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Abstract 
In this paper we provide first for a brief overview of some of the work which has been 
performed on the interface of quantum mechanics and macroscopic systems (such as 
economics). We then provide for an overview of how such quantum mechanical concepts 
can enter financial option pricing theory. We round off the paper with some suggestions 
on where this area of research can be heading in the near future. 
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1.  Introduction 
In 1947, John von Neumann and Oskar Morgenstern wrote a path-breaking book entitled 
"Theory of Games and Economic Behavior". This book contained the blueprint of game 
theory which subsequently would become a major discipline of economic theory.  
In the 50’s and 60’s we saw the development of another important tool of analysis: the 
expected utility models. The Savage expected utility model (1954), named after its 
originator, the famous statistician Leonard Savage, and the Anscombe-Aumann 
approach (1963), were both models which attempted to enrich the celebrated von 
Neumann-Morgenstern model. The type of probability used in formulating von Neumann-
Morgenstern expected utility can be seen, as Kreps (1988) clearly indicates, as .an 
objective - externally imposed probability. The Savage model, on the contrary, defines 
probability as used by the economic agent (i.e. subjective probability). The Anscombe-
Aumann model falls in between those two models: it uses a mixture of objective and 
subjective probability. All of those models are build up by using an axiomatic structure. 
They are mathematically very elegant (especially the Savage expected utility model) but 
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they are prone to experimental refutation. The Ellsberg paradox showed the world that 
the famous sure-thing principle, a key assumption of the Savage model can be refuted on 
experimental grounds. Economists however, did not sit still and important work followed 
after this. We note the core papers by Gilbao and Schmeidler (1989) and Ghirardato et 
al. (2004) and also Machina (1989). 
Financial economics, a closely related ‘sister’ discipline of economics became famous in 
the 20th century for its celebrated asset pricing models such as the capital asset pricing 
model and the APT models, and their many variants. But financial economics may well be 
best known for a model which generated a market with trillion dollar levels of 
capitalization: the option market. For an excellent paper on this issue, please consult 
MacKenzie and Millo (2003). In the early 1970’s Black and Scholes (1973) developed a 
partial differential equation which would become one of the best and most widely known 
pde’s in the history of mankind. 
Economics in all its varieties, has also shown to be very inter-disciplinary in nature. 
Macro-economic theory draws heavily upon statistical theory. Econometrics is a discipline 
in its own right. Economic theory has always had a very close association with 
mathematics, especially measure theory. Many of the protagonists in economic theory 
like Gerard Debreu (1959), well know for his work on the core of an economy, were 
mathematicians. However, at the time when 
Debreu, Arrow (1971), Hildenbrand (1974), Georgescu-Roegen (1999) and other 
economics luminaries were in their heydays, the collaboration between physicists and 
economists was significantly much less important, but then with one exception: Fisher 
Black, a physicist, and Myron Scholes, an economist joined their intellectual forces in 
1973 (Black and Scholes (1973)) to produce the Black-Scholes option pricing pde. 
The so called ‘econophysics’ movement rose to prominence a decade ago with the heavy 
implication of towering physicists like Boltzmann winner, Eugene Stanley (Mantegna and 
Stanley (1999)). Furthermore, the heavy involvement of top level economists like Thomas 
Lux (1999) helped very much the movement’s momentum. Econophysics has had a high 
interest in modeling return distributions with distributions which reflect the data in a much 
closer way. We note, for instance, the work of Lisa Borland (2002), who re-defined option 
pricing with alternative non-Gaussian distributions. Furthermore, a lot of work in the 
econophysics area has been performed on the issue of modeling agent behavior in 
financial markets and also on modeling markets as such. Marcel Ausloos and Andrzej 
Pekalski (2006) provide for an important study of a closed market. Ionut Purica (2004), in 
a very interesting paper, analyzes the economic parameters which determine the 
geographical dimension of a city. 
In 1997, M.I.T mathematician I.E. Segal contributed an article in the Proceedings of the 
National Academy of Sciences of the United States of America (PNAS) on the Black-
Scholes option pricing formula in a quantum environment. In 1999, Andrei Khrennikov, a 
world authority on the foundations of quantum probability, wrote a path-breaking article 
on how quantum mechanical concepts could be applied in all kinds of macro-scopic 
settings. Those two articles may well have set the tone for a movement which has, since 
then, tried to bridge the gap between quantum mechanics and macro-scopic systems. 
This paper has three aims. Our first aim consists in giving an overview of what the 
research on the interface of quantum mechanics and macro-scopic systems has been 
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doing to date. A second aim consists in attempting to show where precisely, in the 
context of option pricing theory, this approach can be of potential benefit. Our third aim 
consists in providing for a hint on where this movement may be moving next. 
The sections of this paper echo the aims of the paper. In the next section we give an 
overview of the double slit experiment and the ensuing interference concept. In the 
section following we provide for a bibliographic overview of research on the interface of 
quantum mechanics and the macroscopic movement. In section 4 we set up elementary 
principles relating to Bohmian mechanics and we attempt to show how those concepts 
could begin to be used in an economics/finance context. In section 5, we provide for the 
basics of option pricing theory and we discuss how Bohmian mechanics and more 
specifically the information wave function concept could be used in option pricing theory. 
We round off the paper, in section 6, with a brief discussion on possible future avenues of 
research. 
 

