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Abstract 
 
This paper shows that spatial panel data models can be successfully applied to an econometric 
analysis of farm-scale precision agriculture data. The application focuses on the estimation of the 
effect of controlled drainage water management equipment on corn yields. Using field-level 
precision agriculture data and spatial panel techniques, the yield response equation is estimated 
using the spatial autoregressive error random effects model with temporal heterogeneity, 
incorporating spatial dependence in the error term, while controlling for the topography, weather 
and the controlled drainage treatment. Controlling for random effects allows for the 
disentanglement of the effects of spatial dependence from spatial heterogeneity and omitted 
variables, and thus, to properly investigate the yield response. The results show that controlled 
drainage has a statistically significant effect on corn yields. The effect is generally positive but 
varies widely from year to year and field-to-field. For the two years of data controlled drainage 
was linked to a 2.2% increase in field average yield, but that varied from a -2.6% to a +6.5%.  
Evaluated at mean elevation and slope in the east part of the field, controlled drainage is 
associated with 10 bu/a increase and a 0.6 bu/a decrease in yields in 2005 and 2006, respectively. 
In the West part of the field, controlled drainage is associated with a 11 bu/a increase in 2006 
and 2.81 bu/a decrease in 2005. 
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1. Introduction 

This paper applies econometric spatial panel models developed by Anselin (1988), Elhorst 

(2003) and others to agricultural yield monitor data. Specifically, we investigate an experiment 

using controlled drainage technology and assess its impact on corn yields at the farm level in 

Indiana. We analyze yield monitor data over time and space by using Geographical Information 

Systems (GIS) and spatial panel econometric methods, in particular the spatial fixed and random 

effects models with spatial error autocorrelation. The use of panel data methods controlling for 

spatial and temporal heterogeneity and dependence as well as potential omitted variable bias 

provides precision agriculture researchers with a powerful framework to model crop sensor data 

over space and time. A specification that conforms to the agronomic requirements of yield 

response is the spatial autoregressive error random effects model with spatial and temporal 

heterogeneity. The development and use of spatio-temporal models in precision agriculture 

research enhances the array of spatial cross-sectional evaluation tools available to measure the 

impact of alternative management practices on crop yields, and aids to a better understanding of 

the complex agronomic phenomena underlying yield response. 

In terms of application we focus on the impact of using drainage water management on 

corn yields. Apart from the potentially beneficial effect of drainage water management practice 

on yields, the use of the controlled drainage technology is also motivated by environmental 

concerns. Excess nutrients from anthropogenic sources increase algal production, causing 

eutrophication of coastal ecosystems. For instance, in the Midwest of the United States too much 

nitrate (N) load in surface waters from drained agricultural land creates negative environmental 

impacts in the Gulf of Mexico (Burkhart and James 1999; Gilliam et al. 1999; Rablais et al. 
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2002). In the future, farmers may therefore be required to adopt technologies that have been 

demonstrated to reduce N loads to surface water, such as controlled drainage, also referred to as 

drainage water management. Controlled drainage restricts outflow during periods of the year 

when equipment operations are not required in the field (i.e., winter and midsummer). This may 

increase water available to crops in midsummer and thereby increase yields (Evans and Skaggs 

1996). Drainage trials in small plots are difficult, as they require major investment in barriers to 

prevent water movement between plots, thus creating an unnatural situation that may not be 

representative of field conditions. For drainage trials, landscape experimental designs works well 

and the most cost effective way to collect yields from landscape designs is with yield monitors. 

The drainage water cases studied in this paper are motivated by the recognition that voluntary 

adoption of drainage water management by growers depends on the size of the yield increase 

(Evans and Skaggs 1996). In addition, existing incentive programs such as the Environmental 

Quality Incentives Program (EQIP) require quantitative information on practice efficacy and on 

private benefits.  

 

2. Literature review 

Recent spatial panel data applications in economics include the analysis of household level 

survey data from villages observed over time to study nutrition (Case 1991), per capita 

expenditures on police to study their effect on reducing crime across counties (Kelejian and 

Robinson 1992), the productivity of public capital like roads and highways in the private sector 

across U.S. states (Holtz-Eakin 1994), hedonic pricing equations using residential sales (Bell and 

Bockstael 2000), unemployment clustering with respect to different social and economic metrics 
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(Conley and Topa 2002), spatial price competition in wholesale gasoline markets (Pinkse et al. 

