
Doctoral Thesis

Exact Throughput Capacity Studies for Mobile Ad

Hoc Networks

by

Yin Chen

Graduate School of Systems Information Science

Future University Hakodate

March 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Future University Hakodate Academic Archive

https://core.ac.uk/display/71924527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2



Abstract

The rapid development of wireless communication technology has made mobile ad hoc
networks (MANETs) an increasingly appealing option for a lot of critical applications,
such as daily information exchange, disaster relief, vehicular networks and military
communication. A major obstacle, however, stunting the application of MANETs is
the lack of understanding on the throughput capacity, i.e., the maximum achievable
throughput between node pairs, of these networks.

By now, a great deal of research activity has been conducted for throughput
capacity in MANETs, most of which focused on exploring the scaling behaviors of
the throughput capacity as the network size increases. Despite the insights provided
by the scaling law results, they tell us little about the actual achievable throughput of
a MANET, which is of great interest for network designers. Although there are some
preliminary efforts towards the exact studies, the exact throughput capacity remains
unknown for many important MANET scenarios.

In this thesis, we study the exact throughput capacity for three important network-
ing scenarios. At first, we study an intermittently connected mobile network (ICMN),
a special class of sparse MANETs, where no medium access control (MAC) scheme is
adopted and a pair of nodes can communicate whenever they come into the transmis-
sion range of each other. For the concerned ICMN, we explore its exact throughput
capacity and inherent delay-throughput tradeoff under any routing algorithm. Then,
we proceed to study the exact throughput capacity in a continues MANET with a
simple ALOHA MAC protocol, where each node independently decides to conduct
transmission with a given probability. For the considered A-MANET, we first reveal
how its throughput capacity is determined by the successful transmission probabili-
ty (STP) therein and then develop a theoretical framework that enables efficient and
closed-form approximations to be connected for its STP and hence throughput capac-
ity under two popular local transmission schemes, based on which the corresponding
capacity optimization issue can also be explored. Finally, we study a cell-partitioned
MANET with group-based MAC scheduling. For the concerned MANET, we inves-
tigate the impact of directional antenna on its maximum achievable throughput and
also explore the corresponding throughput optimization problem therein. For the
developed theoretical results, extensive simulations are conducted to demonstrate the
efficiency of these theoretical models.

Thesis Supervisor: Xiaohong Jiang
Title: Professor
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Chapter 1

Introduction

1.1 Background

The rapid development of wireless communication technology has made mobile ad

hoc networks (MANETs) an increasingly appealing option for a lot of critical appli-

cations such as daily information exchange, disaster relief, military communication

and vehicular networks. A MANET is a collection of self-autonomous mobile devices

that communicate with each other via peer-to-peer wireless links without any sup-

port from pre-existing infrastructure. Due to nodel mobility, the network topology

always dynamically evolves in MANETs. Hence, the required network management

and packet routing are often performed through dynamic distributed algorithms that

implement the cooperation among network nodes. In particular, store-carry-forward

routing, whereby network nodes help each other to carry and relay data toward the

final destinations, is typically adopted to increase network performance and through-

put as well as the distances over which network source and destination nodes can

communicate.

Compared with existing wireless network architectures, such as satellite network,

cellular network and Wi-Fi network, MANETs provide many appealing features, mak-

ing them highly promising for both the academic and industrial communities. First,

they can be rapidly deployed and reconfigured. MANETs do not rely on the existence

of infrastructures like base station or access point, which not only require unavoidable
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initial investment, but also lead to complexity in operation and maintenance. Sec-

ond, they are of high robustness and can tolerate severe node failure problem, due to

their distributed nature and redundancy of nodes. The robustness of MANETs makes

them extremely suitable for harsh environments like military communications, where

communication devices are vulnerable to enemy attack. Finally, the MANETs make

it possible to provide low-cost Internet service for remote communities in developing

areas.

1.2 Related Works

Motivated by the these promising applications potentials of MANETs, a great deal

of research activity has been dedicated towards a thorough understanding on the

fundamental performance limits of the MANETs in the last decade, such as through-

put capacity [1–3], transmission capacity [4, 5], packet delay[6, 7] and propagation

speed [8–13]. It is expected that such a thorough understanding on these fundamental

performance limits of MANETs will provide profound insights to the design and per-

formance optimization of future networks [14, 15], as the theory of Shannon capacity

has done for point-to-point and multiuser channels. In this thesis, we focus on the

throughput capacity study in MANETs However, the important metric of the exact

throughput capacity remains an largely unexplored issue and dedicated studies are

still needed for many practical MANET scenarios.

1.2.1 Scaling Law and Order Sense Studies

Since the seminal work of Grossglauser and Tse [2], the throughput capacity and

delay-throughput tradeoff have been extensively studied for MANETs under various

mobility models, most of which focus on deriving order sense results and scaling laws.

It was demonstrated in [2] that a Θ(1) per flow throughput is achievable in MANETs

under the independent and identically distributed (i.i.d.) mobility model1, where the

1In this thesis, for two functions f(n) and g(n), we denote f(n) = O(g(n)) iff there exist positive
constants c and n0, such that for all n ≥ n0, the inequality 0 ≤ f(n) ≤ cg(n) is satisfied; f(n) =

16



positions of all nodes are reshuffled in each time slot. The result of [2] indicates

that the long-term per flow throughput can be kept constant even as the number of

network nodes n tends to infinity. Gamal et al. [16, 17] studied a cell-partitioned

MANET divided evenly into n × n cells, on which the nodes move independently

according to a symmetric random walk. For the considered MANET, the authors

of [16, 17] investigated its optimal scaling behavior of the delay-throughput tradeoff

and discovered that the Θ(1) per flow throughput is achievable at the cost of an

average delay of order Θ(n log n). A similar delay-throughput tradeoff was shown

to also exist in MANETs under restricted mobility model [18]. In the work of [19],

Li et al. proposed a controllable mobility model for cell-partitioned MANETs and

derived upper and lower bounds on the scaling laws of the achievable throughput

and expected delay for the considered networks. The results of [19] showed that

such a MANET enables a smooth tradeoff between the throughput and delay to

be conducted by properly configuring the mobility parameters. Besides, the scaling

laws of the throughput capacity and related delay-throughput tradeoff have also been

explored under other mobility models, such as Brownian mobility model [20, 21],

hybrid mobility model [22] and correlated mobility model [23].

1.2.2 Exact Studies

It is notable that although the study on order sense results and scaling laws can

help us to understand the asymptotic behavior of the throughput capacity and delay-

throughput tradeoff as the network size increases, they provide little insight on the

actual achievable performance of these MANETs, which is of more interest from

the view of network designers. Noting the limitation of scaling law results, some

preliminary work has been conducted for the exact study [3, 24–26]. In particular,

Neely and Modiano [3] computed the exact throughput capacity and delay-throughput

tradeoff in a cell-partitioned MANET under i.i.d. mobility model, where the location

of each network node in steady-state is uniformly distributed over all cells. Following

Ω(g(n)) iff g(n) = O(f(n)); f(n) = Θ(g(n)) iff both f(n) = O(g(n)) and f(n) = Ω(g(n)) are
satisfied.
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the MANET model of [3], Urgaonkar and Neely investigated the relationship between

throughput capacity and energy consumption in [24], and Gao et al. [25] extended

the work of [3] to that with adopting a group-based scheduling scheme for medium

access control (MAC).

1.3 Main Work and Contributions

Although the available studies discussed in Section 1.2 are helpful for us to have a

preliminary understanding on the exact throughput capacity in MANETs, we notice

that new dedicated studies are still needed for many important MANET scenarios.

In this thesis, we conduct the exact studies for the throughput capacity in MANETs

under three typical MAC schemes. The first MANET under study is an intermittently

connected mobile network (ICMN), which models a sparse MANET under a simple

MAC scheme such that nodes conduct communication whenever they come into the

transmission range of each other. The second MANET model considered in this

thesis is a continues MANET with an ALOHA protocol (A-MANET), where each

node independently tries to conduct transmission towards its intended receiver with

a fixed probability at each time slot. The third studied MANET is a cell-partitioned

MANET with group-based scheduling scheme for MAC and directional antenna for

transmission. The main contributions of the this thesis are summarized as follows.

• At first, we study the exact throughput capacity and related delay-throughput

tradeoff in an ICMN under a general mobility model that follows the Poisson

meeting process. For the concerned ICMN, we first derive its exact throughput

capacity based on the pairwise meeting rate therein and also provide analysis on

the expected end-to-end packet delay in the network under a capacity achieving

routing algorithm. We then explore the inherent tradeoff between delay and

throughput in the network and establish a necessary condition for such tradeoff

that holds under any routing algorithm. Case studies are further conducted

under the random waypoint and random direction models, two typical mobility

models that follow the Poisson meeting process.
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• Then, we proceed to study the exact throughput capacity for an A-MANET. We

first determine the exact throughput capacity for an A-MANET based on the

successful transmission probability (STP) and also derive the expected end-to-

end packet delay under a capacity achieving routing algorithm. Notice that the

exact modeling of STP is highly cumbersome, we then develop very efficient and

closed-form approximations to both the STP and exact throughput capacity in

the concerned network under two popular local transmission schemes, based on

which the corresponding capacity optimization issue is explored.

• Finally, we analyze the maximum achievable throughput of a cell-partitioned

MANET with two hop relay routing algorithm and directional antennas. Based

on the Markov chain and automatic feedback theory, we explore a general the-

oretical framework that enables the achievable throughput analysis to be con-

ducted for a directional antenna-based MANET. Based on the results of the

achievable per node throughput, we further explore the throughput optimiza-

tion problem for a fixed beamwidth θ and determine the corresponding optimal

setting of f to achieve the optimal throughput.

1.4 Definition of Performance Metrics

The performance metrics under study in this thesis are defined as follows.

Definition 1. End-to-end delay: The end-to-end delay of a packet is the time it

takes for the packet to reach its destination after it arrives at its source.

Definition 2. Stability of a network: For an MANET under a routing algorithm,

if the packet arrival rate to each node is λ, the network is called stable under this rate

if the average number of packets waiting at each node, i.e., the average queue length,

does not grow to infinity with time and thus the average end-to-end packet delay is

bounded.

Definition 3. Throughput capacity: The throughput capacity of the network is

defined as the maximum value of packet arrival rate λ that the network can stably

19



support over any possible routing algorithm.

1.5 Thesis Outline

The remainder of this thesis is outlined as follows: In Chapter 2, we study the exact

throughput capacity and related delay-throughput tradeoff in ICMNs. Chapter 3

investigates the exact throughput capacity for A-MANET. The maximum throughput

of cell-partitioned MANETs with two hop relay routing and directional antenna is

studied in Chapter 4. Finally, we conclude this thesis and discuss the future works

in Chapter 5.

20



Chapter 2

Capacity and Delay-Throughput

Tradeoff in ICMNs

2.1 Introduction

Intermittently connected mobile networks (ICMNs) represent a class of sparse MANET-

s, where complete end-to-end path(s) between a node-pair may never exist so nodes

mainly rely on mobility as well as basic packet storing, carrying, and forwarding op-

erations to implement end-to-end communication (see e.g., [27] for a survey). ICMNs

are highly flexible, robust and can be rapidly deployed and reconfigured, so they serve

as an important model for many critical applications such as wildlife tracking and

monitoring, battlefield communication, vehicular networks, low-cost Internet service

for remote communities.

2.1.1 Available Studies on ICMN

By now, much academic activity has been devoted to the performance study for

ICMNs. Subramanian et al. explored the achievable throughput of ICMNs under two-

hop routing [28, 29] as well as under multi-hop routing [30]. Their results indicate that

for ICMNs with finite buffer size at each node, multi-hop routing usually outperforms

its two-hop counterpart in terms of the achievable throughput performance.
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Recently, the packet delivery delay performance, i.e., the time it takes for a packet

to reach its destination node after it departures from its source node, was extensive-

ly studied under various ICMN scenarios [31–35]. For an ICMN with the Poisson

meeting process, Groenevelt et al. [31] conducted the Markov chain-based analysis

to evaluate its delivery delay performance under both two-hop routing and epidem-

ic routing. Although the Markov chain-based analysis enables the distribution of

delivery delay to be calculated, such analysis quickly becomes cumbersome and com-

putationally impractical as network size increases. Based on this observation, Zhang

et al. [32] developed a theoretical framework based on ordinary differential equations

to significantly reduce the complexity involved in the delivery delay analysis for large

scale ICMNs. For ICMNs with two-hop routing and packet life time constraint and

ICMNs with spray and wait routing, the corresponding delivery delay performance

was reported in [33] and [34, 35], respectively.

2.1.2 Limitations of Available Studies

While the above works are helpful for us to have a preliminary understanding on the

performance of ICMNs, further deliberate studies are needed to reveal the fundamen-

tal performance limits of such networks. First, the available throughput studies only

focus on the achievable throughput of ICMNs under a specified routing algorithm, the

fundamental throughput capacity of an ICMN, i.e., its maximum possible throughput

over any routing algorithm, is still unknown by now. Second, the studies on delivery

delay, which constitutes only a part of the fundamental end-to-end packet delay, can

not be directly applied to investigate the inherent tradeoff between the end-to-end

delay and achievable throughput in ICMNs.

2.1.3 Chapter Outline

The rest of the chapter is outlined as follows. Section 2.2 presents the system models.

The main theoretical results on throughput capacity and delay-throughput tradeoff

are derived in Section 2.3. Section 2.4 provides simulation/numerical results and the
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corresponding discussions. Finally, we summarize this chapter in Section 2.5.

2.2 System Models

In this section, we introduce the network model, mobility model and traffic model of

the considered ICMN.

2.2.1 Network Model

The network under study consists of n identical mobile nodes randomly moving within

a continuous square of side-length L. Each node has a maximum transmission distance

d. We call that two nodes “meet” when their distance is less than d and thus they

can conduct communication. At the beginning of each meeting, either of the two

nodes is randomly selected as the transmitter of this meeting with equal probability.

Transmission is assumed to be instantaneous and the total number of bits transmitted

during a meeting is fixed and normalized to one packet.

2.2.2 Mobility Model

We consider a general mobility model introduced in [31]. Under this mobility model,

the meeting process between each pair of nodes can be modeled as mutually inde-

pendent and homogeneous Poisson processes with rate β > 0. Equivalently stated,

the pairwise inter-meeting times, i.e., the time that elapses between two consecu-

tive meetings of a given pair of nodes, are mutually independent and exponentially

distributed with mean 1/β.

It has been demonstrated in a number of studies, e.g., [31–33], that this mobility

model can serve as an efficient modeling for ICMNs under a lot of typical mobility

models like random waypoint, random direction and random walk models. Specif-

ically, the following lemma (Lemma 4, [31]) provides accurate estimations to the

pairwise meeting rates β under the random waypoint and random direction models

(see Section 2.4 for the detailed definition of these mobility models).
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Lemma 1. For an ICMN of side-length L and maximum transmission distance d,

when d≪ L, its pairwise meeting rates βRW under the random waypoint model (RW)

and βRD under the random direction model (RD) can be efficiently approximated as

βRW ≈ 2c1 dE[V
∗]

L2
, and βRD ≈ 2dE[V ∗]

L2
, (2.1)

respectively, where c1 = 1.3683 is a constant and E[V ∗] is the average relative speed

between two nodes (see [6] for the numerical calculation of E[V ∗]). In the special case

that each node travels at a constant speed v, we have βRW ≈ 8c1dv
πL2 and βRD ≈ 8dv

L2 .

2.2.3 Traffic Model

Regarding traffic pattern, we consider the permutation traffic model [2]. Under this

model, there are n unicast traffic flows in the network. Each node is the source of the

traffic flow generated at itself, and meanwhile, it is also the destination of the traffic

flow from some other node. To simplify the analysis, the packet arrival process at

each node is assumed to be a Poisson arrival process with rate λ > 0. This is justified

since the arrival model does not affect the throughput capacity that the network can

support (see Corollary 5 in [36]). For throughput capacity analysis, we consider that

there is no constraint on packet life time and the buffer size in each node is sufficiently

large such that packet loss due to buffer overflow will never happen.

