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Statistical Models in Environmental and Life Sciences 
 

Lakshminarayan Rajaram 

ABSTRACT 

The dissertation focuses on developing statistical models in environmental and 

life sciences.  

The Generalized Extreme Value distribution is used to model annual monthly 

maximum rainfall data from 44 locations in Florida. Time dependence of the rainfall data 

is incorporated into the model by assuming the location parameter to be a function of 

time, both linear and quadratic. Estimates and confidence intervals are obtained for return 

levels of return periods of 10, 20, 50, and 100 years. Locations are grouped into statistical 

profiles based on their similarities in return level graphs for all locations, and locations 

within each climatic zone. 

A family of extreme values distributions is applied to model simulated maximum 

drug concentration (Cmax) data of an anticoagulant drug. For small samples (n ≤ 100) data 

exhibited bimodality. The results of investigating a mixture of two extreme value 

distributions to model such bimodal data using two-parameter Gumbel, Pareto and 

Weibull concluded that a mixture of two Weibull distributions is the only suitable model. 

 xi

)For large samples ( , C100>n max data are modeled using the Generalized Extreme 

Value, Gumbel, Weibull, and Pareto distributions. These results concluded that the 

Generalized Extreme Value distribution is the only suitable model. 



 xii

A system of random differential equations is used to investigate the drug 

concentration behavior in a three-compartment pharmacokinetic model which describes 

coumermycin’s disposition. The rate constants used in the differential equations are 

assumed to have a trivariate distribution, and hence, simulated from the trivariate 

truncated normal probability distribution. 

Numerical solutions are developed under different combinations of the covariance 

structure and the nonrandom initial conditions. We study the dependence effect that such 

a pharmacokinetic system has among the three compartments as well as the effect of 

variance in identifying the concentration behavior in each compartment. We identify the 

time delays in each compartment. 

We extend these models to incorporate the identified time delays. We provide the 

graphical display of the time delay effects on the drug concentration behavior as well as 

the comparison of the deterministic behavior with and without the time delay, and effect 

of different sets of time delay on deterministic and stochastic behaviors. 
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Chapter One 

Review of Literature and Statistical Modeling Using Extreme Value Distributions 

1.0 Introduction and the Focus of Chapter One 

In real life, examples such as “How tall should one design an embankment so that 

the sea reaches this level only once in 100 years?”; “What is the lowest value the Dow 

Jones Industrial Average can reach in the next three years”?; “How high can the drug 

concentration in bloodstream go before causing toxicity? require estimation. But since no 

data or only few have been observed – as by definition extreme events are rare – a branch 

of statistics that helps us to deal with such rare situations and that gives a scientific 

alternative to pure guesswork is the Extreme Value Theory (EVT). 

The explosion of the space shuttle Challenger in 1983 was the consequence of an 

extreme event: the exceptionally low temperature (15o F lower than the next coldest 

previous launch) the night before launching ultimately led to failure of the O-rings 

(objects that are used to seal mechanical parts against fluid movement, air or liquid) 

which caused the disaster. Using standard EVT-analysis, one could have predicted that 

one should not launch at such cold temperature, despite having no measurements at such 

low temperatures.  

If one seeks to estimate about everyday events, it might not matter if extreme data 

are cut off. But if one asks questions about events that do not happen very often, one 

should apply Extreme Value Theory; especially as these are the situations where one has 

the most to lose or win. For the layperson, events such as earthquakes, hurricanes, and 
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stock market crashes seem to follow no rule, but careful analysis has helped to discover 

distributions that acceptably model these extreme events [19].  

The most important feature of an extreme value analysis is the objective to 

quantify the stochastic behavior of the maximum and the minimum of i.i.d. random 

variables. The distributional properties of extremes (maximum and minimum), extreme 

and intermediate order statistics, and exceedances over high (or below low) thresholds 

are determined by the upper and lower tails of the underlying distribution. The extreme 

value analysis requires the estimation of the probability of events that are more extreme 

than any that have already been observed [23]. Extreme value theory is a unique 

discipline that develops statistical techniques for describing the unusual phenomena such 

as rainfall, floods, wind gusts, air pollution, earthquakes, risk management, insurance, 

and financial matters. 

Focus of Chapter One 

Section 1.1 contains an extensive literature review that describes the evolution of 

the extreme value theory (EVT) to its present status. Section 1.2 focuses on the 

probability framework for the EVT.  

Sections 1.3 through 1.7 present a survey of statistical modeling using 

Generalized Extreme Value (GEV), Gumble, Frechet, Weibull, and Generalized Pareto 

(GP) distributions. For each of these distributions, a thorough discussion of the 

probability density function, maximum likelihood estimation, quantile expression, and 

model diagnostics is given along with a numerical example for a few of them. 

Section 1.8 provides a brief overview of the aims and objectives of the present 

study with emphasis being placed on each research problem. 
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1.1 Literature Review of Extreme Value Theory 

Historically, work on extreme value problems can be traced back to as early as 

1709 when Nicholas Bernoulli discussed the mean largest distance from the origin given 

n points lying at random on a straight line of a fixed length t [45]. Probably the first paper 

that described an application of extreme values in flood flows was by Fuller [35] in 1914, 

and Griffith [44], in 1920, brought out an application while discussing the phenomena of 

rupture and flow in solids. A paper written in 1922 by von Bortkiewicz [12] may have 

contributed to a systematic development of extreme value theory. His paper dealt with the 

distribution of range in random samples from a normal distribution, and the concept of 

distribution of largest value was introduced for the first time. In 1923, von Mises [69] 

evaluated the expected value of this distribution, and Dodd [27] calculated its median and 

discussed some non-normal parent distributions. A paper that had more direct relevance 

to the extreme value theory was written in 1927 by Frechet [33] in which he discussed the 

asymptotic distributions of largest values. In 1928, Fisher and Tippett [31] published the 

results of their research into the same problem. In addition, they showed that extreme 

limit distributions can only be one of three types. In 1936, von Mises [70] presented 

sufficient conditions for the weak convergence of the largest order statistic to each of the 

three types of limit distributions given by Fisher and Tippett. In 1943, Gnedenko [43], in 

this breakthrough paper, presented a solid foundation for the extreme value theory and 

provided necessary and sufficient conditions for the weak convergence of the extreme 

order statistics. Gnedenko’s work was refined later on by many others that include 

Mejzler [68] in 1949 and de Haan [25] in 1970.  
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Following the theoretical developments of the extreme value theory during 1920s 

and mid 1930s, many scholarly papers dealing with the variety of practical applications 

of the theory were published in late 1930s and 1940s. E.J. Gumbel played a pioneering 

role during 1940s and 1950s, and from the application point of view, he made many 

significant contributions to the extreme value theory. He presented all of these in his 

statistics of extremes [45, 46] in 1958 and this work was pivotal in promoting extreme 

value theory as a tool for modeling the extremal behavior of observed physical processes. 

The Generalized Extreme Value (GEV), Gumbel, Frechet, Weibull, and the Generalized 

Pareto (GP) distributions are just the tip of the iceberg of an entirely new and quickly 

growing branch of statistics. The Gumbel distribution has light or medium tails, Frechet 

distribution has heavy tails, and Weibull distribution has bounded or short tails. The 

Pareto distribution is used to model how income is distributed, and to estimate finite limit 

of human lifespan [1].  

Since the publication of Gnedenko’s limit theorem [42] for maxima in 1941, and 

Gumbel’s statistics of extremes, extreme value theory has found applications in 

engineering, environmental modeling, and finance [84]. Some recent applications of 

Gumbel distribution have been for fire protection and insurance problems [76], the 

prediction of earthquake magnitudes, modeling of extremely high temperatures [16], and 

the prediction of high return levels of wind speeds relevant for the design of civil 

engineering structures [71]. Recent applications of Frechet include estimation of the 

probabilities of extreme occurrences in Germany’s stock index and prediction of the 

behavior of solar proton peak fluxes [15, 100]. Weibull applications include modeling of 

failure strengths of load-sharing and window glasses [49, 8], analysis of corrosion 
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failures of lead-sheathed cables at the Kennedy Space center [62], and estimating the 

occurrence probability of giant freak waves in the sea area around Japan [101]. Internet 

traffic, structural reliability and biotech analyses are few of the other prime targets for 

EVT applications, as their data distributions display heavy tails, too. Another more recent 

application of EVT is in the finance industry. A quantity known as Value-at-Risk (VaR) 

has become the standard risk measurement to protect portfolio holders against adverse 

market conditions and prevent them from taking extraordinary risks [5, 6]. The VaR is 

defined as the α-quantile of the Profit-and-Loss (P&L) distribution of value Vt at time t 

over the holding period, or horizon, h. Existing standard methods to calculate VaR 

assume normality of the data which is inappropriate since the unconditional distribution 

of financial time series is known to be heavy-tailed. This gave birth to the use of EVT 

methods to model the tail and to estimate VaR more reliably. In 1975, Canfield [17], and 

Canfield and Borgman [18] have discussed the usefulness of this distribution to model 

time-to-failure data in reliability studies. In 1986, Rossi et al. [78, 79, 10] proposed a 

two-component extreme value distribution for flood frequency analysis.  In 1987, Achcar 

et al. [3] have discussed the advantage of transforming a survival data to Gumbel 

distribution form before analyzing it. 



1.2 Probability Framework for Extreme Value Theory 

Extreme Value Theory (EVT) is the study of probabilistic extremes and focuses 

primarily on the asymptotic behavior as sample size approaches infinity [23]. Let 

be a sequence of independent random variables having a common 

distribution, F. The model focuses on the statistical behavior of 

nXXX ,,........., 21

},......,,max{ 21 nn XXXM =  

where  usually represent values of a process measured on a regular time scale, for 

example, hourly measurements of stock prices or plasma drug concentrations over a 

certain period, so that  represents the maximum of the process over n time units of 

observation.  If n is the number of observations in a day, then corresponds to the daily 

maximum.  

s
iX

nM

nM

In theory, the distribution of can be derived exactly for all values of n: nM

    )(}Pr{.........}Pr{                   

}...,,.........Pr{}Pr{

1

1

zFzXzX

zXzXzM
n

n

nn

=≤••≤=

≤≤=≤
      (1.1) 

The difficulty that arises in practice is the fact that the distribution function F is 

unknown. One possibility is to use standard statistical techniques to estimate F from 

observed data, and then substitute this estimate into (1.1). But very small discrepancies in 

the estimate of F can lead to substantial discrepancies for nF . This leads to an approach 

based on asymptotic argument which requires determining what possible limit 

distributions are possible for asnM ∞→n . The question then is “what are the possible 

limit distributions in the extremal case?” 
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The same problem arises in classical statistics when we insist that with probability 

1, nX  converges to the population mean. In Central Limit Theorem (CLT), this problem 

is resolved by allowing a linear scaling, so that )1,0(N
X

n

nn →
−
σ

μ
 where μμ =n  and 

nn
σσ =  are linear re-scalings which prevent the degenerate limits. 

The same approach is adopted in obtaining the limits of the distribution of , 

looking instead for limiting distributions of 

nM

n

nn

a
bM −

 where are sequences of 

normalizing coefficients such that 

nn ba  and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

n

nnn

a
bM

F  leads to a non-degenerate distribution 

as  Specifically, we seek .∞→n { } { }nn ba  and 0>  such that ( )zG
a

bM
F

n

nnn →⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −  

where does not depend on n.  )(zG

Extremal Types Theorem : If there exist sequences of constants { } { }nn ba  and 0>  

such that, as   ,∞→n  )(Pr zGz
a

bM

n

nn →
⎭
⎬
⎫

⎩
⎨
⎧

≤
− where G is a non-generate distribution 

function, then, G belongs to one of the following families [23]: 

I. ;    ,expexp)( ∞<<∞−
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−−= z
a

bzzG  

II. 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

−

≤

= −

         ;          ,exp

b; z                                    0,

)(
bz

a
bzzG α  
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III. 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≥

<
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−−
=

        ;                                       ,1

,        ,exp
)(

bz

bz
a

bz
zG

α

 

for parameters and, in the case of II and III, (location)  ,0(scale)  ba > .0(shape) >α  

In words, the theorem states that the rescaled sample maxima 
n

nn

a
bM −

 converge 

in distribution to a variable having a distribution within one of these families labeled I, II, 

and III. Collectively, the three classes of distribution are referred to as the extreme value 

distributions. The remarkable feature of this result is that the three types of extreme value 

distributions are the only possible limits for the distributions of
n

nn

a
bM −

, regardless of 

the distribution F for the population. It is in this sense that the above theorem provides an 

extreme value analog of the central limit theorem. 

The three types of limits that arise in Extremal Types Theorm have distinct forms 

of behavior, corresponding to the different forms of tail behavior for F of . These 

distinct forms can be made precise by looking at the behavior of G at its upper-end 

point  For the Weibull distribution is finite, while for both the Frechet and Gumbel 

distributions .  

iX

.+z +z

∞=+z

The three families of distributions - Gumbel, Frechet, and Weibull - can be 

combined into a single family of models having distribution functions of the form 

     1exp)(
1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+−=
−
ξ

σ
μξ zzG         (1.2) 
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}defined on ( ){ ,0/1: >−+ σμξ zz where the parameters satisfy -∞ < µ < ∞, σ > 0 and -∞ 

< ξ < ∞ [23]. 

The equation (1.2) above is the generalized extreme value family of distributions. 

This was obtained independently by Von Mises [70] and Jenkinson [54]. Equation (1.2) 

can be written as: 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=∞<<∞
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ −
−−

>∞<≤

<≤<∞
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+−

=

−

0;for   z  -                     expexp

0;for    -                                                 

;0for   -z-         1exp

)(

1

ξ
σ
μ

ξ
ξ
σμ

ξ
ξ
σμ

σ
μξ

ξ

z

z

z

zG        (1.3) 

The parameters of this distribution are ξ (shape), µ (location), and σ (scale). The 

distribution in (1.3) is also referred to as the von Mises type extreme value distribution or 

the von Mises-Jenkinson type distribution. 

Shape Parameter ( )ξ  

The importance of the shape parameter ξ is apparent from the above equations. If 

ξ is negative, the quantities are bounded above, and any extrapolation will lead to a finite 

limit. On the other hand if it is 0 or positive, then the limiting quantity is unbounded, and 

extrapolation leads to an infinite limit. The shape parameter ξ determines the shape, and 

depending on its value, the function can change drastically. From the sensitivity to the 

shape parameter, it is obvious extreme values will change drastically depending on the 

value of the shape parameter.  



• The Type I (Gumbel) class of extreme value distribution is obtained in the limit as 

.0→ξ  This is the case of an exponentially decreasing tail.  

• The Type II (Frechet) class of extreme value distribution corresponds to 

case 0>ξ . When 0>ξ , the GEV distribution has a finite lower end point, given 

by ξσμ /− . This is the case of a polynomially decreasing tail function and 

therefore, corresponds to a long-tailed parent distribution. 

• The Type III (Weibull) class of extreme value distribution corresponds to 

case 0<ξ . When 0<ξ , the GEV has a finite upper end point, also given 

by ξσμ /− . The case 0<ξ  is that of a finite upper endpoint, and is therefore 

short-tailed. 
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1.3 Generalized Extreme Value Distribution 
 
1.3.1 Probability Density Function and Maximum Likelihood 

 The probability density [60] function corresponding to the equation (1.3) is 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∞<≤∞
⎭
⎬
⎫

⎩
⎨
⎧

>∞<≤

<≤<∞
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

+

=

−
−

−
−

−
−−

0  for          z-                                        1e - exp

0;for     -                                                                            

0;for   -z-        -z11 1- exp

)(

1
11

ξ
σ

ξ
ξ
σμ

ξ
ξ
σμ

σ
μξ

σσ
μξ

σ
μ

σ
μ

ξξ

zz

e

z

z

zg   (1.4) 

 The standard forms of the probability density function and cumulative distribution 

function for the GEV distributions are obtained from the equations (1.4) and (1.3), 

respectively, by taking 1 and 0 == σμ . 

Maximum Likelihood Estimation 

Suppose we have n observations Z1, Z2, Z3, . .. . , Zn for which the GEV 

distribution (1.3) is appropriate [23]. The log-likelihood for GEV parameters when ξ ≠ 0 

is 

  ,11log11log),,(

1

11

ξ

σ
μ

ξ
σ
μ

ξ
ξ

σξσμ

−

==
∑∑ ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠

⎞
⎜
⎝

⎛
+−−=

n

i

i
n

i

i zz
nl     (1.5) 

provided that  ,.....,2,1for   ,01 ni
zi =>⎟

⎠
⎞

⎜
⎝
⎛ −

+
σ
μ

ξ        (1.6) 

At parameter combinations for which (1.6) is violated, corresponding to a 

configuration for which at least one of the observed data falls beyond an end-point of the 

distribution, the likelihood is zero and the log-likelihood is -∞. 
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The caseξ = 0 requires separate treatment using the Gumbel limit of the GEV 

distribution. This leads to the log-likelihood 

    explog),(
11
∑∑
== ⎭

⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

−−⎟
⎠
⎞

⎜
⎝
⎛ −

−−=
n

i

i
n

i

i zz
nl

σ
μ

σ
μ

σσμ       (1.7) 

Maximization of the pair of equations (1.5) and (1.7) with respect to the 

parameter vector ),,( ξσμ leads to the maximum likelihood estimate with respect to the 

entire GEV family. There is no analytical solution, but for a given dataset the 

maximization is straightforward using standard numerical optimization algorithms [23].  

The maximum likelihood estimators are the values of the unknown parameters 

that maximize the log-likelihood. In practice these are local maxima found by nonlinear 

optimization. The regularity conditions that are required for the usual asymptotic 

properties associated with the maximum likelihood estimator are not satisfied by the 

GEV model because the end-points of the GEV distribution are functions of the 

parameters; 
ξ
σμ − is an upper end-point of the distribution when ,0<ξ and a lower end-

point when .0>ξ  The violation of the regularity conditions means that the standard 

asymptotic likelihood results are not automatically applicable. Smith [80] studied this 

problem and obtained the following results:  

• When 1−<ξ , maximum likelihood estimators are unlikely to be obtainable. 

• When 2
11 −<<− ξ  maximum likelihood estimators are generally obtainable, 

but do not have the standard asymptotic properties.  

• When 2
1>ξ , the second and higher moments do not exist.  
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The standard asymptotic results of consistency, asymptotic efficiency and 

asymptotic normality hold for these distributions when 2
1−>ξ . 

The elements of the matrix of second-order partial derivatives, evaluated at the 

maximum likelihood estimators, are known as the observed information matrix, and the 

inverse of this matrix is the variance-covariance matrix of the maximum likelihood 

estimators. The square roots of the diagonal entries of this inverse matrix are estimates of 

the standard deviations of the three parameter estimates, widely known as standard 

errors of those estimates. All these results are asymptotic approximations valid for large 

sample sizes, but in practice they are widely used even when the sample sizes are fairly 

small. 

1.3.2 Quantile 

The interest is in the quantile for whichpz pzG p −= 1)( , where G denotes the 

cumulative distribution function (cdf). Estimates of extreme quantiles are obtained by 

inverting  1exp)(
1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+−=
−
ξ

σ
μξ zzG as follows: 

 { }[ ]ξ
ξ
σμ −−−−−= )1log(1 pz p , where pzG p −= 1)(  

 
{ }[ ]

{ } ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

≠−−−−
=

−

0for                      p)-log(1-log-

0for            )1log(1

ξσμ

ξ
ξ
σμ ξp

z p     (1.8) 

pz is the return level associated with the return period (1/p), since to a reasonable degree 

of accuracy, the level is expected to be exceeded on average once every (1/p) years, pz
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and more precisely, is exceeded by the maximum in any particular year with 

probability . 

pz

p

1.3.3 Model Diagnostics 

For checking the validity of a GEV model, graphical goodness-of-fit checks such 

as probability, quantile, return level and density plots are discussed next [23]. 

Probability Plot: The probability plot is a comparison of the empirical and fitted 

distribution functions. With ordered data )()2()1( ...... nzzz ≤≤≤ , the empirical distribution 

function evaluated at is given by )(iz ( )1/)(~
)( += nizG i  

By substituting the GEV parameter estimates into equation (1.4), the corresponding 

model based estimates are
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−=

−
ξ

σ
μ

ξ
ˆ

1

)(
)( ˆ

ˆˆ1exp)(ˆ i
i

z
zG .  

If the GEV model fits the data well, )(~ )(ˆ
)()( ii zGzG ≈  for each i, so a probability 

plot, consisting of the points ( ){ }nizGzG ii ,.......2,1,)(ˆ),(~
)()( =  should lie close to the unit 

diagonal. The drawback of the probability plot for extreme value models is that 

)(~ and )(ˆ
)()( ii zGzG  are bound to approach 1 as  increases. Since the accuracy of the 

model for large values of z is of interest in extreme value problems, the probability plot 

seems to provide inadequate information in the region of most interest.  

)(iz
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Quantile Plot: The deficiency of the probability plot can be eliminated by the 

quantile plot, consisting of the points 
⎭
⎬
⎫

⎩
⎨
⎧

=⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
− niz

n
iG i ,...2,1,,

1
ˆ

)(
1  where 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

+
−−−=⎟

⎠
⎞

⎜
⎝
⎛

+

−
−

ξ

ξ
σμ

1
log1ˆ

ˆˆ
1

ˆ 1

n
i

m
iG  

If the GEV model is an adequate fit, then the points on the quantile plot should lie close 

to a unit diagonal. 

