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NON-LINEAR EFFECTS IN KNOWLEDGE 
PRODUCTION 

Ionuţ PURICA* 

Abstract 
The generation of technological knowledge is paramount to our present development. 
Economic science concentrates on representing the functions of production applied to all 
sectors, e.g., the well known Cobb-Douglas model, associated with parameters such as 
capital and labor. Based on the paradigm, demonstrated in another paper, that the 
production of technological knowledge is governed by the same Cobb-Douglas type 
model, by the means of research and the intelligence level replacing capital, respectively 
labor, we are exploring the basic behavior of present days economies that are producing 
technological knowledge, along with the ‘usual’ industrial production.  Considering the 
intercorrelations of technology and industrial production we determine a basic behavior 
that turns out to be a ‘Henon attractor’, well known as one of the first analyzed systems 
that present chaotic behavior confined to strange attractors. The behavior inside the 
basin of the attractor’s dynamic shows some interesting features such as the fact that 
too little effort in technological knowledge production is associated to low industrial 
production, while too much resource allocation to technological production is also 
reaching an area of low industrial production. This effect clearly shows that too little 
allocation of resources to research is equivalent to a disproportionate allocation of 
resources to research, namely that both hamper the industrial production. Moreover, 
there is an area of large industrial production that corresponds to a certain rate of 
technology production that, in some way, optimizes development. Measures are 
introduced for the gain of technological knowledge and the information of technological 
sequences that are based on the underlying multi-valued logic of the technological 
research and on nonlinear thermodynamic considerations. We have witnessed in the 
last decades several cases of economies, e.g., Ireland and Finland, in Europe, the Asian 
tigers and China in Asia, which had had a moment in their history when research (both 
means and intelligence) was a main priority. Luckily, the globalization acted as a 
stabilizer that kept them close to the optimum of ‘As High As Reasonably Acceptable’ 
technological production. By contrast to ALARA (as low as reasonably acceptable) 
principle, that applies in risk analysis, here we may introduce the AHARA principle 
resulting from the nonlinear behavior of technological production vs. industrial 
production. 
Key Words: knowledge management, strange attractors, experimental state of 
knowledge 
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Nonlinear effects in the economic systems 
Let us analyze the way "hill-shaped" dynamic relationships can arise in economics 
starting with a simple example showing this pattern: 
Consider the relationship between a firm's profits and its advertising budget decision.  
Suppose that without any expenditure on advertising the firm cannot sell anything.  As 
advertising outlay rises, total net profit first increases, then gradually levels off and 
finally begins to decline, yielding the traditional hill-shaped profit curve. If Pt represents 
total profit in period t and yt is total advertising outlay, Pt can, for illustration, be 
expressed as Pt=ayt(l- yt). If the firm devotes a fixed proportion , b, of its current profit 
to advertising outlays in the following period so that yt+l=bPt , the first equation is 
transformed into our basic chaos one with w=ab. 
The reason the slope of the phase graph turns from positive to negative in this case is 
clear and widely recognized.  Even if an increase in advertising outlay always raises 
total revenue, after a point its marginal net profit yield becomes negative and, hence, 
the phase diagram exhibits a hill shaped curve. 
Giving it some thought one may see why the time path of yt can be expected to be 
oscillatory.  Suppose the initial level of advertising, yo , is an intermediate one that 
yields a high profit figure Po . That will lead to a large (excessive) advertising outlay yl 
in the next period, thereby bringing down the value of profit figure P1 . That, in turn, will 
reduce advertising again and raise profit and so on ad infinitum. 
The thing to be noted about this process is that it gives good reason to expect the time 
paths of profit and advertising expenditures to be oscillatory.  But it does not give us 
any reason to expect that these time paths need either be convergent or perfectly 
replicatory.  This is an example of how chaotic behavior patterns can be. 
Another example has been provided in the theory of productivity growth (Baumol and 
Wolff, 1983).  It involves the relationship between the rate of productivity growth (Pt) 
and the level of R&D expenditures by private industry (r).  Obviously a rise in r can be 
expected to increase Pt . However since research can be interpreted as a service 
activity with a more or less fixed labor component, its costs will be raised by 
productivity growth in the reminder of the economy and the resulting stimulus to real 
wages.  This, in turn, will cut back the quantity of R&D demanded.  The result, as a 
formal model easily confirms, will be a cycle with high productivity rates leading to 
high R&D prices which restrict the next period's productivity growth, and so reduce 
R&D prices, and so on.  If R&D costs ultimately increase disproportionately with 
increases in productivity growth it is clear that the relation Pt+1= f(Pt) can generate the 
sort of hill-shaped phase graph that is consistent with a chaotic regime. 
Another model that can generate cyclical or chaotic dynamics is a standard growth 
model of Solow type in which the propensity to save out of wages is lower than that for 
profits. Suppose that at low levels of capital stock K one obtains increasing marginal 
returns to increased capital and the elasticity of substitution of labor for capital is 
initially low; but diminishing returns eventually set in and the elasticity of substitution 
moves the other way.  Then total profits can rise, at first, relative to total wages, but 
later profits may fall both relative to wages, and even absolutely. This can generate a 
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hill-shaped relationship between Kt+l and Kt as rising Kt at first elicits rising savings and 
eventually depresses them as profits fall. 