2.3 Throughput Capacity and Delay-Throughput

Tradeoff

In this section, we first establish a theorem regarding the throughput capacity result

in the considered ICMN based on the pairwise meeting rate therein, and provide

necessity and sufficiency proofs of the theorem. Then, we proceed to explore the

tradeoff between the end-to-end delay under any routing algorithm. Finally, specific

case studies are further conducted for MANETs under the random waypoint and

random direction mobility models.
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2.3.1 Throughput Capacity

Theorem 1. For the concerned ICMN with n mobile nodes and pairwise meeting rate

β, its throughput capacity can be determined as

µ =
n

4
β. (2.2)

Similar to [3], the proof of the capacity µ in Theorem 1 consists of proving that the

λ ≤ µ is necessary and λ < µ is sufficient to ensure network stability. We establish

the necessity in Section 2.3.1 by showing that µ is an upper bound on the achievable

throughput under any possible routing algorithm in the considered ICMN. Then, we

prove the sufficiency in Section 2.3.1, where a routing algorithm is presented and it

is shown that the network is stable under this routing algorithm for any input rate

λ < µ.

Proof of Necessity

Lemma 2. For the concerned ICMN with n mobile nodes and pairwise meeting rate

β, its throughput under any possible routing algorithm is upper bounded by

µ =
n

4
β. (2.3)

Proof. Consider any possible routing algorithm. Let Xh(T ) denote the total number

of packets transferred through h hops from their sources to destinations in time inter-

val [0, T ]. Notice that to ensure network stability, the overall arrival rate of all traffic

flows should be not greater than the overall throughput, since otherwise the amount

of packets waiting in the network will grow to infinity as time tends to infinity. For-

mally, it is necessary that for any given ǫ > 0, there must exist an arbitrarily large T

such that the following inequality holds

λn− ǫ ≤ 1

T

∞∑

h=1

Xh(T ), (2.4)
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where λ denotes the packet arrival rate at each node.

Notice the fact that during the time interval [0, T ], the total number of packet

transmissions is lower bounded by
∑∞

h=1 hXh(T ) and upper bounded by the total

number of meetings between all node pairs during this time interval, denoted by

Y (T ) in the following. Thus, we have from the transitivity that

∞∑

h=1

hXh(T ) ≤ Y (T ). (2.5)

From (2.4) and (2.5), we have

1

T
Y (T ) ≥ 1

T
X1(T ) +

2

T

∞∑

h=2

Xh(T )

≥ 1

T
X1(T ) + 2

[
(λn− ǫ)− 1

T
X1(T )

]
, (2.6)

and thus

λ ≤ 1

2n

[
1

T
Y (T ) +

1

T
X1(T ) + 2ǫ

]
. (2.7)

Since a packet can be transferred from its source to destination through one hop

only when the source conducts a transmission directly to the destination, the term

X1(T ) in (2.7), i.e., the number of packets transferred within one hop during [0, T ],

is upper bounded by Ysd(T ), i.e., the number of transmissions from each source to its

destination during the time interval [0, T ]. From the law of large number, it follows

that as T → ∞

1

T
Y (T )

a.s.−−→ (n− 1)n

2
β, (2.8)

1

T
Ysd(T )

a.s.−−→ n

2
β. (2.9)

Using (2.8) and (2.9) into (2.7), it follows that

λ ≤ n

4
β +

ǫ

n
, as T → ∞. (2.10)

Since ǫ can be arbitrarily small, the result then follows.
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Proof of Sufficiency

For the proof of sufficiency, we present a routing algorithm in Algorithm 1 and de-

rive the average end-to-end packet delay in the considered ICMN under this routing

algorithm in Lemma 3. It is shown that the average end-to-end delay is bounded and

hence the network is stable for all packet arrival rate λ < µ.

Lemma 3. For the concerned ICMN with n mobile nodes and pairwise meeting rate β,

if the packet arrival process at each node is a Poisson arrival process with rate λ < µ,

where µ is the upper bound determined in Lemma 2, and Algorithm 1 is adopted for

Algorithm 1 Routing Algorithm.

1: Suppose that there is a meeting between two nodes, where Tx and Rx are the
transmitter and receiver, respectively.

2: if Rx is the destination of the traffic generated from Tx then
3: Tx conducts a source-to-destination transmission:
4: if Tx has a new packet destined for Rx then
5: Tx transmits the packet to Rx.
6: else
7: Tx remains idle.
8: end if
9: else

10: Tx flips an unbiased coin;
11: if it is the head then
12: Tx conducts a source-to-relay transmission:
13: if Tx has a new packet (i.e., a packet that has never been transmitted before)

then
14: Tx transmits the packet to Rx.
15: else
16: Tx remains idle.
17: end if
18: else
19: Tx conducts a relay-to-destination transmission:
20: if Tx has a packet destined for Rx then
21: Tx transmits the packet to Rx.
22: else
23: Tx remains idle.
24: end if
25: end if
26: end if
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packet routing, the corresponding expected end-to-end delay E{D} is determined as

E{D} =
n− 1

µ− λ
. (2.11)

Proof. Notice that under Algorithm 1, there are three types of transmissions, i.e.,

source-to-destination transmission, source-to-relay transmission and relay-to-destination

transmission. It takes a packet at most two hops to reach its destination and the pack-

et delivery processes of the n traffic flows are independent from each other. Due to

this property, we can model the packet delivery process in the considered ICMN under

Algorithm 1 as a queuing system that consists of n i.i.d. two-stage queues.

Without loss of generality, we focus on a traffic flow illustrated in Fig. 2-1. From

Fig. 2-1 we can see that packets of this flow experience a two-stage queuing process,

i.e., the queuing process at the source node (first stage) and the queue process at one

of the n− 2 relay nodes (second stage).

Consider first the source queue. The input to this queue is a Poisson arrival process

with rate λ. According to Algorithm 1, a “service” comes when either the source

node conducts a source-to-destination transmission or a source-to-relay transmission.

Based on Algorithm 1, we see that the service arrival process at the source node is

a Poisson process with rate µ = n
4
β. Then, it follows that the source queue is an

M/M/1 queue. Based on the result from queuing theory, the mean queuing delay

E{Ds} at the source queue is given by

E{Ds} =
1

µ− λ
. (2.12)

Moreover, due to Burke’s theorem [37], the departure process from the source queue

is also a Poisson process with rate λ.

Consider now the queuing process at one of the n − 2 relay nodes. Notice that

with probability 1
n
a packet departure from the source node will enter this relay node,

so the input to this relay queue is a Poisson process with rate λ
n
. In this relay queue,

a “service” arises when this relay node conducts a relay-to-destination transmission

to the destination node of the concerned traffic flow, so the service process of the
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Figure 2-1: Two-stage queuing process under Algorithm 1.
In the figure, the inter-service times in the source node and relay nodes are
exponentially distributed with rate µ = n

4
β and rate µ′ = β

4
, respectively.

relay nodes is a Poisson process with rate µ′ = β

4
. We can see that the relay queue is

again an M/M/1 queue. The mean queuing delay E{Dr} at a relay node is given by

E{Dr} =
1

µ′ − λ/n
. (2.13)

Summing up the above results, we have that the mean end-to-end packet delay is

E{D} = E{Ds}+
n− 2

n
E{Dr} =

n− 1

µ− λ
, (2.14)

which proved the lemma.
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2.3.2 Delay-Throughput Tradeoff

In the following theorem, we establish a necessary condition on the tradeoff between

the end-to-end packet delay and achievable throughput under any routing algorithm

that stabilizes the network.

Theorem 2. Consider an ICMN with n mobile nodes and pairwise meeting rate β

and the packet arrival rate at each node is λ. A necessary condition for any routing

algorithm that can stabilize the network with rate λ while maintaining a bounded

expected end-to-end delay E{D} is given by

E{D}
λ

≥ 2

(n− 1)β2
. (2.15)

Proof. Assume that the packet arrival rate to each node is λ and that there is a

general routing algorithm that can stabilize the network under this rate. We focus,

without loss of generality, on the packet delivery process of traffic flow i.

Let random variable Di denote the end-to-end delay of a packet in flow i under the

routing algorithm and E{Di} represent its expectation. We can see that the expected

end-to-end packet delay of the whole network can be calculated by

E{D} =
1

n

n∑

i=1

E{Di}. (2.16)

Let random variable Ri denote the redundancy of a packet in flow i, i.e., this packet

is distributed into Ri different nodes (including the destination) in the network, and

E{Ri} be its expectation. Notice that the overall generating rate of packet redundancy
in the network is

λn · 1
n

n∑

i=1

E{Ri} = λ

n∑

i

E{Ri}. (2.17)

This quantity is upper bounded by the rate of transmissions in the network, due to

the fact that during each transmission at most one copy of a packet is transmitted to
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one node. Formally, it is expressed as

λ
n∑

i

E{Ri} ≤
(
n

2

)
β =

(n− 1)n

2
β. (2.18)

Now, we consider a virtual network, in which there are n nodes and R∗
i of them

initially process copies of a packet destined for some node, where R∗
i has the same

distribution with Ri. These R∗
i nodes only transmit the packet to the destination

node. We use D∗
i to denote the time taken for the destination node to receive a copy

of the packet from one of the R∗
i nodes. We can see that the destination node can

receive the packet when a meeting occurs between itself and one of the R∗
i nodes.

Hence, conditioned on the event {R∗
i = r} the D∗

i is exponentially distributed with

parameter rβ, and therefore the expectation of D∗
i is determined as

E{D∗
i } = E{E{D∗

i |R∗
i }} (2.19)

= E{ 1

R∗
i · β

} (2.20)

=
1

β
E{ 1

Ri

}, (2.21)

where (2.21) results from that R∗
i and Ri are equal in distribution.

Notice that Di is stochastically greater than D∗
i . To prove this, we need to show

that for all u,

Pr{Di > u} ≥ Pr{D∗
i > u}. (2.22)

For u ≤ 0, (2.22) holds trivially. Consider any u > 0, we have

Pr{Di > u} =
∑

r

Pr{Di > u|Ri = r}Pr{Ri = r}. (2.23)

Let uk ≥ 0 denote the time taken by the number of copies of a packet to increase

from k to k + 1. We can see that for any possible combination of {uk}k∈{1,2,...,r} such

that
∑r

k=1 uk = u, we have
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Pr{Di > u|Ri = r} ≥ exp

{
−

r∑

k=1

kβuk

}
(2.24)

≥ exp {−rβu} (2.25)

= Pr{D∗
i > u|R∗

i = r}, (2.26)

where (2.24) results from that in the considered network, in which there are k nodes

holding copies of a packet, the rate that the destination node receives a copy of the

packet from those k nodes is at most kβ. Combing (2.26) and (2.23), we have

Pr{Di > u} ≥
∑

r

Pr{D∗
i > u|R∗

i = r}Pr{Ri = r} (2.27)

=
∑

r

Pr{D∗
i > u|R∗

i = r}Pr{R∗
i = r} (2.28)

= Pr{D∗
i > u}, (2.29)

which proves (2.22) for u > 0.

Since Di is stochastically greater than D∗
i , so that

E{Di} ≥ E{D∗
i }. (2.30)

Using (2.30), (2.21) in (2.16) leads to

E{D} ≥ 1

n

n∑

i=1

1

β
E

{
1

Ri

}
(2.31)

≥ 1

β
· 1
n

n∑

i=1

1

E{Ri}
(2.32)

≥ 1

β
· 1

1
n

∑n

i=1 E{Ri}
, (2.33)

where (2.32) and (2.33) both result from Jensen’s inequality, since the function
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f(x) = 1/x is convex for x > 0. Combining (2.18) and (2.33), we have

E{D} ≥ 1

β
· 2λ

(n− 1)β
=

2

(n− 1)β2
· λ. (2.34)

Multiplying 1/λ on both sides of (2.34) proves the theorem.

2.3.3 Case Studies under Random Waypoint and Random

Direction Models

So far, we have derived the throughput capacity and delay-throughput tradeoff for

ICMNs under a general class of mobility models, where the pairwise meeting process

between each pair of nodes can be modeled as the Poisson process. In the following,

we conduct case studies for the random waypoint and random direction mobility

models based on results of Lemma 1 and Theorems 1 and 2.

At first, we provide in Corollary 1 estimations to the throughput capacities in

ICMNs under the random waypoint and random direction models, respectively.

Corollary 1. For an ICMN with n mobile nodes, side-length L and maximum trans-

mission distance d, when d ≪ L, the throughput capacities µRW under the random

waypoint model and µRD under the random direction model can be efficiently approx-

imated as

µRW ≈ c1ndE[V
∗]

2L2
and, µRD ≈ ndE[V ∗]

2L2
, (2.35)

respectively, where c1 = 1.3683 is a constant and E[V ∗] is the average relative speed

between a pair of nodes. In the special case of constant traveling speed v, we have

µRW ≈ 2c1ndv
πL2 and µRD ≈ 2ndv

L2 , respectively.

Then, we provide in Corollary 2 the results on the corresponding delay-throughput

tradeoff in MANETs under the random waypoint and random direction models, re-

spectively.

Corollary 2. For an ICMN with n mobile nodes, side-length L and maximum trans-

mission distance d, when d ≪ L, a necessary condition for any routing algorithm

33



that can stabilize the network with packet arrival rate λ while maintaining a bounded

expected end-to-end delay E{D} is given by

1. for the random waypoint mobility model:

E{D}
λ

≥ L4

2(n− 1)(c1dE[V ∗])2
, (2.36)

2. for the random direction mobility model:

E{D}
λ

≥ L4

2(n− 1)(dE[V ∗])2
, (2.37)

where c1 = 1.3683 is a constant and E[V ∗] is the average relative speed between a pair

of nodes. In the special case of constant traveling speed v, the necessary condition is

given by

1. for the random waypoint mobility model:

E{D}
λ

≥ π2L4

32(n− 1)(c1dv)2
, (2.38)

2. for the random direction mobility model:

E{D}
λ

≥ L4

32(n− 1)(dv)2
. (2.39)

Remark 1. Notice that for both the random waypoint and random direction mobility

models, if we consider that the L and n increase while the node density τ = n/L2

remains constant, then we have the following observations from Corollaries 1 and 2.

• The results of (2.35) reduce to µRW ≈ c1τdE[V
∗] and µRW ≈ τdE[V ∗], indi-

cating that a constant throughput capacity is still achievable in a large scale

ICMN. Meanwhile, the result in (2.11) indicates that the average end-to-end

delay under Algorithm 1 will increase linearly with the number of nodes n.

• The results in Corollary 2 indicates that the delay-throughput scales as E{D}/λ >
O(n).
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2.4 Simulation and Numerical Results

In this section, we first provide simulation results to validate the efficiency of the

theoretical capacity/delay models developed in Section 2.3, and then apply these

models to illustrate the performance of ICMNs under different settings of system

parameters.

2.4.1 Model Validation

To validate the efficiency of our analytical models, we provide simulation results under

the random waypoint and the random direction mobility models in this section. The

simulation results were obtained from a self-developed discrete event simulator that

implements the packet delivery process under Algorithm 1 and accepts as an input

the random mobility trace generated by the NS-2 code of the random waypoint and

random direction mobility models.

Mobility Models

The mobility models considered in the simulation are summarized as follows.

• The random waypoint mobility model [31] is widely adopted in the simulation

of MANETs. Under this model, each node is assigned an initial location in a

finite square and travels at a random travel speed towards a random destination

uniformly chosen in the network area. The travel speed is uniformly selected

in (vmin, vmax) with vmin > 0. After arriving at the destination, the node may

pause for a random amount of time and then chooses a new destination and a

new travel speed, independently of previous ones. It is notable that the location

of a node in steady-state under the random waypoint model is not uniformly

distributed. Particularly, it was reported in [38] that the stationary distribution

of the location of a node is more concentrated near the center of the network

region.
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• Under the random direction mobility model [31], at the beginning each node

randomly selects a direction, a speed and a finite traveling time. The node

travels towards the direction at the given speed for the given duration of time.