Return Level Plot: Since quantiles enable probability models to be expressed on 

the scale of data, the relationship of the GEV model to its parameters is most easily 

interpreted in terms of the quantile expression (1.8). Suppose we define )1log( py p −−= . 

Then, 
[ ]

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

≠−−
=

−

0for           )log(y-

0,for       1

p ξσμ

ξ
ξ
σμ ξ

p
p

y
z  

 Suppose is plotted against on a logarithmic scale (or equivalently, if is 

plotted against ).  The plot is linear for

pz py pz

pylog 0=ξ . If ,0<ξ the plot is convex with 

asymptotic limit as at0→p ξσμ /− . If ,0>ξ the plot is concave and has no finite 

bound [23]. 

This graph is a return level plot. The return level plots are convenient for both 

model presentation and validation. The tail of the distribution is compressed so that return 

level estimates for long return periods are displayed, while the linearity of the plot in the 

case 0=ξ  provides a baseline against which to judge the effect of the estimated shape 

parameter. Confidence interval and empirical estimates of the return level function enable 

the return level plot to be used as a model diagnostic. If the GEV model is an adequate fit 
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for the data, the model-based curve and empirical estimates should be in reasonable 

agreement [23]. 

Interpretation of a T-year Return Level: If P(z) is the probability of a level z being 

exceeded in a single year, then that level is often said to have a return period, which is in 

the inverse of P(z) years. For example, a sea level having a probability of being exceeded 

in a year of 0.01 is said to have a return period of 100 years. A sea level that has a 

probability of being exceeded once in hundred years is called the 100-year return level.  

Density Plot: The probability, quantile and return level plots are based on a 

comparison of model-based and empirical estimates of the distribution function. Another 

diagnostic is based on the comparison of the probability density function of a fitted model 

with the histogram of the data. This comparison is less informative than the previous 

plots since the form of a histogram depends on the choice of grouping interval. There is 

no unique estimator of a density function, and hence, the comparison is more difficult and 

subjective. 

1.3.4 GEV Modeling of Non-stationary Processes 

A process is referred to as a non-stationary process if its characteristics change 

systematically with respect to change in time [23]. For example, the basic level of the 

annual maximum rainfall may change linearly over an observation period. If the 

distribution to be used is GEV, then it follows that a suitable model for Xt, the annual 

maximum rainfall level in year t can be written as Xt ⊕ GEV (µ(t), σ, ξ), where µ(t) = β0 

+ β1t for parameters β0 and β1. This models the variations through time in the observed 

process as a linear trend in the location parameter of the generalized extreme value model. 

The parameter 1β represents the annual rate of change in annual maximum rainfall. 
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More complex changes in the location parameterμ may be modeled as a quadratic 

model given by  2
210)( ttt βββμ ++=

 Non-stationarity can also be expressed in terms of other extreme value 

parameters such as where the exponential function is used to ensure that the 

positivity of

tet 10)( ββσ +=

σ is respected for all values of t. Modeling the extreme value model shape 

parameters as a smooth function of time is rather unrealistic since the shape parameters 

are difficult to estimate with precision [23]. 

An existence of a situation in which the extremal behavior of one series being 

related to that of another variable, referred to as a covariate, is a possibility. For example, 

in the statistical modeling of maximum drug concentrations in a pharmacokinetic study 

using extreme value theory, the variable, age, can be one of the covariates. 
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1.4 Gumbel Distribution 

The Type I extreme value distribution has two forms. One is based on the smallest 

extreme and the other is based on the largest extreme. These are referred to as the 

minimum and maximum cases, respectively. The Gumbel distribution is also referred to as 

a Type I extreme value distribution or log-Weibull distribution. 

1.4.1 Probability Density Function and Maximum Likelihood 

Probability Density Function 

Maximum Case: The probability density function of the Gumbel distribution is 

⎥
⎦
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zzzf expexp1)(  whereμ is the location parameter 

andσ is the scale parameter.  

Minimum Case: The probability density function of the Gumbel distribution is  

⎥
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zzzf expexp1)(  whereμ is the location parameter andσ is 

the scale parameter.  

Cumulative Distribution Function 

Maximum Case: The cumulative distribution function of the Gumbel distribution is 

∞<<−∞
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
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⎜
⎝
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Minimum Case: The cumulative distribution function of the Gumbel distribution is 

∞<<−∞
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Maximum Likelihood Estimation 

From equation (1.5), the log-likelihood for the GEV parameters when ξ ≠ 0 is 
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When 0→ξ , (1.9) reduces to the log-likelihood function (23) for Gumbel distribution as 
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In order to find the MLEs of σμ  and , we need to maximize (1.10). We first set  

.0 and 0 =
∂
∂

=
∂
∂

σμ
ll

 

After some mathematical manipulations, we get two equations with two unknowns, 
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These equations can be solved numerically to obtain σμ ˆ and ˆ . 
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The corresponding 95% confidence intervals for σμ ˆ and ˆ given by 
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1.4.2 Quantile 

The interest is in the quantile, , for whichpz pzF p −= 1)(  where F denotes the 

cumulative distribution function given by 

 ⎟
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Inverting  for the above form ofpzF p −= 1)( F , we get { })1log(log pz p −−−= σμ  

and hence, the MLE of pzF p −= 1)(  is given by 

{ pz p }−−−= 1log(logˆˆˆ σμ             (1.14) 

1.4.3 Model Diagnostics  

Quantile-Quantile (Q-Q): The Q-Q plot is a graphical tool to assess the fit of the 

model to the data. For the Gumbel distribution, the Q-Q plot is  where  

are obtained by arranging the data in the ascending order so that 

( )ii zy   versus s
iz )(

( ) ( ) ( )nzzz <<< .....21 are 

known as the order statistics or the observed quantiles, and , known as the expected 

quantiles, are computed using

s
iy

.,....3,2,1  ,1lnlnˆˆ ni
i

nyi =⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

−= σμ  

If the points lie close to the 45 degree straight line it is an indication of an 

adequate fit of the Gumbel distribution to the data [23]. 
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Gumbel Probability Plot: The Gumbel probability plot is the plot of  

where  are the observed data points that are sorted from the smallest to the largest to 

form the order statistics,

( )ii zy   versus

s
iz )(
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The probability plot for the Gumbel distribution will be linear if and only if the plot of 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎠

⎞
⎜
⎝

⎛
⎟
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⎞

⎜
⎝
⎛ +

−
i

nz i
1lnln ,)( is linear for i = 1, 2, 3, ……n.  

If the plot produces points that fall close to a straight line, then the Gumbel 

distribution is a reasonable model. 

1.4.4 Statistical Modeling of Annual Maximum Discharge 

Following are the data that consist of n = 59 annual maximum discharges of 

Feather River in ft3/sec from 1902 to 1960 [22, 26]. 

230000, 203000, 185000, 185000, 152000, 140000, 135000, 128000, 122000, 118000, 

113000, 110000, 108000, 102000, 102000, 94000, 92100, 85400, 84200, 83100, 81400, 

81000, 80400, 80100, 75400, 65900, 64300, 62300, 60100, 59200, 58600, 55700, 54800, 
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54400, 46400, 45600, 42400, 42400, 42000, 36700, 36400, 34500, 31000, 28200, 24900, 

23400, 22600, 22400, 20300, 19200, 16800, 16800, 16400, 16300, 14000, 13000, 11600, 

8860, 8080  

The probability plot in Figure 1.4.1 seems linear, implying the adequacy of the 

Gumbel model to fit to the data. The maximum likelihood parameters were computed 

as 4.47309ˆ =μ and 1.37309ˆ =σ .  

Plot of (-ln(ln((n + 1)/i))) vs Annual Maximum Flood Levels
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Figure 1.4.1 Probability plot for the annual maximum discharges of Feather River. 

The probability that the maximum flood level observed during a given year does 

not exceed a certain level L is given by ( )LZP j ≤ . In the data set the largest value 

observed is 230,000. Therefore, the probability of exceeding this value of 230000 in any 

given year can be calculated as follows [22]: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −
−−−=≤−=>

08825.37309
41816.47309230000expexp1)230000(1)230000( jj ZFZP  

That is,  .00744.0)230000( =>jZP
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Thus, the return period is 13400744.0
1 =  years. 

To compute T-year level u(T) (where u(T) = T year flood level) where T = 100 year

  )
T
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Therefore, the 100-year return level is 218937. The graph in Figure 1.4.2 displays the 

predicted return levels as a function of return period. 

Anticpated T-year level as a function of u(T) using estimates derived via MLE
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Figure 1.4.2 Graph of u(T) Threshold versus T-year for the annual maximum discharges 
of Feather River data set. 
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1.5 Frechet Distribution 

The Frechet is the second extreme value distribution, also known as the Type II 

extreme value distribution. It has wide ranging applications in engineering, 

environmental modeling, finance and other areas. Recent applications include prediction 

of solar proton peak fluxes and modeling interfacial damage in microelectronic packages 

and material properties of constituent particles in an aluminum alloy [96]. 

1.5.1 Probability Density Function and Maximum Likelihood 

When 0>ξ , the cumulative distribution function of the GEV distribution reduces 

to reduces to the cumulative distribution function for Frechet distribution given by 

    exp)(
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The corresponding probability density function is given by 
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where σμξ  and ,  are the shape, location and scale parameters, respectively. 

Maximum Likelihood Estimation 

For a random sample , the likelihood function is given by nzzz ,,........., 21
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The maximum likelihood estimates are obtained by setting [96, 65] ξσμ ˆ and ,ˆ,ˆ

ly.respective ̂ and ,ˆ ,ˆat  0log and ,0log ,0log ξξσσμμ
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After some mathematical simplification, we get the equations 
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These equations can be solved numerically to obtain the estimates . ξσμ ˆ and ,ˆ,ˆ

1.5.2 Quantile 

The interest is in the quantile for whichpz ( ) ,1 pzF p −= where F denotes the 

cumulative distribution function [96]. Inverting pzF p −= 1)(  for , )(zF
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  By the invariance property of the method of maximum likelihood, the mle of 

(1.19) is given by 

{ }    )1log(ˆˆˆ ˆ
1
ξσμ −−−+= pz p         (1.20) 

For large , we can assume that equation (1.20) is normally distributed with the 

mean given by equation (1.19) and the variance given by 

n
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The )%1(100 α− confidence interval for (1.19) is given by 

   )ˆ(ˆ
2

pp zVarzz α±           (1.21) 

where
2

αz is the )%
2

1(100 α
− percentile of the standard normal distribution [96]. 

1.5.3 Model Diagnostics  

Model diagnostics for Frechet distribution is examined through the P-P Plot and 

Q-Q Plot in the same way as it was done in the case of Gumbel distribution. 
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1.6 Weibull Distribution 

The Weibull is the third extreme value distribution, also known as the Type III 

extreme value distribution. It has wide ranging applications in engineering, 

environmental modeling, finance and other areas. Recent applications include evaluating 

the magnitude of future earthquakes in the Pacific, Argentina, Japan and in the Indian 

subcontinent [77]. 

1.6.1 Probability Density Function and Maximum Likelihood 

When 0<ξ , the cumulative distribution function of the GEV distribution reduces 

to the cumulative distribution function for Weibull distribution given by 

    exp1)(
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The probability density function for a 3-parameter Weibull model (61) is given by 
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where σμξ  and ,  are the shape, location and scale parameters, respectively. 

The pdf for a 2-parameter Weibull is obtained by setting µ = 0 in equation (1.22). 

The pdf for a 1-parameter Weibull is obtained by setting µ = 0 in equation (1.22) and 

assuming constant. == Cξ In the formulation of one-parameter Weibull we assume that 

the shape parameterξ is known a priori, from past experience. The advantage of doing 

this is that data sets with fewer observations can be analyzed. 
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Maximum Likelihood Estimation 

For a random sample , the likelihood function is given by nzzz ,,........., 21
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The maximum likelihood estimates are obtained by setting ξσμ ˆ and ,ˆ,ˆ
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After some mathematical simplification, we get the equations 
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These equations can be solved numerically to obtain the estimates . ξσμ ˆ and ,ˆ,ˆ

1.6.2 Quantile 

The interest is in the quantile for whichpz ( ) ,1 pzF p −= where F denotes the 

cumulative distribution function given by 
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μzzF exp1)( , where σμξ  and , are as described above.  

Inverting  for the above form of F, the expression for quantile is given by, pzF p −= 1)(
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By the invariance property of the method of maximum likelihood, the mle of (1.26) is 

given by { }   )log(ˆˆˆ ˆ
1
ξσμ pz p −+=         (1.27) 

For large n, we can assume that equation (1.27) is normally distributed with the 

mean given by equation (1.26) and the variance given by 
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The )%1(100 α− confidence interval for (1.26) is given by 

      )ˆ(ˆ
2

pp zVarzz α±           (1.28) 

where
2

αz is the )%
2

1(100 α
− percentile of the standard normal distribution. 

1.6.3 Model Diagnostics  

Model diagnostics for Weibull distribution is examined through the P-P Plot and 

Q-Q Plot in the same way as it was done in the case of Gumbel distribution. 
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1.6.4 Statistical Modeling of Annual Maximum Storm Surge 

Storm surge return periods are useful to land use planners and emergency 

managers for assessing the likelihood of extreme water depths associated with tropical 

cyclones [45, 46]. At a given location, it is desirable to determine sound statistical 

estimates of return periods (for 20, 25, 50, 100-year epochs) and corresponding 

assessments of uncertainty due to both limitations in the historical record and effects of 

parameter estimation. Using the historical storm set consisting of 951 North Atlantic 

tropical cyclones for the period 1886-1996 for one particular location a total of 111 

annual maximum storm surges were obtained.  This example is discussed in detail in 

Caribbean Storm Surge Return Periods: Final Report by Mark E. Johnson, December 

1997 [55]. These 111 annual maximum storm surges are the data for fitting the model.  

  The parameter estimates for 2-parameter and 3-parameter Weibull fits are 

obtained using the Statistical Analysis Software (SAS) [91], version 9.1. In the case of 2-

parameter Weibull, the location parameter is assumed to be zero whereas in the case of 3-

parameter Weibull, it can be either set equal to a value less than the smallest data value or 

estimated. 

The graphs of the return levels for 3-parameter and 2-parameterWeibull 

distribution fits are displayed in Figure 1.6.1. It can be noted that they are almost similar 

in the prediction of the return levels. The maximum likelihood estimates of the shape and 

scale parameters for the two Weibull distributions are given in Table 1.6.1 



Table 1.6.1 Estimates of shape and scale parameters with their standard errors from 3-
parameter and 2-parameter Weibull fits on the dataset containing 111 annual maximum 
storm surges. 

 
MODEL σ (SE) ξ (SE) 
3-Parameter Weibull   0.247296 (0.0412) 0.601609 (0.0449) 
2-Parameter Weibull 0.291671 (0.0421) 0.696758 (0.0506) 

       
Estimates of storm surges based on MLE fit of 3-parameter Weibull 

distribution (n = 111)
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Estimates of storm surges based on MLE fit of 2-parameter Weibull 
distribution (n = 111)
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Figure 1.6.1 Estimates of storm surges based on MLE of 2- and 3-parameter Weibull 
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1.7 Generalized Pareto Distribution 

Introduction 

The principal drawback to the classical GEV/Gumbel method is that only one 

value is selected per epoch. This reduces the data available for analysis. To increase the 

number of cases for analysis, an alternative approach is to obtain “Peak-Over-Threshold 

(POT)” maxima, extracted from sample data series to produce a series of extreme values 

above a chosen (high) threshold, and use them with the Generalized Pareto Distribution. 

This is a common approach to extreme value statistics based on the exceedances over 

high thresholds [23, 81, 82, 83]. 

Probability Framework 

Let X1, X2, …… be a sequence of iid random variables, having marginal 

distribution function F. Let u be a certain high threshold value. Any Xi that exceeds u is 

considered an extreme event. Denoting an arbitrary term in the Xi sequence by X, it 

follows that a description of the stochastic behavior of extreme events is given by the 

conditional probability: 
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Let Mn = Max{X1, X2, . . . . . .,Xn}. Denote an arbitrary term in the Xi sequence by 

X, and suppose that F satisfies Extremal Type Theorem so that for large n, Pr{Mn ≤ z} ≈ 

G(z) where 
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1exp)( zzG  for some μ, σ > 0 and ξ. Then, for large 

enough u, the distribution function of (X – u), conditional on X > u, is approximately: 
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1.7.1 Probability Density Function and Maximum Likelihood 

Probability Density Function 

The probability density function, corresponding to the cumulative distribution 

function given in equation (1.29), is 
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where σ and ξ are the scale and shape parameters, respectively. 

The shape parameter ξ is dominant in determining the qualitative behavior of the 

GPD, just as it is for the GEV [23]: 

• when ξ< 0 the distribution of excesses has an upper bound of ( )ξσ /ˆ−u  
• when ξ > 0 the distribution has no upper limit.  
• when ξ = 0, the distribution is also unbounded, which should be interpreted by 

taking the limit of 
ξ

σ
ξ

1
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yyH as 0→ξ , leading 
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yeyH
y
σ  which corresponds to an exponential distribution with 

parameter σ̂/1 . 

Maximum Likelihood Estimation 

Suppose that the values are the k excesses of a threshold u. 

For

kyyy .,,........., 21

0≠ξ , the log-likelihood is derived as 
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In the case ,0=ξ the log-likelihood is obtained from σ̂1)(
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Analytical maximization of the log-likelihood is not possible, so numerical techniques are 

again required, taking care to avoid numerical instabilities when 0≈ξ in (1.32). 

1.7.2 Quantile 

It is more convenient to interpret extreme value models in terms of quantiles (or 

return levels). Suppose that a generalized Pareto distribution with parameters σ and ξ is a 

suitable model for exceedances of a threshold u by a variable X [23]. 
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provided m is sufficiently large to ensure that xm > u.   

xm is the m-observation return level. Plotting xm against m on a logarithmic scale 

produces the same qualitative features as return level plot based on GEV model: linearity 

if ξ= 0; convexity if ξ< 0; concavity if ξ> 0. 

It is more convenient to give quantiles or return levels on an annual scale, so that 

N-year return level is the level expected to be exceeded once every N years. If there are 

ny observations per year, this corresponds to the m-observation return level with m = N*ny. 

Hence, the N-year return level is given by 
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In order to find , we use the maximum likelihood estimates of σ and ξ , and an 

estimate of

Nz

uτ . The probability of an individual observation exceeding the threshold u 

is uτ . This has a natural estimator of ,/ˆ nku =τ  the sample proportion of observations 

exceeding u. Since the number of exceedances of u follows the binomial 

),( unB τ distribution, uτ̂ is also the maximum likelihood estimator of uτ .  

The variance of  can be derived by the delta method, but the uncertainty in the 

estimate of

mx

uτ  should also be included in the calculation. From the properties of the 

binomial distribution, ( ) nVar uuu /)ˆ1(ˆˆ τττ −≈ .  

Then, the complete variance-covariance matrix for ( )ξστ ˆ,ˆ,ˆu  is approximately 
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matrix of σ̂ and . By the delta method, where ξ̂ m
T
mm xVxxVar ∇∇≈   )ˆ(
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1.7.3 Model Diagnostics and Methods of Selecting a Threshold Value 

Model Diagnostics 

If the generalized Pareto model is reasonable for modeling excesses of u, then 

both probability plot and quantile plot are approximately linear. 

The return level plot consists of the locus of points ( ){ }mxm ˆ,  for large values of m 

where ( )[ ]1ˆ
ˆ
ˆˆ ˆ

−+= ξτ
ξ
σ

um mux  

The density function of the fitted generalized Pareto model can be compared to a 

histogram of exceedances. 

Methods of Selecting a Threshold Value 

Selecting an appropriate threshold value is very critical. Too low a threshold 

value is likely to violate the asymptotic basis of the model, leading to bias. Too high a 

threshold value might result in obtaining too few excesses, leading to high variance. The 

standard practice is to adopt as low a threshold as possible, subject to the limit model 

providing a reasonable approximation [23]. 

First Method: This method of selecting a threshold value is an exploratory 

technique carried out prior to model estimation. The method is based on the mean of the 

generalized Pareto distribution. This requires plotting the points 
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that exceed u, and is the largest of the . This plot is called mean residual life plot 

or the mean excess function [90]. This plot should be approximately linear in u above a 

threshold value at which the generalized Pareto distribution provides a valid 

approximation to the excess distribution. Confidence limits can be added to the plot based 

on the approximate normality of sample means. 

maxx iX

0u

Second Method: This method is an assessment of the stability of the parameter 

estimates based on the fitting of models across a range of different threshold values. 

Above a level at which the asymptotic motivation for the generalized Pareto 

distribution is valid, estimates of the shape parameter ξ should be approximately constant, 

whereas the estimates of

0u

uσ should be linear in u.  

1.7.4 Statistical Modeling of Daily Precipitation Data 

The data set used has n = 36524 observations during the time period 1900 – 1999 

for a single location in Fort Collins, Colorado, USA [59]. 

Exceedance rate (per year) = 10.24. The value of negative log likelihood is 109.91. 

The model diagnostic plots are displayed in Figure 1.7.1. 
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Table 1.7.1 Estimates of scale and shape parameters with standard errors from the 
generalized Pareto model on the Fort Collins precipitation data. 

 
PARAMETER ESTIMATE STANDARD ERROR 
σ (scale)  0.33972 0.0164  
ξ (shape) 0.18684 0.0374 

 

The Table 1.7.2 provides the estimates of shape parameter and 100-year return 

level with 95% profile likelihood confidence intervals. Figures 1.7.2 and 1.7.3 display the 

same results graphically. 