2002) and regional growth modeling in Italy (Arbia and Piras 2004).  

There have been only a small number of studies that employed spatio-temporal regression 

analysis in the study of yield monitor data (Bongiovanni and Lowenberg-DeBoer 2002; Lambert 

et al. 2006; Liu et al. 2006; Nistor 2007). Prediction in spatio-temporal domains has drawn 

significant attention in the data analysis community (Pace 1988) and can contribute to a better 

understanding of complex phenomena studied in precision agriculture.  Bullock and Lowenberg-

DeBoer (2007) provide a recent review of studies using spatial econometric analysis techniques 

applied to precision agriculture data.  

There exist only a limited number of studies of the effect of drainage management on 

average crop yields, and none of those addresses conditions in the Midwest of the U.S. Sipp et al. 

(1986), Cooper et al. (1991, 1992), Drury et al. (1997) and Fisher et al. (1999) documented yield 

increases with subirrigation, while Tan et al. (1988) measured yield changes with managed 

drainage as opposed to conventional drainage. Trials by Tan et al. (1998) in Southwestern 

Ontario showed a slight soybean yield benefit for managed drainage under conventional tillage 

and a small yield decline with no-till, but neither of these yield differences was statistically 

significant at conventional levels. Nine out of 15 farmers involved in a central Illinois drainage 

management project said that they had higher yields with drainage management (Pitts 2003). All 

the above studies estimating the effect of controlled drainage on yields use small plot or whole-

field data with the harvest from the combine transferred to a weigh wagon, and subsequent 

analysis based on comparing treatment trials or performing an analysis of variance. In both cases, 

however, spatial econometric or spatial statistical techniques have not been used. Effectively, it 

is a priori assumed that the distribution of yields across the field is homogenous and independent 
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of location. Brown (2006) applies spatial econometric techniques to cross-section yield monitor 

data in 2005 for four farms located in White, Montgomery and Randolph County in Indiana in 

order to study the economic feasibility of controlled drainage in the Cornbelt. Using spatial error 

regression models for the estimation of yields as a function of linear, quadratic and interaction 

terms including elevation, slope, distance to the nearest tile line and infrared soil color, Brown 

(2006) found that controlled drainage impacts yield in the range of 8 bu/acre to 29 bu/acre. 

Nistor (2007) proposes a framework to model crop sensor data over time by using the spatial 

fixed and random effects models, with an application focused on estimating the controlled 

drainage impact on farm profitability in the Cornbelt. Nistor (2007) found the decision to invest 

in controlled drainage technology to be supported for three of the four experimental farms, both 

with and without subsidy. 

 

3. Methods and data  

3.1 Data and specification 

The empirical example in this paper is concerned with yield monitor data sampled from the farm 

located at Davis Purdue Agricultural Center (DPAC), field W, located in Randolph County, 

Indiana. The yield data were collected with an AgLeader yield monitor linked to a global 

positioning system (GPS). The yield monitor is located on the combine and records crop yields 

on the go. Yield files include data-point information about yields (bu/a), latitude, longitude and 

grain moisture, which is used to generate a geopositioned database and site-specific yield maps. 

The yield measurement samples collected have been taken from the field surface with the 

locations considered as points or very small areas (see Griffin et al. 2005a, for a more elaborate 
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discussion). The design of the controlled and conventional drainage experiments are created via 

digitization using the tile line maps. 

Because the spatial layout of the raw data is such that it included points located closer 

together within the row than between the rows, the dataset was constructed as follows: yield 

monitor data were aggregated into average combine pass width squares in order to provide data 

that are spatially balanced in all directions. Previous applications of this methodology can be 

found in Malzer et al. (1996), Mamo et al. (2003) and Anselin et al. (2004). The square grid with 

cells thus created was overlaid on the yield points and the grids were rotated by the 

corresponding field angle. Each cell value, expressed in bushels per acre, represented the average 

of all points contained within that square so that a yield map was created with a finite number of 

color scales easily identifiable to the viewer from many thousands of individual yield point 

values. This process was performed using the same grid each year, so that the grids are 

coincident, which permits the comparison of yields for different years in the “same” location. 