2.  The double slit experiment and probability 
interference 

Most textbooks on basic quantum mechanics start out with discussing the so called 
double slit experiment. This experiment provides for the experimental rationale why one 
needs to use the concept of probability interference, which we discuss below in more 
detail. 

2.1  The double slit experiment 
One can imagine the experiment in the following way. In the first stage, the experimenter 
fires a gun containing very tiny plastic pellets onto a screen which has two equally space 
slits. We imagine there is a detector screen, behind the screen containing the slits, upon 
where the pellets land. Assume there exists a detector which can count the pellets 
landings in the various locations on the detector screen. Denote the top and bottom slits 
as respectively slits 1 and 2. 

1. slit 1 is open and slit 2 is closed 
2. slit 1 is closed and slit 2 is open 
3. slit 1 is open and slit 2 is open 

We imagine that the diameter of the pellets is substantially smaller than the slit’s width. 
When carrying out the experiment the following (expected) result occurs. In scenario 1, 
pellets start accumulating behind slit 1. Some pellets also land close to slit 2, and go even 
further, as they are reflected on the edges of slit 1. In scenario 2, pellets accumulate 
behind slit 2 and some pellets land close to slit 1 and even further. When both slits are 
open we have an accumulation behind both slits and some scattering also. The key issue 
now consists in remarking that if one were to convert the pellets into electrons the result 
of the experiment would be altogether seriously different. 
In the same experiment, but now with electrons, experimenters have ob-served that 
initially spots form, in a random fashion behind the slits. More strikingly however is the 
fact that after a while the electrons start forming an interference pattern. Morrison (1990) 
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remarks that at first, the electrons be- have like particles. However, when time moves on 
they start behaving like waves! Even more surprising is the fact that there is interference 
between an electron and itself. This result is substantially different from what we would 
expect would electrons have been plastic pellets. Those results laid the basis for the 
formal development of quantum mechanics. We can not in this paper provide for an 
overview of how quantum mechanics evolved from the point onwards of this experiment. 
Max Jammer’s (1974) book is still an excellent reference source for most of the very 
important developments. 

2.2.  Probability interference 
The probabilistic description of the electrons landing on the detector screen is different 
from the probabilistic description of plastic pellets landing on the detector screen. In fact 
the difference in description is so resolutely different that a new notion was born: 
probability interference. In a nutshell, the observed interference in the double slit 
experiment when electrons are fired almost requires that we must superpose probability 
distributions. Note the use of the word ‘almost’. As is well know such functions can not be 
superposed. 
Let us denote with p1(x) the probability that the electron arrives at position x1

 when slit 1 is 
open. Similarly, for p2 (x). We can now query what the expression would be when both 
slits 1 and 2 are open. Would it be:  
 ( ) ( ) ( )?12 1 2p x p x p x= +   (1)  
This probability formula would reflect the situation when both slits are open but when we 
use plastic pellets rather than electrons. Hence, this formulation is not reflecting the 
interference pattern experimenters found when they used electrons. 
As we have indicated above, it is not possible to capture interference by superposing 
probability distributions. Instead one could superpose probability waves (or also known 
as probability amplitudes), which we could denote as ( )1 xψ  for when slit 1 is open and 

( )2 xψ for when slit 2 is open. See Morrison (1990). We remark that those amplitudes 
could also be time dependent. 
The multiplication of the probability amplitude and its complex conjugate yields the 
probability density function (pdf). Once we have obtained the pdf we can then calculate 
the probability value. How does the procedure work? 