Table 1.7.2 95% Confidence interval estimation using profile likelihood for the GPD 
shape parameter and 100-year return level. 

 
PARAMETER ESTIMATE 95% CONFIDENCE INTERVAL 
Shape 
Parameter ( )ξ   

0.1868 ( )2650.0 ,1181.0  

100-year Return 
level  

5.2207  ( )82.6 ,24.4  
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Figure 1.7.1 Diagnostic plots for the GPD fit of the Fort Collins Precipitation 
Data (threshold value = 0.40) 
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Figure 1.7.2 Profile log-likelihood plot for GPD 100-year return level (inches) for Fort  
Collins precipitation data. 

 

Figure 1.7.3 Profile log-likelihood plot for GPD shape parameter for Fort Collins 
precipitation data. 
 

This dataset is of special interest due to a flood that occurred on July 28, 1997. 

The amount recorded for the high precipitation event of July 1997 was 4.63 inches. Note 

that the confidence interval for the 100-year return level obtained above does include 

4.63 inches. 
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1.8 Aims of the Present Research 

 The main objective of Chapter 2 is to apply the Generalized Extreme Value 

(GEV) distribution to statistically model the annual monthly maximum rainfall data for 

the years 1950 through 2004 for forty four locations, representing central, north and south 

climatic region of the State of Florida, and use the estimated model parameters for 

predictive purposes. The time dependence of the rainfall data is incorporated into the 

GEV model as a non-stationary component in the location parameter. Estimates and 

confidence intervals are obtained for return levels of return periods of 10, 20, 50, and 100 

years, and all 44 locations are classified into clusters based on the similarity profiles.   

Chapters 3 and 4 focus on the investigation of the applicability of the theories of a 

mixture of two extreme value distributions and non-mixture extreme value distributions 

to statistically model the maximum drug concentration data (Cmax), a critical 

pharmacokinetic parameter in the drug development process), the computation of 

statistical estimates of the model parameters that provide the scientific best prediction of 

Cmax, the application of computer algorithms to examine the various model diagnostics 

and goodness-of-fit tests, and to answer questions regarding the behavior of the data. 

In a typical pharmacokinetic experiment, a fixed dose of drug is administered 

to subjects, and each subject has blood samples taken at time points  

and is the C

n ,,.....,, 21 pttt

)(max jC max observed in subject .j  Thus, the data set has random Cn max 

observations.  

For the present study, the simulated data values for Cmax are used with the 

assumption that these random Cn max values are having the extreme value 

distribution with location, scale and shape parameters. 

... dii
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By careful examination of the histograms of the simulated Cmax for small samples, 

a bimodal nature in the distribution of Cmax was observed. Hence, Chapter 3 focuses on 

the application of a mixture of two extreme value distributions to statistically model the 

Cmax data in small samples. The particular probability density functions used in the 

mixture model are determined by examining a number of different distributions and 

evaluating the set of distributions that best fit the data.  

Chapter 4 focuses on the application of non-mixture extreme value distributions 

to statistically model the Cmax data in large samples. The particular probability 

distribution functions used are determined by examining a number of extreme value 

distributions and evaluating the distribution that best fits the data. 

An extensive search of the statistical and pharmacological literature has failed to 

show any research articles relevant to the application of extreme value theory or a 

mixture of extreme value distributions to statistically model the Cmax values. This is the 

major way that the approach presented in this study differs from the pharmacokinetic 

approach to dealing with Cmax.  

Chapter 5 presents the statistical modeling of a pharmacokinetic system to 

investigate the drug concentration behavior in an open three-compartment 

pharmacokinetic model which describes the disposition of an antibiotic drug, 

coumermycin A1. We studied a system of random differential equations representing this 

model. The three rate constants that are used in the system of random differential 

equations are assumed to have a trivariate distribution. The trivariate statistical 

distributions that will be used to simulate these rate constants are truncated normal and 

exponential probability distributions. 
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More precisely, the numerical solutions for the system will be obtained using the 

rate constants that are simulated from these distributions for different combinations of 

covariance structure and initial conditions where the initial conditions are nonrandom. 

The effects of different combinations of covariance structures and initials 

conditions on the deterministic behavior of the drug concentration and the mean behavior 

of the random solutions as a function of time will be discussed in addition to comparing 

these two behaviors. Also discussed is the suitability of the use of these two probability 

distributions to simulate the rate constants. 

In Chapter 6 we incorporate the constant time delays into the system of random 

differential equations considered in Chapter 5, develop extensive numerical solutions to 

the system of delay random differential equations and study their impact on the rate of 

decay, absorption and biotransformation of the drug concentration. We begin with the 

three time delays observed  in Chapter 5, that is, a time delay of 3.5 hours for the drug to 

reach compartment two from compartment one, 6 hours for the drug to reach 

compartment one from compartment two, and 3 hours for the drug to reach compartment 

three from compartment two. In addition we consider other sets of constant time delay 

values to study the behavior of the drug concentration under different time delays.  

We discuss the impact of time delays on the overall behavior of the drug 

concentration in all three compartments, and on the deterministic behavior of the drug 

concentration and the mean behavior of the random solutions as a function of time. In 

addition the deterministic behaviors of the drug concentration with and without time 

delay for each compartment are compared. 

Chapter 7 presents the possible extensions of the present research. 
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Chapter Two 

Statistical Modeling of Annual Monthly Maximum Rainfall Using the Generalized 
Extreme Value Distribution 

 
2.0 Introduction 

Events such as extreme rainfalls, earthquakes, hurricanes, and stock market 

crashes seem to follow no rule, but careful analysis has helped to discover distributions 

that acceptably model these extreme events [19]. The most important feature of an 

extreme value analysis (EVA) is the objective to quantify the stochastic behavior of the 

maximum and the minimum of i.i.d. random variables. The EVA requires the estimation 

of the probability of events that are more extreme than any that have already been 

observed [23]. Extreme value theory is a unique discipline that develops statistical 

techniques for describing the unusual phenomena such as extreme rainfalls, floods, wind 

gusts, earthquakes, risk management, and insurance. 

E.J. Gumbel, in his statistics of extremes [45, 46] in 1958, discussed many 

applications that dealt with hydrology or climatology. As part of the global climate 

change, an accelerated hydrologic cycle including an increase in heavy precipitation is 

anticipated on a theoretical basis [94, 95], is predicted by numerical models of the climate 

system [24], and has been detected in observed precipitation [32, 58]. Katz et al. [47] 

used extreme value distributions to fit to the precipitation data at a single location (Fort 

Collins, Co, USA) for the time period 1900-1999.  A review of applications of extreme 

value distributions to climate data can be found in Farago and Katz [29]. An Introduction 
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to Statistical Modeling of Extreme Values is a fairly recent book which can serve as an 

excellent reference [23].  

2.1 Focus of the Chapter Two 

 The main focus of this chapter is the application of the theory of Generalized 

Extreme Value (GEV) distribution to derive statistical models to monitor the rainfall data 

of forty four locations. These locations are selected from different climatic zones such as 

central, north and south climatic regions of the State of Florida. The rainfall data is a 

function of time and thus the subject probability density function is to be adjusted to 

inherit the time dependence. This is done by adjusting the location parameter (µ) to be 

time dependent. Thus, our statistical model will incorporate both stationary and non-

stationary components to obtain the predictions of median rainfall with profile confidence 

intervals for each location in addition to providing similarity profiles for rainfall locations 

and identifying clusters. 

2.1.1 Data 

 The data consist of total monthly rainfall records from 1950 to 2004 for these 

forty four locations. The data were obtained through two sources: National Oceanic and 

Atmospheric Administration National Data Center [72] through annual subscription, and 

Southeast Regional Climate Center [89]. We have used what is known as the block-

maxima method to define the extreme rainfall as the maximum of monthly rainfalls 

within each year. The data for any month in a given year is considered missing if that 

month has more than five days of data missing.  
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Table 2.1 Tabulation of the location, climate zone (central, north, or south), years of data, 
latitude and longitude for all forty four locations 
 

LOCATION CLIMATE ZONE YEARS OF 
DATA 

LATITUDE LONGITUDE 

Apalachicola North 1950 - 2004  29°44'N 85°01'W 
Arcadia South 1950 - 2004  27°13'N  81°52'W 
Avon Park South 1950 - 2004  27°36'N  81°32'W 
Bartow South 1950 - 2004  27°54'N  81°51'W 
Brooksville Central 1950 - 2004  28°37'N  82°22'W 
Clermont South 1950 - 2004  28°27'N  81°45'W 
Daytona Beach Central 1950 - 2004  29°11'N  81°03'W 
De Funiak Springs North 1950 - 2004  30°45'N  86°05'W 
Deland Central 1950 - 2004  29°01'N  81°19'W 
Ft. Lauderdale South 1950 - 2004  26°06'N  80°12'W 
Ft. Myers South 1950 - 2004  26°35'N  81°52'W 
Gainesville Central 1950 - 2004  29°41'N  82°30'W 
Hialeah South 1950 - 2004  25°49'N  80°17'W 
Inverness Central 1950 - 2004  28°48'N  82°19'W 
Jacksonville AP North 1950 - 2004  30°30'N  81°42'W 
Jacksonville Beach North 1950 - 2004  30°17'N  81°24'W 
Key West AP South 1950 - 2004  24°33'N  81°45'W 
Kissimmee Central 1950 - 2004  28°17'N  81°25'W 
Lake City  North 1950 - 2004  30°11'N  82°36'W 
Lakeland Central 1950 - 2004  28°01'N  81°55'W 
Live Oak North 1950 - 2004  30°17'N  82°58'W 
Madison North 1950 - 2004  30°27'N  83°25'W 
Melbourne Central 1950 - 2004  28°06'N  80°39'W 
Miami Airport South 1950 - 2004  25°47'N  80°19'W 
Miami Beach South 1950 - 2004  25°47'N  80°08'W 
Plant City Central 1950 - 2004  28°01'N  82°09'W 
Saint Augustine North 1950 - 2004  29°53'N  81°20'W 
Saint Leo Central 1950 - 2004  28°20'N  82°16'W 
Saint Petersburg Central 1950 - 2004  27°46'N  82°38'W 
Sanford Central 1950 - 2004  28°48'N  81°16'W 
Stuart South 1950 - 2004  27°12'N  80°10'W 
Tallahassee North 1950 - 2004  30°24'N  84°21'W 
Tampa Airport Central 1950 - 2004  27°58'N  82°32'W 
Tarpon Springs Central 1950 - 2004  28°09'N  82°45'W 
Titusville Central 1950 - 2004  28°38'N  80°50'W 
Vero Beach Central 1950 - 2004  27°39'N  80°25'W 
West Palm Beach South 1950 - 2004  26°41'N  80°06'W 
Winter Haven Central 1950 - 2004  28°01'N  81°44'W 
Naples South 1950 - 2004  26°10'N  81°43'W 
Ocala Central 1950 - 2004  29°05'N  82°05'W 
Orlando Central 1950 - 2004  28°26'N  81°20'W 
Panama City North 1950 - 2004  30°10'N  85°42'W 
Pensacola North 1950 - 2004  30°29'N  87°11'W 
Perry North 1950 - 2004  30°06'N  83°34'W 
 



 
 
 

 47

 
 

 

5 

6 
7 

8 

9 

10 
11 

12 
13 

14 

15 
16 

17 

18 

19 

20 

28 

29 

30 

31 

32 

34 

33 

35 

37 
36 

38 
39 

40 
41 42 

43 
44 

21 
23 

24 

22 

25 

27 

26 

1 
2

3 
4 

1=Pensacola 12=Tampa AP 23=Hialeah 34=Clermont 
2=DeFuniak 13=Lakeland 24=Ft. Lauderdale 35=Sanford 
3=Panama City 14=Bartow 25=West Palm 36=Daytona Beach 
4=Apalachicola 15=St. Petersburg 26=Stuart 37=Deland 
5=Perry 16=Plant City 27=Vero Beach 38=Saint Augustine 
6=Gainesville 17=Arcadia 28=Avon Park 39=Jacksonville BCH
7=Ocala 18=Ft. Myers 29=Melbourne 40=Jacksonville AP 
8=Brooksville 19=Naples 30=Winter Haven 41=Lake City  
9=Inverness 20=Key West AP 31=Orlando 42=Live Oak 
10=Saint Leo 21=Miami Beach 32=Kissimmee 43= Madison 
11=Tarpon Springs 22=Miami Airport 33= itusville 44= Tallahassee 

 
Figure 2.0 Map of the State of Florida [89] identifying all 44 locations that are used in the                 
statistical modeling. 



2.1.2 Methodology 

 To achieve our objective we need to perform a statistical goodness-of-fit test and 

this requires estimates of the parameters that are inherent in the GEV. To obtain such 

estimates we utilize the maximum likelihood functional form of the GEV given by 
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The estimates of µ, σ, and ξ, that is, , are taken to be those values 

which maximize the likelihood function L. Furthermore, we calculated the return level of 

rainfall, X

ξσμ ˆ and ,ˆ ,ˆ

T, for the GEV pdf, given by the following expression 
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 where T is defined as the rainfall return period. 

Under the assumption that XT can be approximated by the probability 

distribution, we can obtain the confidence limits for the return level of rainfall, that is, 

profile deviance of X

2χ

T. The ( )%1 α− confidence interval for XT can be obtained using the 

following expression 
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2.1.3 Models 

The models fitted to the rainfall data are the GEV model with the following 

variations in the location parameter, µ: 

Model 1: Stationary, where µ, σ, and ξ are constants, implying that the maximum 

rainfall data is stationary with respect to time.  

Model 2: Linear trend in which the location parameter, µ, possesses a linear 

behavior with time and is numerically approximated with its slope indicating a decrease 

or increase in rainfall maximum. The scale (σ) and shape (ξ) parameters are constants. 

Model 3: Quadratic trend in which the location parameter, µ, is treated as time-

dependent with non-linear behavior with time and is numerically approximated. The scale 

(σ) and shape (ξ) parameters are constants. 

When once the most appropriate of the models has been identified, we proceed to 

estimate numerically the median of the rainfall data using the following analytical 

expression, 

 Median = ( ){ ξ

ξ
}σμ −−− )2log(1       (2.3) 

In addition, we obtain approximate numerical estimates of 90%, 95%, and 99% 

confidence limits using the following equations, respectively, 
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2.2 Results and Discussion 

 Models 1 through 3 were fitted to the annual maximum monthly rainfall data for 

each of the forty four locations listed in Table 2.1. The method of maximum likelihood 

was used. 

 For Plant City data, the stationary GEV model (Model 1) leads to a maximized 

log-likelihood of -139.97. The GEV model with a linear trend in µ (Model 2) has a 

maximized log-likelihood of -137.85, and the GEV model with a quadratic trend in µ 

(Model 3) resulted in a maximized likelihood of -136.44. The deviance statistic for 

comparing Model 1 and Model 2 is greater than suggesting that a model with 

linear trend is preferable over the stationary model (µ is constant). However, the deviance 

statistic for comparing Model 1 and Model 3 is greater than . This suggests 

that the model with a quadratic trend is preferable. The two model diagnostic plots, 

quantile and the density plots that are given in Figure 2.1 support the fit of the model. 

Thus, we conclude that the best model for extreme rainfall in Plant City is Model 3.  

84.32
950,1 =χ

99.52
950,2 =χ

For Hialeah data, the stationary GEV model (Model 1) leads to a maximized log-

likelihood of -157.5. The GEV model with a linear trend in µ (Model 2) has a maximized 

log-likelihood of -155.34, and the GEV model with a quadratic trend in µ (Model 3) 

resulted in a maximized likelihood of -155.19. The deviance statistic for comparing 

Model 1 and Model 2 is greater than suggesting that a model with linear 

trend is preferable over the stationary model (µ is constant). However, the deviance 

84.32
950,1 =χ

 50



statistic for comparing Model 1 and Model 3 is less than , and for comparing 

Model 2 and Model 3 is less than . Neither of them is statistically significant. 

Thus, we conclude that the best model for extreme rainfall in Hialeah is Model 2. 

99.52
950,2 =χ

84.32
950,1 =χ

The above analyses were repeated for the remaining forty two locations. 

 
 
Figure 2.1 Diagnostics plots for Plant City: Quantile and density plots 
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Table 2.2 Summary of the stationary or non-stationary form of the maximum rainfall data 
for 56 years of data for the forty four locations 
 

LOCATION CLIMATE ZONE TYPE OF 
NONSTATIONARITY 

ESTIMATE OF 
SLOPE 
ASSUMING 
LINEAR TREND 

Brooksville Central Stationary 0.2354 
Daytona Beach Central Quadratic 2.2908 
Deland Central Stationary 2.192 
Gainesville Central Stationary -1.2524 
Kissimmee Central Stationary 3.9379 
Lakeland Central Linear 5.5988 
Melbourne Central Stationary 4.4886 
Ocala Central Stationary -1.7752 
Orlando Central Stationary 1.0776 
Plant City Central Quadratic 4.7798 
Saint Leo Central Quadratic 5.475 
Saint Petersburg Central Stationary -0.5477 
Sanford Central Stationary 0.148 
Tampa Airport Central Stationary 0.9241 
Tarpon Springs Central Linear 4.4139 
Titusville Central Stationary -0.8291 
Vero Beach Central Stationary 4.1174 
Winter Haven Central Stationary 2.7802 
Apalachicola North Stationary -1.773 
De Funiak Springs North Stationary 1.6623 
Jacksonville AP North Stationary 0.4221 
Jacksonville Beach North Stationary 0.9628 
Lake City  North Stationary 1.089 
Live Oak North Stationary -1.2083 
Madison North Stationary 1.3547 
Panama City North Stationary 0.9075 
Pensacola North Linear 5.6868 
Perry North Stationary 0.5131 
Saint Augustine North Stationary 1.1906 
Tallahassee North Stationary 2.576 
Arcadia South Stationary 4.5838 
Avon Park South Stationary -0.8828 
Bartow South Quadratic 4.546 
Clermont South Stationary 1.5075 
Ft. Lauderdale South Stationary 5.149 
Ft. Myers South Stationary 4.3141 
Hialeah South Linear 5.621 
Inverness South Stationary -1.749 
Key West AP South Stationary -0.2484 
Miami Airport South Stationary 3.2126 
Miami Beach South Stationary 2.3161 
Naples South Stationary 1.3354 
Stuart South Stationary 2.173 
West Palm Beach South Stationary 0.034 
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 Table 2.2 also displays the estimate of the slope assuming the linear trend for the 

forty four locations. Thirty six locations are identified as stationary. Four locations are 

identified as non-stationary, and the non-stationarity is due to linear trend. Four locations 

are identified as non-stationary, and the non-stationarity is due to quadratic trend.  

Table 2.3 displays return levels of the extreme rainfall for the return period 10, 20, 

50 and 100 years along with the profile deviance of quantiles for a few locations. 

Figure 2.2 displays the graphs of the return level XT for T= 10, 20, 50, and 100 for 

all forty four locations. From these graphs of return levels, these forty four locations can 

be grouped into five different clusters. Hialeah, Panama City and Jacksonville Beach 

form a cluster with Hialeah showing the highest return levels of all forty four stations. 