When the travel time duration has expired, the node could pause for a random

time, after which it selects a new set of direction, speed and time duration,

independently of all previous ones. When the node reaches a boundary, it is

either reflected or the area wraps around so that it appears on the other side. It

was shown in [39] that the stationary distribution of locations is uniformly dis-

tributed for arbitrary distributions of direction, speed and travel time duration,

irrespective of the boundaries being reflecting or wrapped around.

Simulation Setting

In our simulation, we consider a square network of side-length L = 2000 m and number

of nodes n = 20. The travel speed is constant and equals to v = 40 m/s. There is

no pause time. We consider transmission distances of d = {20, 50, 100}, where the

corresponding pairwise meeting rates are determined as βRW = {6.96 × 10−4, 1.74 ×
10−3, 3.48 × 10−3} for the random waypoint mobility model and βRD = {5.09 ×
10−4, 1.27 × 10−3, 2.55 × 10−3} for the random direction mobility model, according

to Lemma 1. For the simulation measurements of the throughput and average end-

to-end delay under Algorithm 1, we focus on a specific traffic flow and measure its

throughput and average packet delay over a long time period of 1.0× 107 seconds for

each system load ρ = λ/µ.

Simulation Results

To validate the efficiency of the developed throughput capacity model, we summarize

in Fig. 2-2 the simulation results of throughput for different values of system load.

In Fig. 2-2, the dots represent the simulation results and the dashed lines are the

corresponding theoretical throughput capacities, calculated by Corollary 1. We can

observe from Fig. 2-2 that for both the random waypoint and random direction mobil-

ity models, the throughput increases linearly as ρ increases from 0 to 1 and approaches
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(a) Random waypoint model.
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(b) Random direction model.

Figure 2-2: Throughput vs. system load ρ.

37



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000
A

ve
ra

ge
 e

nd
-to

-e
nd

 d
el

ay
 (s

ec
on

d/
pa

ck
et

)

System load, 

d = 20,      theoretical,  simulation
d = 50,      theoretical,  simulation
d = 100,    theoretical,  simulation

(a) Random waypoint model.
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Figure 2-3: Average end-to-end delay vs. system load ρ.
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Figure 2-4: Capacity µ vs. average speed E{V ∗}.

to µ when ρ grows further beyond 1. The results in Fig. 2-2 indicate clearly that our

theoretical capacity model of (2.2) can accurately predict the throughput capacity

of the considered ICMNs under a general class of mobility models that follows the

Poisson meeting process. Moreover, it also indicates that this throughput capacity

can be achieved by adopting Algorithm 1 as routing algorithm in the network.

We then proceed to validate the efficiency of our end-to-end delay model. Partic-

ularly, we compare in Fig. 2-3 the simulation results of the average end-to-end packet

delay to those of theoretical ones calculated by substituting the results in Corollary 1

into (2.11). We can see from Fig. 2-3 that for both the considered mobility models,

the theoretical results nicely agree with the simulation ones. This observation indi-

cates that our delay model of (2.11) is accurate and can efficiently capture the delay

behavior under Algorithm 1 in the considered network.
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Figure 2-5: Average end-to-end delay E{D} vs. average speed E{V ∗}.
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Figure 2-6: Capacity µ vs. transmission distance d.
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Figure 2-7: Average end-to-end delay E{D} vs. transmission distance d.

2.4.2 Numerical Results and Discussions

Based on our theoretical models, we first explore the impact of nodel traveling speed

on the throughput capacity and end-to-end delay. We summarize in Fig. 2-4 how the

µ varies with average pairwise relative speed E{V ∗} in a network of n = 20, d = 20 m

and L = 2000 m. Fig. 2-4 shows that as the E{V ∗} increases, the throughput capaci-

ties under both the random waypoint and random direction models increase linearly.

This is mainly due to that a higher average travel speed will lead to an increase on

the pairwise meeting rate as shown in (2.1), and hence to a higher throughput capac-

ity. For the same network setting, we then present in Fig. 2-5 how the average delay

E{D} under Algorithm 1 varies with E{V ∗} under system load ρ = 0.8. It can be

observed in Fig. 2-5 that increasing E{V ∗} will cause a lower average delay, which is

because the E{D} is inverse proportional to the throughput capacity µ as indicated

in (2.11).

We then present in Fig. 2-6 and 2-7 how the throughput capacity µ and average

end-to-end packet delay vary with transmission distance d for a network of n =
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20,E{V ∗} = 40 m/s, L = 2000 m and ρ = 0.8 (for delay). It can be seen from in

Figs. 2-6 and 2-7 that the impacts of the transmission distance d on the behavior of

capacity and delay are similar to those of the E{V ∗}, for the reason that as shown

in (2.1), d is also a factor in the evaluation of β.

It is also interesting to see that from Figs. 2-4-2-7 that the random waypoint

mobility model provides a performance better than that of the random direction

mobility model for the network settings here. Recall that compared with the random

direction model that has a uniform stationary distribution of nodes location, the

stationary distribution of the location of a node under the random waypoint mobility

model is more concentrated near the center of the network region (see Section 2.4.1).

Therefore, the random waypoint mobility model leads to a higher nodel pairwise

meeting rate (see (2.1)) and hence a higher throughput capacity, for the same network

setting of L, E{V ∗} and d.

2.5 Summary

In this chapter, we studied the exact throughput capacity and delay-throughput trade-

off in a general ICMN with a type of mobility models that follow the Poisson meet-

ing process. Based on the pairwise meeting rate in the concerned ICMN, its exact

throughput capacity is derived and a necessary condition on the delay-throughput

tradeoff is also established to reveal the inherent relationship between the end-to-

end packet delay and achievable throughput. We expect that the theoretical analysis

developed in this chapter will be also helpful for exploring the throughput capacity

and delay-throughput tradeoff in ICMNs under other types of mobility models as

well. The results in Corollary 1 indicate that under the random waypoint or ran-

dom direction mobility, a constant throughput capacity is achievable even in a large

scale ICMN as far as the node density is kept constant, but at the cost of a linearly

increasing end-to-end delay. Our results also reveal that by increasing the average

node traveling speed or transmission range in an ICMN, an improvement on both its

throughput and end-to-end delay performance can be expected.
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Chapter 3

Throughput Capacity in ALOHA

MANETs (A-MANETs)

3.1 Introduction

In this chapter, we focus on a class of MANETs where mobile nodes are deployed in a

continuous network area[40], and a slotted ALOHA [41] protocol is adopted for MAC.

It is notable that the concerned MANETs with ALOHA protocol and continuous net-

work model serve as an important networking model for practical MANETs. This is

because that in comparison with the discrete network model with cell-partition [3, 17],

the continuous network model and mobility model defined based on it provide a more

realistic characterization of network topology and node mobility in practical MANET-

s. Also, the ALOHA is a very attractive MAC protocol for practical MANETs since

it is simple yet efficient and can be easily implemented in a distributed fashion.

3.1.1 Available Studies on A-MANET

By now, a lot of work has been done to help us understand the basic performance

of A-MANETs. Baccelli et al. [41] studied the optimization on transmission progress

under Poisson point process model [42–44]. The interference and outage probability

were investigated in [45] and [46] under infinite and finite network scenarios, respec-
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tively. The work in [47, 48] provided analysis on the asymptotic behavior of packet

propagation speed in A-MANETs. The authors of [49] took a game theory approach

to explore the power control issue in A-MANETs. Recently, the local delay of A-

MANETs, i.e. the time it takes a node to successfully transmit a packet, has been

explored in [50–52].

3.1.2 Limitations of Available Studies

Despite the insight provided in available studies discussed above, the exact through-

put capacity of A-MANETs remains unexplored in the literature. Although exten-

sive research has been devoted to the study of throughput capacity under various

network scenarios, the analysis developed there cannot be applied to study the exact

throughput capacity in A-MANETs. This is mainly due to the difficulty in exactly

modeling the successful transmission probability (STP) in such networks, which usu-

ally involves very complicated geometric calculations and thus prevents a closed-form

result on STP (and also exact throughput capacity) from being derived. To address

this issue, this chapter develops a novel theoretical framework to enable the efficient

and closed-form approximations to both STP and exact throughput capacity to be

conduced for A-MANETs.

3.1.3 Chapter Outline

The rest of the chapter is organized as follows. Section 3.2 introduces system models.

The analysis on the throughput capacity and expected end-to-end delay of a capacity

achieving routing algorithm is presented in Section 3.3. In Section 3.4, we derive

approximations to both the STP and throughput capacity under two popular local

transmission schemes, conduct analysis on the corresponding approximation errors

and also explore the capacity optimization issue. Simulation/numerical studies and

the corresponding discussions are provided in Section 3.5. Finally, we summarize this

chapter in Section 3.6.
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3.2 System Models

In this section, we present the network model, communication model and traffic model

under study and also define the successful transmission probability.

3.2.1 Network Model

We consider a time-slotted network of a continuous unit square area. Similar to

previous studies [17, 53, 54], the network is assumed to have torus boundaries, so

the opposite sides of the network will be identical. There are n mobile nodes in the

network, and they randomly move according to the two dimensional i.i.d. mobility

model [2]. Under such mobility model, each node independently and uniformly selects

a point in the network area at the beginning of each time slot and then stays at it

during the time slot.

3.2.2 Communication Model

A half-duplex medium is shared by all the nodes for data communication, and a

slotted ALOHA protocol [41] is adopted for MAC. Under this protocol, in each time

slot one node tries to conduct a transmission (i.e, to become a transmitter) with

probability q and keeps silent as a potential receiver with probability 1− q.

We adopt the protocol model defined in [17] to decide if a transmission between a

transmitter and its intended receiver is successful in this chapter. Under the protocol

model, the transmission from transmitter i to receiver j is successful iff for any other

transmitting node l,

dlj ≥ (1 + ∆)dij, (3.1)

where dlj denotes the Euclidean distance between node l and node j and ∆ > 0 models

a guard zone to prevent the transmission from being corrupted by interference from

other simultaneous transmissions. During a successful transmission, the total number

of bits that can be transmitted is fixed and normalized to one packet.
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Previous works from both practice and theoretical analysis indicate that the lo-

cal transmission provides a better throughput performance, so we consider here the

following two popular local transmission schemes for receiver selection [1, 2, 51].

Nearest Neighbor Transmission (NNT): Under NNT, the intended receiver

of a transmitter is the node closest to the transmitter among all other nodes.

Nearest Receiver Transmission (NRT): Under NRT, the intended receiver of

a transmitter is the silent node closest to the transmitter among all other nodes.

3.2.3 Traffic Model

Regarding traffic pattern, we also consider the permutation traffic model [2]. We

assume that the packet arrival process at each node is an i.i.d. Bernoulli process with

rate λ packets/slot, such that with probability λ a single packet arrives at the node at

the beginning of each time slot. To simplify capacity analysis, we assume that there

is no constraint on packet lifetime and the buffer size in each node is sufficiently large

so packet loss due to buffer overflow will never happen.

3.2.4 Definition of STP

Definition 4. Successful transmission probability (STP) : The successful

transmission probability is defined as the probability that a node establishes a suc-

cessful transmission to its intended receiver in a time slot.

3.3 Throughput Capacity

In this section, we first establish the following theorem regarding the throughput

capacity result of an A-MANET, and then provide necessity and sufficiency proofs

for this result.

Theorem 3. For an A-MANET with n mobile nodes and STP PS, its throughput

capacity is determined as

µ =
n

2(n− 1)
PS. (3.2)
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The proof of Theorem 3 involves proving that λ ≤ µ is necessary and also λ < µ

is sufficient for ensuring network stability. We prove the necessity in Section 3.3.1

by showing that µ serves as an upper bound on the throughput over any routing

algorithm in the network. The sufficiency is established in Section 3.3.2, where we

provide a routing algorithm and show that the network is stable under this algorithm

for any λ < µ.

3.3.1 Proof of Necessity

Lemma 4. (Necessity) For an A-MANET with n mobile nodes and STP PS, its

throughput under any routing algorithm is upper bounded by

µ =
n

2(n− 1)
PS. (3.3)

Proof. The necessity can be proved following a method similar to that of [3]. For

any possible routing algorithm, we use Xh(T ) to denote the total number of packets

transferred through h hops from their sources to destinations in time interval [0, T ].

Notice that to ensure network stability, the overall arrival rate of all traffic flows

should be less than the overall throughput. Formally, it is required that for any given

ǫ > 0, there must exist an arbitrarily large T such that the following inequality holds

λn− ǫ ≤ 1

T

∞∑

h=1

Xh(T ), (3.4)

where λ is the packet arrival rate at each node.

Notice the fact that during time interval [0, T ] the total number of packet trans-

missions is at least
∑∞

h=1 hXh(T ), which is upper bounded by the total number of

successful transmissions Y (T ) in this time interval. Thus, we have

∞∑

h=1

hXh(T ) ≤ Y (T ). (3.5)
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From (3.4) and (3.5), we have

1

T
Y (T ) ≥ 1

T
X1(T ) +

2

T

∞∑

h=2

Xh(T )

≥ 1

T
X1(T ) + 2

[
(λn− ǫ)− 1

T
X1(T )

]
, (3.6)

and thus

λ ≤ 1

2n

[
1

T
Y (T ) +

1

T
X1(T ) + 2ǫ

]
. (3.7)

Since a packet can be transferred from its source to destination through single hop

only when the source can conduct a successful transmission to the destination, X1(T )

is upper bounded by the total number of successful source-to-destination transmis-

sions Ysd(T ) in time interval [0, T ]. Based on the law of large number, we know that

as T → ∞

1

T
Y (T )

a.s.−−→ nPS, (3.8)

1

T
Ysd(T )

a.s.−−→ n

n− 1
PS. (3.9)

Hence,

λ ≤ n

2(n− 1)
PS +

ǫ

n
, as T → ∞. (3.10)

Since ǫ can be arbitrarily small, the result then follows.

3.3.2 Proof of Sufficiency

In this section, we will prove that the upper bound in (3.3) is just the exact through-

put capacity for the concerned A-MANET. The basic idea of our proof is to first

construct a routing algorithm and then show that the routing algorithm can stabilize

the network for any packet arrival rate λ < µ. The routing algorithm considered here

is summarized in Algorithm 2.

According to Algorithm 2, when a node obtains a transmission opportunity,

it can conduct only one of the following three types of transmissions: source-to-
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Algorithm 2 Routing Algorithm:

1: Suppose that a transmitter Tx can conduct a successful transmission to its receiver
Rx in the current time slot.

2: if Rx is the destination node of Tx then
3: Tx conducts Procedure 1 with Rx.
4: else
5: Tx flips an unbiased coin;
6: if it is the head then
7: Tx conducts Procedure 2 with Rx.
8: else
9: Tx conducts Procedure 3 with Rx.

10: end if
11: end if

Procedure 1 Source-to-destination transmission:
1: if Tx has a new packet destined for Rx then
2: Tx transmits the packet to Rx.
3: else
4: Tx remains idle.
5: end if

Procedure 2 Source-to-relay transmission:

1: if Tx has a new packet (i.e., a packet that has never been transmitted before)
then

2: Tx transmits the packet to Rx.
3: else
4: Tx remains idle.
5: end if

Procedure 3 Relay-to-destination transmission:

1: if Tx has a packet destined for Rx then
2: Tx transmits the packet to Rx.
3: else
4: Tx remains idle.
5: end if

destination transmission, source-to-relay transmission and relay-to-destination trans-

mission. Thus, a packet takes at most two hops to reach its destination.

Now, we show in the following lemma that for any arrival rate λ < µ, the expected

end-to-end delay under Algorithm 2 is bounded and hence the network stability is

ensured.
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Figure 3-1: The packet routing process under Algorithm 2.

Lemma 5. (Sufficiency) In the concerned A-MANET with n mobile nodes, if the

packet arrival process at each node is an i.i.d. Bernoulli stream with rate λ < µ and

the Algorithm 2 is adopted for packet routing, the expected end-to-end packet delay

E{D} is determined as

E{D} =
n− λ− 1

µ− λ
=
n− ρµ− 1

(1− ρ)µ
, (3.11)

where ρ = λ/µ denotes the system load.

