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1. INTRODUCTION

Small errors and shocks may have offsetting effects in some economic contexts, in which

case there is not much to be gained from an explicit analysis of stochastic elements. In other

contexts, a small amount of randomness can have a large effect on equilibrium behavior.1

Regardless of whether random elements or "trembles" are due to preference shocks,

experimentation, or actual mistakes in judgement, the effect can be particularly important when

players’ payoffs are quite sensitive to others’ decisions, e.g. when payoffs are discontinuous as

in auctions, or highly interrelated as in coordination games. Nor do errors cancel out when the

Nash equilibrium is near a boundary of the set of feasible actions and noise pushes actions

towards the interior, as in a public goods contribution game where the Nash equilibrium is at zero

contributions (full free riding). Errors are more likely when payoff differences across alternatives

are small, so the consequences of mistakes are minor. For example, when managers or agents

are weakly motivated by profits to owners, they may not exert much effort to find the optimal

action.

Stochastic elements have been incorporated successfully into a wide array of economic

theories. These stochastic elements have been typically assumed to be driven by exogenous

shocks.2 Despite Simon’s (1957) early work on modeling bounded rationality, the incorporation

of noise in the analysis of economic games is relatively recent. Rosenthal (1989) and McKelvey

and Palfrey (1995) propose noisy generalizations of the standard Nash equilibrium.3 McKelvey

and Palfrey’s "quantal response equilibrium" allows a wide class of probabilistic choice rules to

be substituted for perfect maximizing behavior in an equilibrium context. Other economists have

introduced noise into models of learning and evolutionary adjustment; see for instance Foster and

Young (1990), Fudenberg and Harris (1992), Kandori, Mailath, and Rob (1993), Binmore,

Samuelson, and Vaughan (1995), and Chen, Friedman, and Thisse (1997). In particular, Foster

and Young (1990) and Fudenberg and Harris (1992) use a Brownian motion process, similar to

1 For example, in evolutionary models of coordination a small mutation rate may prevent the system from getting
stuck in an equilibrium that is risk dominated (see e.g. Kandori, Mailath, and Rob, 1993, and Young, 1993). Similarly,
a small amount of noise or "trembles" can be used to rule out certain Nash equilibria (Selten, 1975).

2 For instance, real business cycle models and much econometric work make this assumption.

3 See Smith and Walker (1993) and Smith (1997) for an alternative approach.
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the one specified in section 2.

Our goal in this paper is to provide a unified approach to equilibrium and evolutionary

dynamics for a class of models with continuous decisions. The dynamic model is based on an

assumption that decisions are changed locally in the direction of increasing payoff, subject to

some randomness. Specifically, we propose a model of noisy adjustment to current conditions

that, in equilibrium, yields a steady-state probability distribution of decisions for each player.

Our modeling approach is inspired by two strands of thought, directional adaptive behavior and

randomness, both of which are grounded in early writings on bounded rationality.

Selten and Buchta’s (1994) "learning direction theory" postulates that players are more

likely to shift decisions in the direction of a best response to recent conditions. They show that

such behavior was observed in an experimental trial of a first-price auction. However, Selten and

Buchta (1994) expressly do not model the rate of adaption. One contribution of this paper is to

operationalize learning direction theory by specifying an adjustment process. Our model is also

linked to the literature on evolutionary game theory in which strategies with higher payoffs

become more widely used. Such evolution can be driven by increased survival and fitness

arguments with direct biological parallels (e.g. Foster and Young, 1990), or by more cognitive

models in which agents learn to use strategies that have worked better for themselves (e.g., Roth

and Erev, 1995, and Erev and Roth, 1998), or in which they imitate successful strategies used

by others (Vega-Redondo, 1997, and Rhode and Stegeman, 1997). An alternative to imitation

and adaptation has been to assume that agents move in the direction of best responses to others’

decisions. This is the approach we take.4

In addition to "survival of the fittest," biological evolution is driven by mutation of

existing types, which is the second element that motivates our work. In the economics literature,

evolutionary mutation is often specified as a fixed "epsilon" probability of switching to a new

decision that is chosen randomly from the entire feasible set (see the discussion in Kandori, 1997,

4 Models of imitation and reinforcement-learning are probably more likely to yield good predictions in noisy,
complex situations where players do not have a clear understanding of how payoffs are determined, but rather can see
clearly their own and others’ payoffs and decisions. Best-response and more forward-looking behavior is probably more
likely in situations where the nature of the payoff functions is clearly understood. For example, in a Bertrand game in
which the low-priced firm makes all sales, it is implausible that firms would be content merely to copy the most successful
(low) price.
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and the references therein). Instead of mutation via new types entering a population, we allow

existing individuals to make mistakes with the probability of a mistake being inversely related

to its severity. The assumption of error-prone behavior can be justified by the apparent noisiness

of decisions made in laboratory experiments with financially motivated subjects. To combine

the two strands of thought, we analyze a model of noisy adjustment in the direction of higher

payoffs. The payoff component is more important when the payoff gradient is steep, while the

noise component is more important when the payoff gradient is relatively flat.

The next step in the analysis is to translate this noisy directional adjustment into an

operational description of the dynamics of strategic choice. For this step, we use a classic result

from theoretical physics, namely the Fokker-Planck equation that describes the evolution of a

macroscopic system that is subject to microscopic fluctuations (e.g., the dispersion of heat in

some medium). The state of the system in our model is a vector of the individual players’

probability distributions over possible decisions. The Fokker-Planck equation shows how the

details of the noisy directional adjustment rule determine the evolution of this vector of

probability distributions. These equations thus describe behavioral adjustment in a stochastic

game, in which the relative importance of stochastic elements is endogenously determined by

payoff derivatives.

The prime interest in the dynamical system concerns its stability and steady state (a vector

of players’ decision distributions that does not change over time). The adjustment rule is

particularly interesting in that it yields a steady state in which the distributions that determine

expected payoffs are those that are generated by applying a logit probabilistic choice rule to these

expected payoffs. Our approach derives thislogit equilibrium (McKelvey and Palfrey, 1995)

from a completely different perspective than its usual roots. We then prove stability of the

adjustment rule for an important class of games, i.e. "potential games" for which the Nash

equilibrium can be found by maximizing some function of all players’ decisions. In particular,

the Liapunov function that is maximized in the steady state of our model is the expected value

of the potential function plus the standard measure of entropy in the system, which is weighted

by an error parameter. Finally, we show how the stability analysis bolsters the intuition behind

comparative statics and dynamics properties.