The balanced design thus obtained allows for a spatial econometric approach using a 

weighting design (Anselin et al. 2004). Moreover, since the prediction error for the average 

values of yields within grids is smaller than the prediction error for any yield point prediction, 

the precision of the average yield estimator is higher than that of point estimator (Haining 2003), 

although this procedure also introduces heteroskedasticity to a certain extent.1 Elevation point 

data with reference to the sea level, collected by topographic surveys performed by contractors 

for the farm, were interpolated using the Inverse Distance Weighted (IDW) power 1 method,2 so 

that a point data set was obtained with elevation across the whole field. Each cell value was 

assigned the average of the elevation points that completely fell inside each cell and was 

converted with reference to the lowest elevation level in the field. This implies that the elevation 
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in each grid cell equals the difference between the average elevation with respect to the sea level 

and the minimum average elevation. Slope data expressed in percents were derived from the 

elevation data in the same manner, using the Toolbox in ArcGIS9. 

The measures for the average combine pass width were 4.95m (1996), 5.08m (1998), 

4.86m (2000), 4.93m (2001), 4.95m (2002), 5.03m (2003), 4.94m (2005) and 5.02m (2006), and 

the grid size was therefore rounded to 5 meters. The dataset was constructed as follows: yield 

point data were aggregated into squares of 5 × 5 m that were overlaid on the yield points and the 

grids were rotated by the corresponding field angle  (357.70). The controlled and conventional 

drainage parts of the field were the northwest, southeast and the northeast, southwest parts of the 

fields, respectively (see Figure 1). Field W was cultivated under a corn-soybeans rotation for 

many years, but years when corn was planted was not the same for the East and West Sides of 

the field, hence the two sides of the field, East and West were analyzed separately.  Controlled 

drainage was performed in 2005 and 2006 only; the years with corn rotation were 1996, 1998, 

2000, 2002, 2005, 2006, and 1996, 1998, 2001, 2003, 2005, 2006 for the East and West part of 

the field respectively.  
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Figure 1. Yield map (Davis, Field W; 2006, corn) 

Rainfall data over the growing season, taken as July to September, were obtained from 

the weather station located at 0.5-mile distance from Field W. The choice of the growing season 

period was determined by professional judgment of soil scientists and agricultural engineers 

involved in the project. Although this is unusual, in some years (2005, 2006) corn did not reach 

physiological maturity (i.e., the R6 growth stage when black layer forms at the tip of the kernels) 

before the end of September due to late planting (end of May, early June). This motivates the 

inclusion of the September rain data. 

Heady and Dillon (1972) provide a review of algebraic functional forms for crop 

response estimation. The selection of variables and specification of the crop yield functional 

form are difficult because of lack of theoretical guidance in the agronomy and soil science 

literature, and the complexity of yield response (Swanson 1962; Florax et al. 2002; Anselin et al. 

2004). Nistor (2007) provides an elaborate overview of different functional forms that have been 

used in agronomy and soil science. For this application a simple linear form with interaction 

variables is chosen, because of the limited availability of data. For on-farm yield trials slope, 

elevation and rainfall are the most commonly available variables. Data that varies in time and 

space (e.g. annual soil tests, remotely sensed biomass) is sometimes available on research farms, 

but rarely for commercial fields like those used for the drainage trials. 

Since the yield monitor data is a sample rather than a population (Griffin et al. 2005), the 

random effects (RE) model is appropriate for the analysis of precision agriculture data. Nistor 

(2007) provides a discussion of the proper framework for precision agriculture data over time. 

For precision agriculture data the spatial error model is more appropriate than the spatial lag 

model, because spatial autocorrelation is due to omitted variables rather than to the effect of corn 

yield grid cells on each other (Anselin et al. 2004; Lowenberg-DeBoer et al. 2006). In addition, 
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temporal heterogeneity is much more important than spatial heterogeneity and should also be 

taken into account, since the yield response and the controlled drainage impact vary across the 

years (Bongiovanni and Lowenberg-DeBoer 2002; Nistor and Lowenberg-DeBoer 2007). 

Therefore, the random effects spatial error model extended to account for temporal heterogeneity 

(SEM-RE model) was chosen for estimation. The lack of routines for the two-way random 

effects model extended to account for spatial error autocorrelation, led us to consider temporal 

heterogeneity in the SEM-RE model in the form of time dummy variables. 

The drainage dummy was interacted with time dummies in the experimental years to account for 

the variability in the yield response to controlled drainage over years. The interaction terms 

between the drainage dummy, elevation and slope were included since impact of controlled 

drainage vary with topography and controlled drainage does not affect yields the same across the 

field. 