Earlier dynamic models 
The roots of the economists' interest in complex dynamics are to be found in the non-
mathematical literature on business cycles, with its large number of models, 
undertaking to provide a set of conditions sufficient to generate oscillatory behavior in 
economy. 
In the 1930's the work of Frisch (1933), Lundberg (1937) and Samuelson (1939) 
started using difference and differential equations in models that generated 
deterministic time paths. 
A non trivial example is Samuelson's multiplier accelerator model (1939) which is 
made up of the three standard relationships: 
 Yt= Ct + It      Ct = cYt + k      It = b(Yt-1 - Yt-2) 
where Y is national income (output), C is consumption, c is the marginal propensity, 
and I is investment.  The C equation is a linear consumption production with a one-
period lag.  The investment function is a linear lagged accelerator with investment 
assumed proportionate to the preceding period's rate of output growth.  Substitution of 
the latter two equations in the last one yields 
 Yt = (C+b)Yt-1 - bYt-2 + k 
which is Samuelson's second order linear difference equation. 
Out of these types of model four qualitative behaviors were generated : 
1) oscillatory and stable (i.e. converging with oscillations of decreasing amplitude 
toward some fixed equilibrium value); 
2) oscillatory and explosive (cycles with divergent amplitude); 
3) non-oscillatory and stable; 
4) non-oscillatory and explosive. 
It was soon recognized that linear equations of an even higher order than 
Samuelson's would not generate time paths any different from the ones above.  This 
range of possible time paths configurations simply was not sufficiently rich for the 
economists' purposes, since in reality time paths are often more complex and many 
oscillations do not seem to explode or dampen toward disappearance. 
 
A solution, brought to attention by Hicks and Goodwin, was the nonlinear modeling, 
considered of a general form: 
 yt = f(yt-l,...,Yt-h ) 
Responding to real economic issues these authors, for example, showed that such a 
non-linear model can yield a stable limit cycle toward which all possible time paths of 
the variable Yt converge. Matters were left here, the work stopping short of introducing 
a degree of non-linearity sufficiently great to generate chaotic behavior. 
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Essentials of the chaotic behavior 
In essence, chaos theory shows that a simple relationship that is deterministic but 
non-linear, such as a first order nonlinear difference equation, can yield an extremely 
complex time path.  
Inter-temporal behavior can acquire an appearance of disturbance by random shocks 
and can undergo violent, abrupt qualitative changes, either with the passage of time or 
with small changes in the values of the parameters.  Chaotic time paths can have the 
following attributes, among others: 
a) a trajectory (time path) can sometimes display sharp qualitative changes in 
behavior, like those we associate with large random disturbances (e.g. very sudden 
changes from small amplitude to large amplitude cycles and vice versa), so at least 
some tests of randomness cannot distinguish such chaotic patterns of change from 
"truly random" behavior; 
b) a time path is sometimes extremely sensitive to microscopic changes in the values 
of the parameters which can completely transform the qualitative character of the 
path; 
c) they may display in a bounded region an oscillatory pattern which is very 
"disorderly". 
Chaos theory provides, both for the economic analyst and for the policy designer, 
warning signals that apparently random behavior may not be random at all, 
demonstrating the dangers of extrapolation and showing the difficulties that can beset 
economic forecasting generally. 