The dynamic model and its steady state are presented in section 2. Section 3 contains an
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analysis of global stability for an interesting class of games, i.e. potential games, which include

public goods, coordination, oligopoly, and two-person matrix game formulations. An application

to the minimum-effort coordination game is presented in section 4, and section 5 concludes.

2. EVOLUTION AND EQUILIBRIUM WITH STOCHASTIC ERRORS

In this section we specify a stochastic model in continuous time to describe the interaction

of a finite number of players. In our model, players tend to move towards decisions with higher

expected payoffs, but such movements are subject to random shocks. At any point in time, the

state of the system is characterized by probability distributions of players’ decisions. The steady-

state equilibrium is a fixed point at which the distributions that determine expected payoffs have

converged to distributions of decisions that are based on those expected payoffs. The importance

of stochastic inputs is parameterized in a manner that yields the standard Nash equilibrium as a

limiting case with no noise. The specific evolutionary process we consider shows an intuitive

relationship between the nature of the adjustment and the probabilistic choice structure used in

the equilibrium. In particular, with adjustments that are proportional to marginal payoffs plus

normal noise, the steady state has a logit structure.

There aren ≥ 2 players that make decisions in continuous time. At timet, playeri selects

an actionxi(t) ∈ [x, −x], wherei = 1,...,n. Since actions will be subject to random shocks, behavior

will be characterized by probability distributions. LetFi(x,t) be the probability that playeri

chooses an action less than or equal tox at time t. Similarly, let the vector of then-1 other

players’ decisions and probability distributions be denoted byx-i(t) andF-i(x-i,t) respectively. The

instantaneous expected payoff for playeri at time t depends on the action taken and on the

distributions of others’ decisions:

We assume that payoffs, and hence expected payoffs, are bounded from above. In addition, we

(1) π e
i (xi ( t ) ,t ) ⌡

⌠ π i (xi ( t ),x i ) dF i (x i ,t ) , i 1, ... ,n.

assume that expected payoffs are differentiable inxi(t) when the distribution functions are. The
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latter condition is ensured when payoffs theπi(xi,x-i) are continuous.5

To capture the idea of local adjustment to better outcomes, we assume that players move

in the direction of increasing expected payoff, with the rate at which players change increasing

in the marginal benefit of making that change.6 This marginal benefit is denoted byπe
i´(xi(t),t),

where the prime denotes the partial derivative with respect toxi(t). However, individuals may

make mistakes in the calculation of expected payoff, or they may be influenced by non-payoff

factors. Therefore, we assume that the directional adjustments are subject to error, which we

model as an additive disturbance,wi(t), weighted by a variance parameterσi:
7

Herewi(t) is a standard Wiener (or white noise) process that is assumed to be independent across

(2) dxi ( t ) π e
i (xi ( t ) ,t ) dt σi dwi ( t ) , i 1, ... ,n.

players and time. Essentially, dxi/dt equals the slope of the individual’s expected payoff function

plus a normal error with zero mean and unit variance.

The deterministic part of the local adjustment rule (2) indicates a "weak" form of

feedback in the sense that players react to the distributions of others’ actions (through the

expected payoff function), rather than to the actions themselves. This formulation is motivated

by laboratory experiments that use a random matching protocol. Random matching causes

players’ observations of others’ actions to keep changing even when behavior has stabilized.

When players gain experience they will take this random matching effect into account and react

to the "average observed decision" or the distribution of decisions rather than to the decision of

5 Continuity of the payoffs is sufficient but not necessary. For instance, in a first-price auction with prize value
V, payoffs are discontinuous, but expected payoffs, (V - xi) j≠i Fj(xi), are twice differentiable when theFj are twice
differentiable. More generally, the expected payoff function will be twice differentiable even when the payoffsπi(xi,x-i)
are only piece-wise continuous.

6 Friedman and Yellin (1997) show that when adjustment costs are quadratic in the speed of adjustment, it is
optimal for players to alter their actions partially and in proportion to the gradient of expected payoff.

7 This adjustment process is supplemented with so-called "reflecting boundary conditions" (see Gihman and
Skorohod, 1972) to ensure that actions stay within the feasible region [x, −x].
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their latest opponent.8

The stochastic part of the local adjustment rule in (2) captures the idea that such

adaptation is imperfect and that decisions are subject to error. It is motivated by observed noise

in laboratory data where adjustments are often unpredictable, and subjects sometimes experiment

with alternative decisions. In particular, "errors" or "trembles" may occur because current

conditions are not known precisely, expected payoffs are only estimated, or decisions are affected

by factors beyond the scope of current expected payoffs, e.g. emotions like curiosity, boredom,

inertia, or desire to change. The random shocks in (2) capture the idea that players may use

heuristics or "rules of thumb" to respond to current payoff conditions. We assume that these

responses are, on average, proportional to the correct expected payoff gradients, but that

calculation errors, extraneous factors, and imperfect information require that a stochastic term be

appended to the deterministic part of (2). Taken together, the two terms in (2) simply imply that

a change in the direction of increasing expected payoff is more likely, and that the magnitude

of the change is positively correlated with the expected payoff gradient.

The adjustment rule (2) translates into a differential equation for the distribution function

of decisions,Fi(x,t). This equation will depend on the densityfi(x,t) corresponding toFi(x,t), and

on the slope,πe
i´(x,t), of the expected payoff function. It is a well-known result from theoretical

physics that the stochastic adjustment rule (2) yields the Fokker-Planck equation for the

distribution function.9,10

8 An alternative formulation results when the expected payoff in (2) is replaced by the instantaneous payoff,
π(x1(t),...,xn(t)), at time t. One important difference is that the latter formulation gives rise to asingle Fokker-Planck
equation that describes the evolution of the joint density ofx1(t),...,xn(t). In contrast, (2) leads to aseparateequation for
the marginal density of eachxi (linked only through the expected payoff function), see Proposition 1.

9 This result has been derived independently by a number of physicists, including Einstein (1905), and the
mathematician Kolmogorov (1931). The first term on the right side of (3) is known as a drift term, and the second term
is a diffusion term. The standard example of pure diffusion without drift is a small particle in a suspension of water; in
the absence of external forces the particle’s motion is completely determined by random collisions with water molecules
(Brownian motion). A drift term is introduced, for instance, when the particle is charged and influenced by an electric
field.

10 Binmore, Samuelson, and Vaughan (1995) use the Fokker-Planck equation to model the evolution of choice
probabilities in 2 × 2 matrix games. Instead of using the expected-payoff derivative as we do in (2), they use a non-linear
genetic-drift function. Friedman and Yellin (1997) consider a one-population model in which all players get the same
payoff from a given vector of actions, which they call "games of common interest." (This is a subset of the class of
potential games discussed below.) They start out with the assumption that the distribution evolves according to (3), but
without the error term (i.e. µi =0). This deterministic version of Fokker-Planck is used to show that behavior converges
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Proposition 1. The noisy directional adjustment process (2) yields the Fokker-Planck equation

for the distributions of decisions:

where µi = σi
2/2.

