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Summary: Models of spatial competition are typically static, and exhibit multiple free-
entry equilibria. Incumbent firms can earn rents in equilibrium because any potential 
entrant expects a significantly lower market share (since it must fit into a niche between 
incumbent firms) along with fiercer price competition. Previous research has usually 
concentrated on the zero-profit equilibrium, at which there is normally excessive entry, 
and so an entry tax would improve the allocation of resources. At the other extreme, the 
equilibrium with the greatest rent per firm normally entails insufficient entry, so an entry 
subsidy should be prescribed.  A model of sequential firm entry (with an exogenous order 
of moves) resolves the multiplicity problem but raises a new difficulty: firms that enter 
earlier can expect higher spatial rents, and so firms prefer to be earlier in the entry order. 
This tension disappears when firms can compete for entry positions. We therefore 
suppose that firms can commit capital early to the market in order to lay claim to a 
particular location. This temporal competition dissipates spatial rents in equilibrium and 
justifies the sequential move structure. However, the policy implications are quite 
different once time is introduced. An atemporal analysis of the sequential entry process 
would prescribe an entry subsidy, but once proper account is taken of the entry dynamics, 
a tax may be preferable. 
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1. Introduction

Product di®erentiation is an important dimension of ¯rm competition, from computer software and
cable television to grocery stores and restaurants. Existing models of product di®erentiation are
typically static, by which we mean that ¯rms' location decisions are made simultaneously. These
static models are of limited usefulness. In particular, models with endogenous location choice (in
characteristics or geographical space) and potential entry typically allow multiple equilibria. This

means that there is a wide range of possible ¯rm numbers consistent with equilibrium. Roughly
speaking, these range from a densest packing of ¯rms at which all earn zero pro¯t, to a loosest
packing at which any new entrant in a niche between existing ¯rms would just be unpro¯table.
Market performance is hard to evaluate because the socially optimal level of product diversity
typically lies within the range of possible equilibrium levels. This leaves the analyst with no way
of knowing whether entry or exit ought to be encouraged, so policy questions can scarcely be
addressed without a way of choosing among the equilibria. The most usual assumption is that the
equilibrium involves zero pro¯t for all existing ¯rms (see e.g. Salep, 1979). This is likely to be the
wrong benchmark if ¯rms can somehow in°uence the equilibrium selection.

One reaction to the multiple equilibrium problem is to conclude that \history matters" (Eaton
and Lipsey, 1978). History can be modeled via a sequential location process of far-sighted ¯rms
(see e.g. Prescott and Visscher, 1979, and Neven, 1987). This lender modeling strategy, ¯rms
rationally anticipate how their actions a®ect the behavior of subsequent entrants. Early entrants
recognize how their own locations a®ect the location (or product choice) decisions of later entrants
and whether or not they will enter the market.1 A major drawback to this approach is that a ¯rm's

pro¯t depends on its position in the (exogenously speci¯ed) order of moves: earlier entrants earn
more. Thus ¯rms would like to move higher in the order although the models do not allow them
to act on this incentive.2

We explicitly introduce time to model the ability and the costs of moving before others. Specif-
ically, we suppose that it is known far in advance that a market will open.3 Firms compete in the
timing of entry into the market, with earlier entry garnering a position that has higher expected
°ow pro¯t. Timing competition dissipates the rents accruing to desirable locations: an entrant
must locate su±ciently early that all such rents are exhausted via early commitment of resources
to the market, otherwise some other ¯rm would pre-empt it.4 Thus in equilibrium ¯rms no longer
have an incentive to move earlier in the order. Pro¯ts are driven to zero: even though space creates
rents, time destroys them. Although pro¯ts are driven to zero, the equilibrium locations are not
those of the zero-pro¯t equilibrium of the static model. Far from it: the locations are close to the

1By contrast, the \long-run" equilibrium of the static model is usually speci¯ed as a set of locations such that
no r̄m wishes to enter, exit, or choose a di®erent location. These decisions could be coordinated by an imaginary
\auctioneer", but the process raises the obvious problem of how r̄ms in practice ¯gure out which is to locate where.
This is also troublesome because (in all but the zero-pro¯t equilibrium) ¯rms that actually enter the market earn
positive pro¯ts while those that do not enter earn zero.

2The same criticism can be levelled against standard Stackelberg sequential output choice models: see Eaton and
Ware (1987) and Anderson and Engers (1994).

3As we point out below, it su±ces that the probability that the market opens is a continuous function of time.
For example, legal restrictions are removed or a market is liberalized. Alternatively, this assumption is a stylized
version of a growing market without dealing with the intricacies of the growth path (see also Eaton and Lipsey, 1979).

4An early exposition of this mechanism is expounded in Eaton and Lipsey (1979, 1980), where the timing of a
pre-emptive decision is resolved by determining the time at which the present value of entry is zero. The source of
the rent is space in Eaton and Lipsey (1979) while it is capital durability in Eaton and Lipsey (1980).



opposite extreme in the static model, that at which static rents are maximized. So, ¯rms choose
the locations at which the static rents are maximal, but to claim these rents they must commit to
their decisions so early that the rents are totally dissipated.

The equilibrium locations are also essentially unique, so one can make robust policy recommen-
dations. But these should be prescribed with care. Although the equilibrium locations are those of
the (atemporal) sequential-entry model, it should not be concluded (as that model would prescribe)
that incentives should be given to set up more ¯rms, via entry subsidies for example. An entry
subsidy will indeed cause more ¯rms to enter (suggesting a welfare improvement), but competition
for rents will become keener, and subsidies will be dissipated by timing competition. The net e®ect
may be that welfare deteriorates: the appropriate policy response in a situation with insu±cient
product variety may actually be a tax on entry!

Our results imply that atemporal models may seriously understate the distortions inherent in

di®erentiated product markets. Not only can the locations be worse than the worst possible case
suggested by the standard static model, all rents can be lost as well.

After completing our work we became aware of a remarkable discussion by Vickrey of spatial
competition. Vickrey (1964, Ch.6) anticipated several of the most important themes developed
much later in the literature, including the circle model of Salop (1979), the sequential entry model
of Prescott and Visscher (1977), and the Eaton and Lipsey (1978) result that pro¯ts can persist
despite free entry. As later did Eaton and Lipsey, 1979 and 1980, Vickrey also realized that pro¯t
might be dissipated by early entry:

in a dynamic world...there may be an advantage to establishing a ¯rm in an opening gap

somewhat ahead of the time at which the situation is currently pro¯table, in order to
pre-empt the position and enjoy the later pro¯ts. The earlier losses due to the attempts
at pre-emption would then have to be o®set against later gains. Indeed, in a situation of
perfect foresight and vigorous competition, some entrepreneur would presumably jump
in as soon as the expected pre-emptional loss has diminished to the point where it will
just be outweighed by the prospective pro¯ts to be enjoyed later (Vickrey, 1964, p. 334).

Section 2 describes the properties of the model of product di®erentiation that we use. These
properties are needed in the later sections. Section 3 then determines the equilibrium of the atempo-
ral model of sequential location choice, and Section 4 uses that analysis to determine the equilibrium

entry times in the full model. Section 5 shows that the equilibrium locations in the timing game
are inferior even in a static sense to those of almost any simultaneous-entry equilibrium, suggesting
that performance in di®erentiated product markets may be much worse than implied by the usual
analysis (since one must in addition allow for the rent dissipation). The equilibrium outcomes are
closest to those of the simultaneous equilibrium with the greatest rent. The performance issue is
addressed in Section 6, which shows that an entry subsidy is never optimal despite the small num-
ber of ¯rms in the market (that is, the rent dissipation e®ect dominates). Section 7 concludes with
a general discussion of rent dissipation and performance in the context of product di®erentiation.

2. The Static Model.

To show how our approach contrasts with the standard static equilibrium notion we use a particular
speci¯cation of product di®erentiation.5 This is the model of spatial price discrimination most

5Other possible formulations are discussed in the conclusion.
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recently described in Eaton and Schmitt (1994), which draws on earlier work by Lederer and
Hurter (1987), and MacLeod, Norman, and Thisse (1988); it was originally introduced by Hoover
(1937). Several of the properties described in this section can be found in these earlier works.

Consumers are uniformly distributed around a circle of unit circumference, S1, and each buys
one unit of the good from the ¯rm charging the lowest delivered price (consumers purchase from
the closest ¯rm in case of a price tie).6 Each ¯rm occupies a single location on the circle. Transport
costs, c (¢), are assumed to be a convex, increasing, and twice continuously di®erentiable function of
distance (measured around the circle) and the same for all ¯rms.7 These costs are borne by ¯rms.
(Later on we concentrate on the special case of linear transport costs.) Marginal production costs
are constant, and henceforth zero without further loss of generality. Each ¯rm chooses a delivered
price for each point. The Bertrand (price) equilibrium (for any given set of ¯rm locations) involves
each ¯rm serving the points to which it delivers at lowest cost, and it serves such points at a price

given by the delivery cost of the next-lowest-cost supplier.8 This is because any higher price could
be pro¯tably undercut by another ¯rm, and any lower price can be pro¯tably increased without fear
of another ¯rm serving the market. The natural interpretation of the model is in geographic space;
for example, cement plants (transport costs are important and ¯rms deliver the product). The
model has been interpreted in characteristics space as customization of a base product, or \°exible
manufacturing" (Eaton and Schmitt, 1994). Examples include car production and clothing. We
use the spatial price discrimination model to illustrate how rent dissipation ties down equilibrium
locations when static models yield multiple equilibria, and how policy conclusions can be drastically
altered. In the conclusions we set our results in a broader perspective.