We note that the pdf can be denoted as ( ) 2xψ  and it is obtained by writing that ( ) 2xψ is 
the product of the wave function with its complex conjugate. This conjugate is often 
denoted as *ψ . But how can we write the probability amplitude? 
We can write it (for when slit 1 is open) as: 

 ( ) ( ) ( )11 1
iS xx x eψ ψ=  , (2) 

where S1(x) is the phase of the wave and ( )1 xψ is the amplitude of the wave function. We 
write out ( )2 xψ  in the same way. We note that i is a complex number. Hence, the 
                                                            
1 We could make this probability time dependent also. We omit it here. 
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probability amplitude is complex valued. The transition of going from the probability 
amplitude to the pdf, is via the procedure of the complex conjugate. The complex 

conjugate of ( ) ( )1
1

iS x
x eψ is simply ( ) ( )1

1
iS x

x eψ
−

.Similarly, for the amplitude function 
when slit 2 is open. 
Finally, the probability value is obtained as: 

 ( ) 22
1 1 x dxψ ψ=∫  (3) 

At this stage we have not yet indicated how we arrive at probability interference. We need 
one more ingredient: superposition of the probability amplitudes. This can be defined as:  
 ( ) ( ) ( )12 1 2x x xψ ψ ψ= + , (4) 

where ( )12 xψ is the superposed state. If we write that: 

 ( ) ( ) ( )
2

1 212p x x xα ψ ψ+ , (5) 

then substituting (2) into (5) one obtains: 

 ( ) 2 2( ) ( ) 2 ( ) ( ) cos( 1 2)12 1 2 1 2p x x x x x S Sψ ψ ψ ψ= + + − . (6) 
This is obtained via the use of the fact that a complex number z can be denoted as z = x 
+ iy, where x is the real part and y is the imaginary part. This same number z can also be 

written as θirez =  where 22yxr =  and often r can be denoted as z . The angle 

x
y1tan−=θ  and θcosrx =  and θsinry = . We also say that z  is the amplitude and 

θ  is the phase. 
This is the probability formula, which now includes the probability interference term: 
2 ( ) ( ) cos( 1 2)1 2x x S Sψ ψ − .When this term is not zero it renders the probability in a quantum 
context, to be either sub-or super additive. 

3. Bibliographic overview on research performed on 
the interface of quantum mechanics and macro-
scopic systems 

The literature on research performed on the interface of quantum mechanics and macro-
scopic systems is developing. In this section we group our discussion in the following 
way. We first would like to discuss some of the research centers which are active in the 
field. Then we provide for a brief overview of some of the representative papers in the 
area. Finally, we discuss some of the conferences which have had sessions devoted to 
the topic.  
In terms of research centers active in the field, we believe there exist at least three 
centers. A first center is the .International Center for Mathematical Modeling in Physics, 
Engineering and Cognitive Sciences., at the University of Växjö in Sweden. This center is 
led by Andrei Khrennikov who is an international authority in the field of foundations of 
(quantum) probability and the applications of p-adic numbers. Andrei Khrennikov 
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organized, under funding notably of the Swedish Royal Academy of Sciences, a series of 
highly successful conferences, attended by some of the foremost quantum physicists in 
the world. Some papers in this conference series were dedicated to the issue of bridging 
quantum mechanics and macro-scopic systems. The School of Mathematics and 
Systems Engineering at the University of Växjö also managed a project on economic 
modelization1

. This project had a session devoted to the quantum mechanics 
modelization of stock markets. Also work is on the way on the simulation of macro-scopic 
quantum systems with applications in economics. This project is in collaboration with 
Andrei Grib of the Friedmann Lab for Theoretical Physics in St. Petersburg, Russia. 
Another important center is formed by the group of researchers around Diederik Aerts of 
the Center Leo Apostel at the Free University of Brussels (Belgium). Members of that 
group such as Bart D.Hooghe have done highly important work in the quantum 
mechanics - macroscopic field. The particular research group, ‘FUND’ which is part of the 
Leo Apostel center succeeded in setting up a quantum formalism which could be used in 
both classical and quantum physics environments. An array of important papers have 
followed out of this endeavour. 
The Oxford University Computing Laboratory, one of the world’s most respected 
computing laboratories, where Bob Coecke is a keynote member, has hosted a few talks 
on topics which bridge the gap of quantum mechanics and maco-scopic systems. The 
laboratory also will host the quantum interaction II meeting2