(3) ∂Fi (x,t)

∂ t
π e

i (x,t) fi (x,t) µi fi (x,t) , i 1, ... ,n,

A derivation of the Fokker-Planck equation is presented in Appendix A. Existence of a

(twice differentiable) solution to the Fokker-Planck equation is demonstrated in most textbooks

on stochastic processes (e.g., Smoller, 1994; Gihman and Skorohod, 1972). Notice that there is

a separate equation for each playeri = 1,...,n, and that the individual Fokker-Planck equations

are interdependent only through the expected payoff functions.11

The Fokker-Planck equation (3) has a very intuitive economic interpretation. First,

players’ decisions tend to move in the direction of greater payoff, and a larger payoff derivative

induces faster movement. In particular, when payoff is increasing at some pointx, lower

decisions become less likely, decreasingFi(x,t). The rate at which probability mass crosses over

at x depends on the density atx, which explains the -πe
i´(x,t) fi(x,t) term on the right side of

(3). The second term, µi fi´, reflects aggregate noise in the system (due to intrinsic errors in

decision making), which causes the density to "flatten out." Locally, if the density has a positive

slope atx, then flattening moves mass toward lower values ofx, increasingFi(x,t), and vice versa,

as indicated by the second term on the right side of equation (3).

Since µi = σi
2/2, the coefficient µi in (3) determines the importance of errors relative to

payoff-seeking behavior for individuali. First consider the limiting case µi = 0. If behavior in

(3) converges, it must be the case thatπe
i´(x) fi(x) = 0, which is the necessary condition for an

interior Nash equilibrium: either the necessary condition for payoff maximization is satisfied at

x, or else the density of decisions is zero atx. As µi goes to infinity in (3), the noise effect

dominates and the Fokker-Planck equation tends to∂Fi/∂t = µi ∂2Fi/∂x2, which is the "heat

to a (local) Nash equilibrium in such games.

11 Replacing the expected payoff in (2) by the instantaneous payoff,π(x1(t),...,xn(t)), results in asingle Fokker-
Planck equation that describes the evolution of the joint density ofx1(t),...,xn(t).
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equation" that describes how heat spreads out uniformly in some medium. In this limit, the

steady state of (3) is a uniform density withfi´ = 0.

In a steady state of the process in (3), the right side is identically zero, which yields the

equilibrium conditions:

where thet arguments have been dropped since these equations pertain to a steady state. These

(4) fi (x) π e
i (x) fi(x) /µi , i 1, ... ,n,

equations can be simplified by dividing both sides byfi(x) and integrating, to obtain:

where the integral in the denominator is a constant, independent ofx, which ensures that the

(5)
fi(x)

exp(π e
i (x) /µi )

⌡
⌠

x

x

exp(π e
i (s) /µi ) ds

, i 1, ... ,n,

density integrates to one.

The formula in (5) is a continuous analogue to the logit probabilistic choice rule. Since

the expected payoffs on the right side depend on the distributions of the other players’ actions

(see (1)), the equations in (5) are not explicit solutions. Instead, these equations constitute

equilibrium conditionsfor the steady state distribution: the probability distributions that determine

expected payoffs must match the choice distributions determined by the logit formula in (5). In

the steady-state equilibrium these conditions are simultaneously satisfied. The steady-state

equilibrium is a continuous version of the quantal response equilibrium proposed by McKelvey

and Palfrey (1995).12 Thus we generate a logit equilibrium as a steady-state from a more

primitive formulation of noisy directional learning, instead of imposing the logit form as a model

of decision error. To summarize:

12 Rosenthal (1989) proposed a similar equilibrium with endogenously determined distributions of decisions,
although he used a linear probabilistic choice rule instead of the logit rule. McKelvey and Palfrey (1995) consider a more
general class of probabilistic choice rules, which includes the logit formula as a special case. Our model with continuous
decisions is similar to the approach taken in Lopez (1995).
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Proposition 2. When players adjust their actions in the direction of higher payoff, but are

subject to normal error as in (2), then any steady state of the Fokker-Planck equation (3)

constitutes a logit equilibrium as defined by (5).

This derivation of the logit model is very different from the usual derivations. Luce

(1959) uses an axiomatic approach to tie down the form of choice probabilities.13 In

econometrics, the logit model is typically derived from a "random-utility" approach.14 Both of

these derivations are static in nature. Here the logit model results from the behavioral

assumption of directional adjustment with normal error.

Some properties of the equilibrium distributions can be determined from the structure of

(4) or (5), independent of the specific game being considered. Equation (5) specifies the choice

density to be proportional to an exponential function of expected payoff, so that actions with

higher payoffs are more likely to be chosen, and the local maxima and minima of the equilibrium

density will correspond to local maxima and minima of the expected payoff function. The error

parameter determines how sensitive the density is to variations in expected payoffs. As the error

parameter goes to infinity, the slope of the density in (4) goes to zero, and so the density in (5)

becomes uniform, i.e. totally random and unaffected by payoff considerations. Conversely, as

the error parameter becomes small, the density in (5) will place more and more mass on decisions

with high expected payoffs. In the literature on stochastic evolution, it is common to proceed

13 Luce (1959) postulated that decisions satisfy a "choice axiom," which implies that the ratio of the choice
probabilities for two decisions is independent of the overall choice set containing those two choices (the Independence
of Irrelevant Alternatives property). In that case, he shows that there exist "scale values"ui such that the probability of
choosing decisioni is ui/Σj uj. The logit model follows whenui = exp(πi/µ).

