycheff-norm formulation. More precisely, if we choose the 
reference point ( ) 20,0 R∈= Tr  and the weighting parameter ( ) 21,1 >∈= RTw , then 
( ) ( )1,0PTNPMM = . 

Now, we have the following results: 

Proposition 4.6.1.  Given the ( )MPP , 
(i) If D∈α̂  is strictly optimal for the ( )wrPTN , , then α̂  is efficient for the 

( )MPP . 
(ii) If D∈α̂  is optimal for the ( )wrPTN , , then α̂  is weakly efficient for the 

( )MPP . 

Example 4.6.1. (Example 4.1.1. continued)  Denote by  

( ) ( ) ( ) ( )
( ) ( ) ( )⎪⎩

⎪
⎨
⎧

−+<−+−+

−+>−+−+
=

2221121
2
2

2
2

2
1

2
11222112

2221121
2
2

2
2

2
1

2
111

2
2

2
2

2
1

2
11

21   if   ,

  if  ,
,

rwrwrw

rwrwrw

αλαλσασααλαλ

αλαλσασασασα
ααϕ

. 
Then solve 

[ ]
( )211,0,

,min
21

ααϕ
αα ∈

. 

 

4.7. Gasimov scalarization 
We introduce the Gasimov portfolio as the optimal solution of the following problem 

( ) ( ) ( )( ) ( )( ) ( )( )( ){ }221121, min: awawaaaGPP uuuuDwa +−+−++−+−
∈

αµαραµαρ
α

. 
Example 4.7.1. (Example 4.1.1. continued)  In this case, the problem to be solved is  



 On Insurer Portfolio Optimization. An Underwriting Risk Model 

 Romanian Journal of Economic Forecasting – 1/2008  
 

115

  

[ ]
[ ] ( )

( )221122

1
2
2

2
2

2
1

2
11221121

2
2

2
2

2
1

2
11,0, 21

min

λαλα

ταταλαλατατα
αα

−−+

+−++−−+−+
∈

aw

awaaa
 

Before presenting some results relative to ( )waGPP , , we will remind certain 
definitions. 

Definition 4.7.1. Let Y  be a nonempty set of qR . 

(i) An element Yy ∈  is called non-dominated if { } { }yYy q =⎟
⎠
⎞

⎜
⎝
⎛ −

=
> IR , i.e. 

there is no other Yy ∈'  such that yy ≤' . 
(ii) An element Yy ∈  is called properly non-dominated (in the sense of 

Benson) if y  is a non-dominated element of Y  and the zero element of qR  

is a non-dominated element of ⎟
⎠
⎞

⎜
⎝
⎛ −+

=
> yYcone qR cl , where A cl  denotes 

the closure of a set A  and { }AaaconeA ∈≥θθ=  ,0 . 

Definition 4.7.2. Consider now the problem ( )VPP  given in Section 2. A feasible 
solution D∈α̂  is called (properly) Benson efficient if ( )α̂ˆ fy =  is a (properly) non-
dominated element of Y , or, alternatively, D∈α̂  is said to be properly efficient 
solution of ( )VPP  in the sense of Benson if 

( ) ( ) { }0ˆ cl =⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛ α−+

==
>>
qq fDfcone RR I . 

We go back again to the ( )waGPP ,  problem. We get the following results concerning 
Gasimov portfolios, extending in some ways the results of Gasimov (2001). 
Proposition 4.7.1.  A feasible solution D∈α̂  is Benson proper efficient solution if 
and only if there exist R∈21,, aaa  and 2

>∈Rw , with { }21,min0 wwa ≤≤ , such that 

α̂  is an optimal solution to ( )waGPP , . 

Theorem 4.7.1. Suppose that for some ( )wa, , R∈a  and 2
>∈Rw , with 

{ }21,min0 wwa ≤≤ , a feasible solution is an optimal solution to the scalar 
minimization problem  

( ) ( )( ) ( ) ( )( ){ }αµαραµαρ
α uuuuD

wwa 21min −+−+
∈

, 

then α̂  is a Benson proper efficient solution to ( )MPP . 

Example 4.7.1. (Example 4.1.1. continued)  In the example considered, the problem 
to be solved is  
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[ ]
[ ] ( ) ( )22112

2
2

2
2

2
1

2
112211

2
2

2
2

2
1

2
11,0, 21

min λαλαταταλαλατατα
αα

+−+++++
∈

wwa . 

Theorem 4.7.2.  Let D∈α̂  be a Benson proper efficient solution to ( )MPP . Then 

there exists a vector ( )wa,  with R∈a , 2
>∈Rw  and ii

wa
2,1

min0
=

≤≤ , such that α̂  is 

an optimal solution to the scalar minimization problem ( )waGPP ,   

( ) ( )( ) ( ) ( )( )[ ] ( ) ( )( ) ( ) ( )( )[ ]{ }αµαµαραραµαµαραρ ˆˆˆˆmin 21 uuuuuuuu wwa −+−+−+−
. 

5. Some final remarks 

In what concerns the insurer portfolio optimization problem ( )MPP , instead of taking 
the mean and the variance as the measures of the risk, we could consider other 
measures, which have to be either minimized or maximized. For example, other risk 
measures that could be taken into account are: 

• Value-at-Risk (VaR) at level p - ( ) ( ) ( ){ }pxFxXQXVaR Xpp ≥∈== Rinf ,              

where ( ) ( )xXxFX ≤= Pr . 

• Tail Value-at-Risk at level p - ( ) ( )∫−
=

1

1
1

p qp dqXQ
p

XTVaR . In fact, it is the 

arithmetic average of the quantiles of X , from p  on. 

• Conditional Tail Expectation at level p - ( ) ( )( )XVaRXXEXCTE pp >= , 

where ( )1,0∈p . Loosely speaking, the conditional tail expectation at level p  

is equal to the mean of the top ( )%1 p−  losses. It can also be interpreted as 
the VaR at level p  augmented by the average exceedance of the claims X  
over that quantile, given that such exceedance occurs. 

• The Expected Shortfall at level p - ( ) ( )( )( )
+

−= XVaRXEXESF pp , where 

( )1,0∈p . 

We conclude this paper by reminding that various authors have proposed different  
models based on the Markowitz optimization problem. For example, Arthur and 
Ghandforoush (1987) considered some objective and subjective measures for 
assets leading to a simple linear programming model. Konno (1990) constructed a 
piecewise risk function to replace the covariance, which led also to a linear 
programming model. Markowitz et al. (1994) proposed a method which avoids actual 
computation of the covariance matrix and Morita et al (1989) applied stochastic 
linear knapsack model to the portfolio selection model. Furthermore, Ballestero and 
Romero (1996) were the first who proposed a compromise programming model for 
an “average” investor, which was modified to approximate the optimum portfolio for 
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an individual investor (Ballestero (1998)). Hallerbach and Spronk (1997) explained 
that most models do not incorporate the multidimensional nature of the problem and 
outline a framework for such a view on portfolio management. In 2004, Ehrgott et al 
presented an objective hierarchy and formulated a multicriteria optimization model 
which uses five objective functions. Steuer et al. (2005) derived a suitable portfolio 
investor problem, taking into account objectives other than expected return and 
variance in their portfolio selection problem.  
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