Gainesville, Lakeland, Daytona Beach and Madison form another cluster with 

Gainesville showing the lowest return levels of all forty four locations. West Palm Beach, 

Miami Airport and St. Petersburg form another cluster. The rest of the locations can be 

categorized into two large clusters. 
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Table 2.3 Return levels of the extreme rainfall with profile deviance of quantiles 

LOCATION PERIOD 
(YEARS) 

RETURN 
LEVELS 

90% 
CONFIDENCE 
INTERVAL 

95% 
CONFIDENCE 
INTERVAL 

99% 
CONFIDENCE 
INTERVAL 

      
Brooksville 10 16.28 (14.9, 18.57) (14.67, 19.22) (14.26, 20.79) 
 20 18.43 (16.53, 22.19) (16.27, 23.34) (15.77, 26.21) 
 50 21.34 (18.52, 28.03) (18.14, 30.2) (17.52, 35.87) 
 100 23.62 (19.87, 33.42) (19.42, 36.75) (18.72, 45.72) 
      
Daytona 
Beach 10 13.28 (13.67, 16.24) (12.49, 16.65) (13.16, 17.63) 
 20 14.61 (14.98, 18.5) (13.21, 19.16) (14.41, 20.79) 
 50 16.14 (16.42, 21.63) (15.2, 22.74) (15.78, 25.57) 
 100 17.16 (17.32, 24.11) (16.21, 25.67) (16.62, 29.71) 
      
Gainesville 10 13.53 (12.83, 14.49) (12.71, 14.75) (12.47, 15.4) 
 20 14.49 (13.71, 15.88) (13.58, 16.31) (13.34, 17.39) 
 50 15.55 (14.62, 17.69) (14.48, 18.4) (14.23, 20.28) 
 100 16.23 (15.15, 19.05) (15, 20.02) (14.75, 22.66) 
      
Lakeland 10 13.72 (12.71, 15.11) (12.55, 15.53) (12.25, 16.56) 
 20 14.89 (13.73, 17.09) (13.56, 17.77) (13.24, 19.51) 
 50 16.26 (14.82, 19.87) (14.61, 21.04) (14.27, 24.11) 
 100 17.19 (15.45, 22.12) (15.23, 23.77) (14.89, 28.23) 
      
Melbourne 10 14.54 (13.54, 15.99) (13.37, 16.38) (13.05, 17.31) 
 20 15.98 (14.78, 18.11) (14.59, 18.73) (14.24, 20.26) 
 50 17.67 (16.13, 21.02) (15.91, 22.06) (15.53, 24.7) 
 100 18.83 (16.97, 23.31) (16.71, 24.76) (16.3, 28.51) 
      
St. Petersburg 10 17.65 (16.04, 20.4) (15.77, 21.2) (15.28, 23.19) 
 20 20.19 (17.98, 24.87) (17.68, 26.35) (17.1, 30.13) 
 50 23.60 (20.29, 32.19) (19.85, 35.1) (19.17, 42.91) 
 100 26.25 (21.8, 39.04) (21.35, 43.62) (37.91, 56.27) 
      
Vero Beach 10 16.52 (14.98, 19.15) (14.73, 19.91) (14.27, 21.84) 
 20 18.95 (16.81, 23.41) (16.51, 24.83) (15.95, 28.53) 
 50 22.31 (19.07, 30.52) (18.62, 33.36) (17.92, 41.16) 
 100 24.98 (20.62, 37.3) (20.13, 41.83) (19.32, 54.72) 
      
Ft. Myers 10 17.11 (16.22, 18.37) (16.06, 18.74) (15.75, 19.66) 
 20 18.27 (17.31, 20.15) (17.15, 20.76) (16.84, 22.32) 
 50 19.49 (18.35, 22.45) (18.19, 23.47) (17.9, 26.18) 
 100 20.23 (18.91, 24.15) (18.77, 25.55) (18.49, 29.36) 
      
Lake City 10 14.54 (13.37, 16.33) (13.18, 16.82) (12.83, 18.01) 
 20 16.44 (14.87, 19.3) (14.62, 20.15) (14.2, 22.3) 
 50 19.05 (16.78, 24) (16.47, 25.61) (15.9, 29.8) 
 100 21.13 (18.19, 28.31) (17.79, 30.74) (17.13, 37.33) 
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Table 2.3 (Continued) 
 
Pensacola 10 17.50 (16.27, 20.29) (16.02, 21.01) (15.54, 22.81) 
 20 19.66 (18.09, 24.14) (17.81, 25.42) (17.26, 28.72) 
 50 22.38 (20.16, 30.04) (19.76, 32.45) (19.16, 38.92) 
 100 24.36 (21.44, 35.24) (21.06, 38.87) (20.38, 48.97) 
      
Tallahassee 10 16.33 (15.04, 18.41) (14.83, 18.99) (14.43, 20.37) 
 20 18.33 (16.58, 21.67) (16.34, 22.66) (15.87, 25.12) 
 50 20.96 (18.41, 26.74) (18.07, 28.56) (17.51, 33.26) 
 100 22.96 (19.6, 31.26) (19.16, 34) (18.55, 41.24) 
      
Ft. Lauderdale 10 18.76 (17.64, 20.27) (17.44, 20.67) (17.06, 21.6) 
 20 20.32 (19.06, 22.4) (18.84, 23) (18.45, 24.48) 
 50 22.07 (20.55, 25.13) (20.34, 26.08) (19.91, 28.49) 
 100 23.20 (21.49, 27.15) (21.25, 28.41) (20.82, 31.69) 
      
Hialeah 10 20.15 (18.66, 23.2) (18.38, 23.99) (17.85, 25.95) 
 20 22.99 (20.78, 27.78) (20.45, 29.2) (19.82, 32.84) 
 50 26.92 (23.4, 35.15) (22.93, 37.9) (22.15, 45.22) 
 100 30.08 (25.21, 41.95) (24.65, 46.21) (23.78, 57.9) 
      
Naples 10 16.57 (15.52, 18.1) (15.34, 18.52) (14.99, 19.52) 
 20 18.09 (16.82, 20.34) (16.61, 21.01) (16.24, 22.69) 
 50 19.90 (18.25, 23.47) (18.03, 24.6) (17.61, 27.56) 
 100 21.15 (19.18, 25.96) (18.9, 27.56) (18.46, 31.82) 
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Figure 2.2: Return Level versus Return Periods for all 44 locations 
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2.3 Similarity Profiles by Each of the Three Climatic Zones 

In the central climatic zone 18 locations are selected. From the similarities in the 

return level profiles shown in the graphs of Figure 2.3A, these 18 locations can be 

grouped into 5 clusters. Vero Beach and St. Petersburg form one group with St. 

Petersburg showing the highest return levels of all eighteen locations. Lakeland, Daytona 

Beach and Gainesville form another cluster with Gainesville showing the lowest return 

levels of all eighteen locations. While Brooksville and Tarpon Springs form on cluster, 

another cluster is formed by Winter Haven, Ocala, Tampa Airport and Melbourne. The 

remaining seven locations turn out to be another cluster. 

In the north climatic zone 12 locations are selected. From the similarities in the 

return level profiles shown in the graphs of Figure 2.3B, these 12 locations can be 

grouped into 5 clusters. Madison has the lowest return level and seems to stand by itself. 

While Lake City, St. Augustine and Jacksonville Airport form one cluster, Jacksonville 

Beach and Panama City form another cluster. The remaining six locations make up 

another cluster. 

In the south climatic zone 14 locations are selected. From the similarities in the 

return level profiles shown in the graphs of Figure 2.3C, these 14 locations can be 

grouped into 5 clusters. Hialeah stands by itself and has the highest return level. Bartow 

stands by itself and has the lowest return level. While Miami Airport and West Palm 

Beach form a cluster, Naples, Miami Beach, Avon Park, Ft. Myers and Clermont make 

another cluster. The remaining five locations make up another cluster.
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Figure 2.3A Return level profiles for all 18 locations in Central Climatic Zone 

Return Levels versus Return Period (Climate Zone: North)

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Return Period

R
et

ur
n 

L
ev

el

Panama City

Jacksonville Beach

Madison Jacksonville AP

St. Augustine

Lake City

 

Figure 2.3B Return level profiles for all 12 locations in North Climatic Zone 
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Return Level versus Return Period (Climate Zone: South)
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Figure 2.3C Return level profiles for all 14 locations in South Climatic Zone  

The plots of 10-year, 20-year, 50-year, and 100-year return levels along with the 

95% profile likelihood confidence intervals for all forty four locations provide further 

insight into the similarities in these profiles. Figures 2.3D through 2.3G provide these 

plots for 10-year, 20-year, 50-year, and 100-year return levels, respectively 
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10-Year Return Level versus Location with 95%  Profile Confidence 
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Figure 2.3D 10-Year return level versus location with 95% CI for all 44 locations 
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20-Year Return Level versus Location with 95%  Profile Confidence 
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Figure 2.3E 20-Year return level versus location with 95% CI for all 44 locations. 
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50-Year Return Level versus Location with 95%  Profile Confidence 
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Figure 2.3F 50-Year return level versus location with 95% CI for all 44 locations 
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100-Year Return Level versus Location with 95%  Profile Confidence 
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Figure 2.3G 100-Year return level versus location with 95% CI for all 44 locations. 
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2.4 Conclusion 

We have modeled the annual maximum monthly rainfall data for forty four 

locations from the central, north and south climatic zones in the State of Florida using the 

Generalized Extreme Value distribution. Since the rainfall data is a function of time, we 

utilized the time-dependence structure in the location parameter to build non-stationary 

model with the non-stationarity in the form of a linear trend as well as a quadratic trend. 

Extreme rainfalls for some locations do display an evidence of non-stationarity in the 

form of either a linear trend or a quadratic trend. The return level estimates can be used to 

determine ways to protect people and the property by taking appropriate measures against 

extreme rainfalls that may lead to floods and other water-related natural disasters. Based 

on the magnitude of these estimates, the forty four locations can be classified into five 

clusters as described in the results and discussion section. 
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Chapter Three 

Mixed Statistical Model for the Pharmacokinetic Parameter, Maximum Drug 
Concentration(Cmax): Small Samples 

 
3.0 Introduction 

The maximum drug concentration in blood or plasma after the administration of a 

certain drug in an individual is considered as an extreme value. Extreme maximum drug 

concentration levels are associated with undesirable clinical outcomes such as toxicity, 

especially in cases of those drugs that have narrow therapeutic windows. A drug is 

identified as having a narrow therapeutic index if small changes in systemic 

concentration can lead to either sub-therapeutic or toxic results in patients [9, 67]. 

Warfarin is among those drugs considered to have a narrow therapeutic index. As these 

maximum drug concentration levels vary in patients due to varying factors, such as age, 

body weight, genetic polymorphism and drug-drug interactions, analysis of such data 

using appropriate statistical techniques is crucial in understanding the behavior of the 

drug [52]. 

Thus, the purpose of the present study is to formulate a necessary theory that 

includes the computation of statistical estimates of the model parameters that provide the 

scientific best prediction of maximum drug concentration, and application of algorithms 

to answer key questions concerning the behavior of the data. 



3.1 Outline of Each Section of Chapter III 

Section 3.2 introduces the concept of pharmacokinetics, bioavailability and its 

assessment.  In addition, it discusses Warfarin drug, its application for the prevention and 

treatment of thromboembolic disorders, side effects, and interaction with other drugs. The 

section ends with the description of the simulation of the maximum drug concentration 

(Cmax) data. Section 3.3 presents the focus of chapter three. 

Section 3.4 introduces the statistical distributions that are considered to model the 

bimodal data.  

Section 3.5 presents a brief introduction to the concept of a mixture of two 

extreme value distributions. This section also presents an analytical basis for not using 

the mixture of two Gumbel models using a simulation study. It further discusses the 

mixture models for Pareto and Weibull, and the derivations of the normal equations. 

Section 3.6 has a detailed discussion of the results of the analysis on small 

samples from the mixture models. Section 3.7 presents the conclusion. 

3.2 Pharmacokinetics 

Pharmacokinetics is a mathematical quantification of the amounts of drug in the 

body over time. It is the study of the processes of bodily absorption, distribution, 

metabolism, and excretion of a drug [36, 38]. The pharmacokinetic parameters required 

in the Food and Drug Administration regulations for an in-vivo bioavailability study are 

the maximum drug concentration, Cmax, the area under the plasma or blood concentration-

time curve, , time to achieve the maximum concentration, T∞
0AUC max, elimination half-

life, 21t , and the rate constant, ke, of the therapeutic moiety [30]. 
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3.2.1 Bioavailability and Assessment of Bioavailability 

Bioavailability 

According to the Food and Drug Administration guidelines, bioavailability is 

defined as  the rate and extent to which the active ingredient or active moiety is absorbed 

from a drug product and becomes available at the site of action. The maximum drug 

concentration is a function of both the rate and extent of absorption [30]. 

Before a medication can have any effect on the body, it must enter the 

bloodstream. If the medication is administered intravenously, then 100% of the 

medication is free in the bloodstream immediately after dosing. The simulated data that 

are used in this chapter are from a medication that is administered orally. 

Bioavailability of orally administered drugs depends on absorption from the 

gastrointestinal tract (GI) and few factors that affect this process are the enzymes in the 

gastrointestinal tract that metabolize the drug and thus prevent certain percentage of it 

from getting into the bloodstream; first-pass metabolism of the drug after it is absorbed 

into the blood; and some portion of the drug may bind with protein in the plasma and 

hence may not be free in the bloodstream for the body to use it. 

Assessment of Bioavailability  

One of the three main pharmacokinetic parameters that are used to assess the 

bioavailability is the maximum drug concentration. The increases with an 

increase in the dose as well as with an increase in the absorption rate. The , the time 

at which the occurs reflects the rate of drug absorption, and decreases as the 

absorption rate increases [30]. 

,maxC maxC

maxT

maxC
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3.2.2 Introduction to Warfarin 

Warfarin (Brand name: Coumadin) is the most widely prescribed anticoagulant 

drug for the prevention and treatment of thromboembolic disorders. Because of large 

interpatient variability in dose-anticoagulant effect relationship and a narrow therapeutic 

index, dosing is a challenge.  The goal is to minimize the risk of serious bleeding events 

without compromising the anticoagulant effect.  Haemorrhage is the major complication 

(~ 5 - 30% of patients). Haematuria, epistaxis, uterine bleeding, petechial, or simple 

bruising are common side effects but GI, intra-cranial, and retroperitoneal bleeding may 

also occur [52]. An enormous variation in pharmacological response is a characteristic 

feature of the clinical use of Warfarin.  The average patient requires a daily dose of about 

5 mg to maintain blood hypocoagulability but dosage requirements can vary from 1 - 

25% daily.  Differences in both pharmacokinetics and pharmacodynamics contribute to 

this variation. Some well documented factors that influence the response to Warfarin are 

shown below. 

Factors influencing the response to Warfarin 

Factors Effect  Mechanism 

Age  with increasing age Enhanced receptor site sensitivity 

Pregnancy   Increased blood coagulability 

Liver disease  Defective synthesis of clotting factors 

Heart failure  Reduced clotting factor synthesis 

Hyperthyroidism  Increased clotting factor degradation 

Concomitant drugs  Induced or inhibited metabolism 
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Warfarin shows a bimodal plasma concentration distribution. In other words, the 

same dose of drug gives high levels in some patients, low levels in others.  Warfarin is 

eliminated almost entirely (> 99%) by metabolism. Cytochrome P-450 (CYP2C9) is the 

enzyme primarily responsible for the metabolism of warfarin and it has been suggested 

that genetic variation in the gene coding for this enzyme contributes significantly to the 

large inter-patient variability in warfarin-dose requirements. Of all the covariates tested, 

CYP2C9 genotype was the only one identified as having a significant effect, with a 46% 

(14%) reduction in clearance for warfarin as compared to wild-type [4].  Patient’s 

nutritional status is another factor to be considered before the Warfarin therapy. Those 

who are malnourished should receive lower doses of Warfarin because they probably 

have low vitamin K intake and decreased serum albumin concentrations. Women 

generally require lower doses than men, and thus, gender is another factor. Major 

pharmacokinetic drug-drug interactions can occur with warfarin and drugs that interfere 

with the metabolism of warfarin resulting in variable plasma concentrations of warfarin.  

Examples of major pharmacokinetics drug interactions with warfarin are shown below 

[52]. 

Major Pharmacokinetic drug interactions with warfarin 

Drug Effect Mechanism 

Cholestyramine  Decreased absorption 

Amiodarone  Decreased metabolism 

Co-trimoxazole and Cimetidine  Decreased metabolism 

Barbiturates, carbamazepine, Rifampicin  Increased metabolism 



A system, commonly called the International Normalized Ratio (INR), was 

established by the World Health Organization and the International Committee on 

Thrombosis and Hemostasis for reporting the results of blood coagulation tests. All 

results are standardized using the International Sensitivity Index (ISI) for the particular 

thromboplastin reagent and instrument combination utilized to perform the test. For 

example, a person taking the anticoagulant warfarin might optimally maintain a 

Prothrombin Time (PT) of 2 to 3 INR. The purpose of administering warfarin is to give 

enough dosage so as to achieve the patient’s PT of 2 to 3 INR. The INR is the ratio of a 

patient’s PT to a normal (control) sample, raised to the power of the ISI [98]. That is,   

ISI

normal

test

PT
PT

INR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

Knowledge of the pharmacokinetics of warfarin is helpful in understanding the 

initial response to therapy. Warfarin can be detected in the plasma one hour after oral 

administration, and peak concentrations occur within two to eight hours of administration. 

3.2.3 Maximum Drug Concentration (Cmax) Data 

A Monte Carlo simulation method was used to generate maximum drug 

concentration data. Monte Carlo simulation relies on pseudo random numbers to generate 

random times to Cmax based on Cmax.  The analysis tool pack of Microsoft Excel is 

utilized to perform the simulation. The simulation was based on an assumption that the 

distribution of logarithm of pharmacokinetic parameter (that is, ln[Cmax]) is normally 

distributed. The ln[Cmax] of warfarin were used in the simulation. In this case, random 

simulation of ln[Cmax] was performed using published mean and coefficient of variation 

of ln[Cmax]. The obtained ln[Cmax] was transformed to Cmax, anti-log value. As a result, 
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we got the random simulated Cmax values. The sample size of this simulated data set is 

1000. The random samples of varying sample sizes, ranging from 50 to 500, were 

generated. The histograms of the data for sample sizes n = 50, n = 100, n = 200, n = 300, 

n = 400, n = 500 were examined. 

3.3 Focus of the Chapter Three 

For sample size N ≤ 100, Warfarin Cmax shows a bimodal distribution. In other 

words, the same dose of drug gives high levels in some patients, low levels in others. 

Because of the bimodal nature in the maximum drug concentration data when sample size 

is small, a mixture of two extreme value distributions is more appropriate in adequately 

modeling such bimodal data.  

Thus, the focus of the present chapter is the statistical modeling of the simulated 

Cmax , the maximum drug concentration data for warfarin, for small samples using a 

mixture of two extreme value distributions. The particular probability density functions 

used in the mixture model are determined by examining a number of different 

distributions and evaluating the set of distributions that best fit the data. In each of these 

distributions the maximum likelihood methods were used to estimate the model 

parameters and their standard errors. The criterion used to select the model is the Akaike 

Information Criterion (AIC). The AIC for a model is computed as  where 

M is the number of parameters estimated for the model, and L is the maximized 

likelihood for that model. The smaller the value of AIC the better is the fit of the model 

to the observed data. These models are examined below in separate sections, followed by 

an overall summary of results. 

,2ln2 ML +−
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3.4 Statistical Methods for Small Samples 

3.4.1 Generalized Extreme Value and Gumbel Distributions 

For small sample of sizes 50 and 100, the Gumbel distribution was fit. The p-

value for all three goodness-of-fit tests (Chi-square, Anderson-Darling, and Kolmogorov-

Smirnoff) was non-significant (> 0.10), leading to the failure of rejecting the null 

hypothesis that the shape parameter is zero. The same conclusion was drawn based on the 

comparison of the value of Akaike Information Criterion (AIC) from this model to the 

value of AIC from the generalized extreme value model. But a non-mixture model with 

the shape parameter being zero is not a suitable model to fit to the maximum drug 

concentration data that exhibit bimodality in small samples. This leads to the exploration 

of a mixture model to adequately model such data. 

3.4.2 Weibull Distribution 

Although the three-parameter Weibull model seems to fit the maximum drug 

concentration data for small samples based on the goodness-of-fit test, the bimodal 

nature of the data are better fit by a mixture model. The two-parameter Weibull does not 

provide a good fit of the data. This was assessed by using the likelihood ratio test, and 

also through Anderson-Darling and Cramer-von Mises goodness-of-fit tests. The 

following probability plots display the absence of linearity in the graph suggesting the 

inappropriateness of the 2-parameter non-mixture Weibull model. The points on the plot 

could be modeled by two straight lines of different slopes. This may be an indicative of a 

bimodal data set. 

2χ
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2-Parameter Weibull Probability Plot (n= 50)
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Figure 3.1 Probability Plot from the 2-parameter Weibull fit for n = 50. 

2-Parameter Weibull Probability Plot (n= 100)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Observed probability

E
xp

ec
te

d 
pr

ob
ab

ili
ty

 

Figure 3.2 Probability Plot from the 2-parameter Weibull fit for n = 100. 
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Hence, the modeling of the data for small samples of size 50 and 100 was carried 

out using the mixture of two Weibull extreme value distributions (for which the location 

parameter µ = 0) with a mixing parameter ( ).10 << pp   

3.4.3 Pareto Distribution 

The Pareto distribution was not a good fit to the maximum concentration data for 

small samples. This was assessed by using the goodness-of-fit test. The probability 

plots shown below lack the linearity in their appearances. Hence, a mixture of two Pareto 

distributions will be examined to measure its adequacy to model the bimodal data when 

sample size is small. 
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Figure 3.3 Probability plot from the Pareto fit for n = 50. 
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Figure 3.4 Probability plot from the Pareto fit for n = 100. 

3.5 Mixture of Two Extreme Value Distributions 

3.5.1 Introduction 

Because of the bi-modal nature of the maximum concentration data, these 

observations were used to estimate the parameters of a two-component mixture model. 

The two-component mixture model has the general form [61], 

);()1();(),,;( 21 βαβα xfpxpfpxf −+= ,        (3.1) 
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where );(1 αxf is the probability density function with parameters α, for one subgroup, 

and );(2 βxf is the probability density function with parameters β for the other group. The 

mixing parameter  is the fraction of observations in one group and ( 10 ≤≤ pp ) )1( p− is 

the rest of the observations in the other group [61].  

Suppose p is known: In a sample of n one would expect approximately 

observations from the first component in the above probability density function and 

observations from the second. If the two distributions are fairly well separated 

and p is not too close to 0 or 1, the smallest observations will be from one component and 

the largest observations are from the other. Then, one can treat the k

np

)1( pn −

1 smallest 

observations as the first k1 in a sample of size  from the first distribution, and the knp 2 

largest as the largest observations in a sample of size )1( pn − from the second 

distribution. We can estimate the parameters of the two distributions separately from 

these two parts of the data. 