14 This footnote presents the random-utility derivation of the logit choice rule for a finite number of decisions.
Suppose there arem decisions, with expected payoffsu1,...,um. A probabilistic discrete choice model stipulates that a
person chooses decisionk if: uk + εk > ui + εi, for all i ≠ k, where theεi are random variables. The errors allow the
possibility that the decision with the highest payoff will not be selected, and the probability of such a mistake depends
on both the magnitude of the difference in the expected payoffs and on the "spread" in the error distribution. The logit
model results from the assumption that the errors are i.i.d. and double-exponentially distributed. The probability of
choosing decisionk is then exp(uk/µ) / i exp(ui/µ), where µ is proportional to the standard deviation of the error
distribution. There are two alternative interpretations of theεi errors: they can either represent mistakes in the calculation
or perception of expected payoffs, or they can represent unobservable preference shocks. These two interpretations are
formally equivalent, although one implies bounded rationality and the other implies that seemingly incorrect decisions are
really rational with respect to the unobserved preferences. See Anderson, de Palma, and Thisse (1992, chapter 2) for
further discussion and other derivations of the logit model.
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directly to the limiting case as the amount of noise goes to zero.15 This limit is not our primary

interest, for two reasons. First, econometric analysis of data from laboratory experiments (e.g.,

Capra et al., 1999) yields error parameter estimates that are significantly different from zero,

which is the null hypothesis corresponding to a Nash equilibrium. Second, the limiting case of

perfect rationality is generally a Nash equilibrium, and our theoretical analysis was originally

motivated as an attempt to explain data patterns that are consistent with economic intuition but

which are not predicted by a Nash equilibrium. As we have shown elsewhere, the (static) logit

model (5) yields comparative static results that conform with both economic intuition and data

patterns from laboratory experiments, but are not predicted by the standard Nash equilibrium

(Anderson, Goeree, and Holt, 1998a, 1998b, 1999; Capraet al., 1999). The dynamic adjustment

model presented here gives a theoretical justification for using the logit equilibrium to describe

decisions when behavior has stabilized, e.g., in the final periods of laboratory experiments.

To summarize the main result of this section, the steady-state distributions of decisions

that follow from the adjustment rule (2) satisfy the conditions that define a logit equilibrium.

Therefore, when the dynamical system described by (3) is stable, the logit equilibrium results in

the long run when players adjust their actions in the direction of higher payoff (directional

learning), but are subject to error. In the next section, we use Liapunov function methods to

prove stability and existence for the class of potential games.

3. STABILITY ANALYSIS

So far, we have shown that any steady state of the Fokker-Planck equation (3) is a logit

equilibrium. We now consider the dynamics of the system (3) and characterize sufficient

conditions for a steady state to be attained in the long run. Specifically, we use Liapunov

methods to prove stability for a class of games that includes some widely studied special cases.

A Liapunov function is non-decreasing over time and has a zero time derivative only when the

system has reached an equilibrium steady state. The system is (locally) stable when such a

function exists. Although our primary concern is the effect of endogenous noise, it is instructive

15 One exception is Binmore and Samuelson (1997), who consider an evolutionary model in which the mistakes
made by agents (referred to as "muddlers") are not negligible. At the aggregate level, however, the effect of noise is
washed out when considering the limit of an infinite population.
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to begin with the special case in which there is no decision error and all players use pure

strategies. Then it is natural to search for a function of all players’ decisions that will be

maximized (at least locally) in a Nash equilibrium. In particular, consider a function,V(x1,...,xn),

with the property∂V/∂xi = ∂πi/∂xi for i = 1,...,n. When such a function exists, Nash equilibria

can be found by maximizingV. The V( ) function is called the potential function, and games

for which such a function exists are known as potential games (Monderer and Shapley, 1996).16

The usefulness of the potential function is not just that it is (locally) maximized at a Nash

equilibrium. It also provides a direct tool to prove equilibrium stability under the directional

adjustment hypothesis in (2). Indeed, in the absence of noise, the potential function itself is a

Liapunov function (see also Slade, 1994):

where the final equality follows from the directional adjustment rule (2) with no noise, i.e.

(7) dV
dt

n

i 1

∂V
∂xi

dxi

dt

n

i 1

∂π i

∂xi

dxi

dt

n

i 1

(∂π i /∂xi )
2 ≥ 0,

σi = 0.17 Thus the value of the potential function is strictly increasing over time unless all

payoff derivatives are zero, which is a necessary condition for an interior Nash equilibrium. The

condition that dV/dt = 0 need not generate a Nash equilibrium: the process might come to rest

at a local maximum of the potential function that corresponds to alocal Nash equilibrium from

which large unilateral deviations may still be profitable.

Our primary interest concerns noisy decisions, so we will work with the expected value

of the potential function. It follows from (1) that the partial derivatives of the expected value

of the potential function correspond to the partial derivatives of the expected payoff functions:

Again, the intuitive idea is to use something that is maximized at a logit equilibrium to construct

(8) π e
i (xi ,t)

∂
∂ xi

⌡
⌠ V(xi ,x i ) dF i (x i ,t ) , i 1, ... ,n.

a Liapunov function, i.e. a function whose time derivative is non-negative and only equal to zero

16 Rosenthal (1973) first used a potential function to prove the existence of a pure-strategy Nash equilibrium in
congestion games.

17 This type of deterministic gradient-based adjustment has a long history, see Arrow and Hurwicz (1960).
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at a steady state. When µi > 0 for at least one playeri, then the steady state is not generally a

Nash equilibrium, and the potential function must be augmented to generate an appropriate

Liapunov function. Look again at the Fokker-Planck equation (3); the first term on the right side

is zero at an interior maximum of expected payoff, and thefi´(x,t) term is zero for a uniform

distribution. Therefore, we want to augment the Liapunov function with a term that is

maximized by a uniform distribution. Consider the standard measure of noise in a stochastic

system, entropy, which is defined as -Σn
i=1∫ fi log(fi ). It can be shown that this measure is

maximized by a uniform distribution, and that entropy is reduced as the distribution becomes

more concentrated. The Liapunov function we seek is constructed by adding entropy to the

expected value of the potential function:

The µi parameters determine the relative importance of the entropy terms in (9), which is not

(9) L ⌡
⌠

x

x

..⌡
⌠

x

x

V(x1, .. ,xn) f1(x1,t ) ..fn(xn,t ) dx1..dxn

n

i 1

µi ⌡
⌠

x

x

fi (xi,t ) log(fi (xi,t )) dxi .

surprising given that µi is proportional to the variance of the Wiener process in playeri’s

directional adjustment rule (2). Since entropy is maximized by a uniform distribution (i.e. purely

random decision making), it follows that decision distributions that concentrate probability mass

on higher-payoff actions will have lower entropy. Therefore, one interpretation of the role of the

entropy term in (9) is that, if the µi parameters are large, then entropy places a high "cost" of

concentrating probability on high-payoff decisions.18

We prove that the dynamical system described by (3) converges to a logit equilibrium,

by showing that the Liapunov function (9) is non-decreasing over time.19

18 The connection between entropy and the logit choice probabilities is well established in physics and economics.
For example, Anderson, de Palma, and Thisse (1992) showed that logit demands are generated from a representative
consumer with a utility function that has an entropic form.