 which contains papers 
dealing on exactly that same topic. 
Individual research on the topic has become more prevalent over the years. We now 
provide for a brief overview (in alphabetical order) of such work. 
Accardi and Boukas (2007) have done important work on re-interpreting the Black-
Scholes equation with different stochastics. See also section 5.2. in this paper. 
The work by Aerts et al. (2007) deals with quantum games and their applications to 
biology. 
Arfi (2005) introduces a quantum interpretation of the trust predicament. 
Baaquie (2004) wrote an important book on the subject of quantum finance. He interprets 
the Black-Scholes option pricing equation as the Schrödinger Equation3

 for imaginary 
time. He also proposes a macro-scopic Heisenberg Uncertainty Principle:” The random 
evolution of the stock price S(t) implies that if one knows the value of the stock price, then 
one has no information about its velocity....” 
Bagarello (2006) looks at stock markets from an operator point of view. 
Bordley (1998) introduces a generalized Heisenberg Uncertainty principle. 
Broekaert, Aerts and D.Hooghe (2006) use quantum mechanics to generalize the liar 
paradox. 

                                                            
1 This project was in collaboration with the School of Management and Economics (Växjö 

University), the Institute of Applied Mathematics (Bonn University), Boston College of 
Management (USA), and the Academy of Economy, Summi (Ukraina). 

2 The quantum interaction I meeting was held in March 2007 at Stanford University. 
3 This is the pde which describes the time evolution of the wave function. 
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Busemeyer et al. (2006) in their pathbreaking paper provide for an important study on the 
differences between what they call quantum dynamics and Markov models. The paper 
also queries whether a meaningful model of human information processing can be 
derived from quantum dynamic principles?. 
Choustova (2006, 2007) models financial processes with Bohmian mechanical principles 
(please, see next section for more details on this approach). 
Danilov and Lambert-Mogiliansky (2006 a, 2006b) have developed i) non-classical 
expected utility from a quantum point of view and ii) non-classical measurement theory. 
Decamps et al. (2006) refers to applications of the path integral (which can be used in 
option pricing) formalism. 
Franco (2007) models rational ignorance with superposition of states. 
Haven (2005a/b, 2007) began to apply Bohmian mechanics in option pricing theory and 
he also used the Wentzel-Kramers-Brillouin approximation in option pricing theory. 
Eisert et al. (1999) considers quantum games. 
Khrennikov and Haven (2006, 2007) did some work in providing for a psychological 
experiment to test for probability interference. Khrennikov also published highly important 
work on the applications of quantum mechanical principles in psychology and other 
disciplines (1999, 2002, 2004, 2007). 
La Mura (2006) gives important ideas about how Allais’ paradox is closely related to the 
double slit experiment in quantum mechanics. In the words of La Mura (p. 3): “In a sense 
each particle in the double-slit experiment behaves like a decision-maker who violates 
the Independence axiom in Allais’ experiment.” 
Piotrowski et al. (2003) provides for an initiation to quantum games. 
Schaden (2002) studies asset pricing from a quantum physical perspective. 
The Segal et al. paper (1998) we alluded to in the introduction to this paper, rationalized 
the use of quantum principles in the option pricing context by claiming that “A natural 
explanation for extreme irregularities in the evolution of prices in financial markets is 
provided by quantum effects.” 
Martin Shubik, a very famous Yale University economist, wrote a very short paper on so 
called “quantum economics”. In that paper he says that: “modern finance...has not yet 
provided us with either the appropriate concepts or measures for the bounds on the 
minimal overall uncertainty that have to be present in an economy.” 
In terms of conferences which have hosted the topic, we can mention the following. 
There is a forthcoming workshop in Sweden1

 (2007) on the topic of quantum mechanics 
and psychology. The AAAI (Association for the Advancement of Artificial Intelligence) will 
hold a meeting in March 2008 on this very topic at Oxford University. The Foundations of 
Probability and Physics .1, 2, 3 and 4 conferences all held in Växjö University - Sweden, 
hosted some papers on the quantum mechanics - macroscopic topic. In 2006, 
Khrennikov and Haven organized special sessions on the topic at the 3rd Feynman 
Festival which was held at the University of Maryland - College Park. Finally, the 
International Quantum Structures Association (IQSA) meetings in Denver (USA) (2004), 
                                                            
1 At the University of Växjö. 
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Malta (2006) and Brussels (Belgium) (2008) all hosted (and probably will continue to 
host) papers on the topic. 