Proof. For a given node and a given time slot, we use Psd, Psr and Prd to denote

the probability that it conducts a source-to-destination transmission, the probability

that it conducts a source-to-relay transmission and the probability that it conducts
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a relay-to-destination transmission, respectively. We can easily see that

Psd =
1

n− 1
PS,

Psr =
n− 2

2(n− 1)
PS,

Prd =
n− 2

2(n− 1)
PS. (3.12)

With the help of Psd, Psr and Prd, the packet routing process under Algorithm 2

is illustrated in Fig. 3-1, where the source node conducts a source-to-destination

transmission with probability Psd and conducts a source-to-relay transmission to one

relay node with probability Psr

n−2
, and a relay node conducts a relay-to-destination

transmission to the destination node with probability Prd

n−2
. We can see from Fig. 3-1

that the packet routing process of each traffic involves a two-stage queuing process.

The first stage is the queuing process at the source node, while the second stage is

the queuing process at one of the n− 2 relay nodes.

First, for the queuing process at the source node, we can see that its packet

arrival rate is λ and its service rate is Psd + Psr = µ. Such a queue is termed as a

state independent Bernoulli server in [55]. Let l denote the queue length of the source

queue, its stationary distribution π(l) is given by

π(l) =

(
1− λ

µ

)(
λ(1− µ)

µ(1− λ)

)l(
1

1− µ

)
for l ≥ 1,

π(0) =

(
1− λ

µ

)
.

Thus, the expected queue length E{Ls} at the source is determined as

E{Ls} =
∞∑

l=1

lπ(l) =
λ2 − λ

λ− µ
. (3.13)

Notice that the queue at the source is reversible, so its output is also a Bernoulli

stream with rate λ.

Second, consider the queuing process at one of the n − 2 relay nodes. A packet
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transmitted from the source will be delivered to this relay node with probability

Psr

(n−2)µ
= 1

n
, so the arrival rate at the relay queue is determined as λ′ = λ

n
. Regarding

the service rate of the relay queue, we can easily see that it is given by µ′ = 1
n−2

Prd,

i.e., the probability that the relay conducts a relay-to-destination transmission with

the destination node. Since the arrival and departure at a relay node are mutually

exclusive, this queue can be regarded as a birth-death chain. Let l′ denote the relay

queue length, its stationary distribution π′(l′) is given by

π′(l′) =

(
1− λ′

µ′

)(
λ′

µ′

)l′

, l′ ≥ 0. (3.14)

Thus, the expected queue length E{Lr} at a relay node is determined as

E{Lr} =
∞∑

l′=1

l′π′(l′) =
λ′

µ′ − λ′
. (3.15)

From Little’s Theorem, the expected end-to-end delay E{D} is then evaluated as

E{D} = [E{Ls}+ (n− 2)E{Lr}] /λ

=
n− λ− 1

µ− λ
. (3.16)

3.4 Approximations of STP and Capacity

The result in Theorem 3 indicates that the throughput capacity of an A-MANET is

mainly determined by the STP in such network. In this section, we will show that the

exactly modeling of STP is highly cumbersome, and then develop efficient closed-form

approximations to both STP and exact throughput capacity in the concerned network

under the NNT and NRT schemes, respectively. The related issues of approximation

error analysis and capacity optimization will be also explored.
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3.4.1 Node Distance Analysis

For the analysis of STP and thus throughput capacity under the NNT and NRT

schemes, where the node (or silent node) closest to the transmitter will be selected

as the receiver, we first need to determine the distance distribution between a node

and its neighbor nodes.

Lemma 6. For an A-MANET with n mobile nodes, we use Rk (0 < k ≤ n − 1) to

denote the distance between a node and its k-th nearest neighbor at a time slot, then

the probability density function fRk
(r) of Rk is determined as

fRk
(r) =

ω′(r) (ω(r))k−1 (1− ω(r))n−k−1

B(k, n− k)
, (3.17)

where

ω(r) =





πr2 0 ≤ r ≤ 1
2

πr2 − 4r2 arcsec(2r)

+
√
4r2 − 1 1

2
< r ≤

√
2
2

, (3.18)

ω′(r) is the derivative of ω(r) determined as

ω′(r) =




2πr 0 < r < 1

2

2πr − 8r arcsec(2r) 1
2
< r <

√
2
2

, (3.19)

and B(x, y) is the beta function that can be expressed in terms of gamma functions

as B(x, y) = Γ(x)Γ(y)
Γ(x+y)

.

Proof. Without loss of generality, we consider a node in the center of the network at

the current time slot, and use ω(r) to denote the intersection between the circular

region centered at the node with radius r and the network region1. Since the network

region is an unit square, it is easy to see that ω(r) can be easily determined as (3.18)

by considering the cases 0 ≤ r ≤ 1
2
and 1

2
< r ≤

√
2
2
, respectively.

1For simplicity, we use ω(r) to denote both the intersection and area of this intersection here.

53



Let Nr denote the number of nodes (excluding the concerned node) that fall within

ω(r) in the current time slot, we can see that Nr follows the binomial distribution

with parameters n− 1 and ω(r). Notice that a node falls within ω(r) iff its distance

to the concerned node is no larger than r. Thus, the cumulative density function

FRk
(r) of Rk is given by

FRk
(r) = Pr{Rk ≤ r}

= Pr{Nr ≥ k}

=
n−1∑

t=k

(
n− 1

t

)
(ω(r))t(1− ω(r))n−1−t

= Iω(r)(k, n− k), (3.20)

where Ix(a, b) is the regularized incomplete beta function [56]. Taking derivative with

respect to r in both sides of (3.20), the formula (3.17) then follows.

3.4.2 STP and Capacity under NNT

In this section, we analyze the STP and throughput capacity under the NNT scheme.

Without loss of generality, we focus on a node i and its nearest neighbor node j

in a time slot. The node i can successfully establish a transmission to node j in

the time slot iff the following three events happen simultaneously: (i) Node i is

transmitting; (ii) Node j is silent; (iii) The successful transmission condition specified

by the protocol model in (3.1) holds.

We use indicator function δi,j = 1 to denote that the condition in (3.1) is true

for the transmission from i to j (δi,j = 0, otherwise). Since above three events

are mutually independent, we can see that the STP PS under the NNT scheme is

determined as

PS = q(1− q) Pr{δi,j = 1}

= q(1− q)E{δi,j}. (3.21)
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(a) 0 < ∆ < 1. (b) ∆ ≥ 1.

Figure 3-2: Illustration of Ω
(i)
r , Ω

(j)
(1+∆)r and Ω

(i,j)
r,∆ .

Let E {δi,j|dij = r} denote the expectation of δi,j conditioned on dij = r, we have

E{δi,j} =

∫ √
2
2

0

E {δi,j|dij = r} fR1(r) dr, (3.22)

where fR1(r) is just the probability density function of distance between a node and

its nearest neighbor, which can be evaluated based on (3.17).

Formulas (3.21) and (3.22) indicate that we need to determine E{δi,j|dij = r} for

the evaluation of PS. We use Ω
(a)
r to denote the intersection between the network

region and the circular region centered at a node a with radius r, and use Ω
(i,j)
r,∆ to

denote the intersection between Ω
(i)
r and Ω

(j)
(1+∆)r.

As illustrated in Fig. 3-2 that E{δi,j|dij = r} actually accounts for the probability

that all transmitting nodes other than i are outside of Ω
(j)
(1+∆)r given that all nodes

other than i and j are outside of Ω
(i)
r . Let pi,j denote the probability that a node is

outside of Ω
(j)
(1+∆)r given that it is outside of Ω

(i)
r , we have

E{δi,j|dij = r} =
n−2∑

k=0

(
n− 2

k

)
(q · pi,j)k(1− q)n−2−k,

(3.23)
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here

pi,j =
1− |Ω(i)

r | − |Ω(j)
(1+∆)r|+ |Ω(i,j)

r,∆ |
1− |Ω(i)

r |
, (3.24)

and | · | denotes the area of a region.

Since |Ω(i)
r | and |Ω(j)

(1+∆)r| can be easily determined based on (3.18), the only dif-

ficulty in the evaluation of E{δi,j|dij = r} is to determine |Ω(i,j)
r,∆ |. We can see from

Fig. 3-2 that the evaluation of |Ω(i,j)
r,∆ | can be divided into two scenarios of 0 < ∆ < 1

and ∆ ≥ 1. We now focus on the scenario of 0 < ∆ < 1 (the analysis for the scenario

of ∆ ≥ 1 can be conducted similarly).

To evaluate |Ω(i,j)
r,∆ | under the scenario of 0 < ∆ < 1, we need to further specify the

parameter r. As shown in Fig. 3-2a that for the case (3 + ∆)r ≤ 1 (or equivalently

0 < r ≤ 1
3+∆

), |Ω(i,j)
r,∆ | can be easily evaluated since it just corresponds to the area

of the intersection between two disks. We now consider the case (3 + ∆)r > 1 (or

equivalently 1
3+∆

< r ≤
√
2
2
). As showed in Fig. 3-3 that under the latter case, Ω

(i,j)
r,∆

corresponds to the intersection of multiple disks and it also varies with the direction

from transmitter i to receiver j. Thus, evaluation of |Ω(i,j)
r,∆ | under this case is quite

cumbersome.

Based on above discussion, we can see that for the scenario of 0 < ∆ < 1, E {δi,j}
can be evaluated as

E{δi,j} =

∫ 1
3+∆

0

E {δi,j|dij = r} fR1(r) dr

︸ ︷︷ ︸
(a)

+

∫ √
2

2

1
3+∆

E {δi,j|dij = r} fR1(r) dr

︸ ︷︷ ︸
(b)

, (3.25)

in which the integration (a) can be analytically derived while the analysis of integra-

tion (b) is highly cumbersome (if not impossible) due to the difficulty in modeling

|Ω(i,j)
r,∆ | there. Fortunately, as to be proved in Appendix A.1 that the integration (b)

in (3.25) actually accounts for only a negligible part of E {δi,j}, which enables an

efficient and closed-form approximation to PS to be made.
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(a) (b)

Figure 3-3: Illustration for Ω
(i,j)
r,∆ when 0 < ∆ < 1 and 1

3+∆
< r ≤

√
2
2
.

Lemma 7. In the considered A-MANET with n mobile nodes, transmission probabil-

ity q and guard factor ∆ > 0, its STP PS under the NNT scheme can be approximated

as

PS ≈ P̂S =





πq(1−q)
π+q·Ψ(∆)

, if 0 < ∆ < 1

q(1−q)
1+2∆q+∆2q

, if ∆ ≥ 1

, (3.26)

and the corresponding approximation error ǫP = PS − P̂S is upper and lower bounded

as

ǫ− ≤ ǫP ≤ ǫ+, (3.27)

where

Ψ(∆) = π(1 + ∆)2 − (1 + ∆)2 arccos

(
1 + ∆

2

)

− arccos

(
1− (1 + ∆)2

2

)
+ (1 + ∆)

√
1− (1 + ∆)2

4
, (3.28)
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ǫ− =




− πq(1−q)

π+q·Ψ(∆)

(
1− π+q·Ψ(∆)

(3+∆)2

)n−1

, if 0 < ∆ < 1

− q(1−q)
1+2∆q+∆2q

(
1− (1+2∆q+∆2q)π

(2+2∆)2

)n−1

, if ∆ ≥ 1

(3.29)

and

ǫ+ =





q(1− q)

[(
1− q · Ψ(∆)

(3+∆)2−π

)n−2(
1− π

(3+∆)2

)n−1

− π
π+q·Ψ(∆)

(
1− π+q·Ψ(∆)

(3+∆)2

)n−1
]
, if 0 < ∆ < 1

q(1− q)

[(
1− q · π(1+∆)2−π

(2+2∆)2−π

)n−2 (
1− π

(2+2∆)2

)n−1

− 1
1+2∆q+∆2q

(
1− (1+2∆q+∆2q)π

(2+2∆)2

)n−1
]
, if ∆ ≥ 1

(3.30)

Proof. See Appendix A.1.

Remark 2. The Lemma 7 indicates that lim
n→∞

ǫP = 0, so we have lim
n→∞

PS = P̂S

under the NNT scheme. We can see from (3.29) and (3.30) that our approximation

in (3.26) is highly efficient in the sense that as n increases both ǫ+ and ǫ− (and thus

ǫP ) approach to zero exponentially.

Based on Theorem 3 and Lemma 7, we now can establish the following result

regarding the throughput capacity under the NNT scheme.

Theorem 4. For the concerned A-MANET with n mobile nodes, transmission proba-

bility q and guard factor ∆ > 0, its throughput capacity µNNT under the NNT scheme

can be approximated as

µNNT ≈ µ̂NNT =
n

2(n− 1)
P̂S

=





nπq(1−q)
2(n−1)(π+q·Ψ(∆))

, if 0 < ∆ < 1

nq(1−q)
2(n−1)(1+2∆q+∆2q)

, if ∆ ≥ 1

(3.31)
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and the corresponding approximation error ǫµ = µNNT − µ̂NNT is determined as

ǫµ =
n

2(n− 1)
ǫP , (3.32)

where Ψ(∆) is defined in (3.28) and ǫP is bounded by ǫ+ and ǫ− as shown in (3.27).

Remark 3. From Lemma 7 and Theorem 4 we can easily see that

lim
n→∞

µNNT = lim
n→∞

µ̂NNT =
1

2
P̂S. (3.33)

Thus, a constant throughput capacity is achievable under the NNT scheme even when

n grows to infinity. Notice that 1
2
< n

2(n−1)
< 1 for n ≥ 2, we can see from (3.32) that

as n increases the approximation error ǫµ also approaches to zero exponentially.

Remark 4. Let q∗
NNT

denote the optimal setting of q to achieve the µ∗
NNT

= max
q∈(0,1)

µ̂NNT.

We can see from (3.31) that q∗
NNT

and µ∗
NNT

are determined as

q∗
NNT

=





√
π2+π·Ψ(∆)−π

Ψ(∆)
, if 0 < ∆ < 1

1
2+∆

, if ∆ ≥ 1

(3.34)

and

µ∗
NNT

=





nπ

2(n−1)
[

Ψ(∆)+2
(

π+
√

π2+π·Ψ(∆)
)] , if 0 < ∆ < 1

n
2(n−1)(2+∆)2

, if ∆ ≥ 1

(3.35)

where Ψ(∆) is defined in (3.28).

It is worth mentioning that (3.34) indicates that the optimal setting of q for

capacity maximization is actually independent of the network size n.

3.4.3 STP and Capacity under NRT

Since the analysis of STP and capacity under the NRT scheme faces the same difficulty

as that of the NNT scheme, we also provide here efficient approximations to them.
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Following an argument similar to that of Lemma 7, we have the following lemma on

the approximation of STP PS under the NRT scheme.

Lemma 8. In the considered A-MANET with n mobile nodes, transmission probabil-

ity q and guard factor ∆ > 0, its STP PS under the NRT scheme can be approximated

as

PS ≈ P̂S =
q(1− q)

1 + 2∆q +∆2q
, (3.36)

and the corresponding approximation error ǫP = PS − P̂S is upper and lower bounded

as

ǫ− ≤ ǫP ≤ ǫ+, (3.37)

where

ǫ− = − q(1− q)

1 + 2∆q +∆2q

(
1− (1 + 2∆q +∆2q)π

(2 + 2∆)2

)n−1

, (3.38)

ǫ+ =





q(1−q)

1−q
(

1+
Ψ(∆)

(3+∆)2−π
−Ψ(∆)−(1+∆)2

π

)

[(
1− qΨ(∆)

(3+∆)2−π

)n−1

−
(
q − q · Ψ(∆)−(1+∆)2

π

)n−1
]

− q(1−q)
1+2∆q+∆2q

(
1− (1+2∆q+∆2q)π

(3+∆)2

)n−1

,

if 0 < ∆ < 1

q(1− q)

[(
1− q · π(1+∆)2−π

(2+2∆)2−π

)n−2(
1− π

(2+2∆)2

)n−1

− 1
1+2∆q+∆2q

(
1− (1+2∆q+∆2q)π

(2+2∆)2

)n−1
]
,

if ∆ ≥ 1

(3.39)

Proof. See Appendix A.2.