19 The notion of convergence used here is "weak convergence" or "convergence in distribution:" the random
variablex(t) weakly converges to the random variableX if lim t→∞ Prob[x(t) ≤ x] = Prob[X ≤ x] for all x. Proposition 3
thus implies that the random variablexi(t) defined in (2) weakly converges to a random variable that is distributed
according to a logit equilibrium distribution, for any starting pointxi(0).
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Proposition 3. For the class of potential games, behavior converges to a logit equilibrium when

players adjust their actions in the direction of higher payoff, but are subject to normal error as

in (2).

Proof. In Appendix B we show that the Liapunov function is non-decreasing over time; by

taking the time derivative of the Liapunov function, partially integrating, and using the Fokker-

Planck equation, we can express this time derivative in a form that is analogous to (7)

The entropy term in (9) is maximized by the uniform densitiesfi(x,t) = 1/(−x - x), i = 1,...,n. It

(10) dL
dt

n

i 1
⌡
⌠

x

0

(∂Fi (xi,t) /∂t )2

fi (xi ,t)
dxi ≥ 0 .

follows from this observation that the maximum entropy is given by log(−x - x) ∑i µi, which is

finite. The expected value of the potential function is bounded from above since, by assumption,

expected payoffs are. Therefore, the Liapunov function, which is the sum of expected potential

and entropy, is bounded from above. SinceL is non-decreasing over time for any potential game,

we must have dL/dt → 0 as t → ∞, so dFi/dt → 0 in this limit. By (3) this yields the logit

equilibrium conditions in (4). The solutions to these equilibrium conditions are the logit

equilibria defined by (5). Q.E.D.

When there are multiple logit equilibria, the equilibrium attained under the dynamical process

(3) is determined by the initial distributionsFi(x,0). We now show that (local) maxima of the

Liapunov function correspond to (locally) stable logit equilibria.

Proposition 4. A logit equilibrium is locally (asymptotically) stable under the process (3) if and

only if it corresponds to a strict local maximum of the Liapunov function in (9). When the logit

equilibrium is unique, it is globally stable.

Proof. We first show that strict local maxima of the Liapunov function are locally

(asymptotically) stable logit equilibria. LetF *(x) denote a vector of distributions that constitutes
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a logit equilibrium which corresponds to a strict local maximum of the Liapunov function.

Suppose that atF * the Liapunov function attains the valueL*. Furthermore, letU be the set of

distributions in the neighborhood ofF * for which L ≥ L* - ε, whereε > 0 is small. Sinceε can

be made arbitrarily small, we may assume thatU contains no other stationary points ofL. Note

from (10) thatL is non-decreasing over time, so no trajectory starting inU will ever leave it.

Moreover, sinceF * is the only stationary point ofL in U, Proposition 3 implies that all

trajectories starting inU necessarily converge toF * in the limit t → ∞, i.e., F * is locally

(asymptotically) stable. Hence, strict local maxima ofL are locally stable logit equilibria.

Next, we prove that any locally (asymptotically) stable logit equilibrium,F *, is a strict

local maximum of L. Since F * is locally (asymptotically) stable, there exists a local

neighborhoodU of F * that is invariant under the process (3), and whose elements converge to

F *. The Liapunov function is strictly increasing along a trajectory starting from any distribution

in U (other thanF * itself), soL necessarily attains a strict local maximum atF *. Finally, when

the logit equilibrium is unique, it corresponds to the unique stationary point ofL. Proposition 3

holds for any initial distribution, so the logit equilibrium is globally stable. Q.E.D.

It follows from (10) that dFi/dt = 0 when the Liapunov function is (locally) maximized,

which, by (3) and (4), implies that a logit equilibrium is necessarily reached. Recall that, in the

absence of noise, a local maximum of the Liapunov function does not necessarily correspond to

a Nash equilibrium; the system may come to rest at a local Nash equilibrium, for which "large"

unilateral deviations are still profitable (see Friedman and Yellin, 1997). In contrast, with noise,

local maxima of the Liapunov function always produce a logit equilibrium in which decisions

with higher expected payoffs are more likely to be made. In fact, even (local)minima of the

Liapunov function correspond to such equilibria, although they are unstable steady states of the

dynamical system (3).

Propositions 3 and 4 do not preclude the existence of multiple locally stable equilibria.

In such cases, the initial conditions determine which equilibrium will be selected. As shown in

the proof of Proposition 4, if the initial distributions are "close" to those of a particular logit

equilibrium, then that equilibrium will be attained under the dynamic process (3). The 2 × 2
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coordination game example presented at the end of this section illustrates the possibility of

multiple stable equilibria.

Since the existence of potential functions is crucial to the results of Proposition 3, we next

discuss conditions under which such functions can be found. A necessary condition for the

existence of a potential function is that∂2πi/∂xj∂xi = ∂2πj/∂xi∂xj for all i, j, since both sides are

equal to∂2V/∂xi∂xj. Hence, the existence of a potential function requires∂2[πi - πj]/∂xj∂xi = 0 for

all i, j. Moreover, these "integrability" conditions are also sufficient to guarantee existence of a

potential function. It is straightforward to show that payoffs satisfy the integrability conditions

if and only if: πi(x1,...,xn) = πc(x1,...,xn) + θi(xi) + φi(x-i) for i = 1,...,n, whereπc is the same for

players, hence it has noi subscript. To see that this class of payoffs solves the integrability

condition, note that the common part,πc, cancels when taking the difference ofπi and πj, and

the player specific parts,θi and φi, vanish upon differentiation. If we defineV(x1,...,xn) =

πc(x1,...,xn) + Σn
i=1θi(xi), we can write the above payoffsπi as the sum of two components: a

common component and a component that only depends on others’ decisions

where we have definedαi(x-i) = φi(x-i) - Σj≠iθj(xj). The common part,V, has noi subscript, and

(11) π i (x1,...,xn) V(x1,...,xn) αi (x i ) , i 1, ... ,n,

is the same function for all players, although it is not necessarily symmetric in thexi. The

individual part,αi(x-i), may differ across players. The common part includes benefits or costs that

are determined by one’s own decision, e.g. effort costs. Theαi(x-i) term in (11) does not affect

the Nash equilibrium since it is independent of one’s own decision, e.g. others’ effort costs or

gifts received from others. It follows from this observation that the partial derivative of

V(x1,...,xn) with respect toxi is the same as the partial derivative ofπi(x1,...,xn) with respect toxi

for i = 1,...,n, soV( ) is a potential function for this class of payoffs. Proposition 3 then implies

that behavior converges to a logit equilibrium for this class of games.

The payoff structure in (11) covers a number of important games. For instance, consider

a linear public goods game in which individuals are given an endowment,ω. If an amountxi is

contributed to a public good, the player earnsω - xi for the part of the endowment that is kept.