The crop yield response to controlled drainage is different across years, with no yield 

benefit in years with insufficient rain, or a negative impact with very low field topography that 

would allow high enough water to have a detrimental effect (Nistor and Lowenberg–DeBoer 

2007). Because of the relationship between topographic attributes, soil properties and available 

water, the precipitation in the growing season is interacted with the topographic attributes that 

may influence crop yields (Kaspar et al. 2003). With the inclusion of these interaction variables, 

the specification estimated reads as: 

 

21511351241131029187

654321

TDTDTTTTTSlopeRain

ElevationRainSlopeDElevationDSlopeElevationY

×+×++++++×
+×+×+×+++=

ββββββββ
ββββββ

 (1) 
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where D is the drainage dummy, Y refers to yields and 51,...,TT  dummy variables for the time 

periods.  

The SEM-RE model specification in equation (1) with temporal heterogeneity offers a 

more comprehensive approach of yield response estimation that conforms to the requirements of 

yield response in the agronomy literature, while accounting for both spatial and temporal 

heterogeneity, and therefore offers a framework with most reliable results. 

 

3.2 Spatial panel models 

The traditional panel data models used in applied research are the fixed effects (FE) and the 

random effects (RE) model (Baltagi 2001). A panel data set consist of a sequence of observations 

repeated through time, on a set of units (e.g., individuals, firms, or countries). A panel data 

regression is different from a time-series or cross-section regression in that it considers both the 

temporal and the cross-sectional dimension. Panel data offer researchers extended modeling 

possibilities as compared to purely cross-sectional data or time-series data, because they contain 

more information, more variability, less collinearity among the variables, more degrees of 

freedom, and hence the estimators are likely to be more efficient. Panel data can reduce the 

effects of omitted variables bias by controlling for individual heterogeneity. Panel data also 

allow for the specification of more complicated behavioral hypotheses, including effects that 

cannot be addressed using pure cross-sectional or time-series data. For example, technical 

efficiency is better studied and modeled with panel data sets, because in cross-sectional models it 

cannot be identified, and in time series models it is assumed to be identical across cross-sectional 

units (Hsiao 1986; Baltagi 2001). An important advantage of panel data compared to time series 

or cross-sectional data sets is that it is better able to identify and measure effects that are simply 
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not detectable in pure cross-section or pure time-series data (Ben-Porath 1973). Panel data can 

reduce the effects of omitted variables bias by controlling for individual heterogeneity. Time-

series and cross-section studies not controlling for this heterogeneity run the risk of obtaining 

biased results (Moulton 1986, 1987).  

Contemporaneous spatial dependence between observations at each point in time and 

spatial heterogeneity (i.e., parameter heterogeneity that varies with the spatial location) may arise 

when panel data include a location component (Anselin 1988; Elhorst 2003). Spatial dependence 

may be incorporated into the model as spatial error autocorrelation or as a spatially lagged 

dependent variable, or a combination of both (Anselin and Hudak 1992). These different 

specifications of spatial dependence have different implications for estimation and statistical 

inference. Estimating a model ignoring spatial error autocorrelation by means of Ordinary Least 

Squares (OLS) produces unbiased and consistent parameter estimates, but the OLS estimator 

loses the efficiency property. Erroneously omitting a spatially autocorrelated dependent variable 

from the explanatory variables causes the OLS estimator to be biased and inconsistent, except 

under special circumstances (Anselin 1988).  

Anselin et al. (2006) provide an overview of specifications and estimators available for 

spatial panel data. The traditional spatial random effects model described in Anselin (1988) has 

recently been extended. Kapoor et al. (2007) allow for the same spatial error autocorrelation in 

both the individual effects and the remainder errors. Baltagi et al. (2006) extend the theoretical 

econometric specification of Kapoor et al. (2007) to assume different spatial error processes in 

the spatial and remainder error components, and test for their restricted counterparts. Regarding 

the software resources for estimating the panel spatial econometrics, the situation is still rather 

bleak (Anselin et al. 2006). For the family of dynamic spatial panel models, no straightforward 
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estimation procedure is yet available (Elhorst 2001, 2005). The fact that the estimation of spatial 

panel data models is not very well documented in the literature may be due to each model having 

its own specific problems. This study applies the estimation framework as developed by Elhorst 

(2003), specifically the random effects spatial error models that incorporate spatial error 

autocorrelation in the context of maximum likelihood estimation procedures.  