Remark 5. Lemma 8 indicates that lim
n→∞

PS = P̂S under the NRT scheme. Similarly

to Remark 2, we can see from (3.38) and (3.39) that our approximation in (3.36)

is of high efficiency in the sense that as n increases both ǫ+ and ǫ− (and thus ǫP )

approach to zero exponentially. It is also notable that for the scenario of ∆ ≥ 1 both

the NNT and NRT schemes results in the same result of STP. This is because that
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according to the protocol model in (3.1), in the case of ∆ ≥ 1 a non-nearest neighbor

transmission can not be successfully received.

Based on Theorem 3 and Lemma 8, we have the following result regarding the

throughput capacity under the NRT scheme.

Theorem 5. For the considered A-MANET with n mobile nodes, transmission prob-

ability q and guard factor ∆ > 0, its throughput capacity µNRT under the NRT scheme

can be approximated as

µNRT ≈ µ̂NRT =
nq(1− q)

2(n− 1)(1 + 2∆q +∆2q)
, (3.40)

and the corresponding approximation error ǫµ = µNRT − µ̂NRT is determined as

ǫµ =
n

2(n− 1)
ǫP (3.41)

where ǫP is bounded by ǫ+ and ǫ− as shown in (3.37).

Remark 6. From Lemma 8 and Theorem 5, we can easily see that

lim
n→∞

µNRT = lim
n→∞

µ̂NRT =
1

2
P̂S (3.42)

Similar to Remark 3, we can see the approximation error ǫµ in (3.41) will approach

to zero exponentially as n increases.

Remark 7. Let q∗
NRT

denote the optimal setting of q to achieve µ∗
NRT

= max
q∈(0,1)

µ̂NRT,

we can see from (3.40) that q∗
NRT

and µ∗
NRT

are determined as

q∗
NRT

=
1

2 + ∆
(3.43)

and

µ∗
NRT

=
n

2(n− 1)(2 + ∆)2
. (3.44)
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3.5 Numerical Results and Discussions

In this section, we first provide simulation results to validate the theoretical models

developed in this chapter, and then apply these models to illustrate the performance

of A-MANETs under different settings of system parameters.

3.5.1 Simulation Setting

For model validation, a simulator was developed to simulate the packet delivery pro-

cess under Algorithm 2 and system models defined in Section 3.2 [57]. A network

scenario with transmission probability q = 0.4 and guard factor ∆ = 0.2 is con-

sidered in the simulation2, where the throughput capacity, throughput and average

end-to-end delay are measured as follows. To get the simulation results for through-

put capacity, we first simulate PS by focusing on a specified node and calculating the

average number of successful transmissions conducted by the node per time slot over

a time interval of 1.0×106 time slots, and then substitute the simulated PS into (3.2).

For the simulation of throughput and average end-to-end delay under Algorithm 2,

we focus on a traffic flow and measure its throughput and average packet delay over

a period of 1.0× 107 time slots under a system load ρ = λ/µ̂NNT or ρ = λ/µ̂NRT.

3.5.2 Model Validation

To validate the throughput capacity models developed for NNT and NRT schemes,

we considered networks of different size n. The corresponding simulation results and

theoretical ones are summarized in Fig. 3-4. We can see from Fig. 3-4 that the

simulation results match nicely with the theoretical ones for both NNT and NRT

schemes, which indicates that our models in (3.31) and (3.40) are highly efficient

in approximating the throughput capacities of the concerned A-MANETs. Fig. 3-4

also shows that as n increases both the throughput capacity under the NNT or NRT

scheme will converge to constant values, respectively. This observation agrees with

2Simulation under other scenarios can be conducted as well via our simulator.
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Figure 3-4: Throughput capacity vs. number of network nodes n.

the discussion of Remarks 3 and 6, and it shows that the considered A-MANET can

provide a constant throughput capacity even as n grows to infinity.

To further validate the end-to-end delay model (3.11) and also the achievability of

the throughput capacities under Algorithm 2, we conducted simulation for a network

with n = 32 to measure its throughput and end-to-end packet delay under Algorith-

m 2 and different system load ρ. Fig. 3-5 shows the comparison between simulation

and theoretical results on end-to-end packet delay3, while Fig. 3-6 illustrates the sim-

ulation results of throughput and the corresponding theoretical results of throughput

capacities µ̂NNT and µ̂NRT. Fig. 3-5 indicates clearly that our theoretical model (3.11)

is accurate and can efficiently capture the delay behavior under Algorithm 2. It is

interesting to see from Fig. 3-6 that the throughput linearly increases as ρ increases

from 0 to 1 and then approaches to µ̂NNT or µ̂NRT as ρ further increases beyond 1.

The results in Fig. 3-6 show that just as proved in Section 3.3.2, the throughput

3The theoretical delay results for NNT and NRT schemes are obtained by substituting µ̂NNT and
µ̂NRT into (3.11), respectively.
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Figure 3-7: Capacity versus transmission probability q.

capacity of an A-MANET is achievable by adopting Algorithm 2 for routing in such

a network.

3.5.3 Throughput Capacity

Based on our throughput capacity models, we first explore the impact of transmission

probability q on the throughput capacity. We summarize in Fig. 3-7 how µ̂NNT and

µ̂NRT vary with q in a network with n = 128 and ∆ = 0.2. It can be observed from

Fig. 3-7 that as q increases both µ̂NNT and µ̂NRT first increase and then decrease,

and just as discussed in Remarks 4 and 7 that there exists an optimal setting of q to

achieve the maximum capacity µ∗
NNT or µ∗

NRT. This is mainly due to the reason that

the effects of transmission probability q on throughput capacity are two folds. In one

hand, a higher transmission probability will result in a larger number of simultaneous

transmissions, but on the other hand, a higher transmission probability will lead to

a lower probability that a transmission is successfully received. It is also interesting
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to see from Fig. 3-7 that for a given setting of q the throughput capacity under the

NRT scheme is always higher than that under the NNT scheme. This is because that

under the NRT scheme a transmitter will try to find some other node as its receiver

if the nearest neighbor is not available, so in comparison with the NNT scheme more

transmission opportunities can be obtained under the NRT scheme.

To understand the impact of ∆ on the maximum capacities, we summarize in

Fig. 3-8 how µ∗
NNT and µ∗

NRT vary with ∆ in a network of n = 128. We can see from

Fig. 3-8 that as ∆ increases both µ∗
NNT and µ∗

NRT monotonously decrease. This is

mainly due to the reason that under the protocol model defined in (3.1), a larger

value of ∆ will lead to a lower probability that a transmission is successfully received

and thus a smaller capacity. Another observation of Fig. 3-8 is that as ∆ increases

the gap between µ∗
NNT and µ∗

NRT quickly vanishes and becomes zero when ∆ is larger

than 1. This is because that under the NRT scheme, increasing ∆ will lead to a

decrease in the successful probability of the non-nearest neighbor transmissions and

thus a reduction in the capacity improvement µ∗
NRT−µ∗

NNT. Specifically, as discussed
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Figure 3-9: Expected end-to-end delay E{D} vs. number of network nodes n under
the NNT scheme.

in Remark 5 that when ∆ increases beyond 1, the successful probability of non-

nearest neighbor transmissions becomes zero and thus no capacity improvement can

be obtained by adopting the NRT scheme.

3.5.4 End-to-End Delay

The results in Fig. 3-4 indicate that a constant throughput capacity is achievable

even in a large scale A-MANET. To understand the corresponding delay overhead to

achieve such a constant capacity, we examine in Fig. 3-9 how the expected end-to-end

delay under the NNT scheme varies with network size n for the settings of ρ = 0.8,

∆ = 0.2 and q = {0.2, 0.4, 0.8}4. We can see from Fig. 3-9 that for a given setting of ρ,

∆ and q, the end-to-end delay increase linearly as n increases. The results in Figs. 3-4

and 3-9 indicate that as network size increases a constant throughput capacity can

be achieved in an A-MANET at the cost of a linearly increasing end-to-end delay.

4The delay performance under the NRT scheme is similar, so we provide here only the result of
NNT for illustration.
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Figure 3-10: Expected end-to-end delay E{D} vs. transmission probability q under
the NNT scheme.

Fig. 3-9 also indicates that for a given network size, the delay behavior may

dramatically change with the setting of q. To further explore the effect of q on delay

performance, we summarize in Fig. 3-10 how the expected end-to-end delay varies

with q under the settings of n = 128, ρ = 0.8 and ∆ = {0.2, 1.0, 1.5}. Fig. 3-10 shows

that for a given setting of n, ρ and ∆, as q increases the delay first decreases and then

increases; while for a given setting of n, ρ and q, the delay monotonously increases as

∆ increases. The main reason behind these behaviors is that as shown in (3.11) the

end-to-end delay is inversely proportional to the capacity, so the relationship between

delay and (q,∆) is just reverse to the the relationship between capacity and (q,∆)

shown in Fig. 3-7 and Fig. 3-8.

3.6 Summary

This chapter first revealed the inherent relationship between the throughput capacity

of an A-MANET and per node successful transmission probability in it, and then
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developed a theoretical framework for efficient and closed-form approximations of the

exact throughput capacity in an A-MANET under the NNT and NRT, two typical

local transmission schemes. The expected end-to-end delay under a capacity achieving

routing algorithm was also derived. It is expected the theoretical framework developed

in this chapter will be helpful for exploring A-MANET throughput capacity under

other transmission schemes as well. The results in this chapter indicate that even in

large scale A-MANETs a constant throughput capacity can still be guaranteed at the

cost of a linearly increasing end-to-end delay with network size. Another interesting

finding of this chapter is that for throughput capacity maximization in A-MANETs,

the corresponding optimal setting of transmission probability in ALOHA protocol

only dependents on guard zone parameter ∆ and thus can be fixed for A-MANETs

with different network size.
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Chapter 4

Throughput Analysis in MANETs

with Directional Antennas

4.1 Introduction

This chapter studies the achievable throughput of a cell-partitioned MANET, where

each node is equipped with a directional antenna for transmission and a group-based

scheduling is adopted for MAC. A directional antenna is an antenna that transmit-

s/receives radiation power more efficiently in some directions than in others. Due to

its merits like high energy efficiency, low interference and long transmission range,

it is expected that using directional antennas in MANETs will provide a significant

performance improvement.

4.1.1 Available Studies on Achievable Throughput with Di-

rectional Antennas

Many research efforts have been made to empirically investigate the throughput for

wireless ad hoc networks using directional antennas. Ramanathan [58] simulated a

40 node network and showed that an improvement of up to 118% in throughput

can be achieved by adopting directional antennas. Liu et al. [59] built a nine node

testbed and showed that it is possible to improve the indoor network throughput by
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coordinating the orientation of the directional antennas equipped in network nodes.

The achievable throughput of directional antenna-based wireless ad hoc networks

has also been analytically studied in the literature. Spyropoulos and Raghavendra in-

vestigated the asymptotic throughput scaling behaviors of wireless ad hoc network for

various kinds of directional antenna and communication models in [60, 61]. Based on

the typical framework developed in [1], Yi et al. [62, 63] assumed a sender-based proto-

col model and showed that under the considered network scenario the throughput im-

provement compared to the omnidirectional network is 2π/
√
αβ in random networks

and is 4π2/αβ in arbitrary networks, where α and β are the antenna beamwidths for

transmission and reception, respectively. By introducing a new directional protocol

model in [64], Li et al. provided an upper bound of O(
√
log n/n) and a lower bound of

Ω(1/
√
n log n) on the maximum achievable throughput of random networks with mul-

tihop relay schemes, where n is the number of nodes randomly distributing in a disk

network of unit area. The studies of network throughput improvement by using direc-

tional antennas have also been extended to flow networks [65], multi-channel wireless

networks [66] and hybrid wireless networks with infrastructures support [67–69].

4.1.2 Limitations of Available Studies

It is notable that the available studies discussed above mainly focus on the through-

put analysis in wireless ad hoc network with directional antennas, and to the best

of our knowledge, the throughput analysis of MANETs with directional antennas is

still an unexplored issue. Another common limitation of the above works is that they

only explored the order sense behaviors of achievable throughput. Recently, Liu et

al. [70, 71] developed a theoretical framework to analyze the achievable throughput

in a cell-partitioned MANET with group-based MAC scheduling and omnidirectional

antennas. They studied in [70] the achievable throughput of cell-partitioned MANETs

under a general two-hop relay algorithm with packet redundancy limit f (2HR-f) for

packet routing, and further explored in [71] the impact of transmission power con-

straint on the achievable throughput therein. In this chapter, we study the achievable

throughput of a cell-partitioned MANET in which each mobile node is equipped with
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(a) Realistic antenna model (b) Ideal antenna model

Figure 4-1: Directional antenna models.

a directional antenna for transmission and the general 2HR-f algorithm is adopted

for packet routing.

4.1.3 Chapter Outline

The rest of the chapter is organized as follows. In Section 4.2 and 4.3, we introduce

the system models and the two hop relay routing algorithm under study. Section

4.4 presents the main results on achievable throughput and related throughput opti-

mization problem. The numerical results and associated discussions are provided in

Section 4.5. We finally summarize this chapter in Section 4.6.
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4.2 System Model

4.2.1 Directional Antenna Model

Directional antennas have the property of radiating electromagnetic waves more ef-

fectively in some directions than in others. In this chapter, we consider that the

directional antenna consists of a mainlobe which represents the main intended ra-

diation directions. Sidelobes are ignored for the reason that they usually indicate

radiation in undesired directions and the antenna gain in them is too small in com-

parison with that in the mainlobe [66]. Beamwidth is an important parameter to

character the mainlobe and in this chapter we refer the beamwidth to the half-power

beamwidth, which is defined as the angle between the two directions in which the

radiation intensity is one-half value of the maximum radiating direction. The an-

tenna gain (in a given direction) is defined as the ratio of the radiation intensity in

a given direction to the radiation intensity of an ideal isotropically antenna, whose

radiation intensity is given by ηPrad/4π, where Prad is the total radiation power over

all directions and η is the antenna efficiency which is fixed to be 1 in this chapter. In

this chapter, we consider two antenna models: a realistic antenna model and an ideal

antenna model.

Realistic antenna model: For the realistic antenna model, we consider that the

antenna gain is a function of the radiation angle φ with respect to the maximum

radiation direction. Formally, the antenna gain G(φ) in direction φ can be expressed

as:

G(φ) =
4πU(φ)

ηPrad

(4.1)

where U(φ) is the radiation intensity. An example of a directional antenna with

realistic radiation pattern is provided in Fig.4-1a.

Ideal antenna model: For the ideal antenna model [62, 66, 72], we consider that

the directional antenna is approximated as a circular sector of angle θ by assuming

that the radiation power within the beamwidth θ is uniformly distributed and that

the radiation outside the beamwidth is neglected, where 0 < θ ≤ 2π. In this model,
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the antenna gain Gm is a constant in the mainlobe and can be calculated by taking

the average antenna gain over the beamwidth. An example of the ideal antenna model

is plotted in Fig. 4-1b.

Since it is difficult to character directional antennas with variable antenna gain in

throughput analysis, we use the ideal antenna model in the theoretical study as pre-

vious works [62, 63, 66–68] for simplicity. The analysis result with the ideal antenna

model will be compared with a more realistic achievable performance obtained from

simulation with the realistic antenna model in Section 4.5. The antenna gain Gm of

the ideal antenna model can be derived as follows [73]:

Let Pθ be the total radiation power within beamwidth θ, we have

Pθ =

∫ 2π

0

∫ θ
2

0

U(φ) sinφdφdσ

Therefore, the average radiation intensity Um in the mainlobe is

Um =
Pθ

∫ 2π

0

∫ θ
2

0
sinφdφdσ

The antenna gain Gm in the ideal directional antenna model can be derived by sub-

stituting Um into (4.1).