Complex cyclical patterns 
The simplest and most common chaos model involves a nonlinear one-variable 
difference equation of first order, that is, one of the form: 
 yt+1 = f(yt) 
whose graph (the phase diagram) showing f(yt) as a function of yt is hill-shaped and 
tunable; in other words, the height, steepness, and location of the hill can be adjusted 
as desired by a suitable modification in the values of the parameters of f(yt), This 
phase diagram is the geometric instrument used to analyze the chaotic behavior time 
path generated by a difference equation model. 
The function most commonly used to illustrate the chaos phenomenon is the quadratic 
equation with a single parameter, w: 
 yt+l = f(yt) = wyt (1-yt) ; where dyt+l /dyt = w(1-2yt) 
As it may be seen from the equation, if 
w<l the phase curve will lay bellow the 450 line in the first quadrant; 
w>l there will be a positive value equilibrium point at the intersection of the 450 line 
and the parabolic curve; 
1<w<2 the phase curve slope at the intersection point will be positive; 
2<w<3 the slope will be negative but less than unity in absolute value; 
w>3 the slope will be less than -1. 
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The last case is the one when the chaotic behavior may set in after a number of 
frequency bifurcation of the emerging limit cycles (from 2 frequencies to 4 frequencies, 
etc.). Since, for example, Grandmond and Malgrange (1986) and Baumol and 
Benhabib (1989) give extensive descriptions of the phase space of this equation for 
the economic dynamic case. 

The industrial production and the production of technologies 
We will not insist here on the demonstration of the fact that the production of 
technological knowledge is behaving similar to the industrial production modeled by 
Cobb-Douglas formulae with different meaning of the parameters and variables. 
Purica, 1988, gives an in-depth analysis and his results will be taken here and used 
for developing a simple model that is beyond a separate analysis of the two types of 
production in trying to assess their mutual correlations. 
 
First, to visualize the correlation of the two types of production, the figure below 
(Purica, 1988) gives the correlation diagram of the industrial production and the 
production of technologies. The symmetric relations of the two are straight forward.  

 
 
Having presented the similar behavior of the industrial production and the production 
of technological knowledge we will consider in what follows how the two are 
correlated.  
A simple consideration would state that the production of technologies is proportional 
to the allocated part, of the previous year industrial production, to technological 
research. Denoting by t(n) the production of technologies of the current year and by 
p(n-1) the industrial production of the previous year, we may write: 
 t(n) = b*p(n-1) 
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On the other side, we assess that the industrial production of this year will depend on 
the result of technologies production of the previous year, t(n-1), and also on a more 
complex term reflecting the combined influence of the previous year production and of 
the technologies of this year. Thus we may write, with the above notation: 
 p(n) = 1 + t(n-1) + a’*p(n-1)*t(n)  
and, considering the relation for t(n), the equation for p(n) becomes: 
 p(n) = 1 + t(n-1) + a*p(n-1)*p(n-1) 
In the formula above we introduced a constant, scaled to 1, that is bringing the 
expression of p closer to the usual Cobb-Douglas expressed as a sum of logarithms. 
For example we may consider that the disappearance of the unqualified labor 
(periodic training of labor to cope with higher productivity brought by new 
technologies) is showing that a measure of labor is given by the amount of 
technological knowledge produced, while the capital becomes more efficient, i.e. 
square of previous production, due to the implementation of new technologies. These 
last statements are just conjectures that need to be proved by experimental analysis 
on existing data for various economies. Just for reference, the data on industrial 
production and patents for the USA starting from 1860 till 1976, given by Haustein and 
Neurath in 1982, are showing, as analyzed here, a dependence that is non-linear (see 
figure below). 

Patents vs. industrial production in USA 
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Finally, grouping the two equations we get: 
 p(n) = 1 + t(n-1) + a*p(n-1)^2 
 t(n) = b*p(n-1) 
By contrast to the behavior described by the quadratic equation with one parameter, 
the above system is called a Henon attractor and has a behavior presented in the 
figure below. 
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Henon Attractor 

 
 
This type of basins of behavior has drawn the name of ‘strange attractors’ to the 
multitude of such complex mathematical entities (later on discovered). 
The interesting thing about the occurrence of this behavior in the economies that 
along with the industrial production are allocating resources to enhance the production 
of technologies is the fact that one may describe various patterns of behavior that are 
not allowed by the usually used linear approach. 
The behavior inside the basin of the attractor’s dynamic shows some interesting 
features such as the fact that too little effort in technological knowledge production is 
associated to low industrial production, while too much technological production is 
also reaching an area of low industrial production.  
This effect clearly shows that too little allocation of resources to research, that does 
not allow a large industrial production for lack of knowledge, is equivalent to a 
disproportionate allocation of resources to research that hampers the industrial 
production because of lack of resources for production. A badly managed economy 
may fall into the trap of producing large oscillations in allocating its resources, thus 
creating dynamic regimes whose consequences are hard to absorb and thus leading 
to an erratic evolution. 
By contrast, there is an area of large industrial production that corresponds to a given 
rate of technologies production which, in some way, optimizes development. We have 
witnessed in the last decades several cases of economies, e.g. Ireland and Finland, in 
Europe, the Asian tigers and China, in Asia, that had had a moment in their history 
when research (both means and intelligence) was a main priority. Luckily, the 
globalization acted as a stabilizer that kept them close to the optimum of ‘As High As 
Reasonably Acceptable’ technologies production. By contrast to ALARA (as low as 
reasonably acceptable) principle, that applies in risk analysis, here we may introduce 
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the AHARA principle resulting from the nonlinear interplay of technologies production 
and industrial production. 
Although remaining parabolic in essence, the real behavior of the system may show 
different patterns for various coefficients determined from the experimental data. Data 
from the reference above may show a behavior described in the figure below. 
 