Following Elhorst (2003), if we stack the observations in one equation for each set of 

cross-sections over time (i.e., T  spatial series with N observations over space), the traditional 

RE model extended to spatial error autocorrelation, SEM-RE for short, can be specified as: 

 

vXY tt += β ,  ,])([)( 1 εδαι −−⊗+⊗= WIIIv NTNT    (2) 

 

where Ni ,...,2,1=  refers to a spatial unit, Tt ,...,2,1= to a given time period, ,),...,( 1 ′= Nttt YYY  

),...,(,),...,(,),...,( 111 ′=′=′= NNtttNttt XXX αααϕϕϕ , ),...,( 1 ′= Nttt εεε , and α  is the variable 

intercept treated as random representing the effect of omitted variables that are specific to each 

spatial unit considered. The random effects model treats iα  as a random variable assumed to be 

),0(~ 2
ασIIN , and we have 2),( ασαα =′jiE  if ji =  and zero otherwise. It is assumed that the 

random variables iα  and itε  are independent of each other.    

The weights matrix W is an N × N matrix describing the spatial arrangement of the spatial 

units, where ijw  is the (i,j)-th element of  W  with 1=ijw  if i and j are neighbors, and 0=ijw  

otherwise. In equations (2) and (3), δ  is called the spatial autoregressive coefficient. Estimation 

is by maximum likelihood (Elhorst 2003). Kapoor et al. (2007) provide an approach based on 

general moments estimation. 
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4. Data and results 

4.1 Exploratory spatial data analysis 

We can see from Table 1 that the mean of the corn yields is fairly stable over time, except for 

1996 (weed problems) and 2002 (severe draught). There is an unstable pattern of the yields 

variance corresponding to the controlled drainage zones over the years. In the southeast part of 

the field, the variance in 2006 was statistically significantly lower than in 2000, but higher than 

the rest of the years; the variance in 2005 was statistically significantly lower than in 2000, 2002, 

and 2006, but higher in 1996 and 1998. In the northwest part of the field, the variance in 2005 

was highest than in all the other years, with equality in 2003; the variance in 2006 was 

statistically significantly lower than in 2003 and 2005 only, but higher than in 1996, 1998 and 

2001. For the west side of the field in 2006, the mean yields with controlled drainage were 

higher than the mean yields with free flowing drainage, but not for 2005 when controlled 

drainage yields were lower. For the east side of the field in 2005, the mean yields with controlled 

drainage were higher than the mean yields with free flowing drainage, but not for 2006, when 

controlled drainage yields were lower. The comparison based on average yield may be 

misleading because it does not take into account differences in topography, soils, microclimate 

and other factors between controlled drainage areas and those with free flowing drainage.  
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Table 1. Corn Yield (bu ac–1) and Precipitation Descriptive Statistics, Davis, Field W 
EAST 

(Controlled) 
1996 1998 2000 2002 2005 2006 

WEST 
(Controlled) 

1996 1998 2001 2003 2005 2006 

Minimum 60 97 102 10 104 102 Minimum 31 87 106 54 80 81 
Maximum 131 184 240 105 239 212 Maximum 127 197 227 180 210 224 
Mean 98 144 186 47 178 170 Mean 82 149 176 130 150 167 
SD 13 15 25 19 17 20 SD 18 20 20 23 23 22 

EAST 
(Uncontrolled) 

      
WEST 

(Uncontrolled) 
      

Minimum 35 86 88 10 79 115 Minimum 33 83 101 51 91 81 
Maximum 131 199 262 102 227 222 Maximum 121 199 232 183 208 209 
Mean 98 147 189 50 160 177 Mean 89 135 175 117 156 154 

SD 12 17 30 19 30 19 SD 14 22 19 27 19 25 

EAST 
(Whole Field) 

      
WEST 

(Whole Field) 
      

Minimum 35 86 88 10 79 102 Minimum 31 84 101 51 81 81 

Maximum 131 199 263 105 239 223 Maximum 127 199 232 183 210 224 

Mean 98 145 187 49 169 173 Mean 85 143 176 124 153 161 

SD 13 16 28 19 25 20 SD 17 22 20 25 21 24 
Rain (in) 3.6 4.03 4.89 2.53 5.67 3.78 Rain (in) 3.6 4.03 4.96 7.33 5.67 3.78 

 

Descriptive statistics values for the topography of the field (see Table 2) show that for the 

east side of the field, mean elevation was higher in the controlled than in the uncontrolled part, 

while for the west part of the field, mean elevation was lower in the controlled than in the 

uncontrolled part. 