4.  Bohmian mechanics and economics 
Bohmian mechanics is a particular interpretation of quantum mechanics which can be 
usefully applied in an economics/finance context. Historically, Bohmian mechanics can 
be traced back to the work of Louis de Broglie. Holland (1993), in his excellent book, 
indicates that de Broglie attributed two roles to the wave function1

, ( , )q tψ (p. 16): “not only 
does it determine the likely location of a particle it also influences the location by exerting 
a force on the orbit.” Bohmian mechanics allows the wave function to steer the particle. 
In our economics/finance context the particle can be seen as the price of the asset, while 
the wave function can be seen as a carrier of information. 
How does information affect the pricing of assets? How can the information flow be 
characterized? Is it random? If the price process depends on such flow, will such process 
then be random too? The so called efficient market hypothesis is equivalent to having a 
random walk. In such random walk past stock price movements can not be used to 
predict future price movements. Financial economics has thoroughly studied the 
phenomenon of asset price predictability and some studies clearly indicate that certain 
asset price processes do embed a memory property. In Haven (2007) we assume that 
information in the market can be described by a so called “information wave function”. It 
is precisely this assumption which has led us to use this particular interpretation of 
quantum mechanics. It needs to be stressed that our approach is not novel as such. 
Andrei Khrennikov (2004) was the first to argue that such approach could be used in 
economics and finance. The important work by Choustova (2006, 2007) also argues for 
using Bohmian mechanics in a finance/economics context. 

4.1  Salient features of Bohmian mechanics 
Bohmian mechanics is named after its originator David Bohm (1952). Subsequent work 
by Bohm and Hiley (1987, 1993) has looked at many possible applications using this 
theory. A source which gives an excellent assessment of Bohmian mechanics is by 
Holland (1993). Bohmian mechanics provides for what Holland (1993) calls a ‘quantum 
theory of motion’ (see Holland (1993) (p. 18)). It needs to be stressed that Bohmian 
mechanics, as an interpretation of quantum mechanics, shares characteristics with 
classical mechanics. Bowman (2005) says it very well: “Bohmian mechanics and 
classical mechanics share the fundamental concepts of real particles and trajectories”. 
What makes Bohmian mechanics so different from classical quantum mechanics? Maybe 
it is the natural occurrence of the so called quantum potential which depends on the wave 
function. Using this potential we can understand the idea that the wave function (via the 
quantum potential) steers the particle.  
Let us write down in a few steps how this quantum potential occurs. For more details, 
please consult Holland (1993). We first consider the polar form of the wave function: 

                                                            
1 We note that q indicates position and t is time. 
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( , )
( , ) ( , )

S q ti
q t R q t e hψ = ; where ( , ) ( , )R q t q tψ=  and ( ), /S q t h  is the phase. We note that q is 

position, t is time and h is the Planck constant. The Schrödinger equation is the key pde 
in quantum mechanics which describes the time evolution of the wave function: 

 
2 2

( , ) ( , )22
hih V q t q t

t m q

ψ ψ ψ∂ ∂
=− +

∂ ∂
, (7) 

where h is the Planck constant, m is mass, i is a complex number, V (q; t) is the real 
potential (which exists next to the quantum potential). The polar form of the wave function 
is now substituted into the Schrödinger equation. We skip some intermediate steps, so as 
to get: 

 

2 2
22

2 22

2 2

S Si iR i R Se eh hS S h q qi i qR S hih e R e Vh h
S St t m i ii S R SR e eh h

h qq h

⎡ ⎤
∂ ∂ ∂⎢ ⎥+ +⎢ ⎥∂ ∂∂∂ ∂ − ⎢ ⎥− = + Ψ

⎢ ⎥∂ ∂
⎛ ⎞∂ ∂⎢ ⎥− ⎜ ⎟⎢ ⎥∂⎝ ⎠∂⎣ ⎦

 (8) 