Let there be n ¯rms, with locations xi 2 S1, i = 1; :::;n, and de¯ne Firm i0s natural market,
Mi; to be the set of points that i can serve at least as cheaply as any of its rivals. We apply the
standard Bertrand argument to each point in S1, assuming that if two or more ¯rms set identical
lowest prices at a point consumers buy from the closer ¯rm (purchases are split equally in the case
of two or more equally close lowest-price ¯rms). Equilibrium prices are described by the following
property:

P1: In the Bertrand price schedule equilibrium, each ¯rm i sets a price equal to its
delivered cost at each point outside its natural market, Mi and sets a price equal to
the delivered cost of the ¯rm with the second-lowest cost at each point in Mi:

Thus each Firm i serves all customers in Mi (where distinct market areas intersect - for instance
because ¯rms' actions coincide - the customers can be assigned arbitrarily to any of the lowest-
cost ¯rms since zero pro¯ts are earned on these customers). Each consumer buys from the closest
¯rm, and so transport costs are minimized. Since demand is perfectly inelastic, transport costs are
the only determinant of social welfare, so that the equilibrium decentralizes the socially optimal
allocation of consumers to ¯rms.
P2: For given ¯rm locations, the equilibrium allocation is optimal.

The link between equilibrium and optimum is even stronger than P2 suggests, because it holds
when locations are chosen endogenously. To see this, note that at the optimum, each ¯rm is

6The analysis is readily adapted to a linear segment instead of a circle: see the discussion at the end of Section 3.
7As discussed below, the convexity assumption serves to simplify the analysis, and is not necessary for the key

results of this Section and the next two.
8There are also other Nash equilibria at which some ¯rms price below their delivered costs. These can be ruled

out by introducing a small amount of product heterogeneity, and then letting the degree of heterogeneity tend to
zero: see Anderson and de Palma (1987) for more details. Alternatively, trembling-hand perfection could be applied
to rule these out. The equilibrium on which we focus is the standard Bertrand equilibrium (see Tirole, 1988, p.211).
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equidistant from its neighbors,9 and hence each ¯rm serves the same size market:
P3: Given the locations of all other ¯rms, the socially optimal location of a ¯rm is
at the midpoint of the largest interval between adjacent ¯rms: hence the optimal
locations for n ¯rms has them equidistant (1=n apart) around the circle.

The following two properties are useful for the later analysis, and are used to show that the
equilibrium locations are the same as the optimal ones. From P1, the equilibrium pro¯t of a ¯rm
depends only on the distance to each of its two neighbors. Let ¦(`; r) denote this pro¯t, where `
is the distance to the counterclockwise neighbor, and r is the distance to the clockwise neighbor.
Since consumers are uniformly distributed, ¦(`; r) = ¦(r; `). Note too that ¦(`; r) = 0 if either `
or r is zero (in this case there is Bertrand competition between two ¯rms with identical costs at
each point in space).
P4: The pro¯t function ¦ is:

a) increasing in each argument, and
b) convex in each argument.
The demonstration is as follows. For r ¸ `, the pro¯t ¦(`; r) is given by (see Figure 1):

¦(`; r) =

Z (r¡`)=2

¡`=2
[c(x + `) ¡ c(jxj)]dx +

Z r=2

(r¡`)=2
[c(r ¡ x) ¡ c(x)]dx (1)

INSERT FIGURE 1.

Using Leibniz's rule, and, after cancellation,

@¦

@`
=

Z (r¡`)=2

¡`=2
c0(x + `)dx:

Hence, by the Fundamental Theorem of Calculus,

@¦

@`
= c(

r + `

2
) ¡ c(

`

2
): (2)

Similarly,
@¦

@r
= c(

r + `

2
) ¡ c(

r

2
): (3)

Expressions (2) and (3) also hold for r < `. Part (a) then follows immediately from (2) and (3);
part (b) follows from (2) and (3) since c is convex.10

We shall sometimes use linear transport costs for illustration. Normalizing the transport rate
per unit distance gives ¦(`; r) = `r=2, and pro¯t is then the area of a rectangle with sides r=

p
2

and `=
p

2.

9Consider a ¯rm located closer to its left (or counterclockwise) neighbor than to its right (or clockwise) one (see
Figure 1). If the ¯rm moves a distance dx to the right, total transport costs for serving the market between the ¯rm
and its left neighbor rise by the cost of serving the indi®erent consumer (the consumer point midway between the
¯rms) on the left (times dx). Likewise, the total cost of serving the market on its right falls by the cost of serving the
indi®erent consumer on the right (times dx). Thus total transport costs of serving the segment are lowest with the
¯rm at the midpoint; moreover, total transport costs are a convex (and symmetric) function of the ¯rm's location
in the interval. The convexity property follows from the fact that each incremental move towards the center lowers
total transport costs by less than the preceding move. In conjunction with P7 below, the pro¯t of a ¯rm is a concave
function of its location in an interval between two others, zero at the endpoints and highest in the middle.
10The pro¯t function is concave in each argument if c is concave.
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P5: A ¯rm's pro¯t is a strictly concave function of its location between two neighbors,
which is maximized at the midpoint: for ¯xed b > 0, ¦(a;b ¡ a) is a strictly concave
function of a with maximum at b=2:

From (2) and (3) above, the total derivative d¦=da is c([b ¡ a]=2) ¡ c(a=2), which is strictly
decreasing for c strictly increasing. We can now characterize the pure-strategy equilibrium at
which n ¯rms simultaneously choose locations anticipating the price schedule equilibrium. This is
a standard two-stage game with locations chosen before prices. P5 immediately implies:
P6: A best-reply location of a ¯rm is at the midpoint of a largest interval between
adjacent ¯rms: hence the location equilibrium for n ¯rms has them equidistant (1=n
units apart), which is the social optimum (P3).

A di®erent method of showing the equivalence between optimum and equilibrium locations uses
the following property. Since consumer demand is completely inelastic, each ¯rm's pro¯t is exactly

equal to the reduction in transport costs it creates (see ¯gure 1 for illustration):
P7: Given the location of the other ¯rms, the pro¯t of any ¯rm equals its incremental
contribution to social surplus.

This means that, given the locations of the other ¯rms, each ¯rm chooses the location that
minimizes social costs (i.e., transport costs), and hence maximizes its contribution to social welfare.
By P3, the socially optimal locations are also equilibrium ones, and this is the unique equilibrium
(up to a rotation and relabelling of ¯rms).11

We next allow for free entry and exit of ¯rms by assuming that entry entails a sunk cost, F . The
standard (static) de¯nition of equilibrium in spatial models is that no additional ¯rm should wish
to enter, and no incumbent ¯rm should prefer to be at a di®erent location or out of the market.
These conditions yield a fundamental multiplicity of equilibria. At each of these equilibria, ¯rms
are equidistantly spaced, but the spacing can be anywhere between a minimum spacing at which
all ¯rms earn zero pro¯t, and a maximum at which a potential entrant's revenue would fall just
short of F . It is localization of competition that is behind this result: any potential entrant would
expect to earn revenues signi¯cantly lower than those earned by incumbents (indeed, one quarter

of an incumbent's revenue if transport costs are linear) because an entrant must ¯t into a niche
between a pair of incumbents.

If n is the number of ¯rms, let W(n) denote the social welfare, with ¯rms equally spaced as per
P3. For the moment, treat n as a continuous variable, and so (up to a positive constant re°ecting

the consumers' reservation price), W (n) = ¡2n
R 1=2n
0 c(x)dx ¡ nF: Di®erentiating with respect to

n gives:
P8: The social welfare, W (n), is a strictly concave function of the number of ¯rms.
The social optimum can be sustained as an equilibrium with entry.

Since welfare is simply the negative of total costs of serving the market, the concavity property

states that successively adding ¯rms (and optimally rearranging them) lowers total transport costs
by smaller and smaller amounts. The social optimum is an equilibrium because existing ¯rms must
cover their ¯xed costs (otherwise social surplus would be increased by removing them), and no
entrant could cover its ¯xed cost (otherwise it would be socially bene¯cial to add ¯rms).

There is typically a range of equilibrium ¯rm numbers. Ignoring integer constraints for the
time being, the upper limit on the number of ¯rms, nU (the densest equilibrium), is twice the lower

11This in turn implies that the optimum can be sustained as an equilibrium (although as Lederer and Hurter, 1987,
point out, there may be other equilibria when the location space is multi-dimensional: this observation corresponds
to a result of Spence, 1976).
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limit, nL (the sparsest equilibrium), so nU = 2nL.
12 At the sparsest equilibrium, ¯rms are just

indi®erent about entering midway between each adjacent pair of the nL incumbents, and if they
all do enter, each of the nU incumbent is indi®erent about leaving.