 

Table 2.Elevation and slope descriptive statistics (Davis, Field W) 

EAST 
Whole field Controlled Uncontrolled 

Slope  
(%) 

Elevation 
(m) 

Slope  
(%) 

Elevation 
(m) 

Slope  
(%) 

Elevation 
(m) 

Minimum 0.05 0.00 0.08 0.50 0.05 0.00 

Maximum 1.87 1.84 1.87 1.84 1.44 1.29 

Mean 0.57 0.91 0.57 1.08 0.58 0.74 

SD 0.26 0.35 0.23 0.29 0.29 0.32 

WEST       

Minimum 0.04 0.00 0.04 0.00 0.06 0.37 

Maximum 2.36 2.30 1.53 1.26 2.36 2.30 

Mean 0.60 0.87 0.56 0.59 0.64 1.20 

SD 0.30 0.47 0.27 0.27 0.33 0.46 
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Figures 2a and 2b show an obvious clustering of similar attribute values: relatively high 

yields, very low yields and relatively low yields.  

 
Figure 2a. Yield Map (Davis, Field W, East; 1996, 1998, 2000, 2002, 2005, 2006, Corn) 

 
Figure 2b. Yield Map (Davis, Field W, West; 1996, 1998, 2001, 2003, 2005, 2006, Corn) 
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To evaluate the significance of the spatial clustering pattern by means of the Moran’s I 

statistic, the spatial weights matrix was defined according to the queen criterion, implying that 

grid cells are neighbors if they have a common border in the horizontal or vertical dimension, or 

if they share a common vertex, up to the one “band” of neighbors. The feasibility of the 

regression models required a compromise in choosing the first order queen weights matrix, since 

spatial panel models cannot be estimated using a weights matrix with many neighbors. The 

spatial panel models estimated consider only contemporaneous spatial dependence, and hence 

the combined weights matrix for all years is block-diagonal, with W for each year as a submatrix 

on the diagonal. When the weights matrix is row standardized, the spatially lagged yield variable 

is the average of the yields in the neighboring grid cells. We can see from Table 3 that the sign of 

Moran’s I statistic for yields is positive and highly significant so that high (low) values are 

surrounded by high (low) values in neighboring grids, indicating positive spatial correlation of 

yields. 

Table 3. Moran’s I (yields), Davis, Field W 

  1996 1998 2000 2002 2005 2006 
EAST 0.52*** 0.53*** 0.57*** 0.63*** 0.70*** 0.56*** 

 1996 1998 2001 2003 2005 2006 
WEST 0.68*** 0.74*** 0.39*** 0.61*** 0.64*** 0.62*** 
*** denotes significance at 1% level (permutation assumption). 

 

4.2 Regression results 

4.2.1 Davis, Field W, East 

Table 4 presents the results of the a-spatial random effects (RE model, column a) and spatial 

error  random effects model (SEM-RE model, column b). Table 4 shows that the controlled 

drainage impact varies across the years and with topography.  
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Table 4. Pooled estimates of corn yields, Davis, Field W, East 
Dependent variable: yields, T=6 and N=1592* 

Dependent variable: yields 
RE 
(a) 

SEM-RE 
(b) 

Constant  108.036*** 
(1.270) 

108.338*** 
(1.499) 

Elevation -19.449*** 
(2.493) 

-18.704*** 
(4.699) 

Slope 17.829*** 
(3.212) 

1.255 
(3.803) 

Drainage ×  Elevation -4.001** 
(1.951) 

-2.111 
(3.246) 

Drainage ×  Slope 8.906*** 
(2.406) 

1.090 
(2.552) 

Rain ×  Elevation 2.827*** 
(0.595) 

2.850** 
(1.168) 

Rain ×  Slope -5.780*** 
(0.745) 

-1.519* 
(0.904) 

2006 77.576*** 
(0.833) 

78.262*** 
(1.771) 

2005 63.099*** 
(1.505) 

61.693*** 
(2.767) 

2002 -50.114*** 
(0.955) 

-49.768*** 
(1.931) 

2000 90.289*** 
(1.091) 

84.638*** 
(2.110) 

1998 47.713*** 
(0.722) 

47.614*** 
(1.548) 

Drainage ×  2006 -4.360 
(2.344) 

0.654 
(3.939) 

Drainage ×  2005 17.850*** 
(2.274) 

11.377** 
(3.826) 

Spatial autocorrelation 
- 

0.806*** 
(0.009) 

R-squared  0.879 0.962 

LIK -41899 -41899 
* Standard errors are in parentheses 

 

The controlled drainage impact is 65.009.111.2/ ++−=ΔΔ SlopeElevationDY  and 

37.1109.111.2/ ++−=ΔΔ SlopeElevationDY  for the 2006 and 2005 years, respectively. Table 5 

shows the controlled drainage impact on yields and the associated confidence intervals (C.I.). 