Suppose p is unknown: Being unsure about how sensitive the procedure is to the 

exact value of p being used, it is desirable to estimate p from the mixture model using 

different start values for p so as to examine the consistency in the estimation of the model 

parameters and their standard errors 

The particular probability density functions used for );(1 αxf  and );(2 βxf  were 

selected after examining the extreme value type I (or Gumbel), Pareto, and Weibull 

distributions for each component of the model. 
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3.5.2 Mixture of Two Gumbel Distributions 

Using the probability density function for Gumbel, equation (3.1) can now be 

written as, 
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where µ1 and σ1 are the location and scale parameters respectively for the first probability 

density function in the mixture model, and µ2 and σ2 are for the second probability 

density function. The parameter p is the mixing parameter, and i = 1, 2,…….n 

observations. The Gumbel distribution is unimodal, and its shape parameter has a value 

of zero. Since the shape parameter determines the shape, and depending on its value, the 

function can change drastically, using a distribution such as Gumbel for which the shape 

parameter is zero does not adequately model the data that exhibits bimodality. The 

simulation results described below serves as analytical basis for not using a mixture of 

two Gumbels to model the maximum concentration data. 

Simulation 
 

Three Gumbel density functions were simulated using a set of pre-chosen 

parameters. The first Gumbel was generated using1y 2001 =μ and 11 *2.0 μσ = . The 

second Gumbel was generated using2y d*112 μμμ += and 12 σσ = , where the value 

of was fixed. The third Gumbel is a mixture of  defined as d 3y 21  and yy

( ) 213 *1* ypypy −+=  

where p is a mixture parameter ( )10 ≤≤ p . The value of 40.0=p  was used. 
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The above simulation was performed for three different sample sizes 1000, 500, 

and 100, respectively. Each simulation was conducted for each of the five values of the 

parameter .  01.0 ,25.0 ,5.0 ,0.1 ,5.1=d

In the next step, a mixture of two Gumbel data sets was simulated using the same 

set of parameters as described above. A mixture of two Gumbel models was then fit to 

the simulated data and the maximum likelihood estimators were obtained. Table 3.1 

displays the results of the mixture model fit. 

Table 3.1 Maximum likelihood estimators of the parameters with standard errors from the 
mixture of two Gumbel models fit to the mixture of two Gumbel data sets simulated 
using ,40 ,200,1000 211 ==== σσμn  40.0  ,*2002 == pdμ  

n d 1μ (SE) 1σ (SE) 2μ (SE) 2σ (SE) p(SE) 

1000 1.50 203.9 (2.23) 41.5 (1.71) 499.1 (1.64) 37.9 (1.27) 0.40 (0.02) 

1000 1.00 203.1 (2.38) 40.9 (2.06) 403.1 (1.84) 39.1 (1.34) 0.40 (0.02) 

1000 0.50 202.4 (4.61) 40.8 (3.55) 308.5 (3.10) 39.4 (1.86) 0.44 (0.04) 

1000 0.25 225.5 (1.67) 48.4 (1.18) 599.5 ( )∞−  1.0 ( )∞−  0.99 (0.03) 

1000 0.05 208.3 (1.37) 41.0 (1.04) 421.3 (0.64) 1.0 (1.18) 0.99 (0.00) 

 
The mixture of two Gumbel model turns out to be a reasonable fit to the data 

when . The maximum likelihood parameter estimates are very close to 

the pre-set values that were used to simulate the data. However, for values of 

the maximum likelihood estimators and the standard errors are 

unreliable, leading to the unsuitability of a mixture of two Gumbel models as gets 

smaller and smaller.  

5.0 and ,0.1 ,5.1=d

,05.0 and 25.0=d

d
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A similar simulation analysis was done when the sample sizes are 500 and 100. 

Table 3.2 and Table 3.3 present the results from the analysis using the mixture of two 

Gumble models when sample sizes n = 500 and n = 100, respectively. 

 
Table 3.2 Maximum likelihood estimators of the parameters with standard errors from the 
mixture of two Gumbel models fit to the mixture of two Gumbel data sets simulated 
using  ,40 ,200,500 211 ==== σσμn 40.0  ,*2002 == pdμ  
 
n d 1μ (SE) 1σ (SE) 2μ (SE) 2σ (SE) p(SE) 

500 1.50 192.9 (3.02) 40.4 (2.53) 500.2 (2.39) 39.1 (1.80) 0.40 (0.02) 

500 1.00 195.1 (3.28) 39.1 (2.52) 399.8 (2.59) 39.9 (2.14) 0.39 (0.02) 

500 0.50 244.1 (3.35) 62.4 (2.80) 330.8 (2.71) 8.91 (3.06) 0.92 (0.02) 

500 0.25 223.9 (2.52) 60.0 (1.88) 270.0 (0.84) 1.90 (0.85) 0.96 (0.02) 

500 0.05 205.2 (1.90) 40.0 (1.48) 316.0 (1.09) 1.20 (1.22) 0.99 (0.01) 

 

Table 3.3 Maximum likelihood estimators of the parameters with standard errors from the 
mixture of two Gumbel models fit to the mixture of two Gumbel data sets simulated 
using  ,40 ,100,100 211 ==== σσμn  40.0  ,*2002 == pdμ  
 
n d 1μ (SE) 1σ (SE) 2μ (SE) 2σ (SE) p(SE) 

100 1.50 205.4 (6.40) 35.3 (5.17) 507.6(2.39) 44.4 (4.85) 0.40 (0.05) 

100 1.00 203.1 (5.57) 32.8 (5.16) 405.8 (6.26) 44.1 (5.45) 0.41 (0.05) 

100 0.50 241.4 (7.34) 68.4 (7.25) 303.9 (0.91) 1.00 (0.88) 0.95 (0.03) 

100 0.25 226.8 (5.20) 45.0 (3.86) 448.6 (6.55) 1.00 (17.5) 0.98 (0.10) 

100 0.05 202.9 (4.00) 36.9 (3.26) 160.5 (2.88) 1.00 (4.10) 0.98 (0.08) 
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From the values that are shaded in the above tables, it is clear that the maximum  

likelihood estimators for the parameters of a mixture of two Gumbel models are 

unreliable. This becomes even more evident when the sample size gets smaller. These 

analyses results clearly indicate the non-suitability of a mixture of two Gumbel models, 

especially, for sample sizes  moreover, for sample sizes as large as 1000 the 

mixture of two Gumbels is not suitable when the difference in the two Gumbel location 

parameters is 

;500≤

σ25.0≤  units. Hence, a mixture of two Gumble models will not be further 

investigated. 

3.5.3 Mixture of Two Pareto Distributions 

Using the probability density function for Pareto, equation (3.1) can now be 

written as, 
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where λ1 and σ1 are the shape and scale parameters respectively for the first probability 

density function in the mixture model, and λ2 and σ2 are for the second probability 

density function. The parameter p is the mixing parameter as previously defined, and 

i = 1, 2,…….n observations. 

Maximum Likelihood Estimation of the Parameters 

The log-likelihood function for a sample of n observations is given by 
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The vector of partial derivatives of ),(ln θxL with respect to { }p,,,, 2121 λλσσθ = gives 

the score function as
( )∑

= ∂
∂n

i j

ii xf
1

;ln
θ

θ
, where j = 1, 2, 3, 4, 5.  

Further simplification of (3.4) yields the following equation 
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The partial derivative [66] of (3.5) with respect to the parameter λ1 is equal to  
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Simplifying and setting it equal to zero gives the following equation: 
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  (3.6) 

Taking the partial derivative of log-likelihood with respect to λ2 and setting it equal to 0, 

the following equation is obtained ∑−=
∂
∂

x b
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2
22
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where a and b are given by the following equations: 
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where c and d are given by the following equations: 
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The partial derivative [66] with respect to σ2 is given by 
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where e and f are given by the following equations: 
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Equations (3.6) through (3.10) are the normal equations that cannot be solved explicitly 

to get closed form solutions for the maximum likelihood estimates . 

Instead, for each sample the equations must be solved using an iterative 

numerical procedure. The maximum likelihood estimates are those values of 

 that maximize the likelihood. The parameter estimates were 

calculated numerically using the  version 2.2 statistical programming language [51]. 

p̂ and ˆ,ˆ,ˆ,ˆ 2121 λλσσ

,,,........., 21 nxxx

p̂ and ˆ,ˆ,ˆ,ˆ 2121 λλσσ

mle

3.5.4 Mixture of Two Weibull Distributions 

Using the probability density function for a two-parameter Weibull, equation (3.1) 

can now be written as, 
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where λ1 and σ1 are the shape and scale parameters respectively for the first probability 

density function in the mixture model, and λ2 and σ2 are for the second probability 

density function. The parameter p is the mixing parameter, and i = 1, 2,…….n 

observations. 
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Maximum Likelihood Estimation of the Parameters 

Maximum likelihood was used to estimate model parameters. The likelihood 

function for a sample of n observations is given by 
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The vector of partial derivatives of ),(ln θxL with respect to { }p,,,, 2121 λλσσθ = gives 

the score function as: 
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, where j = 1, 2, 3, 4, 5 

We now find the partial derivatives [66] with respect to each of the five unknown 

parameters and set each one of them equal to zero to get a set of normal equations. 
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simplifying and setting it equal to zero results in the following equation: 
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where the denominator term is given by the following expression: 
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Simplifying and setting equal to zero gives 
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Further simplification of this equation gives the following equation: 
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These normal equations (3.13) through (3.17) cannot be solved explicitly to give general 

formulas for the maximum likelihood estimates . Instead, for each 

sample the equations must be solved using an iterative numerical 

procedure. The maximum likelihood estimates are those values of  

that maximize the likelihood. The parameter estimates were calculated numerically using 

the  version 2.2 statistical programming language [51]. 
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3.6 Results of the Modeling on Sample Sizes 50 and 100 

3.6.1 Mixture of Two Pareto Distributions 

The Pareto mixture model was fit into the data to obtain all 5 parameter estimates 

using the maximum likelihood method for various start values of the mixture 

parameter p . In the model, p is the estimated mixture parameter, σ1 and ξ1 are the scale 

and shape parameters of the Pareto distribution for the first subgroup, and σ2 and ξ1 are 

the scale and shape parameters of the Pareto distribution for the second subgroup.  

For n = 50 and for any start value of p greater or equal to 0.5, with an increment 

of 0.05, the model resulted in a singular matrix and the results obtained with start value 

of p being 0.05, 0.10, 0.15, 0.25, and 0.45 are displayed in Table 3.4  

Table 3.4 Parameter estimates and the standard errors from the mixture Pareto model 
(n = 50). The Akaike Information Criterion (AIC) for this model is 720.01. 
 

PARAMETER p σ1 σ2 ξ1 ξ2

ESTIMATE 0.63 1121.7 1587.5  4.40 4.99 

STANDARD ERROR 0.16 0 134.86 2.12 2.46 

 
For n = 100, and for any start value of p with an increment of 0.05, Table 3.5 

displays the results. All models with different start values for p gave the same parameter 

estimates but the standard errors of the parameter estimates of the second component of 

the model are extremely high. Moreover, 99.1% of the data values were put in one 

subgroup for each of these models. 
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Table 3.5 Parameter estimates and the standard errors from the mixture Pareto model 
(n = 100). The Akaike Information Criterion (AIC) for this model is 1537.22 
 
PARAMETER p σ1 σ2 ξ1 ξ2

ESTIMATE 0.99 875.9 1331.4  1.91 0.50 

STANDARD ERROR 0.10 0.00 1167843201 0.49 986008150 

 
 

3.6.2 Mixture of Two Weibull Distributions 

The Weibull mixture model was fit into the data to obtain all 5 parameter 

estimates using the maximum likelihood method for various start values of the mixture 

parameter p . The estimated parameters p , σ1, ξ1, σ2 and ξ1 are as defined before but for 

the Weibull distributions. 

For n = 50, and for any start value of p less than or equal to 0.45 with an 

increment of 0.05 Table 3.6A displays the results. The density graphs corresponding to 

the parameter estimates in Table 3.6A, obtained from the mixture of two Weibull models, 

are presented in Figure 3.5A. 

 
Table 3.6A Parameter estimates and the standard errors from the mixture Weibull model 
(n = 50). The Akaike Information Criterion (AIC) for this model is 727.63. 
 
PARAMETER p σ1 σ2 ξ1 ξ2

ESTIMATE 0.44 1981.66 1452.70 7.81 8.57 

STANDARD ERROR 0.23 169.8 60.41 4.17 2.62 
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Figure 3.5A Fitted distribution of maximum drug concentration for each subgroup and 
combined subgroups, based on the parameter estimates in Table 3.6A 
 

For n = 50, and for start value of p greater or equal to 0.55, results are displayed 

in Table 3.6B. The start value of p  is 0.5 resulted in a singular matrix. The density graphs 

corresponding to the parameter estimates in Table 3.6B are presented in Figure 3.5B. 

Table 3.6B Parameter estimates and the standard errors from the mixture Weibull model 
(n = 50). The AIC value for this model is 727.93. 
 
PARAMETER p σ1 σ2 ξ1 ξ2

ESTIMATE 0.31 1331.37 1857.15 11.99  6.25 

STANDARD ERROR 0.15 45.64 102.29 5.38 1.84 
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Figure 3.5B Fitted distribution of maximum drug concentration for each subgroup and 
combined subgroups, based on the parameter estimates in Table 3.6B  
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For n = 100, and for start value of p less than or equal to 0.45 with an increment 

of 0.05, Table 3.7A displays the results. The density graphs corresponding to the 

parameter estimates in Table 3.7A are presented in Figure 3.6A. 

Table 3.7A Parameter estimates and the standard errors from the mixture Weibull model 
(n = 100). The AIC value for this model is 1445.41 
 
PARAMETER p σ1 σ2 ξ1 ξ2

ESTIMATE 0.65 1472.56 1893.03 7.06  5.87 

STANDARD ERROR 0.55 57.9 558.58 2.01 6.49 
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Figure 3.6A Fitted distribution of maximum drug concentration for each subgroup and 
combined subgroups, based on the parameter estimates in Table 3.7A  
 
 

For n = 100, the results, when start value of p is greater or equal to 0.50, are 

displayed in Table 3.7B. The density graphs corresponding to the parameter estimates in 

Table 3.7B are presented in Figure 3.6B. 
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Table 3.7B Parameter estimates and the standard errors from the mixture Weibull 
model (n = 100). The AIC value for this model is 1445.41 
 
PARAMETER p σ1 σ2 ξ1 ξ2

ESTIMATE 0.28 1326.38 1737.35 11.23  5.31 

STANDARD ERROR 0.17 43.58 106.56 4.95 1.09 
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Figure 3.6B Fitted distribution of maximum drug concentration for each subgroup and 
combined subgroups, based on the parameter estimates in Table 3.7B  
 

The graphs in Figures 3.7A and 3.7B show the predicted maximum drug 

concentration based on the mixture model parameters displayed in Table 3.6A and Table 

3.6B, respectively, when the sample size is 50. Similarly, graphs in Figures 3.8A and 

3.8B show the predicted maximum drug concentration based on the mixture model 

parameters displayed in Table 3.7A and Table 3.7B, respectively, when the sample size is 

100. 
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Prediction of Cmax from a Mixture Model of Two Weibull Distributions (n = 50)
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Figure 3.7A Prediction of Cmax based on the model parameters displayed in Table 3.6A. 

Prediction of Cmax from a Mixture Model of Two Weibull Distributions (n = 50)
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Figure 3.7B Prediction of Cmax based on the model parameters displayed in Table 3.6B.
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Prediction of Cmax from a Mixture Model of Two Weibull Distributions (n = 100)
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Figure 3.8A Prediction of Cmax based on the model parameters displayed in Table 3.7A 

Prediction of Cmax from a Mixture Model of Two Weibull Distributions (n = 100)
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Figure 3.8B Prediction of Cmax based on the model parameters displayed in Table 3.7B 
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3.7 Summary and Conclusions 

For n = 50, the Pareto model results in a singular matrix when the start value 

of p is greater or equal to 0.50 with an increment of 0.05. For other start values of p , the 

model parameters have fluctuating standard errors. The inadequacy of the Pareto model 

stems from this sensitivity of the model to the start value of p in estimating the model 

parameters and their standard errors, although the AIC value in this case is slightly 

smaller in comparison with the AIC value for the Weibull mixture model. 

For n = 100, although the values of the estimated model parameters from the 

Pareto distribution remain almost the same for any start value of the mixture parameter p , 

its inadequacy comes from the fact that it places 99.1% of the data in one subgroup, and 

the standard errors for the estimated parameters for the second probability density 

component of the distribution are extremely high. The value of Akaike Information 

Criterion (AIC) is much larger in comparison with the AIC value for Weibull mixture 

model. 

This leads to the examination of the results of Weibull mixture model. For n = 50, 

the parameter estimates and their standard errors from the Weibull model are consistent 

for any start value of p less than or equal to 0.45 with an increment of 0.05. The results 

are tabulated in the Table 3.6A. Another set of consistent parameter estimates was 

obtained for any start value of p  greater or equal to 0.55 with an increment of 0.05. 

These results are presented in Table 3.6B. The AIC value remains the same in both cases.  

 95

For n = 100, and any start value of p less than or equal to 0.45, the results are 

tabulated in Table 3.7A. Similarly, for n = 100 and any start value of p greater or equal to 

0.5, the results are tabulated in Table 3.7B. One can observe that the estimated value of 



the mixture parameter in Table 3.7B is equal to (1 – estimated p  from Table 3.7A), and 

the estimates of the scale parameters get interchanged as well as estimates of the shape 

parameters. 

Based on the comparison of the AIC values between Pareto and Weibull for both 

sample sizes n = 50 and n = 100, and taking into account the inconsistency in the 

estimation of the Pareto model parameters, a mixture of two Weibull models is the only 

suitable model to fit to the data that exhibit bimodality when sample size is small. 
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Chapter Four 

Statistical Model for the Pharmacokinetic Parameter, Maximum Drug Concentration 
(Cmax): Large Samples 

 
4.0 Introduction 

In chapter three, we examined a mixture of two extreme value distributions to 

statistically model the maximum drug concentration data that exhibited a bimodal 

distribution in small samples (N ≤ 100). The focus of the present chapter is to examine 

various statistical models appropriate for large-sample extreme model distributions: 

generalized extreme value distribution, Gumbel distribution, generalized Pareto 

distribution, the three-parameter and the two-parameter Weibull distributions. In each of 

these distributions the maximum likelihood methods were used to estimate the model 

parameters and their standard errors, and using these estimates, extreme quantiles of the 

maximum drug concentration distribution were obtained. These models are examined 

below in separate sections, followed by an overall summary of results. 

4.1 Outline of Each Section of Chapter Four 

Section 4.2 presents the derivations of the normal equations for the generalized 

extreme value distribution, and discusses the validity of the model.  

Sections 4.3 and 4.4 have the same information as in section 4.3 but for Gumbel 

and Weibull distributions, respectively. Section 4.5 gives a description of generalized 

Pareto distribution pertaining to modeling maximum drug concentration data. 



 Section 4.6 presents a detailed discussion of the results of the statistical modeling 

of the maximum drug concentration data for large samples using the extreme value 

models. Section 4.7 contains the return level profiles based on the quartiles, followed by 

the summary and conclusions in section 4.8. 

4.2 Generalized Extreme Value (GEV) Distribution 

The Generalized Extreme Value distribution asymptotically models maxima from 

any distribution with a stable maximum value distribution. The modeling of maxima is 

used to answer questions about how often, in the future, values larger than a certain value 

may occur. In the present problem, the interest lies in the estimation of the return level of 

the maximum drug concentration for any given patient in the population. For example, 

the interest is to estimate the return level of the maximum drug concentration for an nth 

patient with ( )%1100 α− confidence interval where 10.0 and ,05.0 ,01.0=α . 

The data set consists of maximum drug concentration values. Each data value can 

be represented as  where , is a sequence of 

independent random variables having a common distribution function F. In the present 

application, the represent values of drug concentration measured at n pre-set time 

points so that represents the maximum drug concentration of these n values for each 

individual. The distribution of can be derived as [23] 

},,........,,max{ 21 nn XXXM = nXXX ,........,, 21

sX i '

nM

nM

 { } { } { } { } { }n
nn zFzXzXzXzM )(Pr......PrPrPr 21 =≤∗∗≤∗≤=≤   

In practice, this is not helpful since F is not known, and a small discrepancy in the 

estimate of F can lead to substantial discrepancies for . In real-life applications, one 

has to be able to statistically estimate the probability of predicting the maximum drug 

nF
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concentration for an individual after the administration of the drug with confidence 

bounds, and thus characterize the stochastic distribution of maximum drug concentrations. 

Probability Density Function 

The statistical modeling of the maximum drug concentration data starts with the 

family of models having the distribution function of the form [23] 
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This is the generalized extreme value (GEV) family of distributions. When 

,0=ξ the above distribution reduces to Type 1 extreme value distribution known as the 

Gumbel distribution. When ,0>ξ it reduces to Type 2 extreme value distribution known 

as the Frechet distribution, and finally, when ,0<ξ it reduces to Type 3 extreme value 

distribution referred to as the Weibull distribution. The probability density function 

corresponding to (4.1) is 
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where σμξ  and ,, are the shape, location and scale parameters, respectively. 
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4.2.1 Derivation of Normal Equations 

Suppose we have n observations  for which the GEV 

distribution is appropriate. The log-likelihood for the GEV parameters when 

nXXX ,,........., 21

ξ ≠ 0 is 

given by [23] 
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The partial derivatives [66] of (4.3) with respect to each of the three unknown 

parameters σμξ  and ,,  are obtained and set each one of them equal to zero to get a set of 

normal equations.  
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These normal equations (4.4) through (4.6) cannot be solved explicitly to give 

general formulas for the maximum likelihood estimates . Instead, for each 

sample the equations must be solved using an iterative numerical 

procedure.  The maximum likelihood estimates are those values of  that 

maximize the likelihood. The parameter estimates and standard errors were calculated 

numerically using the (extreme value distribution) package for the R statistical 

computing system [75, 53]. 