Additionally, we consider a steerable antenna, i.e., each node can beamform its

antenna in any desired direction. Therefore, the probability that the mainlobe of a

node covers a direction is given by θ/2π [27, 66–68, 74].

4.2.2 Network and Power Propagation Model

Similar to the previous studies [3, 20, 70, 71], we consider a two-dimensional torus

network with unit area and n mobile nodes. We assume that the time is slotted and

the network is evenly divided into m×m cells with 1/m2 area each,as illustrated in

Fig. 4-2. Furthermore, we consider that each node moves independently from one cell

to another, following the bi-dimensional i.i.d mobility model [3, 75, 76]. Under the

mobility model, each node first independently and uniformly chooses one cell over all
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Figure 4-2: Cell-partitioned network model.

m2 cells at the beginning of every time slot and stays in it for the whole slot. We also

assume that during each time slot every node has the knowledge about which cell it

is located in based on localization techniques, such as GPS.

To predict the received signal at the receiver, we employ a general power propa-

gation model [77]:

Pr =
PtCGtGr

dα
(4.2)

where Pt and Pr are the transmitted and received power levels, respectively, Gt and

Gr are the gain factors for the transmitting and receiving antennas, respectively, C is

a constant determined by antenna heights, wave length, and so on, d is the distance

between the transmitter and receiver, and α is the path loss exponent which is greater

than 2 in most cases.
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4.2.3 Communication Model

We assume that all the nodes transmit at the same nominal power and the trans-

mission data rate is uniform for all transmissions such that the total number of bits

that can be transmitted per time slot is fixed and normalized to one packet. For the

transmission and reception scenario, we consider that the transmission is directional

and the reception is omnidirectional [72], since in MANETs receivers usually have

no knowledge of which direction the transmission will come from, and therefore they

overhear omnidirectionally.

To characterizing interference issue, we consider an interference model [78] in the

analysis. Suppose that at some time slot a node Ti is trying to transmit to a node

Ri, this transmission can be successful if and only if the following conditions hold:

(1) Ti’s mainlobe covers Ri;

(2) |Ti −Ri| ≤ r(θ);

(3) |Tk −Ri| ≥ (1 + ∆) r(θ) for every other node Tk that simultaneously transmit-

s with the node Ti, where ∆ > 0 is a specified guard-factor for interference

prevention.

We notice that in realistic communication, the signal-to-interference ratio (SIR)

is the measure usually used to determine whether a transmission is successful. To

simplify the analysis, we consider an optimal transmission range r(θ) within which

the transmission is high enough such that the transmission is successful with a high

probability, as previous studies [62, 66, 70, 79]. Since we adopt a cell-partitioned

network and to simplify the analysis, we will use v(θ) to approximate r(θ) as pre-

vious study [71] such that each node can cover a set of cells that have a horizontal

and vertical distance of no greater than v(θ) − 1 cells away from its current cell as

illustrated in Fig. 4-2 and v(θ) can be determined as

v(θ) = min
{
⌊(m+ 1)/2⌋, ⌊m · r(θ)/

√
2⌋
}
. (4.3)
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4.2.4 Traffic Model

We also assume the permutation traffic pattern [2, 3] to model the traffic flows in the

network. The traffic originated from each node is assumed to have a average rate λ

(packets/slot). Note that each packet arrives at the beginning of time slots and this

process is independent of the mobility process. The impact of limitation on packet

life time and buffer space is ignored for analysis simplicity.

4.3 Group-Based Transmission Scheduling and Two-

hop Relay Routing Algorithm

In this section, we introduce the transmission scheduling and routing schemes con-

sidered in this chapter.

4.3.1 Transmission-Group Based Scheduling

To support as many simultaneous transmissions as possible based on the interference

model, we adopt a transmission-group based scheduling scheme similar to those in [80–

82].

Transmission-Group: A transmission-group (see Fig. 4-2 for an example) is a

subset of cells where any two cells have a vertical and horizontal distance of some

multiple of a cells such that all the cells there can safely transmit simultaneously.

It is clear to see that all the cells can be divided into a2 transmission groups. By

letting all the transmission-groups alternatively be active (i.e., get the transmission

opportunity), then each cell can be active in every a2 time slots. According to the

considered communication model, the parameter a must satisfy

1

m
(a− v(θ)) ≥ (1 + ∆)r(θ) (4.4)
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Figure 4-3: Partition of a time slot.

Since a is an integer and a ≤ m, then we can set a as

a = min{v(θ) + ⌈m(1 + ∆)r(θ)⌉,m} (4.5)

To address the competition of transmission and reception, we consider a transmit-

ter selection and a receiver selection mechanism, which are conducted at the beginning

of each time slot as illustrated in Fig. 4-3. The durations of these periods are fixed.

Selection of Transmitter: In order to guarantee that only one transmitter is

randomly selected from all the nodes in an active cell, we adopt a mechanism similar

to the IEEE 802.11 DCF. The IEEE 802.11 DCF employs a CSMA/CA with a random

backoff algorithm and is the fundamental MAC technique used in IEEE 802.11 WLAN

standards. We adopt the idea of random backoff counting from the IEEE 802.11 DCF

to address the competition issue in our scheduling. Notice that during the competition

for transmitting opportunity, all the nodes in an active cell work omnidirectionally

to broadcast and overhear until the transmitter is selected. At the beginning of each

time slot, each node independently judge weather it is inside an active cell or not. If

not, it remains silent during the transmitter selection period. Otherwise, it starts a

back-off counter with a seed randomly selected from [0, CW ] (where CW represents

the contention window), and overhears the channel until its back-off counter becomes

0 or it hears a broadcasting message from a transmitter. If no broadcasting message is

heard before the back-off counter approaches 0, the node broadcasts out a message to

other nodes denoting itself as the transmitter. Other nodes in the active cell will stop

back-off counting and quit transmitting contention after they hear the transmitter’s

claim. Based on the back-off counting mechanism, each node of an active cell has the
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Figure 4-4: Illustration of receiver contention.
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same probability to win the transmitting opportunity.

Remark 8. Please notice that there are two main differences between our scheme

and the IEEE 802.11 DCF. First, the conditions to start a random back off counting

are different. In the IEEE 802.11 DCF, a node senses the channel before transmitting

and starts a random backoff counter if the channel is busy; in our mechanism, a node

starts a random backoff counter if it comes into an active cell. Second, the conditions

to terminate backoff counting and the behaviors of nodes when its backoff counting

ends are different. In the IEEE 802.11 DCF, when the backoff counter of a node

becomes 0, the node will sense the channel again and starts a new backoff counting if

the channel is still busy; in our mechanism, the node will stop backoff if it overhears a

claim of being the transmitter from some other node in the same active cell before its

counter approaches 0, otherwise it will claim itself as the transmitter when its counter

reaches 0.

After the selection of transmitter, each transmitter will change to directional mode

with a random beamforming direction. The transmitter will directionally broadcast

a receiver-request message to start the receiver contention period.

Selection of Receiver: According to the directional antenna model, a node can

receive the request from the transmitter if and only if it is covered by the trans-

mitter’s directional antenna as illustrated in Fig. 4-4. If the destination node of the

transmitter is a receiver candidate, it will respond to the transmitter immediately by

sending a message after it. Other candidate receivers will start a back-off counting

and overhearing mechanism similar to that of the transmitter selection. The trans-

mitter chooses the one whose reply arrives first as the receiver. Accordingly, if the

destination node of the transmitter is a receiver candidate, it will be definitely se-

lected as the receiver; otherwise, each candidate receivers has the same probability to

become a receiver.
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4.3.2 Routing Algorithm

In this chapter, we employ the two-hop relay algorithm with packet redundancy f

(2HR-f) [3] for packet routing, where 1 ≤ f ≤ n− 2. We briefly summarize the 2HR-

f as follows: When the source S wins the transmission opportunity at the current

time slot, the S first broadcasts a message to request a receiver.

1. If its destination D can hear this message, then it will reply to S immediately.

If the S receives the reply from the D, it selects D as the receiver and transmits

to D the packet D is requesting (Source-to-Destination transmission).

2. If no reply from D is received by S, a random receiver (say R) is selected among

all the candidate nodes based on the mechanism discussed in Section 4.3.1.

With 1/2 probability, the S and R conduct either Source-to-Relay or Relay-to-

Destination transmission:

• Source-to-Relay: Assume that the S is delivering packet P at the current

time slot. If R does not have a copy of P , then S transmits a copy of P

to R; otherwise, the S remains idle for this time slot.

• Relay-to-Destination: In this transmission, the S performs as a relay node

to help deliver the traffic whose destination is R. The S checks if it has a

copy of the packet that R is requesting. If so, the S transmits the packet

to R; otherwise, the S remains idle for this time slot.

In this algorithm, the total number of hops from a source to its destination is no

more than 2, the number of the overall copies of one packet distributed by the source

is no more than f + 1 (including the original one in S), and the packets of a traffic

flow should arrive at its destination in order. According to the permutation traffic

model, there are n distinct traffic flows in the network. Without loss of generality, we

focus on one traffic flow in our discussion and denote its source node and destination

node as S and D, respectively. Other nodes can perform as relay nodes to help the

source to deliver the packets to the destination. As a result, the destination D can
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Figure 4-5: Illustration of the 2HR-f relay.
The figure presents the packet delivery process of a given packet P of a tagged flow
delivered from the source S to the destination D through a relay node R∗. The

dashed lines indicate the movement of nodes.

obtain the packet either from S or from one of the relay nodes. An example of the

routing process is illustrated in Fig. 4-5.

4.4 Throughput Analysis

In this section, we first derive the directional transmission range under given transmis-

sion power. We then analyze some basic probabilities and establish Markov chains to

model the packet distribution and reception processes at the source node and destina-

tion node, respected. Based on the expected service time obtained from the Markov

chains and automatic feedback theory, the result on the achievable throughput can be

derived in our considered networks. Finally, we explore the throughput optimization

problem based on the result of the achievable throughput. We establish the following

Lemmas and Theorem (please refer to A for proofs).
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4.4.1 Communication Range

If we use omnidirectional transmission range r(2π) to represent the transmission

power level as previous studies [83] and assume that an SNR threshold is required to

determine the transmission range, then we have

Lemma 9. In a MANET where the transmission is directional with beamwidth θ and

the reception is omnidirectional, the transmission range r(θ) under given transmission

power can be determined as

r(θ) =

(
2π

θ

) 1
α

r(2π) (4.6)

where α is the pathloss exponent.

4.4.2 Some Basic Probabilities

We first define the probability that a node is beamformed by the other one as follows:

Definition 5. For the two nodes, the probability that one node is beamformed by

the other is defined as the probability that the line connecting them is covered by the

mainlobe of the latter’s.

Based on Lemma 9, the transmission group parameter a can be determined by

equation (4.5). In the following lemma, we derive the probabilities for a node to

conduct different kinds of transmissions in the considered network based on basic

sub-event analysis.

Lemma 10. For a given time slot and a tagged flow in a MANET the transmission

is directional with beamwidth θ and the reception is omnidirectional, we use p1(θ) and

p2(θ) to denote the probability that the S conducts a Source-to-Destination transmis-

sion and the probability that the S conducts a Source-to-Relay or Relay-to-Destination
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transmission, respectively. Let w = (2v(θ)− 1)2, we have

p1(θ) =
θ

2πa2

{
wn−m2

n2 − n
+
m2 − (w − 1)n− 1

n2 − n
ψn−1
1

}
(4.7)

p2(θ) =
1

a2

{
m2

n
+

(m2 − wn)θ

2π(n2 − n)
− 1

n

n−1∑

i=0

ψi
2ψ

n−1−i
3

+

(
(wn− n−m2 + 1)θ

2π(n2 − n)
− m2 − 1

n

)
ψn−1
1

}
(4.8)

where ψ1 =
m2−1
m2 , ψ2 =

2πm2−2π−(w−1)θ
2πm2 and ψ3 =

2πm2−wθ
2πm2 .

For a given traffic flow, please notice that the probabilities p1(θ) and p2(θ) are

independent of the number of copies of packets. The packet distribution process at

the S and the packet reception process at the D for the packet P can be modeled by

the Markov chains in Fig. 4-6, where the transition probabilities are formulated in

the following lemma based on those obtained by Lemma 10.

Lemma 11. For a given traffic flow, suppose that in the current time slot the source

S is delivering copies of the packet P and at the same time the destination D is also

requesting P , and there are already j (1 ≤ j ≤ f + 1) copies of P in the network

(including the one possessed by the S). For the next time slot, we use Pr(θ, j) to

denote the probability that D will receive P , Pd(θ, j) to denote the probability that S

will deliver a new copy of P (if j ≤ f) and Ps(θ, j) to denote the probability that the

above two events happen simultaneously. Then, we have

Pr(θ, j) = p1(θ) +
j − 1

2 (n− 2)
· p2(θ) (4.9)

Pd(θ, j) =
n− j − 1

2 (n− 2)
· p2(θ) (4.10)
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Ps(θ, j) =
(j − 1)(n− j − 1)(m2 − a2)

4m2a4
·
{
n− 4

n− 2

n−5∑

k=0

(
n− 5

k

)
f(k) [h(k)g(n− 4− k)

+

(
1− θ

2π

)
h(k + 1)g(n− 5− k)

]
+

2

n− 2

n−4∑

k=0

(
n− 4

k

)
f(k)h(k)g(n− 4− k)

}

(4.11)

where

h(x) =
9
(

2
m2

)x+1 − 8
(
w−1
m2

)x+1

x+ 2
(4.12)

f(x) =
1

x+ 1

[
1−

(
1− θ

2π

)x+1
]

(4.13)

g(x) =
x∑

t=0

h(t)f(t)

(
m2 − 2w

m2

)x−t

(4.14)

4.4.3 Packet Distribution and Reception Process

Now, we introduce the corresponding definitions of service time as follows:

Definition 6. For a general packet P of a given flow, its service time at the source

S is defined as the time elapsed between the time slot when the S starts to deliver

copies for the P and the time slot when the S stops distributing copies for the P ; the

service time at the destination D is defined as the time elapsed between the time slot

when the D starts to request for the P and the time slot when the D receives the P .

Assume that there are k copies of P in the network when the destination node

starts to request for the packet of a given traffic flow, if we denote byXS(k) andXD(k)

the corresponding service time of the packet at the source S and the destination D,

respectively, from the Markov chain theory, we can see that the XS(k) is the time the

Markov chain in Fig. 4-6a takes to become absorbed given that the chain starts from

the state 1, and the XD(k) is the time the Markov chain in Fig. 4-6b takes to become

absorbed given that it starts from the state k. Based on the transition probabilities

of Lemma 11 and the Markov chains in Fig. 4-6, we have the following lemma on the

expected service times at the S and the D.

86



(a) Absorbing Markov chain for the packet distribution process at the source
node S.

(b) Absorbing Markov chain for the packet reception process at the desti-
nation node D.

Figure 4-6: Absorbing Markov chains for a packet P of the tagged flow.
Suppose that the destination node D starts to request for P when there are already
k copies of P in the network. For each transient state, the transition back to itself is

not shown for simplicity.

Lemma 12. For a packet P of the given traffic flow in a MANET with directional

antennas and exploiting 2HR-f routing algorithm, suppose that there are k copies of

P in the network when the destination D states to request for the P , 1 ≤ k ≤ f + 1,

then the expectation of service times E{XS(k)} and E{XD(k)} can be determined as

E{XS(k)} =





∑k−1
i=1

1
Pd(θ,i)

+ 1
p1(θ)+Pd(θ,k)

·
(
1 +

∑f−k

j=1 ϕ1(k, j)
)

if 1 ≤ k ≤ f

∑k−1
i=1

1
Pd(θ,i)

if k = f + 1

(4.15)

E{XD(k)} =





1
Pr(θ,k)+Pd(θ,k)−Ps(θ,k)

(
1 +
∑f−k

j=1 ϕ2(k, j)

+Pd(θ,f)−Ps(θ,f)
Pr(θ,f+1)

ϕ2(k, f − k)
)

if 1 ≤ k ≤ f − 1

1+
Pd(θ,f)−Ps(θ,f)

Pr(θ,f+1)

Pr(θ,f)+Pd(θ,f)−Ps(θ,f)
if k = f

1
Pr(θ,f+1)

if k = f + 1

(4.16)
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where

ϕ1 (k, j) =

j∏

t=1

Pd (θ, k + t− 1)

p1(θ) + Pd (θ, k + t)

ϕ2 (k, j) =

j∏

t=1

Pd (θ, k + t− 1)− Ps (θ, k + t− 1)

Pr (θ, k + t) + Pd (θ, k + t)− Ps (θ, k + t)

4.4.4 Achievable Throughput

For a mobile ad hoc network using directional antennas, we can establish the following

theorem on its per node achievable throughput based on the expectations of service

times of Lemma 12 and automatic feedback theory.