Formally, let nL be de¯ned by:

¦(
1

2nL
;

1

2nL
) = 2

Z 1=4nL

0
c(

1

2nL
¡x) ¡ c(x)dx = F; (4)

i.e., the critical number of ¯rms such that, if they are equispaced, an entrant is just unable to make
a positive pro¯t.13 Since we are interested in competition rather than monopoly, we assume that
nL ¸ 1 : this implies that there will always be at least two equilibria in the simultaneous-entry

game.14 The social welfare is the same at the two extremes:
P9: W (nL) = W (nU), where nU = 2nL, with W 0(nL) > 0 and W0(nU) < 0:

The ¯rst part is shown as follows. De¯ne ¢W = W (nL)¡W (nU ) = 2nU
R 1=2nU
0 c(x)dx+nUF ¡

2nL
R 1=2nL
0 c(x)dx ¡ nLF: Since 2

R 1=2 nU
0 c(1=nU ¡x) ¡ c(x)dx = F; by de¯nition of nL, and nU;

we can write ¢W = nU
n

¡R 1=nU
0 c(x)dx+

R 1=2nU
0 c(x)dx +

R 1=2nU
0 c(1=nU ¡ x)dx

o
. The desired

result then follows from rewriting the last integral using the change of variable v ´ 1=nU ¡x. The
derivative property then follows from the ¯rst part and P8.

The intuition behind this latter property is as follows. At nL, if we add a ¯rm midway between
a pair of existing ¯rms, welfare is unchanged: the ¯rm's social contribution is zero since its pro¯ts
are zero (P7). Rearranging the ¯rms to a symmetric position then raises welfare. At nU, taking
out a ¯rm leaves welfare unchanged. Rearranging then raises welfare.

We now allow for the integer constraint. Clearly there is an equilibrium for each integer number
of ¯rms between nL and nU(= 2nL). That is, the smallest number is given by mL ´ dnLe, where
d:e denotes the ceiling function (the next integer up if nL is not an integer); and the largest number
is given by mU ´ bnUc, where b:c denotes the °oor function (the integer part of nU ).

INSERT FIGURE 2

P10: If nU is an even integer, then mL = mU=2. If nU is not an even integer, then
mL = (mU +1)=2 if mU is odd; and mL = mU=2 +1 if mU is even.15

The explicit restriction to integers is crucial to the analysis of sequential location choice.
As long as transport costs increase in distance, all of the properties above hold true, with the

exception of Property 4(b) which requires convexity. The convenience of the convexity assumption

is that it simpli¯es the characterization of the equilibrium locations under sequential entry, although
convexity is not necessary for this characterization.16

12When transportation costs are linear and the cost per unit distance is normalized, calculations show that the
optimal number of ¯rms is (4F)¡1=2 , whereas the equilibrium number ranges from nL = (8F )¡1=2 to nU = (2F )¡1=2 :
13Clearly a unique (positive) solution exists since the LHS !1 as nL ! 0; and the LHS ! 0 as nL !1, and

the LHS is strictly decreasing in nL.
14If (4) yields a solution 1=2 � nL < 1, then 1 � nU < 2, so that the only simultaneous-entry equilibrium involves

one ¯rm. One might think that when nL < 1=2, so that nU < 1, then not even a monopolist can make a pro t̄: in
fact, the assumption of inelastic demand allows a monopolist to remain pro t̄able and the price competition implicit
in the de¯nition of nL does not apply.
15The proof is straightforward. See Graham, Knuth, and Patashnik (1994) for properties of the °oor and ceiling

functions.
16Although this characterization simpli¯es the analysis, we do not think that the main economic insights would be

fundamentally changed if the characterization were altered by su±ciently concave transport costs.
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3. Equilibrium with Sequential Location Choice.

As a prelude to the timing game, we study the following atemporal game. Let there be a su±ciently
large number of potential entrant ¯rms.17 According to a given order of moves, ¯rms choose
whether to enter, and each entrant selects a location. All entrants then simultaneously choose
prices, as described in P1. We de¯ne an equilibrium to be a sub-game perfect Nash equilibrium
such that in any sub-game, each entrant puts equal probability weight on each of its optimal

location choices. That is, we assume that when a ¯rm is indi®erent between two (or more) pro¯t-
maximizing locations, it will choose each of them with equal probability.18 This implies that pro¯t
is symmetric around the midpoint of a gap between previous entrants. Hence it su±ces in what
follows to consider location choice in the half interval up to the midpoint of a gap, and actual
choice will put equal weight on optimal choices in this subinterval and their mirror images in the
half interval beyond the midpoint.

De¯ne z as the critical distance between adjacent ¯rms such that an entrant midway between

them would earn zero pro¯t, i.e., ¦(z=2; z=2) = F , or, equivalently, z satis¯es 2
R z=4
0 [c(z=2 ¡x) ¡

c(x)]dx = F (clearly z = 1=nL and hence is uniquely determined, see (4)). The proof of the
following Proposition is in the Appendix.
PROPOSITION 1. There exists an equilibrium to the sequential-entry game. In any
equilibrium, there are mL = dnLe = d1=ze ¯rms, which is the same number as at the
simultaneous entry equilibrium with the least number of ¯rms. The last ¯rm locates
midway in the gap of size s 2 (z; 2z] between its two neighbors, and there is equal
spacing z between each adjacent pair of the other ¯rms.

Thus there are three possible ex-post pro¯t levels: that of the last ¯rm (the niche ¯rm), of its
two neighbors, and of the remaining (shielded) ¯rms.

The proof is by induction on an index of the size of the interval. This index will be shown to
represent the equilibrium number of entrants in the interval. Accordingly we de¯ne the function

e(s) = ds=ze¡ 1, where d:e denotes the ceiling function as described above.19 Note that an interval
of length s � z will support no pro¯table entrants, and so e(s) = 0 in this case: also, increasing an
interval length by exactly z will increase the number of entrants by one.20

The location of the ¯rms in the equilibrium is unique once we normalize the position of the last
¯rm. In the equilibrium, the entering ¯rms fan out around the circle, and each but the last one
locates the critical distance z (the market length that just deters entry) from its inside neighbor.
To understand why these locations are chosen, consider the choice facing the penultimate entrant.
As shown in part (iii) of the Appendix, this ¯rm will \push" the last entrant (the niche ¯rm) as
far as possible subject to preventing entry on its own inside. (Convex transport costs are su±cient
for this result. On the one hand, the penultimate ¯rm, as \location leader", gains from the largest
possible market length served when locating a distance z from its neighbor. On the other hand,
it loses from not being at the center of the market it serves. With convex transport costs, the

17Su±ciently large means larger than the number of entrants given in Proposition 1.
18This randomization assumption rules out strategic use of indi®erence by ¯rms to threaten previous players (see

Dewatripont, 1987).
19Hence e(1) = d1=ze ¡ 1, so the equilibrium number of entrants on the unit circle is e(1) + 1 since the ¯rst ¯rm

"converts" the circle to an interval of unit length in the sense that payo®s of entrants in the circle are exactly the
same as they would be at corresponding locations in a unit interval with a ¯rm at each end.
20We assume that a r̄m enters only if it can earn strictly positive pro¯ts. Note that e(s) = bs=zc except where

s=z is an integer.

7



former e®ect dominates. With linear transport costs, the penultimate entrant still strictly prefers
to locate a distance z away, suggesting that our main characterization result holds even for some
strictly concave transport cost functions.)

A similar argument applies for earlier ¯rms. First note that a ¯rm will never prefer entering
2z, 3z, etc. away, rather than z away: entering 3z away (for example) will simply increase the
probability of neighboring the niche ¯rm since the next two ¯rms will ¯ll the intervening gap of
3z and be fully protected themselves, and the entrant 3z away has less chance of being protected
because it has reduced the number of successors that could shield it.21 Likewise, coming in at
x < z away is not worthwhile since by increasing x, the ¯rm can gain more on the inside when it
is protected by a future entrant, and when it is not, it gains by squeezing the niche ¯rm as much
as it can, as in the problem of the penultimate ¯rm. Hence, since the penultimate ¯rm prefers to
squeeze the niche ¯rm, so a fortiori do the previous ¯rms.

Proposition 1 shows that the number of entrants in the sequential-entry equilibrium is identical
to the least number of ¯rms in a simultaneous-entry equilibrium. This is essentially because each
entrant (except the last) maximizes the distance from its neighboring predecessor.

The analysis is not changed much for a linear market space. It is readily shown that the ¯rst
two entrants locate inside the market boundaries, at a distance that just deters entry outside these
entrants. Thereafter, the model is just like the circle, in the sense that the ¯rst two entrants on the
circle also convert the remaining market space into a linear segment bounded by ¯rms. As Vickrey
noted (for his ¯xed-price model), the two ¯rst movers \insulate the remainder of the maneuvering
from the e®ects of the ends" (1964, p. 332).