σμξ ˆ and ,ˆ,ˆ

,,,........., 21 nxxx

σμξ ˆ and ,ˆ,ˆ

evd

4.2.2 Validity of the GEV model 

The validity of the GEV model to model the maximum drug concentration data is 

examined through probability, quantile, and return level plots, and each of these plots is 

based on a comparison of model-based and empirical estimates of the distribution 

function. Another method to examine the validity of the model is the comparison of the 

probability density function of a fitted model with a histogram of the data.      .  

Any departure from linearity in the probability or quantile plot indicates the 

inadequacy of the model to fit the maximum drug concentration data. The return level 

plots enable us to assess the adequacy of the model. The model-based curve and 
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empirical estimates should be in reasonable agreement. The presence of substantial 

disagreement indicates the inadequacy of the GEV model. 

4.3 Gumbel Distribution (Type I Extreme Value Distribution) 

Probability Density Function 

The shape parameterξ determines the shape, and depending on its value, the 

distribution function can change drastically. The standard asymptotic results of 

consistency, asymptotic efficiency and asymptotic normality hold when .5.0−>ξ  For 

,5.01 −<<− ξ  maximum likelihood estimators do not have the asymptotic properties and 

for 1−<ξ , they are unlikely to be obtainable. It is often of interest to test the hypothesis 

that the shape parameterξ is 0, leading to modeling the maximum drug concentration data 

using Gumbel distribution. 

When ,0=ξ the probability density function for GEV reduces to Gumbel 

probability density function given by 
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4.3.1 Derivation of Normal Equations 

As in the case of GEV, the log-likelihood for the Gumbel parameters [23] is 
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Taking the partial derivatives of ),( σμl with respect to the parameters σμ  and  the result 

is the following: 
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Setting 0=
∂
∂
μ
l , and solving forμ , we have 
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Setting 0=
∂
∂
σ
l , and solving forσ , we get  
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The parameter estimates and standard errors were calculated numerically using 

the BestFit 4.5.4 [11], a probability distribution fitting software package for Microsoft 

Windows from Palisade Corporation. 

4.3.2 Validity of the Gumbel Model 

The validity of the Gumbel model to model the maximum drug concentration data 

is examined through probability and quantile plots, and through the comparison of the 

probability density function of a fitted model with a histogram of the data.  

The suitability of any particular member of the GEV family can be assessed by 

comparison with the maximum likelihood estimate within the entire family. The 
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appropriateness of replacing the GEV family with the Gumbel family, corresponding to 

the 0=ξ subset of the GEV family is also assessed using the likelihood ratio test statistic. 

4.4 Weibull Distribution (Type III Extreme Value Distribution) 

Probability Density Function 

Since the fitted shape from the generalized extreme value distribution is negative, 

Weibull distribution was used to model the maximum drug concentration data to examine 

if it is an appropriate distribution to model the data. The three-parameter probability 

density function is given by 
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where σμξ  and ,, are the shape (also called Weibull slope), location, and scale parameters, 

respectively. Different values ofξ can have marked effects on the behavior of the 

distribution. 

4.4.1 Derivation of Normal Equations 

For a random sample , the log-likelihood function is given by nxxx ,........,, 21
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The maximum likelihood estimates are obtained by setting ξσμ ˆ and ,ˆ,ˆ

ly.respective ˆ and ,ˆ ,ˆat  0ln and ,0ln ,0ln ξξσσμμ
ξσμ
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After some mathematical simplification, we get the equations 
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These equations can be solved numerically to obtain the estimates .  

The parameter estimates and standard errors were calculated numerically using the 

Statistical Analysis Software (SAS), Version 9.1, Cary, N.C. [91] 

ξσμ ˆ and ,ˆ,ˆ

4.4.2 Validity of the Weibull Model 

The validity of the Weibull model to model the maximum drug concentration was 

examined using the goodness-of-fit tests by using Cramer-von-Mises and Anderson-

Darling tests. The appropriateness of replacing the three-parameter Weibull with the two-

parameter Weibull, corresponding to the location parameter 0=μ , was also assessed 

using the likelihood ratio test statistic. 

4.5 Generalized Pareto Distribution 

The generalized Pareto distribution (GPD) is a two-parameter family of 

distributions which can be used to model exceedances over a threshold. The most 

common estimators for the shape and scale parameters of the GPD are maximum 

likelihood estimators.  The probability density function for the GPD is given by 

 105



 
11

11),;(
−

⎟
⎠
⎞

⎜
⎝
⎛ −=

λ

σ
λ

σ
σλ xxf        (4.18) 

where σλ  and are the shape and the scale parameters, respectively. 

One of the crucial factors is to select an appropriate threshold value. The two 

techniques that are used to select a threshold value are the use of mean residual life plots, 

or fit the generalized Pareto distribution at a range of thresholds and look for stability of 

parameter estimates. Above a certain value of the threshold at which the generalized 

Pareto distribution provides a valid approximation to the excess distribution, the mean 

residual plot should be approximately linear inu . By arbitrarily selecting a range of 

threshold values, the mean residual plots drawn did not display linearity, indicating the 

inappropriateness of the use of the generalized Pareto distribution to model the maximum 

drug concentration data. 

0u
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4.6 Results of the Modeling on Large Samples 

4.6.1 Assessment of Generalized Extreme Value (GEV) Distribution 

For large samples of sizes 300, 400, 500 and 1000, the generalized extreme value 

distribution was fit.  The various diagnostic plots for assessing the accuracy of the GEV 

model fitted to the maximum drug concentration data were carefully examined. Both the 

probability and quantile plots were linear or near-linear indicating no evidence of lack of 

fit to the GEV distribution. The estimated shape parameterξ was negative, and as a 

consequence of this, the return level curve asymptotes to a finite level. The fitted density 

seems a reasonable fit to the histogram of the maximum drug concentrations. Thus, all 

four diagnostic plots supported the fitted GEV model. The Table 4.1 displays maximum 

likelihood estimates for the GEV model along with their standard errors, and Deviance 

statistic for each of the samples of sizes 300, 400, 500, and 1000. The Figure 4.1 displays 

the diagnostic plots for the case of n = 1000. Figures 4.2 through 4.4 display the return 

level graphs with 90%, 95%, and 99% confidence intervals, respectively. 

Table 4.1 Parameter Estimates (SE) for the GEV Model 
 
n μ (SE) σ (SE) ξ (SE) DEVIANCE 
1000 1360.81 (10.6)  303.45 (7.5) -0.095 (0.020) 14468.9 
500 1363.00 (15.2) 305.27 (10.7)  -0.082 (0.029) 7250.02 
400 1346.68 (16.2) 291.44 (11.5) -0.075 (0.033)  5765.8 
300 1355.65 (21.4)  330.03 (15.2) -0.112 (0.041) 4388.8 
 

In the above table ξσμ  and , , are the location, the scale and the shape parameters of the 

GEV. Using the parameter estimates and their corresponding standard errors one can 

construct 95% (90% or 99%) confidence interval. A greater accuracy in the computation 

of confidence intervals can be obtained by the use of profile likelihood. 
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Figure 4.1 Diagnostic Plots for GEV ( )1000=n  
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Prediction of Cmax with 90% Confidence Interval
Generalized Extreme Value (GEV) Distribution (n = 1000)
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Figure 4.2 Prediction of Cmax versus Number of Subjects with 90% Confidence Interval 
 

Prediction of Cmax with 95% Confidence Interval
Generalized Extreme Value (GEV) Distribution (n = 1000)
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Figure 4.3 Prediction of Cmax versus Number of Subjects with 95% Confidence Interval 
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Prediction of Cmax with 99% Confidence Interval

Generalized Extreme Value (GEV) Distribution (n =1000)
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Figure 4.4 Prediction of Cmax versus Number of Subjects with 99% Confidence Interval 
 

4.6.2 Assessment of Gumble Model 

Next, the suitability of replacing the GEV family with Gumbel family ( 0=ξ ) 

was assessed. 

Table 4.2 Parameter Estimates (SE) for the Gumbel Model 
 
n μ (SE) σ (SE) DEVIANCE DEVIANCE 

(GEV) 
DF 2χ∗  

1000 1344.58 (10.1)  296.25 (7.2) 14487 14469 1 18 
500 1349.6 (14.28) 299.56 (11.2) 7257 7250 1 7 
400 1334.66 (15.2) 285.95 (11.1) 5770 5766 1 4 
300 1336.09 (19.5)  320.46 (17.3) 4395 4389 1 6 
∗ p-values < 0.05 

The p-value corresponding to each of the four values presented in Table 4.2 is 

less than 0.05, leading to the rejection of the null hypothesis that the shape parameter is 0. 

2χ
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The degree of significance increases as the sample size increases. This leads to the 

conclusion that the Gumbel model is not a suitable model to model the maximum drug 

concentration data when the sample size is large. 

4.6.3 Assessment of Weibull Model  

Since the value of the shape parameter is negative, the suitability of replacing the 

GEV model with the Weibull model was assessed. Although the Weibull model was 

suitable for small samples with its shortcomings to adequately explain the bimodal nature 

of the data, its suitability to model the large sample data was inconsistent. Table 4.3 

displays the parameter estimates for the Weibull fit.  

Table 4.3 Parameter Estimates (SE) for the Three-Parameter Weibull Model  
 
n μ (SE) σ (SE) ξ (SE) ∗− valuep  
1000 624.54 (9.55) 993.54 (16.24)   2.68 (0.07) 0.004 
500 775.20 (19.9) 835.42 (29.38)  2.18 (0.10) 0.014 
400 704.72 (17.1) 889.85 (27.3) 2.43 (0.11) 0.064 
300 774.5 (36.4) 833.9 (49.6) 2.06 (0.16) 0.47 
 
*p-value corresponding to goodness-of-fit test 2χ

The inconsistency of the suitability of the Weibull model stems from the fact that 

the p-value is statistically more significant as the sample size becomes large, leading to 

the rejection of the null hypothesis that the Weibull model fits the maximum drug 

concentration data when the sample size becomes large. 

4.6.4 Assessment of Generalized Pareto Model  

Also examined was the suitability of the generalized Pareto distribution to model 

the maximum drug concentration data. The results from this approach indicated that the 

Pareto distribution was an inadequate distribution to model the data. Table 4.4 displays 

the parameter estimates for the generalized Pareto fit. 
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Table 4.4 Parameter Estimates (SE) for the generalized Pareto Model 
 
n σ (SE) ξ (SE) ∗− valuep  
1000 636.7 (16.9) 1.196 (0.14) 0.0 
500 800.4 (21.9)  1.634 (0.19) 0.0 
400 724.5 (25.3) 1.432 (0.22) 0.0 
300 835.8 (27.2) 1.774 (0.23) 0.0 
*p-value corresponding to goodness-of-fit test 2χ

The goodness-of-fit test used was Chi-square, and the p-values were statistically 

significant, leading to the rejection of the null hypothesis that the Pareto distribution is an 

appropriate distribution for any of the large sample sizes 300, 400, 500, or 1000. 
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4.7 Return Level Profiles Based on the Quartiles 

The complete data set (n =1000) was split into four groups based on the quartiles. 

The first quartile value is 1249.32. The second and third quartile values are 1463.41 and 

1710.56 respectively. The first group, named as Q1, consists of all values of maximum 

drug concentrations that are less than or equal to 1249.32. The second group, named as 

Q2, consists of all values of maximum drug concentrations that are less than or equal to 

1463.41. The third group, named as Q3, consists of all values of maximum drug 

concentrations that are less than or equal to 1710.56. The last group, named as ALL, 

consists of all 1000 original maximum drug concentration values. The generalized 

extreme value (GEV) distribution was fit into each of these groups and maximum 

likelihood parameters were estimated. The following table displays the parameter 

estimates along with the standard errors for each of the four groups. 

Table 4.5 Parameter Estimates (SE) for the GEV fit on four groups of data. 

 

n μ (SE) σ (SE) ξ (SE) 
Q1 1072.02 (13.22) 166.72 (12.44)  -0.9404 (0.00)  

 
Q2 1163.85 (11.80) 208.79 (13.21)  -0.6847 (0.04) 

 
Q3 1269.82 (9.67) 223.78 (7.09) 

  
0.4497 (0.03)  

ALL 1360.81 (10.63) 303.45 (7.51)  0.0950 (0.02)  

 

The graphs of the quantiles derived from the maximum likelihood estimators for 

each of the four groups are displayed in a single graph in Figure 4.5. If the maximum 

value of maximum drug concentrations that can be attained is limited by these quartile 

values that define the groups Q1, Q2, and Q3, then the quantile graphs for the groups Q1, 



Q2, and  Q3 are almost linear as n becomes a very large number. The graph is displayed 

in Figure 4.5. 
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Figure 4.5 Prediction of Cmax versus Number of Subjects from the Maximum Likelihood 
Estimates of the GEV Model 
 

4.8 Summary and Conclusions 

The results from the application of extreme value theory to model the maximum 

drug concentration data for large samples are summarized in the form of tables in section 

4.6. The Gumbel distribution (testing the 0:0 =ξH ) is an inadequate model based 

on goodness-of-test’s p-value shown in Table 4.2. A similar conclusion can be drawn 

for the 3-parameter Weibull because of its inconsistency in fitting to the data as sample 

size increases. This is evident from the p-values shown in Table 4.3 for different values 

of  Table 4.4 tabulates the p-values corresponding to the Pareto fit to the data for 

2χ

.n
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different sample sizes. From this, it is easy see that the Pareto distribution is an 

inadequate model to fit to the maximum drug concentration data. 

From the model diagnostic plots for the generalized extreme value distribution 

(GEV) shown in Figure 4.1, and the deviance statistic shown in Table 4.1, it is evident 

that GEV is the only suitable model to model the maximum drug concentration data for 

large samples. 

Figures 4.2, 4.3, and 4.4 show the quantile graphs obtained using the maximum 

likelihood estimators from the GEV model with 90%, 95%, and 99% confidence intervals, 

respectively. The usefulness of these graphs is that one can predict the maximum drug 

concentration value in a given patient after the administration of the drug with 90%, 95%, 

and 99% confidence limits. 

Using the extreme value theory to model and predict has not appeared in the 

literature prior to this study. The behavior and the effect of any drug in a human body are 

influenced by gender, age, weight, interactions with other drugs, severity of the disease, 

and other factors which are unique to a particular drug. The methodology developed in 

this study can easily be applied to construct profiles of of a drug for each covariate 

or combination of covariates. 

maxC

maxC
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Chapter Five 

Statistical Modeling of a Pharmacokinetic System 

5.0 Introduction 

In the pharmaceutical drug discovery and development process, mathematical 

modeling, computer-intensive simulations and statistical validations have become an 

integral part of the process. For any chemical compound to be useful as a drug it must 

exhibit a sufficient binding to the target receptor, that is, it must have efficacy at the site 

of action. In addition, sufficient quantities of the compound must reach the site of action 

and remain there long enough for the desired therapeutic effect, that is, it must have 

desirable pharmacokinetics. In order to accomplish these two goals it is necessary that 

the drug be absorbed into the body, be distributed to the site of action, and remain in the 

body long enough for its benefits to emerge. Each of these areas is subject to research in 

pharmaceutical drug development and requires extensive mathematical modeling.  

Mathematical modeling and the resulting computer simulations have become part 

of a successful method of doing scientific research by complementing and blending 

experiment and theory [13, 14, 28]. Mathematical/numerical modeling not only offers 

many advantages but also aids and accelerates research and development by predicting 

the response of the system under different, often critical, conditions, giving insight into 

processes over a time scale, and eliminating the need of doing expensive tests on 

unsuccessful designs. 



In multi-compartment pharmacokinetic models the two rate constants that are of 

importance are the absorption rate constant and the elimination rate constant. The 

absorption rate constant expresses the speed of absorption and affects such 

pharmacokinetic parameters as the maximum drug concentration, time at which the 

maximum concentration occurs, and the area under the concentration-time curve. The 

average drug concentration during a long-term therapy depends on the extent of 

absorption, and the degree of fluctuation is related to the absorption rate constant. The 

elimination rate constant is a function of how a drug is cleared from the blood by the 

eliminating organs and how the drug distributes throughout the body [93]. As a result of 

increasing interest in the kinetics of drug absorption, distribution, and elimination, many 

analytical and mathematical techniques have been developed to perform highly 

sophisticated pharmacokinetic analyses [37]. 

The purpose of mathematical models in biology and medicine is to obtain a 

comprehensible representation of complex biological activities. Models are based on the 

experiments, and experiments do contain errors of random nature. In addition, biological 

systems have intrinsic variability. These factors indicate the importance of stochastic 

approach to formulations of mathematical models in medicine and biology [63, 64]. 

The use of compartment models in pharmacokinetics was first proposed by 

Teorell [92] in 1937, and ever since, these models have been used extensively for the 

study of drug concentration problems in pharmacokinetics [39, 40]. An n-compartment 

model is described by the following system of differential equations: 

 

( ) ( ) ( )∑
≠
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=+=
n

ji
j

jjiiii nijtxktxkt
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with initial conditions where ( ) ,00 0 ≥= ii xx ( )txi  is the drug concentration in the ith 

compartment; are the rate constants which represent the proportional 

constants associated with the rate of absorption or elimination from the compartments. 

The rate constants are non-negative and satisfy the relationship 

),.....,3,2,1,( njik ij =

njikk
ji

ijii ,.....,3,2,1,  ,∑
≠

== . 

Assuming that the rate constants are known, the system of differential equations, 

(5.0.1), can be solved to obtain a theoretical description of the drug concentration as a 

function of time in each compartment. But the complicating factor in this problem is the 

uncertainty in the rate constants due to factors such as varied experimental conditions like 

sampling and measurement errors, variations in patient parameters as functions of time 

and environmental effects. These uncertainties naturally lead to the assumption that the 

rate constants behave as stochastic variables, and hence, the use of stochastic procedures 

in the analysis is appropriate [86]. A well constructed model in a stochastic setting will 

converge in the mean to the deterministic solution. 

By considering the initial concentration or rate constants or both to be stochastic, 

the system of differential equations, (5.0.1), can be made stochastic. One can then seek to 

develop the probability density function that will characterize the random behavior of 

drug concentration. Having the probability distribution one can obtain the mean behavior 

of the drug concentration and compare it to its deterministic counterpart. Tsokos et al. 

[97] have discussed in detail the procedure for stochastizing the pharmacokinetic model 

that describes the profile of an antibiotic drug coumermycin A1, and have given a 
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numerical comparison between the deterministic trajectory of the above drug with the 

mean value of the random solution as a function of time. 

5.1 Focus of the Chapter Five 

The focus of the present study is to develop numerical solutions for a system of 

random differential equations that represents the three-compartment open system which 

describes the disposition of coumermycin A1 that was considered by Tsokos et al. [97].  

Schematically, the open three-compartment pharmacokinetic model that we are studying 

is illustrated in Figure 5.2.1 and the system of differential equations describing the model 

is given by the equation 5.2.1. The rate constants used in the system are assumed to be 

random and have been characterized by a trivariate probability distribution. The trivariate 

probability distributions that will be used to simulate these rate constants are the 

truncated trivariate normal and exponential probability distributions. 

More precisely, the numerical solutions for the system of random differential 

equations will be obtained using the rate constants that are simulated from the trivariate 

probability distribution under different combinations of covariance structures and initial 

conditions, where the initial conditions are non-random. 

The effects of different values of covariance structures and initial conditions on 

the deterministic behavior of the drug concentration and the mean behavior of the random 

solutions as a function of time will be discussed in addition to comparing these two 

behaviors. Also discussed is the suitability of the use of the two probability distributions 

to simulate the rate constants. 



5.2 A Pharmacokinetic Model for the Antibiotic Drug, Coumermycin A1 

In the model for the disposition of coumermycin A1 the first compartment reflects 

solely the plasma water, while the second compartment comprises the remaining body 

distribution space and the third compartment reflects the biotransformation and excretion 

of the drug [57]. In designing a model for the disposition of coumermycin A1, the 

additional factors to be considered are the non-elimination of the drug from the central or 

plasma compartment. Therefore biotransformation is occurring elsewhere in the body. 

The appropriate model for the disposition of coumermycin A1, introduced by Kaplan [57], 

is as follows: 

x1(t)     x2(t) 
    k12

 Compartment 1   Compartment 2 
  plasma water  k21  extracellular water and tissues 
                       k23  
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      x3(t)    
      Compartment 3 
      biotransformation and excretion 
 
 Figure 5.2.1: Model for the disposition of Coumermycin A1

The pharmacokinetic profile of coumermycin A1 was determined in four human 

subjects based on the serum level data from the report of a clinical study [85]. The 

associated rate constants were calculated [57] and are presented in Table 5.2.1 below. 