If the above equation is multiplied with 
h
Sie − , and separating the real and imaginary 

parts, one obtains (for the imaginary part): 

 
21 2 22

R R S SR
t m q q q

⎡ ⎤∂ ∂ ∂ ∂⎢ ⎥=− +
∂ ∂ ∂⎢ ⎥∂⎣ ⎦

 (9) 

For the real part:  

 
22 2

2 22
S h R R SR VR
t m qq h

⎡ ⎤⎛ ⎞∂ − ∂ ∂⎢ ⎥− = − +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠∂⎣ ⎦
 (10) 

Multiply now (9) (imaginary part) (LHS and RHS) by 2R - so as to get: 

 
212 2 2 2 22

R R S SR R RR
t m q q q

⎡ ⎤∂ − ∂ ∂ ∂⎢ ⎥= +
∂ ∂ ∂⎢ ⎥∂⎣ ⎦

 (11) 

This can be simplified as: 

 
2 1 2 0R SR
t m q q

⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟∂ ∂ ∂⎝ ⎠

, (12) 

and this equation is also known under the name of “continuity equation”. This equation 
expresses the evolution of a probability distribution, since 22R ψ= . 

Finally, we can simplify (10) (real part) a little (divided by -R): 

 
2 2 21

022 2
S S h RV
t m q mR q

⎛ ⎞⎛ ⎞∂ ∂ ∂⎜ ⎟⎜ ⎟+ + − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (13) 



Institute of Economic Forecasting 
 

Romanian Journal of Economic Forecasting – 1/2008   50

  

Equation (13) is central in Bohmian mechanics. Bohm interprets the above equation by 

indicating that 
2 2

22
h R
mR q

∂

∂
is the so called quantum potential, ( , )Q q t .We can see that this 

potential contains the amplitude of the wave function (the wave function evolves 
according to the Schrödinger equation). Hence, it is precisely from this definition that 
Bohmian mechanics can claim the wave steers the particle. 
How do we interpret this so called ‘quantum potential’ in relation to the real potential? 
Holland (1993 - p. 74) remarks that it is “consistent to regard (the quantum) potential on 
the same footing as (the real potential) in respect of the particle motion...” 
What is extremely important to remark (see for instance Choustova (2006, 2007) is that 
since we have a quantum potential we can define a Newtonian-like (classical law of 
motion) formulation which includes the real ( )( ),V q t  and quantum potential ( )( ),Q q t  (a 
Newton-Bohm equation?): 

 
2 ( ) ( , ) ( , )

2
d q t V q t Q q tm

t tdt

∂ ∂
=− −

∂ ∂
 (14) 

The initial conditions are ( )0 0q t q=  and ( )' '0 0q t g= (momentum). Thus, the price trajectory 

( )q t  can be found by solving the above equation s.t. initial conditions. 

The negative partial derivative towards position of the quantum potential has an easy 
economics interpretation: it represents a pricing trend. This has been discussed in 
Choustova (2006, 2007) and Haven (2007).  
The attentive reader will have already questioned how the Planck constant, mass and the 
real potential ( ),V q t  can be interpreted in an economic context. The real potential 
describes interactions between traders as well as interactions from other factors such as 
macro-economic factors. In Choustova (2006, 2007) a functional form for the real 
potential is proposed. As an analogue of mass could be considered for instance the 
number of shares of an asset. The issue of interpreting the Planck constant in economics 
terms is an open issue. Haven (2006) and Choustova (2006, 2007) suggest it could be 
interpreted as a price scaling parameter. 

4.2  Characteristics of the Newton-Bohm trajectory 
Without going into details, it is important to make a note as to the characteristics of the 
Newton-Bohm trajectory. This trajectory in its bare form, as expressed by (14) does not 
contain the non-zero quadratic variation characteristic that price trajectories normally 
should contain. We add immediately that conditions can be obtained under which non-
zero quadratic variation can be obtained. This has been examined in Choustova (2007). 
The paths traced out by (14) are smooth. We can invoke the traditional time scale 
argument: at very fine time scales we may have non-smoothness but at other larger time 
scales we may have smoothness. However, we can come up with particular types of 
prices which do not need the non-zero quadratic variation characteristic. See Khrennikov 
and Haven (2007). 
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5.  Bohmian mechanics and option pricing 
In this section we first set up the option pricing pde as it was conceived by Black and 
Scholes (1973). We then try to rationalize how Bohmian mechanics could be of use in the 
option pricing context. 