4. Equilibrium Entry Times: Competition for Locations via Early Commitment
of Capital to the Market.

It is shown in Proposition 1 that the number of entrants on the unit circle is d1=ze, which we
shall call m and we assume m > 1.22 Let R denote 1 mod z; the remainder when 1 is divided by
z.23 If R = 0; the expected gross pro¯t of entrant i is ¦(z; z) for all i = 1; :::;m: Otherwise, we
can calculate expected pro¯ts as weighted averages of three expressions. These expressions are:Q
S ´ Q

(z;z), the pro¯t of a ¯rm that is shielded on both sides;
Q
H ´ Q

(z; [R + z] =2) ; the
pro¯t of a ¯rm adjacent to the niche ¯rm; and

Q
B ´ Q

([R + z] =2; [R + z]=2), the pro¯t of the
niche ¯rm. The expected pro¯t of Firm i is then

£
1 ¡ 23¡m

¤ Q
S+23¡m

Q
H for i = 1£

1 ¡ 21¡m+i
¤Q

S +21¡m+i
Q
H for i = 2; :::;m ¡ 1Q

B for i = m:

Note that the ¯rst and second entrants get the same expected pro¯t since they are indistin-
guishable once the second has entered z away from the ¯rst. Expected pro¯t is thereafter strictly
decreasing in order of entry in this case. This is because entrant i = 2; :::;m ¡ 1 is followed by
m ¡ i ¡ 1 ¯rms that could fully protect it, so the probability of protection is higher for earlier

21If 1=z is an integer then there is no niche ¯rm and r̄ms are indi®erent between entering at 2z, 3z, etc..
22For notational simplicity and because of its new interpretation as the equilibrium number of ¯rms in the sequential-

entry game, we now use m instead of mL, even though they are equal.
23Thus R = 1¡ b1=zc z. For properties of the mod function, in this general case when z need not be an integer,

see Graham, Knuth, and Patashnik (1994).
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entrants. Vickrey, who discussed a ¯xed-price model, notes a similar e®ect: \it is in general an
advantage to be one of the earlier locators, in that an earlier seller is less likely to get crowded by
the last seller, while the last and next-to-last sellers are at a de¯nite disadvantage" (1964, p. 331).
The monotone pro¯t property allows us to solve the timing of entry game easily. Assume all ¯rms
are risk neutral and that entry entails a sunk cost F , so that entry at time t before the market
opens at time zero has a time-zero cost of Fe½t (where ½ is the instantaneous discount rate).

We now argue that competition, via entry time, for the rents associated with being an early
mover (that is, facing a low probability of being a neighbor to the niche ¯rm) will drive expected
rents to zero. Rent dissipation through early entry is similarly modeled in games of adoption of
new technology such as Fudenberg and Tirole (1985), where again pro¯t di®erentials are eliminated
by early commitment of capital to the market.24 An analogous argument is formalized in Anderson
and Engers (1994), where we consider a discrete time model in which the interval between instants

at which ¯rms can move converges to zero.25 Rent dissipation arises because if some ¯rm were
to enter at some time at which it earned positive pro¯ts in any purported equilibrium, then some
other ¯rm would do better preempting it. This requires that there be enough lead time (otherwise
the ¯rst ¯rms can earn positive pro¯ts) and that there be enough potential entrants (more than
m; otherwise pro¯ts are still equalized, but not eliminated).

The rent-dissipation condition is that F equal exp(¡½ti) times the present value of the rent
stream earned at the time the market opens. If potential entrants are uncertain about whether the
market will open, and the common degree of belief at time t that it will open is denoted by P(t),
then we simply replace exp(¡½ti) by P (ti) exp(¡½ti) in the rent dissipation condition. As long as P
is continuous, the preceding analysis of entry times goes through under this transformation. In this
way, we can describe situations in which there need not be a lengthy lead-time before the market
opens, as long as its advent gradually becomes apparent. Note that if P has fallen to zero, then
some ¯rms may have committed capital to a lost cause.26

To illustrate the pattern of entry over time, consider the case of linear transport costs, for which
¦(`; r) = `r=2: Then the critical deterrence distance z is determined by z2=8 = F , and the pro¯t

of a ¯rm protected on both sides is ¦S = z2=2 = 4F . Recall that R denotes 1 mod z, so the pro¯t
of a neighbor to the niche ¯rm is ¦H = (R + z)z=4 = 2F (1 +R=z) and the pro¯t of the niche ¯rm
is ¦B = (R + z)2=8. Then, for R > 0 and i = 2; :::;m ¡ 1, the entry time of ¯rm i is given by
equating full cost to gross pro¯t:

¿i = 4[1 ¡ 21¡m+i] + 21¡m+i[2(1 +R=z)];

where we have set ¿i = exp(½ti): For Firm 1, ¿1 = ¿2, while for Firm m, ¿m = (1 + R=z)2. The
equilibrium entry times (for F � 1=8 so that there are at least two ¯rms) are depicted in Figure 3.

INSERT FIGURE 3.
24See Hoppe (2000) for discussion and extension.
25At each instant there is a set order of moves for r̄ms. Although the order of moves is arbitrary, nothing

important rides on it because all ¯rms earn the same expected pro t̄s at the equilibrium to the timing game. Note
that small di®erences between ¯rms (for example, cost di®erences) tie down the identities of the ¯rms that enter the
market. An alternative approach would be to consider the symmetric mixed-strategy equilibria when entrants can
move simultaneously at each instant. In a model without product di®erentiation, Sutton (1998) has shown that, as
the interval between instants goes to zero, the limiting distribution of entry times is the same as in the pure-strategy
equilibria in a sequential entry game.
26We assume here that the only uncertainty regards whether the market will open at all: a description of the

equilibrium when the opening date itself is random is more complex (except for special cases).
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At F = 1=8, two ¯rms placed diametrically opposite each other are just pro¯table, and deter
entry. They enter at time zero (t = 0, ¿ = 1). As F falls, rent dissipation requires earlier entry,
so ¿ rises, as shown in Figure 3. Equilibrium locations are unchanged, and both ¯rms earn the
same gross pro¯t (and so enter at the same time) until F = 1=32, when two ¯rms can no longer
deter a third, which enters midway between them. Since the pro¯ts of the ¯rst two are reduced by
the presence of the third, they enter substantially later once the third cannot be deterred. As F
falls further, the ¯rst two entrants (which always earn the same expected pro¯t) close up to deter
entry on the shorter arc between them. The third entrant's gross pro¯t rises both because F falls
and because the market it serves increases. The higher pro¯t implies it must enter earlier, and its
entry time gets closer to that of the other two. (Nevertheless, the ¯rst two always have higher gross
pro¯ts for lower F since the direct e®ect of falling F dominates the indirect e®ect of having to be
closer.) For F just above 1=72, the three ¯rms locate one third of the circumference apart and just

manage to deter a fourth. The corresponding entry time is ¿ = 4 because the maximal gross pro¯t
that can ever be earned by deterring ¯rms is four times that of an entrant, and this maximal pro¯t
is attained when ¯rms are equispaced (1 mod z = 0). Hence ¿ = 4 represents the earliest possible
entry time for any number of ¯rms, at which time they all enter simultaneously.

Now consider F just below 1=72. Then 3 ¯rms cannot deter a fourth. The¯rst two can guarantee
that there will be no entry between them, and so earn the greatest expected pro¯t (hence earliest
entry time), locating just less than 1=3 apart. The next ¯rm knows it must be adjacent to the
niche ¯rm and can fully protect only one side of its market by locating just less than 1=3 from one
of the ¯rst two ¯rms). The niche ¯rm then locates at the midpoint of the remaining gap. As F
falls further, the ¯rst three ¯rms must close ranks to deter entry between them. This renders gross
pro¯ts and hence entry times more symmetric. Covergence to symmetry continues until F is just
above 1=128, when all ¯rms locate 1=4 apart, and just deter a ¯fth ¯rm: all four ¯rms enter at
¿ = 4:

The same basic ideas apply for all smaller F . For F 2
³
1
8

1
(m¡1)2 ;

1
8
1
m2

i
, m ¯rms enter in

equilibrium, and entry times become earlier and closer together as F decreases within this range.
The incentive for early entry stems from the higher gross pro¯t through greater probability of being
protected on both sides.

If ¯rms di®er in ¯xed costs, all ¯rms with costs above some (endogenous) threshold level stay

out. Those with lower costs enter earlier, and earn rents to the extent that their costs are below
those of the most competitive ¯rm kept out. Thus temporal competition leads to an order of entry
that is e±cient in the sense that only the lowest cost ¯rms will produce. Lower cost ¯rms enter
earlier than higher-cost ones so that the extent of rent dissipation is lessened.

We show in the next section that the atemporal sequential entry model of Section 3 leads to too
few ¯rms in the market. Competition for rents leads to wasteful early commitment of capital to
the market to stake claims on pro¯table slots. An entry subsidy would alleviate the ¯rst distortion,
but aggravate the second. The trade-o® is analyzed in Section 6.