In addition, every player receives a constant (positive) fractionm of the total amount contributed
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to the public good. Therefore, the payoff to playeri is: πi = ω - xi + m X, whereX is the sum

of all contributions including those of playeri. The potential for this game is:V(x) = ω + m X -

Σixi, and αi(x-i) = Σj≠ixj. Another example is the minimum-effort coordination game (see e.g.

Bryant, 1983) for which: πi = minj=1...N{ xj} - cxi, where effort costsc ∈ [0, 1]. Here,V(x) =

minj=1...N{ xj} - Σicxi (see also section 4). In both of these applications the common part represents

a symmetric production function, included once, minus the sum of all players’ effort costs. In

previous work on public goods and coordination games, we showed that the logit equilibrium is

unique (Anderson, Goeree, and Holt, 1998b, 1999). Therefore, the directional adjustment process

studied here is globally stable for these games.

It is also straightforward to construct potential functions for many oligopoly models.

Consider a Cournot oligopoly withn firms and linear demand, so thatπi = (a - b X) xi - ci(xi),

whereX is the sum of all outputs andci(xi) is firm i’s cost function. Since the derivative of firm

i’s profit with respect to its own output is given by∂πi/∂xi = a - b X - b xi - ci´, the potential

function is easily derived as:V = a X - b/2 X 2 - b/2 Σixi
2 - Σici(xi). Some non-linear demand

specifications can also be incorporated.

As a final example, consider the class of symmetric two-player matrix games with two

decisions, and payoffs shown in Table 1 below.

Playeri is characterized by a probabilityxi of choosing decision DI.
20 Thus the payoff to player

Table I. The Payoff Matrix (payoffs for player 1, payoffs for player 2)

Player 2

Player 1

DI DII

DI a, a b, c

DII c, b d, d

20 This formulation corresponds to the setting in some laboratory experiments when subjects are required to select
probabilities rather than actions, with the experimenter performing the randomization according to the selected
probabilities. This method is used when the focus is on the extent to which behavior conforms to a mixed-strategy Nash
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i is linear in the probabilityxi:

(12) π i(xi,x i ) d (a b c d) xi x i (b d) xi (c d) x i , i 1,2.

It is straightforward to show that for this payoff structure the potential function is given by

V = (a - b - c + d) x1x2 + (b - d)(x1 + x2).
21

This example is useful to illustrate the possibility of multiple logit equilibria and their

stability. Since the payoff in (12) is linear in a player’s own probability, the expected payoff will

also be linear. Therefore, it follows from (5) that the equilibrium densities are exponential:

(13) fi(x)
γ i exp(γ i x)

exp(γ i ) 1
, i 1,2,

where the parameterγi is defined as:

whereE-i denotes the expected value ofx-i. The expression in (13) is not an explicit solution

(14) γ i [ ( a b c d) E i b d ] /µi , i 1,2,

sinceγi on the right side depends on the expected value of the other’s choice, as indicated by

(14). In order to obtain an equilibrium consistency condition, we use the densities in (13) to

calculate the expected valueEi:

The solutions,E1
* and E2

* (or, equivalently,γ1
* and γ2

*) to (14) and (15) determine the logit

(15) Ei

exp(γ i )

exp(γ i ) 1
1
γ i

, i 1,2.

equilibrium densities in (13). Consider a symmetric coordination game witha = 2, d = 1, and

equilibrium. Ochs (1995) used this approach in a series of matching-pennies games. He reports that choice probabilities
are sensitive to a player’s own payoffs, contrary to the prediction of a mixed-strategy equilibrium. He finds some
empirical support for the quantal response equilibrium.

21 In an asymmetric game, the letters representing payoffs in (12) would havei subscripts,i = 1, 2. Asymmetries
in the constant or final two terms pose no problems for the construction of a potential function, so the only difficulty is
to make the (ai - bi - ci + di) coefficient of the interaction terms match for the two players. This can be accomplished
by a simple rescaling of all four payoffs for one of the players. Rescaling by a positive factor will not affect the stability
proof of Proposition 3.
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b = c = 0, and assume furthermore that µ1 = µ2 = µ. For these parameter values, there are two-

pure strategy Nash equilibria plus one in mixed strategies. For low values of µ, there are also

three logit equilibria. These are illustrated in Figure 1, whereE1
* is plotted as a function of µ.

(Sinceb = c for this example, we haveE2
* = E1

* for all µ.) The upper graph shows two of the

equilibria, which exist only for µ≤ 0.085. The lower graph shows the third logit equilibrium,

which exists for all µ≥ 0. The light line corresponds to the unstable equilibrium, and the dark

lines to the stable ones.22

The existence of multiplestableequilibria in this example is perhaps striking because

standard evolutionary models would always select the risk-dominant equilibrium (DI,DI), at which

the potential is globally maximized (see e.g. Foster and Young, 1990, and Kandori, Mailath, and

Rob, 1993). In our context, the equilibrium that is selected depends on the initial conditions.

In this sense, "history" matters in the directional learning model but not in the standard

evolutionary model.23

4. PATTERNS OFDYNAMIC ADJUSTMENT

In this section, we describe in more detail how the system adjusts towards its steady state.

In particular, we show how the Fokker-Planck equation can be used to analyze the evolution of

players’ decisions in a two-person minimum-effort coordination game. The payoff for each

player is the minimum of the two efforts, minus the cost of the player’s own effort:πi = min{x1,

x2} - cxi, wherexi is playeri’s effort level andc < 1 is a cost parameter. Notice that a unilateral

increase from any common effort level is costly but does not affect the minimum. Similarly, a

unilateral decrease from any common effort level will reduce the minimum by more than the cost

22 This can be proved in the following manner: first consider the limit equilibria as µ→ 0. In this limit, the
equilibrium corresponding to the dashed line in Figure 1 is given (from (14) and (15)) byfi(x) = γ exp(γ x)/(exp(γ)-1),
whereγ ≈ -2.15, andi = 1, 2. If this equilibrium were stable, arbitrary perturbations off1 andf2 would reduce the value
of the Liapunov function. However, consider the perturbations:fi(x) → fi(x) + ε(x - 1/2) for i = 1, 2, with ε small. It
can then be shown that for this perturbation the Liapunov functionincreasesby ε2/48, so that the corresponding
equilibrium is not locally stable by Proposition 3. Furthermore, at the other two limit equilibria, arbitrary perturbations
reduce the Liapunov function because the negative change in the entropy term dominates, so these equilibria are locally
stable. These stability properties extend to µ > 0until a bifurcation takes place, which is at µ = 0.085.