Theorem 6. For a cell partitioned MANET, where nodes move under i.i.d. mobility

model, each one is equipped with a directional antenna with beam-width θ (0 ≤ θ ≤ 2π)

for both transmission and reception, and the 2HR-f relay routing scheme (1 ≤ f ≤
n − 2) is exploited. If we denote by µ(θ, f) the maximum achievable per node (flow)

throughput, i.e., the network can stably support any input rate λ < µ(θ, f), then we

have

µ(θ, f) = min

{
p1(θ) +

f

2 (n− 2)
· p2(θ) ,

p1(θ) + p2(θ)/2

1 +
∑f−1

j=1

∏j

t=1
(n−t−1)p2(θ)

2(n−2)p1(θ)+(n−t−2)p2(θ)

}
(4.17)

µ(θ, f) indicates the maximum per node input rate that the network can stably

support. When the input rate is above µ(θ, f), the average delay will tend to infinity

which means that congestion will occur in somewhere of the network.

Remark 9. Notice that when θ = 2π, our results are reduced to the ones of the

omnidirectional networks considered in [71].
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4.4.5 Throughput Optimization

From Theorem 6, we can see that the packet redundancy parameter f determines the

per node achievable throughput in a given network. To explore the optimal achievable

throughput for a given network, we formulate the following throughput optimization

problem and obtain the optimal achievable throughput and corresponding f to achieve

it in Lemma 13 based on the result of Theorem 6.

Throughput Optimization Problem: For a MANET using directional anten-

nas with a fixed beamwidth θ for both transmission and reception and exploiting a

2HR-f relay routing scheme, calculate its optimal achievable throughput for any val-

ue of f . For a given beamwidth θ, if we denote the corresponding optimal achievable

throughput by µ∗(θ), it can be formulated as

µ∗(θ) = max

{
µ(θ, f) : 1 ≤ f ≤ n− 2

}
(4.18)

Lemma 13. For any given θ ∈ [0, 2π], we have

µ∗(θ) = max

{
p1(θ) +

f

2 (n− 2)
· p2(θ)

∣∣∣
f0

,

p1(θ) + p2(θ)/2

1 +
∑f−1

j=1

∏j

t=1
(n−t−1)p2(θ)

2(n−2)p1(θ)+(n−t−2)p2(θ)

∣∣∣
f1

}
(4.19)

where

f0 = max

{
f
∣∣∣E{XS(1)} ≤ E{XD(f + 1)}

}
(4.20)

f1 = min

{
f
∣∣∣E{XS(1)} ≥ E{XD(f + 1)}

}
(4.21)

Lemma 13 indicates that for a MANET with a given beamwidth θ, as the redun-

dancy parameter f increases, the maximum achievable per node throughput µ(θ, f)

will first increase and then decrease, and therefore there exists an optimal f to achieve

the optimal achievable per node throughput µ∗(θ).

89



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

E
xp

ec
te

d 
en

d-
to

-e
nd

 d
el

ay
 (s

lo
ts

/p
ac

ke
t)

System load, 

 i.i.d. mobility model
 random walk mobility model
 random waypoint mobility model

n = 64, m = 28, f = 5,  = /2, v(2 ) = 4

(a) Network scenario 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

E
xp

ec
te

d 
en

d-
to

-e
nd

 d
el

ay
 (s

lo
ts

/p
ac

ke
t)

System load, 

 i.i.d mobility model
 random walk mobility model
 random waypoint mobility model

n = 225, m = 33, f = 10,   = /3, v(2 ) = 3

(b) Network scenario 2

Figure 4-7: The expected end-to-end delay vs. system load ρ = λ/µ(θ, f).
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Figure 4-8: The per node throughput vs. system load ρ = λ/µ(θ, f).
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n m f θ v(2π) v(θ) a µ(θ, f) packets/slot
scenario 1 64 28 5 π/2 4 5 14 2.8× 10−4

scenario 2 225 33 10 π/3 3 5 11 1.9× 10−4

Table 4.1: Simulation scenarios.

4.5 Numerical Results

In this section, we first evaluate the accuracy of our theoretical models with simula-

tions and then proceed to explore the performance analysis.

4.5.1 Model Validation

We develop a simulator in C++ to simulate the packet delivery process for the con-

sidered MANETs. In the simulation, we implement a Poisson stream with input rate

λ for the traffic flow, a fixed path loss exponent α = 6 for the power propagation

model and a fixed guard factor ∆ = 0.2 for the interference model, respectively. We

use v(2π) to denote the transmission power in this section. In addition to the i.i.d

mobility model, we also implemented simulations for the random walk [17] model and

the random waypoint [76] model, respectively.

First, we implement the models considered in the theoretical analysis, where the

ideal antenna model with beamwidth θ is considered. The simulations results are pre-

sented in Fig. 4-7 and 4-8. The parameters of each network scenario are summarized

in Table 4.1. In Fig. 4-7, we plot the expected end-to-end delay when the system load

ρ = λ/µ(θ, f) increases. It is clear to see that as the system load ρ increases, the

expected delay also increases. A more careful observation is that when the system

load ρ approaches 1, which means that the input rate λ approaches the maximum

achievable throughput µ(θ, f) determined by our theoretical result, the growth rate

of the expected delay tends to infinity. This phenomenon can be explained as that

we derived the maximum throughput that the network can stably support and when

the input rate is above it, the network will become congested and thus the expected

end-to-end delay will tend to infinity. Meanwhile, we plot in Fig. 4-8 the measured

per node throughput obtained from the simulations as the system load increases. It
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Figure 4-9: The maximum achievable throughputs obtained in the simulation for
pathloss exponent α = 2, 3, 4, 5 and 6.

can be observed from the figure that the throughput increases as the system load

increases when system load is less that 1, while there are only small increases or

even reductions in the actual throughput when the system load increases over 1. The

simulation results in Fig. 4-8 confirm the validity of the theoretical result in Theo-

rem 6 on the maximum achievable throughput of the network models considered in

the analysis. Further, we conduct simulations with considering a realistic antenna

model of the normalized radiation intensity [73]:

U(φ) = cos2(φ) cos2(3φ), (0 ≤ φ ≤ π

6
, 0 ≤ σ ≤ 2π) (4.22)

The beamwidth of the directional antenna θ ≈ π/6. With Eqn.(4.1), we have that

G(φ) ≈ 52.8259 × U(φ) for the realistic antenna model. The antenna gain for its

counterpart of the ideal antenna model is Gm ≈ 37.5. The simulation setting is as

follows. The setting of network is n = 16,m = 18, f = 5 and a = 9. We notice that
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under the realistic antenna model, the transmission range is no more uniform over

all directions within the mainlobe. To make a justifiable comparison, we set that

the transmission range v(θ) = 3 for the theoretical result; for the realistic antenna

model, we consider that at least the same received power as that of the ideal antenna

model at the edge of the transmission range is required for a successful transmission.

Formally, it can be expressed as that for the realistic antenna model, a transmission

at distance d away from the transmitter is successful iff

PCG(φ)d−α ≥ PCGm(r(θ))
−α

where G(φ) is the antenna gain in the direction from the transmitter to the receiver,

d is the transmission distance, Gm is the antenna gain in the ideal antenna model

and r(θ) = v(θ) ·
√
2

m
is the transmission range. By dividing both sides with PC in

the inequality above, we have

G(φ)d−α ≥ Gm(r(θ))
−α (4.23)

Eqn.(4.23) is implemented in the simulation with the realistic antenna model to deter-

mine whether a transmission is successful. The maximum achievable throughputs ob-

tained in the simulation for different pathloss exponent α are summarized in Fig. 4-9.

In the figure, we can see that the maximum achievable throughput with the realistic

antenna model is at most 7% less than theoretical result. The gap between the real-

istic performance and the theoretical result is because that the analysis is based on

an approximate antenna model and the transmission range is over estimated in some

directions compared with the realistic antenna model considered in the simulation.

4.5.2 Performance Analysis

Achievable Throughput

Fig. 4-10 illustrates how the maximum achievable throughput µ(θ, f) varies as the

directional antenna beamwidth θ increases from 0 to π. It indicates that in general the
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Figure 4-10: The maximum achievable throughput vs. beamwidth θ varying from 0
to π.
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µ(θ, f) monotonically increases as the beamwidth increases. This can be explained

as that under the transmission-group based scheduling a larger beamwidth leads to

an increase in the transmission opportunity and therefore the maximum achievable

throughput increases. A careful observation of the Fig. 4-10a tells that a too high

packet redundancy may have a negative effect on the achievable throughput. It is

an expected result since Lemma 13 indicates the existence of an optimal f that can

achieve the optimal achievable throughput µ∗(θ) for a given beamwidth θ. Fig. 4-10b

shows how the maximum achievable throughput varies with θ for networks of n =

{64, 120, 240}. It is interesting to see that the µ(θ, f) of a larger network is less

sensitive to the variation of the beamwidth. This is because that as the node density

increases, the transmission opportunity for each node is reduced and therefore the

advantage from the increase of beamwidth for each flow is attenuated.

Optimal Achievable Throughput

For the general setting of ∆ = 0.2, m =
√
n, we summarize in Fig. 4-11 that for

θ = {π/9, π/6, π/4 and π/2} how the optimal achievable throughput µ∗(θ) and the

corresponding setting of f vary as the number of users n increases. The Fig. 4-11a

shows clearly that for the settings of θ here, the optimal achievable throughput µ∗(θ)

vanishes quickly at first and more slowly as the network size increases. This can be

intuitively interpreted as follows. As n increases, the coverage area of each transmitter

scales as O( 1
n
) and so does the probability that a node is able to receive packets from

its source or relay nodes, which determines the growth rate of µ∗(θ). It is interesting

to see that the optimal achievable throughput in the network with a larger antenna

beam is more sensitive to the variation of network size. This is for the reason that a

larger beam amplifies the performance gain resulting from the decrease of the network

size. The results in Fig. 4-11b show that for a given θ, the corresponding optimal

setting of f is an increasing piecewise function of n. This phenomenon might be

explained as that in a larger network, the opportunity for a source node to deliver

packets to its destination is less than that in a smaller network, and therefore more

redundant copies for each packet are necessary to achieve the optimal performance.
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Figure 4-11: The optimal achievable throughput µ∗(θ) and the corresponding setting
of f when n increases.
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Figure 4-12: The optimal achievable throughput µ∗(θ) vs. antenna beamwidth θ

We also see from the figure that for each network size n, the optimal setting of f with

a larger antenna beam (e.x., θ = π) is slightly less than that with a smaller one (e.x.,

θ = π/2). This can be interpreted as follows. A large antenna beam will lead to a

higher probability that a node is able to transmit to its destination, thus resulting in

a reduction in the optimal f .

To further explore how the optimal achievable throughput is affected by the anten-

na beamwidth, we summarize in Fig. 4-12 how the µ∗(θ) varies with θ for networks of

n = {64, 240, 441, 900}. The figure shows clearly that the optimal achievable through-

put monotonically increases as the antenna beamwidth increases, for the same reason

of that in Fig. 4-10. We plot the optimal achievable throughput as a function of the

transmission power for θ = {π/6, π/4, π/2} in Fig. 4-13. It is interesting to see that,

for each network scenario here, as the v(2π) increases the µ∗(θ) always increases first

and then decreases, and increases again until reaching a constant when the transmis-

sion range of a node can cover the whole network. The reason for this phenomenon

is as follows. The increase on the transmission power can lead a larger transmission

area, whose impact on the throughput is two-folds: on one hand, it increases the

98



0 200 400 600 800 1000

0.0

5.0x10-8

1.0x10-7

1.5x10-7

2.0x10-7

2.5x10-7 n = 225, m = 2000,  = 6
O

pt
im

al
 a

ch
ie

va
bl

e 
th

ro
ug

hp
ut

 
(

) 

Transmission power, v(2 )

   =  / 12
   =  / 4
   =  / 2

Figure 4-13: The optimal achievable throughput µ∗(θ) vs. transmission power v(2π)
with different θ.

probability that a node could receive packets from its source or relay nodes; on the

other hand, it decreases the number of concurrent transmissions. As illustrated in the

figure, the former positive effect dominates when the v(2π) is small, when the v(2π)

increases, the latter negative one becomes the dominate one. This result indicates

that a local transmission strategy may achieve the optimal performance in terms of

throughput in the considered network scenario here.

4.6 Summary

In this chapter, we studied the exact achievable throughput in a cell-partitioned

MANET in which every node is equipped with a directional antenna of beamwidth

θ for both transmission. We derived the theoretical models for such networks that

enable the achievable throughput to be analyzed. Based on the theoretical models,

we further explore the throughput optimization problem in such a network. Numer-

ical studies are also conducted to demonstrate the efficiency of the proposed new
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theoretical models in capturing the behaviors of achievable throughput. Noticed that

the results in this chapter indicate that for a cell-partitioned MAENT with direc-

tional antennas its maximum achievable throughput is less than its omnidirectional

counterpart based on this simple transmission scheduling scheme considered in this

chapter.
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Chapter 5

Conclusion and Future Directions

5.1 Conclusion

In this thesis, we studied the exact throughput capacity for three typical MANETs

models: a sparse MANET with Poisson meeting process, a continuous MANET with

ALOHA MAC protocol and a cell-partitioned MANET with group-based scheduling

and directional antennas. For the considered MANETs, we developed theoretical

results on their exact throughput capacity and also conducted simulation to validate

the efficiency of the developed theoretical models. It is expected the theoretical results

developed in this thesis will be helpful for exploring the exact throughput capacities

in other MANET scenarios.

The result in Chapter 2 indicates that in the considered ICMNs, the throughput

capacity is mainly determined by the pairwise meeting rate therein. A similar result

was also reported in Chapter 3, where the throughput capacity is determined by the

STP. The results of Chapters 2 and 3 also demonstrate that a constant throughput

capacity is achievable for ICMN under random waypoint, random direction mobility

models and A-MENNT under i.i.d mobility model, at a cost of average delay linearly

increasing with the number of network nodes.

The results in Chapter 4 tell us that for the considered cell-partitioned MANET

with directional antennas its maximum achievable throughput is less than its om-

nidirectional counterpart based on the group-based transmission scheduling scheme.
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Therefore, it indicates that a carefully designed MAC protocol is required to get the

benefits of using directional antennas in MANETs.

5.2 Future Directions

In this thesis, we studied the exact throughput capacity for three typical MANET

models. The possible future works are as follows:

• Notice that the analysis developed in this thesis relied on some ideal assump-

tions, such as unlimited buffer space and constant data rate. Removing any of

the these simplifications in the analysis will provide a more realistic model and

can be a very interesting future direction.

• The exact throughput MANETs under other popular MAC protocols, like CS-

MA, remains an investigated area. How to develop theoretical tools to analyze

the exact throughput capacity for MANETs under these more complicated MAC

is also a good future direction.