5. Welfare Properties.

One of the problems with static location models is that they do not make tight predictions: there
are multiple equilibria. The received theory is also mute on the issue of rent dissipation (it is
ignored because there is no channel for competition for rents). Nevertheless, it is still instructive to
compare the equilibria in a purely atemporal sense, by which we mean we can compare the welfare
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properties of the timeless sequential-entry game with those of the timeless simultaneous-entry one.
In other words, we contrast a situation in which ¯rms move in a given order at the date the market
opens, with one in which they all move simultaneously at that date. Another way to interpret the
timeless sequential-entry model is to suppose that the government auctions o® slots in the order of
moves, so the rents are not dissipated, but simply transferred to the government. This experiment
allows us to separate out the sources of ine±ciency in the dynamic model. In this section, we
argue that the timeless sequential-entry location equilibrium yields lower total surplus than nearly
all the simultaneous-entry equilibrium outcomes. We address the role for tax policy in reducing
ine±ciency in Section 6.

Recall that mU denotes the (integer) number of ¯rms at the simultaneous-entry equilibrium
with the highest (uppermost) number of ¯rms, and mL is the number of ¯rms at the simultaneous-
entry equilibrium with the lowest number of ¯rms. As we have shown, mL is also the equilibrium

number of ¯rms in the sequential-entry equilibrium. Clearly welfare is lower with mL ¯rms entering
sequentially than simultaneously, by P3, because symmetric locations yield higher surplus than
asymmetric ones. Since the total surplus is a strictly concave function of the number of ¯rms
(P8), it su±ces that it be higher at the simultaneous-entry equilibrium with mU ¯rms than at the
sequential-entry one with mL ¯rms for the sequential-entry equilibrium to be worse than all the
simultaneous-entry ones. As we show, this is true if mU is even, but may not necessarily be so if
mU is odd, although in the latter case it remains true that the sequential-entry equilibrium is worse
than all the other simultaneous-entry equilibria. Thus the sequential-entry equilibrium is worse
than nearly all the simultaneous-entry ones.

PROPOSITION 2. Social surplus is strictly lower at the atemporal sequential-entry
equilibrium than at:
a) almost any simultaneous-entry equilibrium if mU is even;
b) any simultaneous-entry equilibrium with fewer than mU ¯rms if mU is odd.

The proof is in the Appendix. The Proposition implies that the allocation attained when al-
lowance is made for rent-seeking behavior is more ine±cient than would be thought from considering

the usual static (simultaneous-entry) models. Once we couple the lost rents with the pure loca-
tional ine±ciency, we see that di®erentiated product markets may be a source of signi¯cant cause
for concern regarding market performance. In the next section, we look at the case for corrective
subsidies or taxes. Doing so gives further insight into the nature of the market failure.

6. Entry Tax or Subsidy?

Various governments pursue policies aimed at encouraging the start-up of new businesses. In this
section we examine whether taxes or subsidies can improve the allocation of resources. We ¯rst
argue that the static model is not useful for answering these questions for two reasons. First, the
multiple equilibria inherent to the static model include both those equilibria that would be improved
by subsidies and those that would be improved by taxes. Second, by ignoring competition for rents
the static model systematically overlooks a key source of deadweight loss.

The indeterminacy due to multiplicity of equilibria is illustrated by considering the two ex-
treme cases. These are the minimum pro¯t equilibrium (with mU ¯rms), and the maximum pro¯t
equilibrium (with mL ¯rms). An entry tax e®ectively raises the ¯xed cost an entrant incurs and
so decreases both the minimum and the maximum number of ¯rms. From P8 through P10 (and
Figure 2), welfare falls with a tax if the equilibrium with the minimum number of ¯rms is the
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relevant one, and rises if the maximum number of ¯rms is the relevant one. Hence a subsidy is
optimal if one believes that the market equilibrium involves the minimum number of ¯rms. A sub-
sidy works in this case by rendering entry more pro¯table and so requiring tighter spacing between
¯rms and hence a greater variety of products. In either case, social welfare is a step function of the
tax/subsidy because welfare only changes at critical values that alter the number of ¯rms.

Now consider the timeless version of the sequential-entry model (with mL ¯rms). Here the
social welfare still has discontinuities where the number of ¯rms changes, but is no longer constant
between these discontinuities. This is because ¯rms early in the sequence of moves locate so as
just to deter entry on their inside; the critical distance depends on the size of the tax/subsidy. By
P6, symmetric locations are preferred to asymmetric ones, so the optimal tax/subsidy will always
involve symmetric locations. Second, the optimal policy will be a subsidy rather than a tax, in
order to increase the number of ¯rms to the optimal level (the ¯rst-best optimum is attainable).

The conclusion of the previous paragraph is drastically altered once proper account is taken
of the competition for the rents from moving early.27 To analyze the optimal policy, we assume
for simplicity that transport costs are linear, and equal to distance. The complication that ¯rms'
successors' locations are unknown causes no di±culty because total expected gross pro¯ts equal
total actual gross pro¯ts. Thus total resource costs are the same as when all but the last three
¯rms know that they will earn ¦(z;z), the next two know they will be adjacent to the niche ¯rm,
and the last is the niche ¯rm. With linear transport costs, the shielded ¯rms all enter at ¿ = 4
(since gross pro¯ts of a ¯rm that just deters are four times those of a potential entrant). The two
neighbors to the niche ¯rm enter at ¿ = ¿n¡1 as given in Section 4, and the niche ¯rm enters at
¿ = ¿n (again as given in Section 4, since both the niche ¯rm and its neighbors earn the same in
this deterministic version as in the earlier one).

Total social cost C, is the sum of transport costs and capital costs. With n ¯rms,

C = TTC + (n ¡ 3)4F +2F¿n¡1+ F¿n;

where TTC represents total transport costs. From Section 3 the equilibrium number of ¯rms will
be d1=ze, and in the sequel, the reader should interpret n as being equal to d1=ze. For notational
clarity, we do not make the substitution.

There are (n ¡ 2) gaps of length z, and two of length [1 ¡ (n ¡ 2)z]=2; since a gap of length x
entails a transport cost of x2=4, we have TTC = (n¡ 2)z2=4+ 1

2[(1 ¡(n¡2)z)=2]2. Recall that the
gross pro¯t of a ¯rm that is ` from its left neighbor and r from its right neighbor is `r=2. Hence
¿n and ¿n¡1 are determined by the zero pro¯t conditions (F + T)¿n = 1

2 [(1 ¡ (n ¡ 2)z)=2]2, and
(F + T)¿n¡1 = 1

2 [(1 ¡ (n ¡ 2)z)=2]z, where T is the tax on each entrant. Total cost is thus

C = (n ¡ 2)z2=4 +
1

2
[(1 ¡ (n ¡ 2)z)=2]2 +(n ¡ 3)4F

+

½
1

8
[1 ¡ (n ¡ 2)z]2+

z

2
[(1 ¡ (n ¡ 2)z]

¾
F=(F + T):

27The r̄st-best optimum can be achieved if the tax/subsidy policy is allowed to be time dependent. In this case,
high entry taxes can be set before the market opens, to deter completely the loss from early entry. These would be
followed by the optimal subsidy (at the opening date) as in the previous paragraph. In practice, however, policies
rarely vary ¯nely with time. Instead, there are blanket policies, like the small business start-up subsidy. At this level,
we ask whether such a subsidy is a move in the right direction. We shall answer no, that the optimal policy is rather
a tax.
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We now de¯ne z(T ) to be the maximal distance between neighbors that does not allow pro¯table
entry, if tax T is imposed. Under our linear transport cost assumption, F + T = z2=8, or z(T) =p

8(F + T). Substituting this in the cost expression, and then di®erentiating with respect to z
yields

dC

dz
=

½
1

4
(n ¡ 2)(nz ¡ 1)¡ 2F [1 ¡ (n ¡ 4)z]

z3

¾

where the ¯rst term is positive (transport costs rise because ¯rms are less symmetrically placed),
and the second term is negative (less rents are dissipated). The derivative expression holds for all z
such that 1=z is not an integer, i.e. for all values of z such that n does not jump to the next integer
down. The following result will be used in the proof that a subsidy is never optimal: dC=dz < 0
for all T < 0 wherever the derivative is de¯ned. That is, the cost function is decreasing in T, (i:e.

increasing in the subsidy), except where the number of ¯rms changes.28

We next consider the values of C as 1=z approaches an integer. For z # 1=n, the spatial pattern
approaches n equispaced ¯rms, and C approaches

C+ = 4nF +
1

4n
=

4F

z
+

z

4
;

where z = 1=n (since the average distance travelled by consumers is 1
4n and each of n ¯rms enters

at ¿ = 4, so incurring cost 4F each). Similarly, for z " 1
n , the spatial arrangement allows n + 1

¯rms, with n of them almost symmetrically placed around the circle, and the last ¯rm in the niche
midway between the pair that is slightly further apart than the other adjacent pairs.