Production of technological knowledge and industrial production USA 
(1860-1976) 'Henon' strange attractor 

-600

-400

-200

0

200

400

600

800

1000

-60000 -40000 -20000 0 20000 40000 60000 80000

p(n)

t(n
)

 
 
One may see that a strange attractor behavior is seen in this representation too 
having, in excess of the features explained above, the limitation of a certain value of 
industrial production over which the production of technological knowledge is 
increasing rapidly, still remaining within the attractor basin. 

Measuring technological information and entropy 
The comments on resource allocation made above are leading in a wider context to 
the problem of creation of technological information and further on to entropy, as a 
measure of economic transitions, taken in the sense by Georgescu-Roegen.   
Since, in the case described above, the technological information and GDP 
productions’ correlation, we have encountered the possibility for the occurrence of a 
chaotic regime with several trajectories of evolution confined to a ‘strange attractor’ (of 
Henon type), it is useful to analyze the specific parameters for such nonlinear 
dynamic. 
The approach taken here will involve escort distributions and Renyi information 
measures but we will arrive there by first introducing a measure of information gain 
that is more appropriate, in our view, for economic processes that are strongly 
anchored in the experimental reality.  
There is in the economic processes, like the one described above, an underlying logic 
that is not always a bivalent one. By recreating the conditions for technological 
knowledge generation, information is gained on the state of truth or falseness of the 
technological sequences under research and implementation. Let’s consider that 
there are not only two states, i.e. true (functions, generates more GDP, is more 
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efficient ...) and false (does not work, does not generate more GDP, is less efficient ...) 
of the technological sequence of events under consideration; but, any number of 
possible values in between true and false. Each of the intermediate values can be 
expressed as a combined measure of the measure of true and the one of the false 
technological sequences.  
 

Knowledge vector for technology sequence 

 
 
From the point of view of research and implementation we may define the specific 
measures of the two states as the probabilities that technological sequences will be 
true (in the sense above) defining, for true, the normalized probabilities for the 
technological sequence i as   Pit = (pi)β/Σ(pj)β, where pi are not zero. Here the 
distributions p are given by the observed relative frequencies of the technological 
experimental tests. In the same manner we define the measure of false Pif for the 
sequence where instead of p we take 1-p. The two measures are actually resulting 
from the research and development activity that separates the working technological 
events from the ones that do not work in the process to create useful technologies. 
Actually the research activity is creating conditions for testing the technological 
sequences and is gaining technological information from the outcome of the tests. The 
gain of information will be described below. 
We may define a vector of the state of knowledge for each experimental stage in 
technological development and associate with it a measure that results from typical 
vector calculus as: P2= Pit

2+Pif
2. Further on we consider that research and 

development is repeating the conditions for testing technologies and this is adding to 
the two dimensions (true and false) a third one that marks the passage of time; we are 
associating with this dimension a measure of time that results from the frequency of 
repeating the tests, noted iP0 (with i=sqrt(-1) marking a rotation by 90 degrees in the 
complex space). Since, after each development test, the vector of knowledge changes 
by gaining technological information, we may describe the change in information by 
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Pit

Pif 

P 
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the change of the knowledge vector in a space that has been defined as a Minkowsky 
space in physics. As shown in (Purica 1990) the gain in information is described by a 
Lorentz transformation. The resulting vector has a magnitude P2= Pit

2+Pif
2-P0

2. Those 
familiar with relativity theory will recognize the specific three-dimensional cones that 
separate the space in three regions. These have a specific meaning in our 
interpretation: (i) inside the cone we have technological information that is generated 
from tests and still keeps a certain incertitude described by P0

2> Pit
2+Pif

2. On the cone 
the technological information is coherent and leads to implementable technological 
sequences, while outside the cone P0

2< Pit
2+Pif

2 (this would be a situation when the 
frequency of technological sequence’s tests is smaller than the number of tests on 
technological knowledge which, situation is unreal). 