5.1  The Black-Scholes option pricing pde 
The option pricing pde was developed by Black and Scholes in 1973. In this subsection, 
we present the standard approach of deriving the option pricing Black-Scholes pde. 
An option is a contract which gives the right to buy (call option) or sell (put option) an 
underlying asset at a certain price at a certain date in the future1

 . There exists a portfolio, 
Π  which is short in an option, and long ( ) ( )( )qo ∂∂ /  in shares; where o is the option price 
function ( )qto  and q is the price of the underlying asset (i.e. a share in this case), while t 

is time. The portfolio can be written as: OO q
q

∂
Π=− +

∂
. The so called Itô stochastic 

differential equation (Itô (1951)), in general form, is defined as: 
( ) ( )dWtybdttyady ,, += ; where dW is a Wiener process (with mean zero and variance 

of unity), ( )tya ,  is some function of a position variable, y and time t. Similarly for ( )tyb , . 
The Itô Lemma on a function ( )tyG , , with ( ) ( )dWtybdttyady ,, += is defined as:  

( ) ( ) ( )
21 2, , ,22

G G G GdG a y t b y t dt b y t dW
y t yy

⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟= + + +
⎜ ⎟∂ ∂ ∂∂⎝ ⎠

. Assume the underlying stock process is 

the geometric Brownian motion. Hence, we use z=q and ( ) qtya µ=,  and ( ) qtyb σ=, , 
where µ  is the expected return and σ  is the constant stock price volatility. Thus, using 

the Itô Lemma on ( ),O q t  yields then: 
21 2 2

22
O O O OdO q q dt qdW
q t qq

µ σ σ
⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟= + + +
⎜ ⎟∂ ∂ ∂∂⎝ ⎠

. Substituting 

in Od dO dq
q

∂
Π=− +

∂
and imposing the non-arbitrage condition, one obtains the famous 

Black-Scholes pde: 

 
2 2 2

22
O q O Orq rO
t qq

σ∂ ∂ ∂
+ + =

∂ ∂∂
. (15) 

Under appropriate boundary conditions this pde can be solved analytically (assuming that 
r and σ  are constant). Analytical solutions for non-constant volatility functions can be 
found but the array of such functions for such case is limited. We can show that via the 
WKB approximation2

 (where the wave function’s phase is approximated by a series of 

                                                            
1 Those are the so called ‘European options’. 
 
2 WKB approximation is the abbreviation of Wentzel-Kramers-Brillouin approximation. See Bender 

and Orszag (1978) for an excellent discussion. 
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powers of h) on the Schrödinger equation we can find analytical solutions (in some 
cases) to Black-Scholes’pde’s with certain non-constant volatility functions. See Haven 
(2005) and Li and Zhang (2004). 

5.2  Bohmian mechanics and its use in option pricing 
How can we connect option pricing theory with Bohmian mechanics? One problem with 
using Bohmian mechanics in an option pricing context is that the price paths will be 
smooth. We have briefly discussed this issue above. There are possible alternatives: 

• The Bohm-Vigier approach 
• The Nelson stochastic differential equation approach 
• The Accardi and Boukas approach 
• Random mass and singular quantum potentials 

The Bohm-Vigier approach (See Bohm and Hiley (1993)) seems to be one of the first 
equations used in the so called stochastic interpretation of quantum mechanics. The 
Bohm-Vigier stochastic equation is formulated as: 

 ( ) ( )S q
v t

m
η

∇
= + , (16) 

where v  indicates the velocity of the particle; m is mass; S(q) is the phase of the wave 
function and ( )S q∇  is the gradient of the phase function towards position. Finally, ( )tη  is 
some random factor with a mean of zero. If we want to have arbitrage (a consequence of 
information) enter the arbitrage free portfolio we can write: 

 ( )d S
dt

ηΠ
=∇ Π + , (17) 

where we make η  to be time independent and where we have as information function 

(note that Π  is the portfolio value): ( ) ( ) ( )iSR eψ ΠΠ = Π  and ( )
2

2
rS Π

Π = .We also define: 