Let C¡ denote lim
z"1=n

C(z) = 4nF ¡ 4F ¡T + 1
4n:

29 Since F +T = z2=8 = 1=8n2, we can write

C¡ = 4nF ¡ 3F +
1

4n
¡ 1

8n2
=

4F

z
¡ 3F +

z

4
¡ z2

8
:

Clearly C¡ < C+, C+ is strictly convex, and C¡ is minimized at a higher value of z than C+. The
relation between C¡, C+, and C is illustrated in Figure 4.

INSERT FIGURE 4

The proof of the following Proposition (which is in theAppendix) con¯rms the pattern suggested

by Figure 4.
PROPOSITION 3. At the equilibrium to the timing game for the spatial price

discrimination model of product di®erentiation with linear transport costs, an entry
subsidy is never optimal.

The last part of the proof (for monopoly) also indicates that one ¯rm serves the market absent
intervention if and only if one ¯rm serves the market under the optimal tax. Moreover, if two

28To show this, note ¯rst that dz=dT > 0, and that, for a subsidy (T < 0), F > z2=8 and dC=dz is less than
1
4

n
¡ [1¡(n¡4)z]

z + (n ¡ 2)(nz ¡ 1)
o
, which can be written as = 1

4z f(nz + 1)[(n ¡ 2)z ¡ 1]g ; and is negative as re-
quired since (n¡ 2)z < 1:
29To understand the relation between C¡ and C+, suppose we start at a symmetric position and then the tax,

T , were decreased slightly, so another r̄m would enter. This r̄m would earn zero pro t̄, so its social cost is F ,
but the bene¯ts in terms of transport costs saved would be F + T . In addition, its entry will halve the gross pro t̄s
of its two neighbors. They used to enter at ¿ = 4, they now do so at ¿ = 2, so resource costs fall by 4F . Hence
C¡ = C+ ¡ 4F ¡ T:
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¯rms serve the market under laisser-faire, then two ¯rms will serve the market under the optimal
tax (which takes away all their rents and so eliminates temporal dissipation). More generally, if
m ¯rms serve the market under laisser-faire, then the number that serve under the optimal tax is
m or fewer. One characteristic of the model is that (unless the optimum entails one or two ¯rms)
a symmetric con¯guration of ¯rms is never optimal. This is because a slight decrease in the tax
would induce an extra entrant, reducing social cost from C+(z) to C¡(z) (see also Figure 4).

To understand this result better, suppose that F is small, so that the number of entrants is large
and we can e®ectively ignore the integer problem. In the static (simultaneous-entry) model, the

equilibrium with the largest number of ¯rms entails zero pro¯t and hence there are
q

1
2F entrants

(since gross pro¯t is 1
2n2 ), while the equilibrium with the smallest number of ¯rms has half this

number, or
q

1
8F ¯rms. The latter is also the number of ¯rms at the sequential-entry equilibrium.

In an atemporal setting, the optimum number minimizes 1
4n + nF , where 1

4n is the average (and
aggregate) transport cost and nF is the total entry cost. The socially optimal number is thenq

1
4F , which lies between the two extremes of the static equilibria. Hence, under the atemporal

sequential-entry equilibrium, a subsidy would be prescribed because a subsidy raises the number

of ¯rms towards the optimum as incumbents close ranks to deter entrants. However, once we
introduce entry-time competition, the social entry cost per ¯rm is 4F rather than F because of
entry competition: the entrant who is just deterred would earn a gross pro¯t of one fourth of that

earned by equilibrium entrants. The social cost is then 1
4n +4nF , with a minimum at

q
1
16F ¯rms.

Since this is fewer ¯rms than the equilibrium number, a tax is desirable.30 For larger F , the result
still holds since the C¡ locus is minimized at a lower number of ¯rms than the C+ locus (see Figure
4: note too that these loci are virtually coincident for F small).

7. Conclusions.

In spatial models there are typically multiple equilibria, ranging from a zero-pro¯t equilibrium to
one at which a potential entrant would just fail to cover its costs and active ¯rms earn substantial
pure pro¯ts. These pro¯ts persist because a potential entrant must enter a niche in the market
between existing ¯rms - even if post-entry price competition were no more intense, the entrant would
serve half the market that an incumbent does before entry. Allowing for ¯ercer price competition
renders entry even less attractive, and consequently raises the threshold pro¯t that is immune to

entry. The potential for pure pro¯t in equilibrium in spatial (or characteristics) models was a key
insight of Vickrey (1964) and Eaton and Lipsey (1978). Subsequently, faced with this multiplicity
of equilibria, many authors have chosen to concentrate on the zero-pro¯t equilibrium, and typically
¯nd that there are too many ¯rms in equilibrium. At the other extreme, there can be too few ¯rms
at the equilibrium at which active ¯rms' pro¯ts are maximal (see Capozza and van Order, 1980,
and Eaton and Wooders, 1985). Given the multiplicity of equilibria, an obvious question is whether
there is a reasonable mechanism to select one of them.

We introduce a dimension (time) that allows ¯rms to compete for possible pro¯ts. The process of
competition resolves the multiplicity problem: it determines a unique number of ¯rms and pattern
of ¯rm locations. The equilibrium obtained is similar to the static equilibrium with maximal pro¯ts

30When F is small, the preceding analysis also applies when transport costs are non-linear, since the derivative of
the transport cost function at zero provides a local approximation to the function over the relevant range.
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rather than the zero-pro¯t static equilibrium favored by many authors. But there is an important
di®erence between the equilibrium in the model with timing and any of the static equilibria - the
possibility that rents may be dissipated can radically change the policy implications of the analysis.
As we showed, the atemporal sequential-entry model suggests that a subsidy is an optimal corrective
policy: however, if timing is considered, a subsidy is never desired, at least under linear transport
costs or su±ciently many ¯rms. What is surprising in this result is that the ine±ciencies due to
suboptimal locations and insu±cient entry are always outweighed by the wasteful rent dissipation.
This no-subsidy result emphasizes the point that the properties of the equilibrium with endogenous
entry times can be very di®erent from those in the atemporal sequential-entry model.

Because our setting is quite speci¯c it is worth putting our results in a broader perspective, to
see how the insights generalize and point out some limitations. First, the rents in the model stem
from the spatial environment and there are many ways in which the details of the spatial model can

be varied. As discussed above, the assumption of a circular market does not really matter in that
a linear market would give similar results, and we believe that the same is true in a market with
more dimensions. It would be worthwhile to consider the spatial model with mill-pricing instead
of spatial price discrimination: this is intractable since an entrant a®ects the equilibrium prices of
all ¯rms through the chain-linking of competition that is absent in the \extreme localization" that
characterizes the discriminatory model.31 Despite the added complications, there is no reason to
expect the results to be fundamentally altered. Indeed, the mill-pricing model is tractable when F
is small so that the integer problem can be ignored. Deneckere and Rothschild (1992) argue that
the atemporal sequential-entry model under mill-pricing entails more ¯rms than is socially optimal.
Although this result di®ers from the spatial price discrimination result, it reinforces the case for an
entry tax since such a tax both alleviates overentry of ¯rms and rent dissipation.

Non-spatial models of product di®erentiation may give very di®erent results. In standard sym-
metric models (such as the logit and CES32), there are virtually no rents at the free-entry equilib-
rium (only those minor rents arising from the integer constraint on the number of ¯rms). Hence
there is no multiplicity of equilibrium problem, and, with negligible rents, the standard analysis ap-

plies. It is quite easy to introduce asymmetries in non-spatial models by allowing di®erent products
to be associated with di®erent production costs, or else assigning them di®erent \quality" variables
(which essentially shift demand). This leads to di®erential rents across products and hence to rent
dissipation in our framework, but does not typically lead to fundamental multiplicity of equilibria,
and hence, without multiplicity, the issue is more straightforward. Insofar as the market solution
tends to err on the side of producing too many products (see Anderson and de Palma, 1999), an
entry tax both deters marginal goods and alleviates rent dissipation.

We have focussed on rent dissipation via early entry, in a simple framework in which all rent
dissipation is socially wasteful. Other channels of competition for rents (such as lobbying for build-
ing permits by promising infrastructure improvements) might have bene¯cial side e®ects, thereby
reducing the damage from dissipation and weakening the case for an entry tax. In our model, if the
market were to grow continuously (rather than discretely) over time, then early commitment has
some social value because some consumers are served. However, in such situations, early ¯rms face
a trade-o® between pre-emption for the later market, and optimally serving the current market.
The spatial entry pattern is then rather intricate - a ¯rm may anticipate entrants on both sides

31See Anderson, de Palma, and Thisse (1992) for further discussion of these issues, and Neven (1987) for some
preliminary results on sequential entry under mill-pricing.
32See Spence (1976), Dixit and Stiglitz (1977), and Anderson, de Palma, and Thisse (1992).
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but still enter. This is a topic for future research.
Finally, the model of this paper has ¯rms already fully informed about future demand, and

so they have only to sink the entry cost to lay claim to a product. This assumption may well
characterize the location of retail stores in a growing town, but the creation of new products is a
more uncertain prospect. In the latter situation, a ¯rst entrant must typically engage in product
development, market research, and marketing to develop a new market. Other ¯rms can then enter
at a much lower cost once they learn that there is a potential market in the o±ng. The signi¯cant
free-rider problem associated with the initial market development is a force that may counteract
the ine±ciency of rent dissipation. This is another topic that should be investigated in more detail.
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Appendix.