23 See, however, Binmore and Samuelson (1999) who show that adding small perturbations (or "drift" terms) to
an evolutionary selection process can have a large effect on which equilibrium is selected when the payoff landscape has
"flat valleys."
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saving, sincec < 1. Hence,any common effort level is a Nash equilibrium. In contrast, there

is auniquelogit equilibrium for the minimum-effort coordination game that is symmetric across

players (see Anderson, Goeree, and Holt, 1999). The Fokker-Planck equation will thus be

globally stable and produce a unique steady-state distribution and, hence, a unique prediction for

the steady-state average effort levels. These predictions will be compared with data from

laboratory experiments based on the minimum-effort coordination game (Goeree and Holt, 1999).

Note that while a low effort cost makes it relatively safe to choose a high effort, a high

cost makes this action risky as it may not be matched by the other player, which suggests that

actual behavior might be sensitive to changes in the cost parameter. Goeree and Holt (1999)

report an experiment with randomly matched pairs of subjects who made effort choices from a

continuousinterval [110, 170]. They conducted three sessions with a low effort cost ofc = .25

and three sessions with a high cost ofc = .75. The initial period-one decisions were uniformly

distributed over the range of feasible effort choices for both treatments. However, efforts tended

to rise over time in the low-cost sessions while efforts declined over time when the effort cost

was high. The time-sequences of average effort choices for three groups of 10 subjects in each

treatment are given by the thin light lines in Figure 2, with an upward pattern for the low-effort

cost treatment and an essentially symmetric downward adjustment for the high-effort cost

treatment. The thick light lines show average efforts for each treatment. The strong treatment

effect, which is consistent with simple intuition about the effects of effort costs, is not predicted

by the Nash equilibrium.

The separation of effort levels for the two treatments conforms nicely with the notion of

maximum potential, discussed above. First, consider the ordinary (deterministic) potential

function for the two-player minimum-effort coordination game:V = min{x1, x2} - cx1 - cx2.

Maximization obviously requires equal effort levels,x1 = x2 = x. The potential then becomes

V = (1 - 2c) x, which is maximized atx = −x = 170 whenc = .25 and atx = x = 110 whenc = .75.

The introduction of some noise pushes these predictions away from the boundaries towards the

center of the range of feasible decisions.

To compare the patterns of adjustments in Figure 2 with those predicted by the noisy

evolutionary model of this paper, we have to solve for the distribution of effort decisions using
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the Fokker-Planck equation in (3). To determine marginal payoffs, note that an increase in effort

by playeri will raise the minimum with probability 1 -Fj and increase the cost at ratec, soπe
i´

= 1 -Fj - c. The Fokker-Planck equation becomes:

With an error parameter µ = 7.4 and uniform initial distributions (as reported in Goeree and Holt,

(16) ∂Fi (x,t )

∂ t
(1 Fj (x,t ) c) fi (x,t ) µi fi (x,t ) , i 1,2, i ≠ j .

1999), equation (16) can be solved numerically. The dark lines in Figure 2 show the time paths

of the average efforts thus found. Note that the evolutionary model reproduces the qualitative

features of the experimental data and is capable of predicting the final period averages when

behavior has settled down.24

5. CONCLUSION

Models of bounded rationality are appealing because the calculations required for optimal

decision making are often quite complex, especially when optimal decisions depend on what

others are expected to do. This paper begins with an assumption that decisions are adjusted

locally toward increasing payoffs. These adjustments are sensitive to stochastic disturbances.

When the process settles down, systematic adjustments no longer occur, although behavior

remains noisy. The result is an equilibrium probability distribution of decisions, with errors in

the sense that optimal decisions are not always selected, although more profitable decisions are

more likely to be chosen. The first contribution of this paper is to use a simple model of noisy

directional adjustments to derive an equilibrium model of behavior with endogenous decision

errors that corresponds to the stochastic generalization of Nash equilibrium proposed by

Rosenthal (1989) and McKelvey and Palfrey (1995). The central technical step in the analysis

is to show that directional adjustments subject to normal noise yield a Fokker-Planck equation,

with a steady state that corresponds to a "logit equilibrium." This equilibrium is described by

a logit probabilistic choice function coupled to a Nash-like consistency condition.

24 The (pooled) average efforts in the final three periods were 159(11) for the low-cost session and 126(4) for the
high-cost session, where the number in parentheses denotes the standard deviation of the average. The limiting values
predicted by the evolutionary model are 153 and 127 respectively.
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The second contribution of this paper is to prove stability of the logit equilibrium for all

potential games. We use Liapunov methods to show that the dynamic system is stable for a class

of interesting payoff functions, i.e. those for potential games. This class includes minimum-effort

coordination games, linear/quadratic public goods and oligopoly games, and two-person 2 × 2

matrix games in which players select mixed strategies. The process model of directional changes

adds plausibility to the equilibrium analysis, and an understanding of stability is useful in

deciding which equilibria are more likely to be observed.

Models with stochastic elements are of interest because they can explain behavior of

human decision makers in complex, changing situations. The stochastic logit equilibrium

provides an explanation of data patterns in laboratory experiments that are consistent with

economic intuition but which are not explained by a Nash equilibrium analysis (McKelvey and

Palfrey, 1995, and Anderson, Goeree, and Holt, 1998a,b, 1999). The effects of noise is important

when the Nash equilibrium is near the boundary of the set of feasible decisions, so that errors

are biased toward the interior. In addition, errors have non-symmetric effects when payoff

functions are sensitive to noise in others’ behavior, and the behavior is pushed toward "safer"

configurations of behavior, like low-risk, low-effort outcomes in coordination games. In the

presence of noise, equilibrium behavior is not necessarily centered around the Nash prediction;

errors that push one player’s decision away from a Nash decision may make it safer for others

to deviate. In some parameterizations of a "traveler’s dilemma" game, for example, the Nash

equilibrium is at the lower end of the feasible set, whereas behavior in laboratory experiments

conforms more closely to a logit equilibrium with a unimodal density located at the upper end

(Capra, Goeree, Gomez, and Holt, 1999).