Table 5.2.1 Rate constants for the disposition of coumermycin A1 

 
SUBJECT SUBJECT A  SUBJECT B SUBJECT C SUBJECT D 
k12, hr-1 0.338 0.297 0.273 0.222 
k21, hr-1 0.060 0.097 0.030 0.033 
k23, hr-1 0.041 0.065 0.027 0.017 
 

The above compartmental model is described by the following system of 

differential equations: 
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with the initial conditions ( ) ( ) ( ) 332211 0 ,0 ,0 cxcxcx === ; where ( ) ( ) ( )txtxtx 321  and , ,  

are the amounts of the drug concentration in compartments 1, 2, and 3, respectively, at 

time  0 are the rate constants of the system. ;0≥t  and ,, 232112 >kkk

In the matrix form, the system (3.1) can be written as follows: 
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The solution to the differential system (5.2.1) with its corresponding initial 

conditions is given by Tsokos et al. [97] as follows, 
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where ,01 =λ  
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In the matrix form, the general solution can be written as: 
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A is a matrix whose three columns A.1, A.2, and A.3 are given as follows: 33x
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Tsokos et. al. [97] compared the deterministic behavior of the concentration of 

coumermycin A1 and the mean behavior of the random solution as a function of time with 

the assumption that initial concentrations being ,0 and 0,1 321 === ccc  and the joint 

probability density function of random vector being probabilistically characterized by k
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5.3 Simulation of Rate Constants Using Truncated Trivariate Normal Distribution 

The importance of rate constants is quite evident as they affect such 

pharmacokinetic parameters as maximum drug concentration, time at which this 

maximum concentration is attained and the area under the concentration-time curve as 

well as how a drug is cleared from the blood and distributed through out the body. 

Chaung and Lloyd [6] specifically mention that the rate constants are correlated, 

but the presumption of their independence or of having some specific correlation is 

necessary in order that an analysis of the problem to be relevant. Thus, we study the drug 

concentration behavior in a stochastic setting with respect to small (0.25), medium (0.50) 

and high (0.75) correlation structure. 

The standard deviation in any type of pharmacokinetic system plays a major role 

in the final interpretation of the drug concentration behavior in each of the compartments. 

Thus, we study its effect on the drug concentration behavior with respect to small (5% of 

the mean), medium (10% of the mean), and large (20% of the mean) increase in the 

standard deviation. 

The two necessary components, the mean vector and the covariance matrix, to 

generate rate constants that are truncated trivariate normally distributed are obtained as 

follows: 

Mean Vector: The first entry in the mean column vector was computed as the 

average of values measured on four patients, the second entry was the average of 

values measured on the same four patients, and the third entry was the average of 

values measured on the same four patients. 

12k

21k

23k
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Covariance Matrix: The values used for the correlation coefficient and standard 

deviations to obtain the covariance matrix structure are described in Figure 5.3.1 in the 

form  of a flow-chart. It also describes the set of initial conditions used in solving the 

system of random differential equations. 

The numerical solutions for the system of random differential equations are 

obtained for the following three sets of initial conditions: 

 1. vector (c1, c2, c3) = (1.0, 0.00, 0.00) 

 2. vector (c1, c2, c3) = (1.0, 0.05, 0.05) 

 3. vector (c1, c2, c3) = (1.0, 0.10, 0.10). 

For each set of initial conditions, three correlation coefficients (0.25, 0.50 and 

0.75) and three values for the standard deviation (5%, 10% and 20%), represented as a 

percentage of the mean value, will be considered. Thus, numerical solutions will be 

obtained for a total of 3•3•3 = 27 models. All the numerical solutions summarized in this 

study are based on 1000 simulations. 

It is helpful to have a convenient notation to refer to individual models. For 

example, the notation for the model consisting of the third set of initial conditions, 

correlation = 0.50 and standard deviation = 10% of the mean is M (3, 0.50, 10%). 

Similarly, M(3, 0.25, 5%) refers to the model consisting of the third set of initial 

conditions, correlation = 0.25 and standard deviation = 5% of the mean. Thus, a total of 

twenty seven model configurations that we studied are presented in Figure 5.3.1 

In section 5.4 we present the representative graphs along with the discussion of 

the numerical results pertaining to the behavior of the deterministic characterization in 
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each of the three compartments as the correlation structure and standard deviation values 

change. 

In section 5.5 we present the representative graphs along with the discussion of 

the numerical results pertaining to the behavior of the stochastic characterization of 

individual compartments as the correlation structure and standard deviation values 

change. 

In section 5.6 we discuss the simulation of rate constants using the trivariate 

exponential probability distribution and the results from solving the system of random 

differential equations using these rate constants. 
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5.4 Discussion of the Results 

The numerical results of the different models, as outlined in Figure 5.3.1, that we 

study are presented in Figures 5.4A through 5.4D. 

Each of the three representative graphs in Figure 5.4A shows the deterministic 

behavior of coumermycin A1 concentration in all three compartments for the first 50 

hours. This behavior of the drug concentration in all three compartments is as expected. 

The drug concentration in the first compartment (plasma water) decays rapidly as 

indicated by the graph of , while the drug concentration in the second compartment 

(extracellular water and tissues) increases during the first six to eight hours as indicated 

by the graph of  before it starts decaying. The concentration behavior in the third 

compartment (biotransformation and excretion) increases exponentially as indicated by 

the graph of . 

( )tx1

( )tx2

( )tx3

 Discussion of the results displayed in the graphs in Figures 5.4B through 

5.4D is given in Table 5.4.1. More precisely, the behavior of the deterministic 

characterization in each of the three compartments as is affected by the change in the 

correlation structure and increase in the standard deviation is displayed. 
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5.4.1 Effects of Varying the Values of the Standard Deviation and the Correlation 
Structure for Studying the Behaviors of x1(t), x2(t) and x3(t) 

 
Table 5.4.1 Effects of varying the value of the standard deviation and correlation 
structure for studying the behavior of x1(t), x2(t) and x3(t). 
      
Change in     Change in Correlation 
Standard 
Deviation  
   0.25 to 0.50     0.25 to 0.75
 
5% to 10% 
   
x1(t): Rate of decay is almost identical for the Rate of decay is significantly faster 
 first 6 hours when r = 0.50, and after  when r = 0.75 for the first 10 hours 
 that, significantly slower rate of decay. and after that, rates are almost 
       identical.    
 
x2(t): Amount of absorption is significantly Amount of absorption is higher for 
 higher when r = 0.50 after the first 4  r = 0.75 for the first 7 hours, and 
 hours, and this difference increases  after that, a significantly lower 
 with time.     absorption. 
 
x3(t): Amount of biotransformation is   Amount of biotransformation is 
 significantly lower when r = 0.50 and significantly higher when r = 0.75. 
 this differences increases with time. 
 
 
5% to 20% 
   
x1(t): Rate of decay is significantly slower  Rate of decay is significantly slower 
 when r = 0.50 after the first 2 hours.  when r = 0.75 between 2 and 24 
       hours and after that, the two rates 
       are almost identical. 
 
x2(t): Amount of absorption is slightly lower Amount of absorption is significantly 
 when r = 0.50 between 2 and 10 hours, lower when r = 0.75 all through. 
 and after that, higher amount of 
 absorption. 
 
x3(t): Amount of biotransformation is   Amount of biotransformation is 
 significantly lower when r = 0.50 and almost identical for the first 20 hours 
 this differences increases with time.  and after that, it is slightly higher 
       for r = 0.75. 
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5.4.2 Summary of the Effects of the Standard Deviation and the Correlation Structure 
on the Behaviors of x1(t), x2(t) and x3(t) 
 

Drug Concentration, x1(t) 

For a combination of changes in the standard deviation from 5% to 10% and the 

correlation from 0.25 to 0.50, the rate of decay is almost identical for the first six hours 

(delay effect) and then a significantly slower rate of decay. For correlation change from 

0.25 to 0.75, rate of decay is faster for the first ten hours, and after that, almost identical.  

For a combination of changes in the standard deviation from 5% to 20% and the 

correlation from 0.25 to 0.50, the rate of decay is slower after the first 2 hours, while it is 

significantly slower between 2 and 24 hours when the correlation changes from 0.25 to 

0.75. 

From these results we can conclude that, for the combination of higher values of 

the correlation and standard deviation, the rate of decay of drug concentration is 

significantly affected as shown in the sample graphs of x1(t) in Figure 5.4B. 

Drug Concentration, x2(t)

As standard deviation changes from 5% to 10% and correlation changes from 

0.25 to 0.50, the amount of absorption of the drug concentration is significantly higher 

after the first four hours, while for the change in correlation from 0.25 to 0.75 it is higher 

for the first 7 hours (delay effect) and after that the amount of absorption is significantly 

lower. 

For a combination of changes in the standard deviation from 5% to 20% and 

correlation from 0.25 to 0.50, the amount of absorption is lower between 2 and 10 hours 

but higher after that time point, whereas for the change from 0.25 to 0.75, the absorption 

is lower all through.  
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Hence, there is a significant effect of both standard deviation and correlation on 

the absorption rate as displayed in the sample graphs of x2(t) in Figure 5.4C. However, it 

is important to note this effect on the absorption rate as it affects such pharmacokinetic 

parameters as the maximum drug concentration, time at which the maximum drug 

concentration occurs, and the area under the concentration-time profile. 

Drug Concentration, x3(t) 

For a combination of changes in the standard deviation from either 5% to 10% or 

5% to 20%, and the correlation from 0.25 to 0.50, there is a significantly lower amount of 

biotransformation, and this difference increases with time.  

When the correlation changes from 0.25 to 0.75, and standard deviation from 5% 

to 10%, the amount of biotransformation is significantly higher but for the change in 

standard deviation from 5% to 20%, the amount of biotransformation is higher after the 

first 20 hours after being almost identical during the first 20 hours (delay effect). 

Thus, higher standard deviation and correlation values do have a significant effect 

on the biotransformation of the drug concentration as depicted by the sample graphs of 

x3(t) shown in Figure 5.4D.



Deterministic Characterization of Drug Concentration – M(3, 0.25, 5%)
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Deterministic Characterization of Drug Concentration – M(3, 0.50, 10%)
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Deterministic Characterization of Drug Concentration – M(3, 0.75, 20%)
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Figure 5.4A Deterministic characterization of drug concentration in all compartments  
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Deterministic Characterization of Coumermycin A1 
Concentration (x1(t)) 
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Figure 5.4B Deterministic characterization of coumermycin A1 concentration (x1(t)) 
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Deterministic Characterization of Coumermycin A1

Concentration (x2(t)) 
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Figure 5.4C Deterministic characterization of coumermycin A1 concentration (x2(t))



Deterministic Characterization of Coumermycin A1
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Figure 5.4D Deterministic characterization of coumermycin A1 concentration (x3(t)) 
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5.5 Stochastic Behavior of the Drug Concentration in Each Compartment 

5.5.1  Effects of Varying the Values of the Standard Deviation and Correlation Structure 
on the Deterministic (xi(t)) and Stochastic (E[xi(t)]) Behaviors of the Individual 
Compartments 

The stochastic results of the drug concentration behavior in each of the three 

compartments are summarized in Table 5.5.1 for varying values of correlation structure 

and varying increase in the standard deviation.  

Table 5.5.1 Effects of varying the values of the standard deviation and correlation 
structure on the deterministic and stochastic behaviors of the individual compartments 
      
Change in Standard   Change in Correlation 
Deviation  
   0.25 to 0.50     0.25 to 0.75
5% to 10% 
x1(t): Both decrease rapidly but after the first Both the stochastic and deterministic 
 2 hours, the stochastic is consistently  behaviors decrease but the stochastic 
 higher.      is consistently higher. 
 
x2(t): Both deterministic and stochastic are  Both deterministic and stochastic are 

almost identical for the first 4 hours, almost identical although the 
and after that, stochastic is significantly  deterministic is slightly higher for 
lower. the first 6 hours, and after that, 

stochastic is significantly higher. 
 
x3(t): Stochastic characterization is higher  Deterministic trajectory is higher and 

this difference increases with time.  this difference increases with time.  
 
5% to 20% 
x1(t): Stochastic characterization is significantly Stochastic characterization is 

slower than the deterministic trajectory. significantly slower than the 
deterministic trajectory. 

 
x2(t): Deterministic is higher for the first 8  Deterministic is higher for the first 6 

hours and after that, the stochastic is  hours and after that, the stochastic is 
significantly higher and this difference significantly higher and this  
increases with time.    difference increases with time. 

 
x3(t): Deterministic trajectory is significantly Deterministic is significantly higher   

higher than the stochastic characterization than the stochastic characterization 
after the first 6 hours, and this difference after the first 4 hours, and this  

 increases with time.    difference increases with time. 
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5.5.2 Summary of the Effects of the Standard Deviation and the Correlation Structure 
on the Deterministic and the Stochastic Characterizations 

  
Deterministic and Stochastic Characterizations of x1(t) 

For a combination of changes in standard deviation from 5% to 10% and the 

correlation from 0.25 to 0.50 (or 0.25 to 0.75), the stochastic characterization has a rate of 

decrease that is consistently slower than that of the deterministic trajectory. This slower 

rate of decrease of the stochastic characterization is even more pronounced as the 

standard deviation changes from 5% to 20% and correlation changes from 0.25 to 0.50 

(or 0.25 to 0.75). This can be seen from the representative graph presented in Figure 5.5A. 

More precisely, in Figure 5.5A, we note that after approximately 3.5 units of time, 

there is a difference between the deterministic and stochastic behaviors of the drug 

concentration in compartment one.  

Deterministic and Stochastic Characterizations of x2(t) 

As the standard deviation changes from 5% to 10% and correlation changes from 

0.25 to 0.50, from both characterizations being almost identical for the first 4 hours 

(delay effect), the stochastic is significantly lower than the deterministic after that point 

of time. But when the correlation changes from 0.25 to 0.75, after being almost identical 

for the first 6 hours, the stochastic behavior of x2(t) is significantly higher than the 

deterministic. 

For a combination of changes in standard deviation from 5% to 20% and the 

correlation from 0.25 to 0.50, the deterministic behavior is higher for the first 8 hours 

(delay effect), but after that period the stochastic characterization is significantly higher 

with the difference increasing with time. However, when the correlation changes from 

0.25 to 0.75, the deterministic is higher for the first 6 hours (delay effect), and after that, 
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the stochastic behavior of x2(t) is significantly higher with the difference increasing with 

time. This identifies the time delay of initial drug concentration to reach compartment 

two. This can be seen from the representative graph presented in Figure 5.5B.  

Deterministic and Stochastic Characterizations of x3(t) 

For a combination of changes in standard deviation from 5% to 10% and the 

correlation from 0.25 to 0.50, the stochastic characterization is significantly higher with 

the difference increasing with time while, for the change in correlation from 0.25 to 0.75, 

the deterministic is significantly higher with the difference increasing with time. 

As the standard deviation changes from 5% to 20% and correlation changes from 

0.25 to 0.50, the deterministic is significantly higher after about approximately the first 6 

hours (delay effect), and this difference increases with time. The same behavior repeats 

but after about approximately the first 3 hours when the correlation changes from 0.25 to 

0.75. This can be seen in the representative graph presented in Figure 5.5C. This 

identifies the time delay of the drug concentration to reach compartment three from two.  

Thus, the deterministic and the stochastic characterizations of the drug 

concentrations x1(t), x2(t), and x3(t) are significantly affected by the variations in the 

values of the standard deviation and the correlation structure. This significance in the 

effect is evident, especially, for the higher values of the standard deviation and the 

correlation structure.



Stochastic and Deterministic Characterization of Drug Concentration 

 in Compartment 1 along with Standard Deviation
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Figure 5.5A Deterministic and stochastic characterizations of x1(t) as correlation changes 
 from 0.25 to 0.75, and standard deviation, from 5% to 20%. 
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Stochastic and Deterministic Characterization of Drug Concentration 

in Compartment 2 along with Standard Deviation

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Time

C
on

ce
nt

ra
tio

n

x2(t)

E[x2(t)]

S.D.[x2(t)]

x2(t)

E[x2(t)]

S.D.[x2(t)]

 
 
Figure 5.5B Deterministic and stochastic characterizations of x2(t) as correlation changes 
from 0.25 to 0.75, and standard deviation, from 5% to 20%. 
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Stochastic and Deterministic Characterization of Drug Concentration 

in Compartment 3 along with Standard Deviation
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Figure 5.5C Deterministic and stochastic characterizations of x3(t) as correlation changes 
from 0.25 to 0.75, and standard deviation, from 5% to 20%. 
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5.6 Simulation of Rate Constants Using Trivariate Exponential Distribution 

5.6.1 Introduction 

Except for the normal distribution, multivariate extensions of univariate 

distributions are not obvious. The normal is simple because the first and the second 

moments extend in an obvious way, and they completely determine the multivariate 

normal distributions.  

There are various ways to define a multivariate exponential distribution. Marshall 

and Olkin defined a multivariate exponential distribution that arises naturally in modeling 

observable processes, in terms of Poisson shocks. The idea is to consider a system of d 

components that experience shocks that follow independent Poisson processes. There are 

d Poisson processes that affect only one component; there are  that affect two 

components simultaneously; and so on; and one that affects all d components 

simultaneously.  

⎟
⎠

⎞
⎜
⎝

⎛
2
d

Each component is therefore affected by 2
d−1 

Poisson shock processes. The  

element of the multivariate exponential random variable is the interval between two 

successive shocks experienced by the component; that is, it is the minimum of 

independent exponential random variables. The exponential rate parameter for the 

element is the sum of the rates of the Poisson shock processes that affect the 

component. The magnitudes of the rates of the processes that affect both the and 

components simultaneously determine the covariance between the and elements 

of the multivariate exponential random variable. Marshall and Olkin discuss a number of 

thi

thi

12 −d

thi

thi thi

thj thi thj

 142



interesting properties of this distribution, including the fact that it, like the univariate 

exponential distribution, is memoryless.  

For a d-variate exponential random variable, choose 2
d
−1 exponential random 

variables with rate parameters  

λ1,...,λd, λ12,...,λ1d, λ23,...,λ2d,...,λ123,...,λ12d,...,λ12···d.  

We generate 2
d
−1 exponential random variates  

t1,...,td,t12,...,t1d,t23,...,t2d,...,t123,...,t12d,...,t12···d

independently from these distributions. Then, for the element, we take xthi i as the 

minimum of all of the ts with a subscript containing i. For example,  

x1= min{t1,...,td,t12,...,t1d,t123,...,t12d,...,t12···d}.  

The Marshall-Olkin d-variate exponential distribution can also be expressed in 

terms of conditional distributions. A complication, however, is the fact that this 

multivariate distribution has regions of positive probability for which the Lebesgue 

measure is 0. (These correspond to events that affect two or more components 

simultaneously.) Dagpunar (1988) describes a method based on conditional distributions. 

The discontinuities require special handling, and so the method only works well for small 

values of d.  

Based on the above, for the trivariate case, that is, for a 3-variate exponential 

random variable, choose exponential random variables with rate parameters 7123 =−

. and ,,,,,, 123231312321 λλλλλλλ  The value of 1λ is taken as the average of values 12k
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measured on four patients. Similarly, the values for 32  and λλ are the average of values 

and the average of values, respectively measured on the same four patients.  

21k

23k

The value for 12λ is computed as the average of the values of 21  and λλ ; the value of 13λ is 

computed as the average of 31  and λλ ; the value of 123λ  is computed as the average of 

321  and , λλλ .  

Generate exponential random variates  For 

the element, take x

7123 =− . and ,,,,,, 123231312321 ttttttt

thi i as the minimum of all the ts with subscript containing i.  That is, 

 

23123231333

21123231222

12123131211

},,,min{
},,,min{

},,,min{

kttttx
kttttx

kttttx

==
==
==

 

The rate constants that follow trivariate exponential distribution are generated using the 

programming codes.  

5.6.2 Discussion of Results 

The values of the rate constants generated by the exponential probability 

distributions are such small values for the majority of the simulations that the overall 

behaviors of the drug concentration in the three compartments do not reflect the expected 

behavior of the system. The sample graphs presenting the overall behavior of the system 

are shown in Figure 5.6A when the initial conditions for the system of random 

differential equations are .0,0,1 321 === ccc  Figure 5.6B and Figure 5.6C show similar 

sample graphs displaying the overall behavior of the system when the initial conditions 

are and05.0,05.0,1 321 === ccc ,10.0 and ,10.0,1 321 === ccc  respectively.  
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Thus, this approach that uses the rate constants generated from the exponential 

probability distribution in solving the system of random differential equations resulted in 

a poor and inconsistent characterization of the coumermycin A1 drug concentrations as 

shown in the graphs 5.6A through 5.6C. This is a strong indication of the unsuitability of 

the use of exponential probability distribution to simulate the rate constants. 
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Figure 5.6A Graphs of the drug concentration behaviors in the three compartments of the 
two simulations when the initial conditions are c1 =1, c2 =0, and c3 =0. 
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Deterministic Characterization of Drug Concentration
(c1 = 1, c2 = 0.05, c3 = 0.05) 
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Deterministic Characterization of Drug Concentration
 (c1 = 1, c2 = 0.05, c3 = 0.05)
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Figure 5.6B Graphs of the drug concentration behaviors in the three compartments of the 
two simulations when the initial conditions are c1 = 1, c2 = 0.05, and c3 = 0.05. 
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Deterministic Characterization of Drug Concentration
(c1 = 1, c2 = 0.10, c3 = 0.10)  
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Deterministic Characterization of Drug Concentration
(c1 = 1, c2 = 0.10, c3 = 0.10) 
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Figure 5.6C Graphs of the drug concentration behaviors in the three compartments of the 
two simulations when the initial conditions are c1 = 1, c2 = 0.10, and c3 = 0.10. 

 147



 148

5.7 Conclusion 

We have presented a deterministic and stochastic analytical formulation of a 

three-compartment open pharmacokinetic system that describes the behavior of the 

coumermycin A1 concentration in each compartment. A stochastic comparison with the 

deterministic characterization of the drug concentration behavior in each compartment is 

given. The results clearly identify the dependence effect that exists among the three 

compartmental structure of the antibiotic. 