Proof of Proposition 1.
The proof proceeds in ¯ve steps. Let e(s) = ds=ze ¡ 1, where d:e denotes the ceiling function.

In (i) we consider e(s) = 1, i.e., a gap of size s 2 (z; 2z]. Thenceforth we have s > 2z. For the
induction step, given any integer n ¸ 2 we suppose that the result holds true for all intervals of
length s, with e(s) � n¡ 1, and show that this implies it is true for any interval such that e(s) = n
(recall that e(s) will be the equilibrium number of ¯rms that will enter a gap of length s). For the
remainder of the proof, we consider four kinds of subintervals; in each we show that locating at z is
better than locating at any point in the subinterval. In (ii), we consider x such that e(s ¡ x) = n,
that is, locating so close to the left end that n further ¯rms still enter on the right (and none on the
left). In (iii), we consider e(x) = 0 and e(s ¡ x) = n ¡ 1, and show that pro¯t rises with x in this
interval, as x approaches its maximum value, z. In (iv) we have e(x) = k > 0 and e(s¡x) = n¡k;
in (v), e(x) = k > 0 and e(s ¡x) = n ¡k ¡ 1:

(i) Let e(s) = 1, so that s 2 (z;2z]. Clearly an entrant in this gap will locate at the midpoint
(by P6) and no further pro¯table entry is then possible.

(ii) We show that any ¯rm entering a gap of size s > 2z will never enter at x 2 [0, s ¡ nz],
where n = e(s) = ds=ze ¡ 1, because locating at x in this interval is less pro¯table than locating
at z. The former strategy would yield the ¯rm a left neighbor at distance ` � s ¡ nz, and a right
neighbor at most z away. Locating at z gives ` = z and at worst (when neighboring the niche ¯rm)
r = [s ¡ (n¡ 1)z]=2. It therefore su±ces that [s¡ (n¡ 1)z]=2 ¸ (s¡nz), or s � (n +1)z, which is
true since n = e(s):

(iii) We next show that locating at x 2 [s ¡nz; z) is less pro¯table than locating at z. By the
induction hypothesis, a ¯rm entering at x 2 [s¡nz; z) knows it will be followed by (n¡1) entrants on
its right and none on its left. With probability 1¡22¡n it will have a right neighbor at distance r = z;
with probability 22¡n it will be adjacent to the niche ¯rm and its right neighbor is at a distance:
r(x) = [s ¡ (n ¡ 2)z ¡ x]=2: Its expected pro¯t is then [1 ¡ 22¡n]¦(x;z) + 22¡n¦(x; r(x)). Now,
locating at z gives an expected pro¯t of (1¡22¡n)¦(z;z)+22¡n¦(z;r(z)). Clearly ¦(z;z) > ¦(x; z),
so it su±ces to show that ¦(x;r(x)) < ¦(z; r(z)). The total derivative of ¦(x; r(x)) is (using (2)
and (3))

d¦

dx
=

@¦

@`
¡ 1

2

@¦

@r
=

1

2

½
c(

x + r(x)

2
)+ c(

r(x)

2
) ¡ 2c(

x

2
)

¾
:

To show this is positive, ¯rst note that r(x) > x=2 (since s > nz ) s ¡ (n¡ 2)z ¡x > 2z ¡x > x,
i:e:, 2r(x) > x). Because c is increasing, it then su±ces that d¦=dx ¸ 0 when r(x) = x=2, i.e.

c(
3x

4
) + c(

x

4
)¡ 2c(

x

2
) ¸ 0;

which is true by convexity of c.
It remains to consider x 2 (z; s=2] (where s > 2z; s � 2z has already been treated). There

are two cases, depending on the number of subsequent entrants that the ¯rst entrant's location
choice induces. Recall that n denotes e(s), the total number of ¯rms that, in equilibrium, will enter
an interval of length s. If the ¯rst entrant locates at x in [0; s], then there will be e(x) entrants
on the left, and e(s ¡ x) entrants on the right. Hence the total number of subsequent entrants is
e(x)+e(s¡x). This total is periodic, with period z, since increasing x a distance z increases the ¯rst
term by one, and decreases the second by one. Note that e(x) + e(s ¡x) is either equal to n (case
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(iv)) or equal to n¡1 (case (v)) depending on whether x mod z < s mod z or not, respectively. [To
see this, it su±ces to consider the subinterval [0; z), by periodicity: clearly e(x) = 0, and e(s ¡ x)
is n if x < s ¡ nz(i:e:, x = x mod z < s mod z = s ¡ nz) and e(s ¡ x) is n ¡ 1 if x ¸ s ¡nz:]

Suppose the ¯rst entrant comes in at x = kz + ® where k is a positive integer and ® 2 [0; z),
so ® = x mod z. Hence k further entrants locate to its left, i.e., e(x) = k. Of these entrants, all
but the last will locate z from an end of the remaining subinterval, leaving the last ¯rm to locate
in the middle of the remaining gap. Since the k ¡ 1 ¯rms are equally likely to locate z from either
end of their subinterval, the ¯rst entrant will end up adjacent to the niche ¯rm (i.e., \holding the
baby") with probability 21¡k. In this case it is [z +®]=2 from its left neighbor. It is protected with
probability 1 ¡ 21¡k, and in this case it is the maximal distance z from its left neighbor.

If the entrant locates at z, it precludes further entry on its left and is z from its left neighbor
with probability one. With probability 22¡n its right neighbor is at distance [s ¡ (n ¡ 1)z]=2,

otherwise that neighbor is at distance z:
The di®erence between cases (iv) and (v) is the number of ¯rms on the right.
(iv) Here e(s¡x) = n¡k. With probability 21¡n+k the ¯rst entrant is not shielded on its right

and is then [s¡(n¡1)z¡®]=2 = [s mod z+z¡x mod z]=2 from its right neighbor; with probability
1 ¡ 21¡n+k it is z from its right neighbor. We wish to compare the corresponding expected pro¯t
with that obtained by entering at z. From the expressions in the preceding paragraph, expected
pro¯ts are higher at z if:

[1 ¡ 22¡n]¦(z; z) +22¡n¦(z; [s ¡ (n ¡ 1)z]=2) > [1 ¡ 21¡k][1 ¡ 21¡n+k]¦(z;z)
+[1 ¡ 21¡k]21¡n+k¦(z; [s ¡ (n ¡ 1)z ¡®]=2) + 21¡k[1 ¡ 21¡n+k]
¦([z + ®]=2; z) + 21¡k21¡n+k¦([z +®]=2; [s ¡ (n ¡ 1)z ¡ ®]=2):

First note that [1 ¡22¡n] ¸ [1 ¡21¡k][1 ¡21¡n+k], so that the ¦(z; z) terms (which are the highest
ones) on the right of the inequality are more heavily weighted than those on the left: the probability
of being shielded on both °anks is greater when the ¯rm shields one °ank with certainty. To prove
the inequality, it now su±ces to show that the term ¦(z, [s ¡ (n ¡ 1)z]=2) from the left-hand
side is greater than each of the other pro¯t terms (that is, excepting the ¦(z;z) term) on the
right-hand side. This follows by symmetry of the pro¯t functions in their arguments, and that
the smaller length is always less than [s ¡ (n ¡ 1)z]=2 : the only case that is not trivial is that
[s ¡ (n ¡ 1)z]=2 > [z +®]=2, which follows since s mod z > ® in Case (iv).