Nistor (2007) provides a detailed explanation on the C.I. computation used. Evaluated at mean 

topological values in the field, the impact of controlled drainage on yields is small in 2006 (-0.6 
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bu/a) but substantial in 2005 (10 bu/a). In both years controlled drainage has a significant impact 

on yields (at the 1% level), with a corresponding Likelihood Ratio (LR) test of 28 and 340 for 

2006 and 2005 respectively, under the )3(2χ  distribution. 

 

Table 5. Controlled drainage impact (bu ac–1) on yields, Davis, Field W* 

 EAST WEST 

 2006 2005 2006 2005 

Mean elevation, slope 
-0.64 

(-4.41; 3.11) 
10.08 

(6.23; 13.91) 
11.27  

(7.52; 15.05) 
-2.81  

(-6.52; 0.96) 

Minimum elevation, slope 
0.71 

(-6.96; 8.38) 
11.43 

(3.99; 18.87) 
8.93  

(3.66; 14.18) 
-5.14  

(-10.34; 0.05) 

Maximum elevation, slope 
-1.19 

(-9.67; 7.27) 
9.53 

(0.77; 18.27) 
11.16  

(-0.87; 23.23) 
-2.91 

(-14.96; 9.19) 

Controlled drainage area  
-1.02 

(-4.67; 2.65) 
9.70 

(5.87; 13.55) 
9.87  

(6.29; 13.42) 
-4.20 

(-7.72; -0.70) 
* Confidence intervals are in parentheses  
 

 

Table 5 shows that the overall estimate of the yield effect for the controlled drainage area 

is negative and negligible in 2006 (-1.02 bu/a, -0.6% of the average whole field yield) and 

positive in 2005 (+9.70 bu/a, +5.6% of the average whole field yield). The greatest impact of 

controlled drainage on yields is in the year 2005 with a negligible negative impact in 2006 (see 

Figure 3a). The overall yield estimate for the controlled treatment area was calculated by 

summing over per cell yield effects in that part of the field. 
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Figure 3a. Controlled Drainage (SEM-RE Model) Impact (bu ac–1) on Yields 
(Davis, Field W, North East Quadrant – Controlled Drainage Treatment Area) 

 

4.2.2 Davis, Field W, West  

Table 6 presents the results of the a-spatial random effects (RE model, column a) and spatial 

error  random effects model (SEM-RE model, column b). Table 6 shows that the controlled 

drainage impact on yields is 12.969.470.5/ +−=ΔΔ SlopeElevationDY  and 

95.469.470.5/ −−=ΔΔ SlopeElevationDY  for the 2006 and 2005 years, respectively. 

Evaluated at mean topological values in the field, controlled drainage is negatively associated 

with corn yields in 2005 (-2.81 bu/a) and positively in 2006 (11 bu/a). Controlled drainage has a 

significant impact on yields (at the 1% level) in both 2005 and 2006 years, with a corresponding 

LR test of 154 and 167 for 2006 and 2005 respectively, under the )3(2χ  distribution. 
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Table 6. Pooled estimates of corn yields, Davis, Field W, West 
Dependent variable: yields. T=6 and N=1953* 

Dependent variable: yields RE SEM-RE 
Constant  81.977*** 

(1.004) 
85.579*** 

(1.394) 
Elevation 10.033*** 

(1.685) 
7.944*** 
(2.819) 

Slope 1.911  
(2.582) 

-1.702  
(3.241) 

Drainage ×  Elevation -4.636*** 
(1.762) 

5.704** 
(2.837) 

Drainage ×  Slope -6.654*** 
(1.793) 

-4.694** 
(2.382) 

Rain ×  Elevation -2.628*** 
(0.310) 

-2.151*** 
(0.548) 

Rain ×  Slope 0.594 
(0.470) 

1.162* 
(0.618) 