The stochastic elements in our model are intended to capture a variety of factors, such

as errors, trembles, experimentation, and non-payoff factors such as emotions. In some contexts,

behavior may be largely driven by a specific bias, like the "winner’s curse" in common-value

auctions. In these cases, it is probably better to model the specific bias explicitly. When there

is not single identifiable bias, we prefer to follow the common practice of putting left-out factors

into an error term. Adding an error term to a gradient adjustment rule yields a tractable model

with a steady-state equilibrium that has appealing theoretical and empirical properties.
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APPENDIX A: DERIVATION OF THE FOKKER-PLANCK EQUATION (3)

Recall that the directional adjustments are stochastic: dx(t) = πe´(x(t),t)dt + σ dw(t) (see

(2)), where we have dropped the player-specific subscripts for brevity. Note that the payoff

derivativeπe´ depends on time through the decisionx and through other players’ distribution

functions. After a small time change,∆t, the change in a player’s decision can be expressed as:

whereσ∆w(t) is a normal random variable with mean zero and varianceσ2∆t, andο(∆t) indicate

(A1) ∆x( t ) ≡ x( t ∆ t ) x( t ) π e (x,t ) ∆ t σ ∆w( t ) ο (∆ t ) ,

terms that go to zero faster than∆t (i.e., K is of ο(∆t) whenK/∆t → 0 as∆t → 0). A player’s

decision, therefore, is a random variablex(t) that has a time-dependent densityf(x,t). Let h(x)

be an arbitrary twice differentiable function that vanishes at the boundaries, as does its derivative.

At time t + ∆t, the expected value ofh(x) can be expressed directly as:

The directional adjustment rule in (A1) can be used to obtain an alternative expression for the

(A2) E h(x( t ∆ t ) ) ⌡
⌠

x

x

h(x) f (x, t ∆ t ) dx.

expected value ofh(x) at time t + ∆t:

where we neglected terms ofο(∆t). The rest of the proof is based on a comparison of the

(A3) E h(x( t ∆ t ) ) E h(x( t ) ∆x( t )) ≈ E h(x( t ) π e (x,t) ∆t σ ∆w( t )) ,

expected values in (A2) and (A3). A Taylor expansion of (A3) will involveh´(x) and h″(x)

terms, that can be partially integrated to convert them to expressions inh(x). Since h( ) is

arbitrary, one can equate equivalent parts of the expected values in (A2) and (A3), which yields

the Fokker-Planck equation in the limit as∆t goes to zero.

Let g(y) be the density ofσ∆w(t), i.e. a normal density with mean zero and varianceσ2∆t.

The expectation in (A3) can be written as an integral over the relevant densities:

(A4) E h(x( t ∆ t ) ) ⌡
⌠
∞

∞
⌡
⌠
x

x

h(x π e (x,t )∆ t σ y) f(x,t ) g(y) dxdy.
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A Taylor expansion of the right side of (A4) yields:

where the dots indicate terms ofο(∆t). Integration overy eliminates the terms that are linear in

⌡
⌠
∞

∞
⌡
⌠
x

x

{ h(x) h (x) [ π e (x,t) ∆ t σ y] 1
2

h (x) [ π e (x,t) ∆t σ y]2 } f (x,t)g(y) dxdy,

y, since it has mean zero. In addition, the expected value ofy2 is σ2∆t, so the result of expanding

and integrating the above expression is:

The integrals containing theh´ andh″ term can be integrated by parts to obtain integrals inh(x):

⌡
⌠
x

x

h(x) f (x,t)dx ∆ t ⌡
⌠
x

x

h (x) π e (x,t ) f (x,t) dx ∆ t σ2

2 ⌡
⌠
x

x

h (x) f (x,t) dx ο (∆t ) .

where a prime indicates a partial derivative with respect tox, and we used the fact thath and its

(A5)
⌡
⌠
x

x

h(x) f (x,t) dx ∆ t⌡
⌠
x

x

h(x) (π e (x,t) f (x,t) ) dx ∆ t σ2

2 ⌡
⌠
x

x

h(x) f (x,t)dx,

derivative vanish at the boundaries. Since (A5) is an approximation for (A2) when∆t is small,

take their difference to obtain:

The terms in square brackets on each side must be equal at all values ofx, since the choice of

(A6)
⌡
⌠
x

x

h(x) f (x,t ∆ t ) f (x,t) dx ∆ t ⌡
⌠
x

x

h(x) (π e (x,t) f (x,t)) (σ2/2)f (x,t) dx.

the h(x) function is arbitrary. Dividing both sides by∆t, taking the limit∆t → 0 to obtain the

time derivative off(x,t), and equating the terms in square brackets yields:

Since the primes indicate partial derivatives with respect tox, we can integrate both sides of (A7)

(A7) ∂ f (x,t)
∂t

(π e (x,t) f (x,t)) σ2

2
f (x,t) .

with respect tox to obtain the Fokker-Planck equation in (3).
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APPENDIX B: DERIVATION OF EQUATION (10)

The Liapunov function in (9) depends on time only through the density functions, since

the x’s are variables of integration. Hence the time derivative is:

The next step is to integrate each of the expressions in the sums in (B1) by parts. First note that

(B1)

dL
dt

n

i 1
⌡
⌠

x

x

..⌡
⌠

x

x

V(x1,..,xn)
j ≠i

fj (xj ,t )
∂ fi (xi,t )

∂t
dx1..dxn

n

i 1

µi ⌡
⌠

x

x

(1 log(fi (xi,t )))
∂ fi(xi,t )

∂t
dxi .

∂fi/∂t = ∂2Fi/∂t∂xi and that the anti-derivative of this expression is∂Fi/∂t. Moreover, the boundary

terms that result from partial integration vanish becauseFi(0,t) = 0 andFi(
−x,t) = 1 for all t, i.e.

∂Fi/∂t = 0 at both boundaries. It follows that partial integration of (B1) yields:

Equation (8) can be used to replace∫∂V/∂xi dF-i with πe
i´, and then the integrals in (B2) can be

(B2)

dL
dt

n

i 1
⌡
⌠

x

x

..⌡
⌠

x

x

∂V(x1,..,xn)

∂xi
j ≠i

fj (xj ,t)
∂Fi (xi ,t )

∂t
dx1..dxn

n

i 1

µi ⌡
⌠

x

x

fi (xi ,t )

fi (xi ,t )

∂Fi(xi ,t )

∂t
dxi .

combined as:

where the final equation follows from (3). Note that the right side of (B3) is strictly positive

(B3)

dL
dt

n

i 1
⌡
⌠

x

x

π e
i (xi,t ) µi

fi (xi,t )

fi (xi,t )

∂Fi(xi,t )

∂t
dxi

n

i 1
⌡
⌠

x

x

(∂Fi(xi,t ) /∂t )2

fi (xi,t )
dxi ,

unless∂Fi/∂t = 0 for i = 1,..,n, i.e., when the logit conditions in (4) are satisfied.
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Figures 1a and 1b. The three different solutions, E1
*, as functions of µ.

The dark lines correspond to stable logit equilibria and the light line to the unstable logit equilibrium.
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Figure 2. Coordination Game: Average Effort Decisions by Period
Key: Thin light lines are session averages, thick light lines are treatment averages,
dark lines are predictions of evolutionary model.