(v) Here e(s ¡x) = n ¡k ¡ 1, and ® 2 [s mod z, z). With probability 22¡n+k the ¯rst entrant
is not shielded on its right and is then [s ¡ (n ¡ 2)z ¡ ®]=2 = [s mod z + 2z ¡ x mod z]=2 from
its right-hand neighbor; with probability 1¡ 22¡n+k it is z from its right-hand neighbor. Expected
pro¯ts are no lower at z if and only if:

[1 ¡ 22¡n]¦(z; z) +22¡n¦(z; [s ¡ (n ¡ 1)z]=2) ¸ [1 ¡ 21¡k][1 ¡ 22¡n+k]¦(z;z)
+[1 ¡ 21¡k]22¡n+k¦(z; [s ¡ (n ¡ 2)z ¡®]=2) + 21¡k[1 ¡ 22¡n+k]
¦([z + ®]=2; z) + 21¡k22¡n+k¦([z +®]=2; [s ¡ (n ¡ 2)z ¡ ®]=2):

Consolidating the terms in ¦(z;z) and using symmetry:

[¡23¡n ¡ 22¡n + 21¡k + 22¡n+k]¦(z;z) +22¡n¦(z; [s ¡ (n ¡ 1)z]=2) ¸
[1 ¡ 21¡k]22¡n+k¦(z; [s ¡ (n ¡ 2)z ¡®]=2) + 21¡k[1 ¡ 22¡n+k]¦(z; [z +®]=2)

+21¡k22¡n+k¦([z + ®]=2; [s ¡ (n ¡ 2)z ¡®]=2):
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To show this inequality holds, we rewrite it in the form:

w0¦0 + w1¦1 ¸ w2¦2 + w3¦3 +w4¦4

where w0 = [¡23¡n ¡ 22¡n + 21¡k + 22¡n+k], ¦0 = ¦(z; z), etc., and we reverse the order of the
¯rst two terms on the RHS if necessary so that ¦2 ¸ ¦3. Since ¦4 � ¦3, it su±ces to show that

w0¦0 +w1¦1 ¸ w2¦2 +w5¦3; (A.1)

where we have de¯ned w5 = w3+ w4.
We now show that w0 ¸ w1 and w0 ¸ w2. The ¯rst amounts to showing

(a) [¡23¡n ¡ 22¡n + 21¡k +22¡n+k] ¸ 22¡n;
while the second is established by showing both
(b) [¡23¡n ¡ 22¡n + 21¡k + 22¡n+k] ¸ [1 ¡ 21¡k]22¡n+k; and
(c) [¡23¡n¡ 22¡n+ 21¡k +22¡n+k] ¸ 21¡k[1 ¡ 22¡n+k]:
To see (a), rewrite it as [22¡k + 23¡n+k]=2 ¸ 24¡n, and the note that the LHS is at least 2(5¡n)=2,
by the inequality between the arithmetic mean and the geometric mean. Since n ¸ 3 for the case
at hand, the RHS is no greater than this bound. Condition (b) reduces to n ¸ k+1, which is true
since k � n ¡ 1. Finally, (c) reduces to the trivial k ¸ 0:

We can now show that (A1) holds. Note that ¦i can be written as ¦(z; ri), with r1 < r3 < r2 <
r0 and r3¡ r1 = r0¡r2. Since ¦ (¢) is convex in its second argument (P4b), (¦3¡¦1)=(r3¡ r1) �
(¦0 ¡ ¦2)=(r0 ¡ r2), and hence (¦3 ¡ ¦1)=(¦0 ¡ ¦2) � (r3 ¡ r1)=(r0 ¡ r2) = 1 � w0=w1. Thus
w0¦0+w1¦1 ¸ w0¦2+w1¦3 ¸ w2¦2+w5¦3, since w0 ¸ w2, ¦2 ¸ ¦3, and w0+w1 = w2+w5:2
Proof of Proposition 2.

From P10, there are three cases to consider. The ¯rst (razor's edge case) has nU = mU an even
integer, in which case 1 mod z = 0, and the sequential-entry equilibrium has the same outcome as
the simultaneous-entry one with the fewest ¯rms. Welfare under sequential entry is the same as at
the two extreme cases of simultaneous-entry (see P9), and lower than at any other simultaneous-
entry equilibrium.

Suppose next that mU is even but nU is not an even integer, so mL = mU=2 +1. Since all pairs
of adjacent ¯rms except two are z apart at the sequential-entry equilibrium, adding a ¯rm at the
midpoint of each gap of size z (and there are mU=2¡ 1 such gaps) will leave welfare unchanged (by
P7) and bring the number of ¯rms to mU . Hence there are now mU ¯rms in both cases, and the
simultaneous-entry case has them symmetrically placed and so is preferred to the other one, which
does not.

Now suppose that mU is odd, in which case mL = (mU + 1)=2. The argument of the pre-
vious paragraph can be adapted to show that the sequential-entry equilibrium is worse than any
simultaneous-entry one with fewer than mU ¯rms. There are mL¡ 2 gaps of size z, so when these
are ¯lled, there are 2mL ¡ 2 = mU ¡ 1 ¯rms in the market. The sequential-entry equilibrium is

therefore worse than the simultaneous-entry one with mU¡ 1 ¯rms, and is worse than the one with
mL ¯rms (P6). By P9, it is therefore worse than all of the simultaneous-entry ones, expect possibly
that with mU ¯rms.

To show that the comparison of an odd number mU and the sequential-entry equilibrium with
mL ¯rms is ambiguous in terms of welfare, consider two special cases. In the ¯rst, take the limit
with the mU ¯rms just making zero pro¯ts, so 1 = mU z=2. By P7, taking out a ¯rm (and not
rearranging) leaves social surplus unchanged. We now have mU¡ 2 gaps of size z=2, and one of size
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z. We can also bring the sequential-entry equilibrium to the same number of ¯rms without changing
its welfare level by adding ¯rms in each of the mL¡ 2 gaps of size z, to yield 2(mL ¡ 2) = mU ¡ 3
gaps of size z=2, and two of size 3z=4. The latter scenario dominates the former since two gaps of
size 3z=4 are preferable to one of size z=2 plus one of size z (by P3 applied to the subinterval of
size 3z=2):

To establish that the comparison can go the other way, take the other extreme case in which
mU +1 ¯rms are just unpro¯table. Then the simultaneous-entry equilibrium has a higher welfare
level than when mU +1 ¯rms are in the market, and the sequential-entry equilibrium has the same
welfare level as when there are mU +1 ¯rms: just add a ¯rm in the middle of each of the gaps of
size z, and note that all gaps are this size.2
Proof of Proposition 3.

We show here that a subsidy (T < 0) is never optimal. We ¯rst consider the case z(0) < 1=2,

i.e., F < 1=32, so at least three ¯rms enter if T = 0. To show a subsidy is never optimal, suppose
one were, then C(z(0)) ¸ C(z(T¤)) for some T¤ < 0. Since we have already shown that C(z(T)) is
decreasing in T for all T < 0 except where C jumps (i.e., where z(T ) = 1=m with m an integer), it
su±ces to consider the function C¡ at integer values of 1=z and to show that C¡( 1m) is increasing

in m for all m ¸ n¡1, where n =
l
1
z(0)

m
=

l
1p
8F

m
is the number of ¯rms if taxes are zero. That is,

we show that C¡( 1
n¡1) < C(z(T ¤)), hence lower costs than at z(T ¤) can be achieved. To show that

C¡( 1m) is increasing as required, it su±ces that C¡( 1m) > C¡( 1
m¡1) for all m ¸ n, or equivalently

4mF +
1

4m
¡ 1

8m2
> 4(m ¡ 1)F +

1

4(m ¡ 1)
¡ 1

8(m ¡ 1)2

or

32F >
2m2 ¡ 4m + 1

m2(m ¡ 1)2
: (A.2)

Since m ¸ n ¸ 1p
8F

, then 4
m2 � 32F , and it su±ces that 4

m2 > 2m2¡4m+1
m2(m¡1)2 , or, equivalently, that

2(m ¡ 1)2 +1 > 0, which is clearly true.

It remains to be shown that the no-subsidy result also holds for F ¸ 1=32 (which corresponds
to z(0) ¸ 1=2, i.e. duopoly, monopoly, or no ¯rm at all). First consider duopoly, or z(0) 2 [1=2;1),
that is, F 2 [1=32; 1=8). The cost C(z) is decreasing on [1=2; 1) since locations are diametrically
opposite regardless of z in this range, so the only e®ect of increasing T (or equivalently, increasing z)
is to reduce wasteful dissipation. This means that C¡(1) < C(z) for all z 2 [1=2;1). Furthermore,
by (A.2) for m ¸ 3, since F ¸ 1=32, C¡(z) is decreasing on (0;1=2], so C¡(1=2) < C(z) for all
z < 1=2. Thus, it su±ces to show that C¡(1) < C¡(1=2), or 2F + 1=8 < 5F + 3=32, which is
implied by F ¸ 1=32. Hence we have shown that if there would be a duopoly in the absence of any
tax or subsidy, then subsidizing to increase the number of products is not worthwhile.

The case of monopoly arises for F ¸ 1=8. Clearly costs fall with the tax, up to the tax at
which F +T equals the monopolist's gross pro¯t. At this tax, the social cost of serving the market
is F + 1=4. Hence, by the argument of the previous paragraph, to show that a subsidy is never
optimal, we need only show that this number does not exceed C¡(1), i:e. F + 1=4 � 2F + 1=8,
which is true exactly when F ¸ 1=8. In other words, if there is just one producer in the market
in the absence of government intervention, then optimal policy proscribes altering the number of
¯rms, and prescribes taxing (almost) all the monopolist's net pro¯t.332

33Because of our choice of tie-breaking rule (namely, that a ¯rm stays out if it would earn zero pro¯t entering at
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time zero), there may be no minimum total cost, although the in¯mum will always exist. This problem arises at the
points where C (z) jumps. The planner can get arbitrarily close to the in¯mum by appropriate choice of T . Even
though an optimum may not exist in a strict sense, this poses no real economic problem, and we shall continue to
refer to the \optimal tax" in the text.
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