 
 
Coming back to the definition of the probabilities P we may take (Beck and Schlogl 
1993) 1/β as representing the equivalent of the temperature in the thermodynamic 
space. Thus the escort distribution considered above may be represented as 
dependent on a function that varies as a power of β. Moreover, for sequences of 
conditional technological events it may be factorized into two or more conditional 
probabilities leading to the equivalent of grand canonical ensemble with chemical 
potentials.  
Measuring information of the process may be done (Beck and Schlogl 1993) by using 
the Renyi information of order β of the original distribution given as:  Iβ(p)=1/(β-
1).ln(Σ(pj)β). As a property of this measure, for β=1 the expression reduces to the one 
of Shannon information for the distribution p. The value of β is associated with the 
inverse of temperature and serves to scan various behavior patterns of p and its 
partition function that may determine a Helmholz free energy of the escort distribution 
as F(β)=-1/β. ln(Σ(pj)β). 
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Conclusions 
Nowadays, the production of technological knowledge, through integrated research in 
the economic activities, is a must for the countries that strive for a coherent and 
consistent development, aimed at bringing them in the forefront of civilization. 
In the interplay between the ‘usual’ industrial production and the production of 
technological knowledge, the rule is non-linear behavior and not the linear one. The 
simple thinking that more and more resources allocated to technological research 
would result in more industrial production may lead to the surprise of jeopardizing 
development.  
By introducing a measure of the generation of technological knowledge through 
research and development we showed that gaining knowledge is associated with a 
Lorentz transformation in a Minkowski space of the frequencies of the tested 
sequences of technological events in time. The information measure for the 
associated escort distributions to these technological sequences is the Renyi one that 
suits itself better for the nonlinear dynamics of the process. To better specify the 
difference between information measure for the escort distributions and the 
knowledge gain one must stress that knowledge is referring to the experimental 
process that describes the interaction of the researching structures of the society with 
the technological sequences with the aim to produce implementable technologies; 
while the information measure is just describing each technology sequence in itself, 
making it comparable among them.  
Obviously technological jump (on the logistic curve) may boost industrial production 
but, to enter the logistic it needs accumulated research. The decision to reallocate 
resources to a new technology is in itself a non-linear discontinuity in evolution. The 
‘Aha!’ moment of creation is acting as a butterfly effect that generates a technological 
typhoon in the industry, but, it may also bring along costs that are impinging on the 
industrial production and are affecting the good present for a better future. 
We are playing between ALARA in relation to accepting the risks and AHARA in 
relation to accepting costs of development. But, in any case, knowledge remains the 
basic element for setting both the low and the high limits of our evolution. 

References 
Baumol, W.J., “Unpredictability, Pseudorandomness and Military Civilian Budget 

Interactions”, Revista Internationale di Science Economiche et 
Commerciali, April 1986, XXXIII:4, 297 -318. 

Baumol, W. J. Benhabib, “Chaos: Significance, Mechanism, and Economic 
Applications”, Economic Prospectives - A Journal of the American 
Economic Association , vol. 3, No l, Winter 1989. 

Baumol, W. J. Wolff, E. N., “Feedback from Productivity Growth to R&D”, 
Scandinavian Journal of Economics, 1983, 85:2, 147-57. 



 Non-Linear Effects in Knowledge Production 

 
−  Romanian Journal of Economic Forecasting – 4/2006

  
81

  

Grandmond Jean Michel, “Periodic and Aperiodic Behaviour in Discrete One-
dimensional Dynamical Systems”, in Hildenbrand, W and A Mass 
Coliel, eds., Contributions to Mathematical Economics, New York 
North Holland, 1986. 

Purica, I. I., “Creativity, Intelligence and Synergetic Processes in the Development of 
Science”, Scientometrics, Vol.13, Nos 1-2 (1988) p.11-24. 

Purica, I. I., “Creativity and the socio cultural niche”, Scientometrics, Vol.15, Nos 3-4 
(1989) p.181-187. 

Haustein, H-D, Neurath, E., „Long Waves in World Industrial Production, Energy 
Consumption, Innovations, Inventions and patents and Their 
Identification by Spectral Analysis”, Technological forecasting and 
social change, 22, 53-89, 1982. 

Purica, I. I., Legile gândirii modale, Editura Academiei, Bucureşti, 1990. 
Beck, C., Schlogl, F., Thermodynamics of chaotic systems, Cambridge University 

Press, Cambridge, 1993. 
 