Using as the basic structure the actual data that was collected from administering 

coumermycin A1 to four different patients, we studied numerically the deterministic and 

stochastic behaviors. As expected, stochastic version uniformly is different than that of its 

deterministic counterpart. Our numerical study included the behavior of the drug 

concentration as we vary the correlation structure from small, medium to high and also 

varying the variance from small, medium to high. Thus, we recommend that the 

stochastic formulation and analysis to be more appropriate for decision making for the 

antibiotic drug, coumermycin A1, commonly used for the Lyme disease. 
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Chapter Six 

Statistical Modeling of a Pharmacokinetic System Using a System of Delay Random 
Differential Equations 

 
6.0 Introduction 

Pharmacokinetics is a discipline that uses mathematical models to describe and 

predict the time-course of drug concentrations in body fluids. Our ability to apply 

pharmacokinetic principles has vastly improved in the past few decades as a result of 

advances in analytical chemistry techniques, the development of highly sensitive methods 

of quantitation of drug concentrations in plasma and tissues, and the availability of 

iterative computer methods.  

Pharmacodynamics is a discipline that studies the time course and intensity of 

drug action or response. The ability to understand and predict individual differences in 

drug response is of critical importance. Advances in the clinical applications of 

pharmacodynamics are due to improved precision and objectivity in methods for 

measuring human drug response. The kinetic-dynamic modeling which uses 

mathematical methods to link drug concentrations directly to clinical effect has 

contributed to this advancement (Pharmacokinetics and Pharmacodynamics, David J. 

Greenblatt, Jerold S. Harmatz, Lisa L. von Moltke, and Richard I. Shader). 

In any pharmacokinetics or pharmacodynamics study when a process that 

develops in the body over a course of time, such as drug absorption, drug dissolution, 

drug bioavailability, etc. is delayed, then this delay, referred to as time delay, is an 
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important parameter of the process. In such cases, it is necessary to build a structured 

model of a pharmacokinetic system with time delays. The time delay is independent of 

the method used to study a particular process, and signifies the delay between the time of 

dosing and time of appearance of concentration in the sampling compartment. The delay 

in drug response may complicate drug monitoring. For example, digoxin’s effect on the 

heart is delayed because the drug requires time to be distributed to the active site, and 

hence, digoxin concentrations should not be measured within six hours of a dose, even 

after intra-venous administration. Before that time, the plasma concentration does not 

reflect the concentration at the active site [93].  

In the previous chapter, the focus was to investigate the drug concentration 

behavior in a three-compartment open pharmacokinetic model which describes the 

disposition of an antibiotic drug coumermycin A1.  We studied a system of non-delay 

random differential equations representing this model. The three rate constants that were 

used in the system of differential equations were simulated using the trivariate truncated 

normal probability distribution. The initial values of the rate constants that were used in 

the simulation were calculated from the pharmacokinetic profile of coumermycin A1 

determined in four human subjects based on the serum level data obtained from the report 

of a clinical study. The extensive numerical solutions for the system of non-delay random 

differential equations under different combinations of the covariance structure and the 

initial conditions were developed. 

Numerical comparisons of the deterministic characterizations of the drug 

concentration as a function of time of the individual compartments to study the effect of 

various combinations of the covariance structure and the initial conditions on these 



characterizations were presented. A similar comparison between the deterministic and the 

stochastic characterizations was also presented. 

6.1 Focus of Chapter Six 

The focus of the present chapter is to incorporate the time delay into the system of 

random differential equations that was considered in the previous chapter, and develop 

numerical solutions for the system which describes the disposition of coumermycin A1. 

Schematically, the open three-compartment pharmacokinetic model with the time delay 

components that we are studying is illustrated in Figure 6.2.1.  

More precisely, the numerical solutions for the system of delay random 

differential equations will be obtained for different sets of constant time delay values of 

τ1, τ2 and τ3 but under the same combinations of the covariance structure and the initial 

conditions that were described in the previous chapter. The rate constants used in the 

system are same as those simulated using the trivariate truncated normal distribution as 

described in the previous chapter.  

From the previous chapter we observed a time delay of 3.5 hours for the drug to 

reach compartment two from compartment one, a time delay of 6 hours for the drug to 

reach compartment one from compartment two, and a time delay of 3 hours for the drug 

to reach compartment three from compartment two. 

In the present chapter we use these time delays ( )hhh 3,6,5.3 321 === τττ  to 

obtain numerical solutions for the system of delay differential equations and study its 

impact on the rate of decay, absorption and biotransformation of the drug concentration. 

In addition we consider other sets of constant time delay values to study the behavior of 

the drug concentration under different time delays. 
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For all 27 configurations shown in Figure 6.1.1 the numerical solutions for the 

system of delay random differential equations are obtained based on 1000 simulations 

and using each of the following four sets (referred to as DT1, DT2, DT3, and DT4) of 

constant time delay values in hours: 

DT1. vector(τ1, τ2, τ3) = (0.5, 1, 1.5) 

DT2. vector(τ1, τ2, τ3) = (1, 2, 3) 

DT3. vector(τ1, τ2, τ3) = (3.5, 6, 3) 

DT4. vector(τ1, τ2, τ3) = (4, 6, 8) 

At first we present the discussion of the effect of each of the four sets of constant 

time delay values on the overall behavior of the drug concentration in all three 

compartments. 

Secondly, the comparison of the deterministic behavior of the drug concentration 

with and without time delay for each compartment will be discussed. 

Finally, the effects of different sets of constant time delay values on the 

deterministic behavior of the drug concentration and the mean behavior of the random 

solutions as a function of time will be discussed. 
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6.2 Pharmacokinetic Model 

The pharmacokinetic model with the delay components is as follows: 

Compartment 1
plasma water

Compartment 2
extracellular water and tissues

Compartment 3
biotransformation and excretion

x1(t) x2(t)

x3(t)

1τ

2τ

3τ

12k

21k

23k

 
Figure 6.2.1 Model for the disposition of coumermycin A1

 

The above model is described by the following system of random differential 

equations: 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )32233

3223222111122

222111121

τ
τττ

ττ

−=
−−−−−=

−+−−=

txktx
txktxktxktx

txktxktx

&

&

&

 

with the initial conditions ( ) ( ) ( ) 332211 0 ,0 ,0 cxcxcx === ; ( ) ( ) (txtxtx 321  and , , )  are the 

amounts of the drug concentration in compartments 1, 2, and 3, respectively, at time 

 τ;0≥t 1, τ2, and τ3 are the time delays before the drug concentration reaches 

compartment 2 from compartment 1, compartment 1 from compartment 2, and 

compartment 3 from compartment 2, respectively; are the rate 

constants of the system. 

0 and ,, 232112 >kkk
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In the matrix form, the above system of differential equations can be written as follows: 
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 In general, solutions of this type of equations are difficult to find in closed forms. 

Using an integral approach, integrating each side of the equations, we have, 

( ) ( ) ( )∫ ∫ +−+−−= 1222111121 mdttxkdttxktx ττ  

( ) ( ) ( ) ( )∫ ∫ ∫ +−−−−−= 23223222111122 mdttxkdttxkdttxktx τττ  

( ) ( )∫ +−= 332233 mdttxktx τ  

where are constants of integration. By knowing the values of each of the 

functions prior to 

3,21  and , mmm

,0=− it τ this system can be solved using the method of steps. 

However, for the present study the numerical solutions to the above system of 

delay differential equations were obtained through a computer program written in 

Mathematica 5.1 and SAS 9.1 computer languages. Both programs produced identical 

results. 

In section 6.3, we present the discussion of the numerical results along with the 

representative graphs, followed by conclusion in section 6.4. 
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6.3 Discussion of the Results 

6.3.1 Overall Behavior of the Drug Concentration in all Three Compartments 

The graphs presented in Figure 6.3.1 show the deterministic behavior of 

coumermycin A1 concentration in all three compartments for the first 50 hours under four 

different sets of constant time delay values that are described in section 6.1. The behavior 

of the drug concentration in all three compartments is as expected. The drug 

concentration in the first compartment (plasma water) decays rapidly as indicated by the 

graph of  after the initial delay, while the drug concentration in the second 

compartment (extracellular water and tissues) increases during the first eight to ten hours 

as indicated by the graph of

( )tx1

( )tx2  before it starts decaying. The peak values are slightly 

higher than those for the non-delay models of the previous chapter. The concentration 

behavior in the third compartment (biotransformation and excretion) increases 

exponentially as indicated by the graph of ( )tx3 . Across all models this overall behavior 

of the drug concentration in all three compartments is similar. 

Deterministic Characterizations of Drug Concentration in Compartments 1, 2 and 3
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Deterministic Characterizations of Drug Concentration in Compartments 1, 2 and 3
(M(3, 20%, 0.75); Delay: t1 = 1 h, t2 = 2 h, t3 = 3 h)
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Deterministic Characterization of Drug Concentration in Compartments 1, 2 and 3
(M(3, 20%, 0.75); Delay: t1 = 3.5 h, t2 = 6 h, t3 = 3 h)
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Deterministic Characterization of Drug Concentration in Compartments 1, 2 and 3
(M(3, 20%, 0.75); Delay: t1 = 4 h, t2 = 6 h, t3 = 8 h)
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Figure 6.3.1 Deterministic characterizations of drug concentration in all 3 compartments 



6.3.2 Comparison of Deterministic Behavior Between Delay and Non-Delay Models 

Deterministic Behavior of Drug Concentration, x1(t) 

The difference in the rate of decay in the drug concentration in compartment one 

due to a small delay of 0.5 hour is almost negligible during the first 12 hours, while this 

difference increases as the time delay increases from 0.5 to 1 hour. The deterministic 

behaviors of the drug concentration in compartment one for both delay and non-delay 

cases are almost identical after about the first 12 hours when the time delay in 

compartment one is small (τ1 = 0.5 or 1 h) compared to the length of time (50 hours) the 

drug concentrations are being monitored. These can be observed from the graphs shown 

in the top two panels of Figure 6.3.2A. 

As the time delay increases from 1 hour to 3.5 or 4 hours, not only the difference 

in the rate of decay of drug concentration in compartment one is highly significant 

compared to the non-delay profile but also takes longer period of time, beyond 24 hours, 

before the difference between the two profiles become negligibly small. For the case of 

,5.31 h=τ the graph is shown in the bottom panel of Figure 6.3.2A. 

Deterministic Behavior of Drug Concentration, x2(t) 

The rate of change in the drug concentration in compartment two is subject to two 

time delay constants. It takes a time delay of 1τ for the drug to reach compartment two 

from compartment one, and a time delay of 2τ  for the drug to reach compartment one 

from compartment two. The difference in the rate of absorption of the drug concentration 

in compartment two due to a small delay of 1 hour is almost negligible during the first 8 

hours, while this difference increases as the time delay increases from 1 to 2 hour. The 

peak value in both cases of time delay is almost the same. The deterministic behaviors of 
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the drug concentration in compartment two for both delay and non-delay cases are almost 

identical after about the first 8 hours when the time delay in compartment one is small 

(τ1=1) compared to the length of time (50 hours) the drug concentrations are being 

monitored. This can be observed from the graph shown in the top panel of Figure 6.3.2B. 

As the time delay increases from 1 hour to 2 or 6 hours, not only the difference in 

the rate of absorption of drug concentration in compartment two is significant compared 

to the non-delay profile but also attains a higher peak value, especially in case of  6-hour 

delay. All through the observation period of 50 hours the amount of absorption is slightly 

higher than those observed in its corresponding non-delay case. These are displayed in 

the graphs shown in the middle and bottom panels of Figure 6.3.2B. 

Deterministic Behavior of Drug Concentration, x3(t) 

The rate of change in the drug concentration in compartment three is subject to 

one time delay constant, that is, the time 3τ  taken by the drug to reach compartment three 

from compartment two.  Although the amount of biotransformation and excretion in case 

of a small time delay of 1.5 hours is almost identical to that of the non-delay case, there is 

a uniformly significant difference in the deterministic behaviors of for both delay and 

non-delay as the time delay increases from 1.5 to 3 hours or 3 to 8 hours. These behaviors 

are shown in Figures 6.3.2C. 
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Deterministic Characterization of Coumermycin A1 Concentration (x1(t))
(M(3, 20%, 0.75); Delay t1 = 0.5 h) 
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Deterministic Characterization of Coumermycin A1 Concentration (x1(t))
(M(3, 20%, 0.75); Delay t1 = 1 h) 
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Deterministic Characterization of Coumermycin A1 Concentration (x1(t))
(M(3, 20%, 0.75); Delay t1 = 3.5 h) 
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Figure 6.3.2A Deterministic characterization of coumermycin A1 concentration (x1(t)) for 
time delay values 0.5h, 1h, and 3.5h 
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Deterministic Characterization of Coumermycin A1 Concentration (x2(t))
(M(3, 20%, 0.75); Delay t2 = 1 h) 
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Deterministic Characterization of Coumermycin A1 Concentration (x2(t))
(M(3, 20%, 0.75); Delay t2 = 2 h) 
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Deterministic Characterization of Coumermycin A1 Concentration (x2(t))
(M(3, 20%, 0.75); Delay t2 = 6 h) 
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Figure 6.3.2B Deterministic characterization of coumermycin A1 concentration (x2(t)) for 
time delay values 1h, 2h, and 6h 
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Deterministic Characterization of Coumermycin A1 Concentration (x3(t))
(M(3, 20%, 0.75); Delay t3 = 1.5 h) 
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Deterministic Characterization of Coumermycin A1 Concentration (x3(t))
(M(3, 20%, 0.75); Delay t3 = 3 h) 
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Deterministic Characterization of Coumermycin A1 Concentration (x3(t))
(M(3, 20%, 0.75); Delay t3 = 8 h) 
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Figure 6.3.2C Deterministic characterization of coumermycin A1 concentration (x3(t)) for 
time delay values 1.5h, 3h, and 8h 
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6.3.3 Comparison of Deterministic and Stochastic Behaviors for the Delay Models 

Deterministic and Stochastic Characterizations of x1(t) 

The deterministic and stochastic characterizations are almost identical during the 

first 6 hours for the first two sets of time delay values whereas for the last two sets of 

delay constants they are almost identical during the first 7 hours. But after these time 

points, the stochastic characterization is uniformly higher than the deterministic for all 

four sets of time delay values. Despite the varying time delay values the two 

characterizations are almost identical during the first 6 to 7 hours. 

Deterministic and Stochastic Characterizations of x2(t) 

The deterministic and stochastic characterizations are almost identical during the 

first 10 hours for the first two sets of time delay values whereas for the last two sets of 

delay constants they are almost identical during the first 12 to 14 hours. But after these 

time points, the stochastic characterization is significantly higher than the deterministic 

for all four sets of time delay values.  

Deterministic and Stochastic Characterizations of x3(t) 

The deterministic and stochastic characterizations are identical during the initial 

time delay values for all four sets of time delay values. But after these time points, the 

stochastic characterization is significantly higher than the deterministic in all four cases, 

and the difference increases with time. 

Three panels that are displayed in Figure 6.3.3A show the representative graphs of 

the deterministic and stochastic characterizations of the drug concentration for the case of 

time delay constants, hhh 3 and ,6 ,5.3 321 === τττ . Figures 6.3.3B – 6.3.3D show both 

characterizations of all three compartments and for all four sets of time delay values. 
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Stochastic and Deterministic Characterizations of Drug Concentration in Compartment 1
with Standard Deviation: M(3, 20%, 0.75) and Delay: t1 = 3.5 h, t2 = 6 h, t3 = 3 h
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Stochastic and Deterministic Characterizations of Drug Concentration in Compartment 2
with Standard Deviation:  M(3, 20%, 0.75) and Delay: t1 = 3.5 h, t2 = 6 h, t3 = 3 h
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Stochastic and Deterministic Characterizations of Drug Concentration in Compartment 3
with Standard Deviation:  M(3, 20%, 0.75) and Delay: t1 = 3.5 h, t2 = 6 h, t3 = 3 h
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Figure 6.3.3A Stochastic and deterministic characterizations of drug concentration in all 
three compartments with standard deviation for time delay values: t1=3.5h, t2=6h, t3=3h 
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Deterministic Characterization of Coumermycin A1 Concentration (x 1(t)) for All Four Sets of Time 
Delay Values in Hours: DT1 = (0.5, 1, 1.5), DT2 = (1, 2, 3), DT3 = (3.5, 6, 3), and DT4 = (4, 6, 8)
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Stochastic Characterization of Coumermycin A1 Concentration (E[x1(t)]) for All Four Sets of Time 
Delay Values in Hours: DT1 = (0.5, 1, 1.5), DT2 = (1, 2, 3), DT3 = (3.5, 6, 3), and DT4 = (4, 6, 8)
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Figure 6.3.3B Deterministic (x1(t)) and stochastic (E(x1(t)) characterizations of 
coumermycin A1 drug concentration for all four sets of time delay values in hours  
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Deterministic Characterization of Coumermycin A1 Concentration (x2(t)) for All Four Sets of Time 
Delay Values in Hours: DT1 = (0.5, 1, 1.5), DT2 = (1, 2, 3), DT3 = (3 5, 6, 3), and DT4 = (4, 6, 8)
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Stochastic Characterization of Coumermycin A1 Concentration (E[x 2(t)]) for All Four Sets of Time 
Delay Values in Hours: DT1 = (0.5, 1, 1.5), DT2 = (1, 2, 3), DT3 = (3.5, 6, 3), and DT4 = (4, 6, 8)
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Figure 6.3.3C Deterministic (x2(t)) and stochastic (E(x2(t)) characterizations of 
coumermycin A1 drug concentration for all four sets of time delay values in hours 
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Deterministic Characterization of Coumermycin A1 Concentration (x3(t)) for All Four Sets of Time 
Delay Values in Hours: DT1 = (0.5, 1, 1.5), DT2 = (1, 2, 3), DT3 = (3.5, 6, 3), and DT4 = (4, 6, 8)
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Stochastic Characterization of Coumermycin A1 Concentration (E[x3(t)]) for All Four Sets of Time Delay 
Values in Hours: DT1 = (0.5, 1, 1.5), DT2 = (1, 2, 3), DT3 = (3.5, 6, 3), and DT4 = (4, 6, 8)
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Figure 6.3.3D Deterministic (x3(t)) and stochastic (E(x3(t)) characterizations of 
coumermycin A1 drug concentration for all four sets of time delay values in hours 
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6.4 Conclusion 

 In this study we have presented a deterministic and stochastic formulation of a 

three-compartment open pharmacokinetic system with pre-determined constant time 

delays incorporated in the system that describes the behavior of the coumermycin A1 in 

each compartment. We have presented the effects of constant time delays on the drug 

concentration behavior in each compartment. We studied numerically the deterministic 

behavior of delay and non-delay systems, and performed the comparison of the drug 

concentration behaviors. The results clearly indicate the dependence effect that exists 

among the compartments when the time delays are larger. 

We studied numerically the deterministic and stochastic behaviors of the delay 

system. As expected the stochastic version uniformly is different than that of its 

deterministic counterpart, especially at larger values of the time delays. Our numerical 

study included the behavior of the drug concentration as we vary time delay values from 

small, medium to high. 

Understanding the time delay that exists between the time of administration of the 

drug and the first time point at which drug concentration is observed in the system is 

crucial in drug monitoring process. 



 
 
 
 
 

Chapter Seven 

Future Research Studies  

7.0 Possible Extensions of the Present Research Studies 

In this chapter we shall pose some possible extensions of the present research. 

In chapter two, we have used the Generalized Extreme Value (GEV) distribution 

for statistical modeling of the annual monthly maximum rainfall from 44 locations in the 

State of Florida. Using the model parameters we obtain estimates and confidence 

intervals for return levels of various return periods. We further classify all forty four 

locations into clusters based on the similarity profiles. 

It would be of interest to develop a statistical model that identifies the 

contributory independent variables that affect the rainfall characterizations in the State of 

Florida. For example, to determine if such independent variables as humidity, air 

temperature, altitude, longitude, wind velocity, air pressure, among others are specifically 

statistically significantly contributing to the amount of rainfall in Florida. 

Having established such models which may be non-linear in nature with a high 

degree of accuracy, namely, high (greater than 0.85) r2 and adjusted-r2, we want to look 

at similar models for regional segments in the United States and furthermore, how such 

models relate to non-tropical regions such as desert regions in the United States. 

In chapters three and four, we have utilized the family of extreme value theory to 

statistically model the maximum drug concentration ( )maxC , a critical pharmacokinetic 
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parameter in the drug development process in a clinical trial, for predictive purposes. 

This is the first application of extreme value theory to model .  maxC

Extreme maximum drug concentration levels of any drug in a human body can 

cause toxicity, inefficaciousness, or even serious health problems. Hence, it is of 

paramount importance that a model, incorporating such covariates as age, gender, 

presence of other diseases and use of other concurrent medications, among others, be 

developed. Using such models, one can predict the maximum drug concentration levels in 

a patient whose profile is known. This can revolutionize the concept of individualized, 

optimal patient care. 

For the problem of statistical modeling of a three-compartment pharmacokinetic 

system using a system of random differential equations, from chapters five and six, we 

propose to investigate the identification of interactions among the compartments. 

Furthermore, we want to determine if a markovian approach to modeling the three-

compartment model is meaningful to get a better understanding of the drug.  

In addition, we like to determine if connecting the third and first compartment 

will provide more information about the drug disposition. This will require the 

modification of the stochastic system process to a system of four differential equations. 

Also, the question of interest is to investigate the stochastic system from a non-linear 

perspective and determine and justify in deviating from a linear to non-linear statistical 

characterization of the behavior of the drug, coumermycin A1. 
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