• It is notable that the capacity achieving routing algorithm is of poor delay

performance. Another promising direction is to design novel routing algorithm

that makes a good balance between the throughput and delay performance.
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Appendix A

Proofs

A.1 Proof of Lemma 7

A.1.1 Scenario of 0 < ∆ < 1

Based on the discussion in Section 3.4.2, we know that the E{δi,j} can be evaluated

as

E{δi,j} =

∫ 1
3+∆

0

E {δi,j|dij = r} fR1(r) dr

︸ ︷︷ ︸
(a)

+

∫ √
2

2

1
3+∆

E {δi,j|dij = r} fR1(r) dr

︸ ︷︷ ︸
(b)

,

The integration (a) can be analytically derived as follows. After some geometric
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calculations, we have

|Ω(i)
r | =πr2,

|Ω(j)
(1+∆)r|=π(1 + ∆)2r2,

|Ω(i,j)
r,∆ | =r2(1 + ∆)2 arccos

(
1 + ∆

2

)

+r2 arccos

(
1− (1 + ∆)2

2

)

−r2(1 + ∆)

√
1− (1 + ∆)2

4
. (A.1)

Based on (A.1), (3.24) and (3.23), the term E{δi,j|dij = r} in integration (a) can

be evaluated as

E{δi,j|dij = r} =

(
1− q ·

π(1 + ∆)2r2 − |Ω(i,j)
r,∆ |

1− πr2

)n−2

.

(A.2)

Based on (A.2) and Lemma 6, the integration (a) can be evaluated as

∫ 1
3+∆

0

E {δi,j|dij = r} fR1(r) dr

= 2π(n− 1)

∫ 1
3+∆

0

r
(
1− (π + q ·Ψ(∆))r2

)n−2
dr

=
π

π + q ·Ψ(∆)

(
1− (π + q ·Ψ(∆))r2

)n−1

∣∣∣∣
0

1
3+∆

=
π

π + q ·Ψ(∆)
− π

π + q ·Ψ(∆)

(
1− π + q ·Ψ(∆)

(3 + ∆)2

)n−1

︸ ︷︷ ︸
(c)

,

(A.3)

where Ψ(∆) is defined in (3.28).

As discussed in Section 3.4.2, the evaluation of integration (b) is quite cumbersome.

However, we notice that the term E {δi,j|dij = r} is monotonically decreasing. From

the second mean value theorem for integration, we know that there exists a ξ ∈
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( 1
3+∆

,
√
2
2
] such that

0≤
∫ √

2
2

1
3+∆

E {δi,j|dij = r} fR1(r) dr

= E

{
δi,j|dij =

1

3 + ∆

}∫ ξ

1
3+∆

fR1(r) dr

= E

{
δi,j|dij =

1

3 + ∆

}(
FR1(ξ)− FR1

(
1

3 + ∆

))

≤ E

{
δi,j|dij =

1

3 + ∆

}(
1− FR1

(
1

3 + ∆

))

=

(
1− q · Ψ(∆)

(3 + ∆)2 − π

)n−2(
1− π

(3 + ∆)2

)n−1

︸ ︷︷ ︸
(d)

.

(A.4)

Since both the (c) and (d) exponentially vanish with n, terms (c) and (b) can be

neglected in the evaluation of E{δi,j} without introducing a significant approximation

error.

Combining the above results with (3.21), PS can be approximated as follows.

Let P̂S = πq(1−q)
π+q·Ψ(∆)

, we have

PS − P̂S ≤ q(1− q) [(d)− (c)]

= q(1− q)

[(
1− q · Ψ(∆)

(3 + ∆)2 − π

)n−2

·
(
1− π

(3 + ∆)2

)n−1

− π

π + q ·Ψ(∆)

·
(
1− π + q ·Ψ(∆)

(3 + ∆)2

)n−1
]

= ǫ+ (A.5)
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and

PS − P̂S = q(1− q)

[∫ √
2
2

1
3+∆

E {δi,j|dij = r} fR1(r) dr − (c)

]

≥ − πq(1− q)

π + q ·Ψ(∆)

(
1− π + q ·Ψ(∆)

(3 + ∆)2

)n−1

= ǫ−, (A.6)

which complete the proof for the scenario of 0 < ∆ < 1.

A.1.2 Scenario of ∆ ≥ 1

Under this scenario the E{δi,j} can be evaluated as

E{δi,j} =

∫ 1
2+2∆

0

E {δi,j|dij = r} fR1(r) dr

+

∫ √
2
2

1
2+2∆

E {δi,j|dij = r} fR1(r) dr.

In the first integration, the term E{δi,j|dij = r} can be derived as

E{δi,j|dij = r} =

(
1− q · π(1 + ∆)2r2 − πr2

1− πr2

)n−2

. (A.7)

Hence,

∫ 1
2+2∆

0

E {δi,j|dij = r} fR1(r) dr

= 2π(n− 1)

∫ 1
2+2∆

0

r
(
1− (1 + 2∆q +∆2q)πr2

)n−2
dr

=
1

1 + 2∆q +∆2q

(
1−

(
1− (1 + 2∆q +∆2q)π

(2 + 2∆)2

)n−1
)
.

(A.8)

In the second integration, the evaluation of E{δi,j|dij = r} is also quite cumber-
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some. Following an argument similar to that of (A.4), we have

0≤
∫ √

2
2

1
2+2∆

E {δi,j|dij = r} fR1(r) dr

≤ E

{
δi,j|dij =

1

2 + 2∆

}(
1− FR1

(
1

2 + 2∆

))

=

(
1− q · π(1 + ∆)2 − π

(2 + 2∆)2 − π

)n−2(
1− π

(2 + 2∆)2

)n−1

.

(A.9)

Let P̂S = q(1−q)
1+2∆q+∆2q

, we have ǫ− ≤ PS − P̂S ≤ ǫ+, where

ǫ+ = q(1− q)

[(
1− q · π(1 + ∆)2 − π

(2 + 2∆)2 − π

)n−2

·
(
1− π

(2 + 2∆)2

)n−1

− 1

1 + 2∆q +∆2q

·
(
1− (1 + 2∆q +∆2q)π

(2 + 2∆)2

)n−1
]

(A.10)

and

ǫ− = − q(1− q)

1 + 2∆q +∆2q

(
1− (1 + 2∆q +∆2q)π

(2 + 2∆)2

)n−1

.

(A.11)

A.2 Proof of Lemma 8

Notice that when ∆ ≥ 1 the NRT scheme is equivalent to the NNT scheme, for the

reason that the non-nearest neighbor transmissions can not be successfully received

according to the protocol model in (3.1). Therefore, we only focus on the scenario of

0 < ∆ < 1.

Without loss of generality, we focus on a node i in a time slot. We use Rk to denote

the distance from node i to its k-th nearest neighbor, use Bi to denote the nearest

silent node of node i, and use Bi = k to indicate that the nearest silent node of i is

its k-th nearest neighbor. The event that i can successfully conduct a transmission
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in the time slot iff the following two events happen simultaneously. First, i decides

to conduct a transmission. Second, the transmission from i to its nearest silent node

Bi is successful under the protocol model of (3.1).

We use indicator function δi,Bi
= 1 to denote that the condition in (3.1) is true

for the transmission from i to Bi (δi,Bi
= 0, otherwise). Since above two events are

mutually independent, we can see that STP PS under the NRT scheme is determined

as

PS = q Pr{δi,B(i) = 1}

= q E{δi,B(i)}. (A.12)

Conditioning on Bi = k, we have

E{δi,Bi
} =

n−1∑

k=1

E{δi,Bi
|Bi = k} · Pr{Bi = k}, (A.13)

where Pr{Bi = k} = qk−1(1− q).

Further conditioning on Rk = r and combining the result of Lemma 6, the

E{δi,Bi
)} can be evaluated as

E{δi,Bi
)} =

n−1∑

k=1

∫ 1
3+∆

0

E{δi,k|Bi = k,Rk = r}

·Pr{Bi = k}fRk
(r) dr

+
n−1∑

k=1

∫ √
2
2

1
3+∆

E{δi,k|Bi = k,Rk = r}

·Pr{Bi = k}fRk
(r) dr. (A.14)
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The term E{δi,k|Bi = k,Rk = r} in the first part of (A.14) can be determined as

E{δi,k|Bi = k,Rk = r}

=

(
1−

|Ω(i,j)
r,∆ |
πr2

)k−1 n−k−1∑

t=0

(
n− k − 1

t

)
qt(1− q)n−k−1−t

(
1−

π(1 + ∆)2r2 − |Ω(i,j)
r,∆ |

1− πr2

)t

=

(
1−

|Ω(i,j)
r,∆ |
πr2

)k−1(
1− q ·

π(1 + ∆)2r2 − |Ω(i,j)
r,∆ |

1− πr2

)n−1−k

,

(A.15)

where |Ω(i,j)
r,∆ | is given in (A.1).

Hence, the first part of (A.14) can be determined as

n−1∑

k=1

∫ 1
3+∆

0

E{δi,k|Bi = k,Rk = r}Pr{Bi = k}fRk
(r) dr

= (1− q)

∫ 1
3+∆

0

2πr
n−1∑

k=1

Γ(n)

Γ(k)Γ(n− k)
(q[πr2 − |Ω(i,j)

r,∆ |])k−1

(1− πr2 − q[π(1 + ∆)2r2 − |Ω(i,j)
r,∆ |])n−k−1 dr

= (1− q)

∫ 1
3+∆

0

2πr(n− 1)(1− (1 + 2∆q +∆2q)πr2)n−2 dr

=
1− q

1 + 2∆q +∆2q

− 1− q

1 + 2∆q +∆2q

(
1− (1 + 2∆q +∆2q)π

(3 + ∆)2

)n−1

. (A.16)
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Similar to the derivation of (A.4), the second part of (A.14) is bounded as

n−1∑

k=1

∫ √
2
2

1
3+∆

E{δi,k|Bi = k,Rk = r}Pr{Bi = k}fRk
(r) dr

≤
n−1∑

k=1

E{δi,k|Bi = k,Rk =
1

3 + ∆
}Pr{Bi = k}

·
(
1− FRk

(
1

3 + ∆

))

≤
n−1∑

k=1

E

{
δi,k|Bi = k,Rk =

1

3 + ∆

}
Pr{Bi = k}

= (1− q)
n−1∑

k=1

(
q − q · Ψ(∆)− (1 + ∆)2

π

)k−1

·
(
1− q · Ψ(∆)

(3 + ∆)2 − π

)n−1−k

= (1− q)

(
1− q · Ψ(∆)

(3+∆)2−π

)n−1

−
(
q − q · Ψ(∆)−(1+∆)2

π

)n−1

1− q
(
1 + Ψ(∆)

(3+∆)2−π
− Ψ(∆)−(1+∆)2

π

) .

(A.17)

Let P̂S = q(1−q)
1+2∆q+∆2q

, we have ǫ− ≤ PS − P̂S ≤ ǫ+, where

ǫ+ =
q(1− q)

1− q
(
1 + Ψ(∆)

(3+∆)2−π
− Ψ(∆)−(1+∆)2

π

) [(1− q

· Ψ(∆)

(3 + ∆)2 − π

)n−1

−
(
q − q · Ψ(∆)− (1 + ∆)2

π

)n−1
]

− q(1− q)

1 + 2∆q +∆2q

(
1− (1 + 2∆q +∆2q)π

(3 + ∆)2

)n−1

(A.18)

and

ǫ− = − q(1− q)

1 + 2∆q +∆2q

(
1− (1 + 2∆q +∆2q)π

(3 + ∆)2

)n−1

.

(A.19)
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A.3 Proof of lemma 9

For a given node T that transmits in some time slot, let T be the set of nodes that

simultaneously transmit with T . When the transmission is omnidirectional, according

to the power propagation model (4.2), the SNR at distance r(2π) is

PtC (r(2π))−α

∑
K∈T,K 6=T PtCd

−α
K

= β, (A.20)

where β is the threshold, the antenna gain factors are equal to 1 in omnidirectional

mode and dK represents the distance between K and the receiver of T .

Under the same transmission power, if each transmitter conducts a directional

transmission with beamwidth θ, then we have that a nodeK ∈ T, K 6= T can interfere

the receiver with probability θ/2π, since each transmitter randomly and uniformly

selects beamforming direction. If we assume the same distance between the receiver

and any other interfering transmitter, to the achieve the same SNR threshold β, the

SNR at distance r(θ) satisfies:

PtCG(θ) (r(θ))
−α

θ
2π

∑
K∈T,K 6=T PtCG(θ)d

−α
K

= β (A.21)

Where G(θ) is the directional antenna gain with beamwidth θ. Combining (A.20)

and (A.21) and with some basic operations, the result follows.

A.4 Proof of Lemma 10

For a given time slot and a tagged flow, the source S conducts a source-to-destination

transmission iff the following events happen simultaneously: (1) S is in an active cell;

(2) S is selected as the transmitter; (3) D is either in the same cell or in one of the

w − 1 adjacent cells and is beamformed by S.

Consider an active cell, the S can conduct a source-to-destination transmission

with D only under the following two mutually exclusive cases: (1) D is in the active
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cell with S; (2) D is in one of the w − 1 adjacent cells.

Furthermore, in either of the above cases, given that k nodes other than S and D

are in the active cell, then we have

p1(θ) =
θ

2πa2

{
n−2∑

k=0

(
n− 2

k

)(
1

m2

)k+1(
m2 − 1

m2

)n−2−k
1

k + 2

+
n−2∑

k=0

(
n− 2

k

)(
1

m2

)k+1(
m2 − 1

m2

)n−2−k
w − 1

k + 1

}
(A.22)

Similarly, the S conducts a source-to-relay transmission or a relay-to-destination

one only under the following events: (1) S is in an active cell; (2) S is selected as the

transmitter; (3) D is neither in the cell and is beamformed by S nor in one of the

w−1 adjacent cells and is beamformed by S; (4) there is at least one node other than

S and D either in the cell or in one of the w− 1 adjacent cells and is beamformed by

S.
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By assuming there are k nodes other than S and D in the active cell, we have

p2(θ) =
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(A.23)

The results can be derived from (A.22) and (A.23) with basic algebraic operations,

respectively.

A.5 Proof of Lemma 11

At first, we notice that in the current time slot all the relay nodes can be divided

into two mutually exclusive sets: one consists of all the relay nodes who has a copy

of P (denoted by R) and the other consists of the one who doesn’t (denoted by V).

Furthermore, we note that the number of nodes in R is j−1 and the number of nodes

in V is n− j − 1.

The proof to Pr(θ, j) and Pd(θ, j) is similar to that in [70, 71], we only provide

the proof of Ps(θ, j) here. To derive Ps(θ, j), we should notice that the corresponding

event happens iff the S delivers a new copy of P to one relay node of V and at the
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same time the D receives P from one relay node of R. As a result, given a node V ∈ V

and a node R ∈ R, if we denote the event that a source-to-relay transmission from S

to V and a relay-to-destination transmission from R to D happen simultaneously in

the next time slot by (S → V,R → D), then we have:

Ps(θ, j) = (j − 1)(n− j − 1)p(S → V,R → D) (A.24)

Furthermore, given a particular pair (V,R), the event (S → V,R → D) happens

iff the following events happen simultaneously:

(1) S and R are in two different active cells; (2) S and R are selected as transmit-

ters, respectively; (3) V and D are selected as the receiver of the S and the receiver

of the R, respectively; (4) S chooses to conduct a source-to-relay transmission and R

chooses to conduct a relay-to-destination transmission.

Notice that to make the D be selected as the transmitter of the R, the destination

node of the R (denoted by D (R)) shouldn’t be a candidate for the transmission from

R. Therefore, we further divide the event (S → V,R → D) into two cases based on

whether D (R) is one of S and V or not. For D (R) 6= S and D (R) 6= V , D can be

selected as the receiver of the R only under the following subevents: D(R) is not a

one hop neighbor of R or it is a one hop neighbor of R but it is not beamformed by

R. To sum up, for the former case, we have:
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p (S → V,R → D|D (R) 6= S and D (R) 6= V )
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Similarly, for the case D (R) = S or V , we have

p (S → V,R → D|D (R) = S or V )
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Notice that

p(D (R) 6= S and D (R) 6= V ) =
n− 4

n− 2
(A.27)

p(D (R) = S or V ) =
2

n− 2
(A.28)
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(A.32)

The (4.11) follows by combining (A.24)-(A.32).
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A.6 Proofs of Lemma 12, 13 and Theorem 6

The proofs of Lemma 12, 13 and Theorem 6 are similar to those in [70, 71], please

refer to them for details.
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