2006 70.386*** 
(0.794) 

67.411*** 
(1.644) 

2005 77.841*** 
(1.070) 

74.055*** 
(2.033) 

2003 46.650*** 
(1.354) 

38.276*** 
(2.446) 

2001 93.513*** 
(0.756) 

89.727*** 
(1.536) 

1998 58.749*** 
(0.627) 

55.577*** 
(1.367) 

Drainage ×  2006 17.515*** 
(1.642) 

9.124*** 
(2.719) 

Drainage ×  2005 -4.606*** 
(1.625) 

-4.954* 
(2.692) 

Spatial autocorrelation 
- 

0.822*** 
(0.007) 

R-squared  0.71 0.95 

LIK -52051 -52051 
*Standard errors are in parentheses 
 

 

Table 5 shows that the overall estimate of the yield effect for the controlled drainage area 

is negative in 2005 (-4.20 bu/a, -2.6% of the average whole field yield) and positive in 2006 

(+9.87 bu/a, +6.5% of the average whole field yield). Figure 3b visualized the impact of 

controlled drainage on yields which is positive throughout the field in 2006 but not in 2005 when 

it is negative.   
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Figure 3b. Controlled Drainage (SEM-RE Model) Impact (bu ac–1) on Yields 
(Davis, Field W, South West Quadrant – Controlled Drainage Treatment Area) 

 

5. Conclusions 

This study shows that spatial panel data models can be applied to an econometric analysis of 

farm-scale precision agriculture information in data rich environments with independent 

variables that vary over time and space. The application deals with the assessment of the impact 

of controlled drainage technology on corn yields for two sides of one field in Indiana. Using 

field-level yield monitor data, the yield response equation is estimated using spatial panel 

econometric models, namely the spatial autoregressive error random effects model with both 

spatial and temporal heterogeneity incorporating spatial dependence in the error term, while 

controlling for the topography, weather and the controlled drainage treatment. The use of random 

effects allows for the disentanglement of the effects of spatial dependence from spatial 

heterogeneity and omitted variables, and thus, is necessary to properly investigate the yield 

response. The results show that the relationship between controlled drainage and corn yields is 

quite variable across years and fields. The effect is generally positive, but varies widely from 
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year to year and field-to-field. Evaluated at mean elevation and slope in the field, controlled 

drainage is associated with 10 bu/a increase and a 0.6 bu/a decrease in yields in 2005 and 2006 

respectively for the East part of the field. In the west part of the field, controlled drainage is 

associated with a 11 bu/a increase in 2006 and 2.81 bu/a decrease in 2005. The overall estimates 

of the yield effect for the controlled drainage area show that controlled drainage is associated 

with a decrease in yields in 2005 (-4.20 bu/a , -2.6%, West) and 2006 (-1.02 bu/a, -0.6% East) 

and an increase in yields in both 2005 (9.70 bu/a, +5.6%, East) and 2006 (9.87 bu/a, +6.5%, 

West). The overall yield impact over the two years and two fields averaged 2.2% of average 

whole field yield. 

This paper shows both results regarding controlled drainage impact on corn yields and a 

method of how to analyze precision agriculture data over time, by using GIS and spatial panel 

methods. Precision agriculture researchers can use the applied frameworks for modeling crop 

sensor data over time, to better evaluate the effect of various management practices and better 

understand the complex crop growth phenomena studied in precision agriculture. Regarding the 

implications for drainage management, the results have to be interpreted cautiously, due to 

drainage management issues. The experimental field was not under controlled drainage over the 

winter period, as environmental best practices would require (Frankenberger et al. 2007). More 

data is needed for more precise results. Inferences cannot be generalized to all the fields in the 

Midwest or beyond, since the analysis focuses on within field variations. Future research 

incorporating spatial correlation in the random effects may be a useful extension of the approach 

adopted here.  
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Notes 

1 The procedure of averaging the yields in the grids induce heteroskedasticity because the 

variance will generally depend on the number of points per cell. This is difficult to incorporate in 

the regression models, because some grid cells only contain one observation 

2 The inverse weighted distance (IDW) method assignes values to unknown points by using 

values from known points. For p, any positive real number called the power parameter, the value 

of the interpolated point is ∑∑ ==

N

i p
i

N

i p
i

i

dd

Z
11

1
where iZ  is a known value at each point i , N the 

total number of known points used in interpolation, and d  the distance from the known value to 

the unknown value. 
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