( )S
x

r
η

∇ Π
=  where x  is some time independent arbitrage return. This extension could be 

made much more sophisticated. See the pathbreaking work by Fedotov and Panayides 
(2005) and Panayides (2005). The work by Otto (1999) is also to be mentioned. An 
excellent treatment on the possibility of writing the put and call as average prices is by 
Ilinski (2001). 
The Nelson stochastic differential equation approach has been proposed in Haven 
(2005b). The Nelson sde was proposed by Nelson (1967). Bacciagaluppi (1999) 
introduces a stochastic guidance equation (see Bohm and Hiley (1989)) which is defined 
as follows: 

 
2

22
h hda S dt dW
m m

ψ
α α

ψ

⎛ ⎞∇⎜ ⎟= ∇ + +
⎜ ⎟
⎝ ⎠

; (18) 

where α is position of a particle; h is the Planck constant and m is mass. α  is a 
parameter and dW is a Wiener process with the constraints that E(dW) and the variance 
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is h
m

. If 1α = , then we obtain the so called Nelson sde. The approach by Nelson (1967) 

uses the so called forward and backward mean derivatives in the derivation of the sde. 
Paul and Baschnagel (1999) provide for an excellent overview of this issue. They use the 

Itô Lemma on a function, ( ) ( ) ( ) ( ) ( )( )1 2, : , , , ,
2

f x t df x t f x t dt f x t dx f x t dx
t

∂
= +∇ + ∆

∂
and then 

substitute a Brownian motion: ( ) ( ) ( ),dx t b x t dt dW tσ= +  in that Lemma - yielding: 

 ( )
( ) ( ) ( )

( )
( ) ( )

,
, ,

, ,
1 2 ,
2

f x t
b x t f x t

tdf x t dt f x t dW t
f x t

σ
σ

⎛ ⎞∂
+ ∇⎜ ⎟∂⎜ ⎟= + ∇

⎜ ⎟
+ ∆⎜ ⎟

⎝ ⎠

 (19)  

In the words of Paul and Baschnagel (1999): “...the Brownian path is not differentiable 
with respect to time, so there is no simple equivalent to the particle velocity. We therefore 
define the mean forward derivative…” They define this mean forward derivative (similarly 
for the mean backward derivative): 

 ( )

( )( )
( )( )

,

,
, lim

0

f x t t t t

f x t t
D f x t E

tt

⎡ ⎤⎛ ⎞+∆ +∆ −
⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥+ =

∆⎢ ⎥∆ →
⎢ ⎥
⎢ ⎥⎣ ⎦

 (20) 

which then yields using (19): 

 ( ) ( ) ( ) ( ), 1 2, , ,
2

f x t
b x t f x t f x t

t
σ

∂
+ ∇ + ∆

∂
 (21) 

What is important is to remark that the term 
2

22
h
m

ψ

ψ

∇
 , also called osmotic velocity, in (18) 

can only be obtained if both the mean forward derivative and mean backward derivatives 
are di¤erent from each other. In the paper by Bohm and Hiley (1989) it is said that: “...the 
osmotic velocity field constitutes active information which determines the average 
movement of the particle.” In an economics and finance context, the Nelson sde could be 
used as a secondary sde. See Haven (2007). 
The Accardi and Boukas (2007) approach use a specific type of quantum calculus, the 
Hudson-Parthasarathy (1984, 1992) calculus to describe quantum processes in the 
context of the Black-Scholes equation. This new direction holds a lot of new hope to 
reinterpret option pricing from a different stochastic point of view. 
Last, but certainly not least, is the approach by Choustova (2006, 2007) who considers 
ways to obtain non-zero quadratic variation on the Bohmian paths. It is shown that by 
either randomizing mass or by considering quantum potentials which are singular, non-
zero quadratic variation is obtained. 
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6.  Other avenues of research 
We have presented in this paper a rather general overview of how quantum physics can 
be of help in financial asset pricing. Where will this research possibly go next? In the area 
of psychology, we think that the use of probability interference in explaining violations of 
the sure-thing principle, can be of great benefit. The work by Busemeyer and Wang 
(2007) is of high importance in this respect. 
Furthermore, we may also wonder whether the wave function concept we have covered, 
can not also be used in other areas of economics. For instance, what is the relationship 
between the wave function and the utility function as used in economics? Is there a 
relationship? 
Finally, we believe there is a lot of work which can be done in the area of asset pricing 
and the non-arbitrage theorem, a central theorem in financial asset pricing. We hint to 
some of the possible work in Haven (2007). 
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