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Abstract. This paper considers a class of models in which rank-based payoffs are sensitive to
small amounts of noise in decision making. Examples include auction, price-competition,
coordination, and location games. Observed laboratory behavior in these games is often
responsive to asymmetric costs associated with deviations from the Nash equilibrium. These
payoff asymmetry effects are incorporated in an approach that introduces noisy behavior via
probabilistic choice. In equilibrium, behavior is characterized by a probability distribution that
satisfies a "rational expectations" consistency condition: the beliefs that determine player’s
expected payoffs match the decision distributions that arise from applying a logit probabilistic
choice function to those expected payoffs. We prove existence of a unique, symmetric logit
(quantal response) equilibrium and derive comparative statics results. The paper provides a
unified perspective on many recent laboratory studies of games in which Nash equilibrium
predictions are inconsistent with both intuition and experimental evidence.
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I. Introduction

In some contexts, a small amount of randomness can have a large impact on equilibrium

behavior. Regardless of whether randomness, or noise, is due to preference shocks,

experimentation, or actual mistakes in judgement, the effect can be particularly important when

players’ payoffs are sensitive to others’ decisions, e.g. when payoffs are discontinuous as in

auctions, or highly interrelated as in coordination games. Nor does noise cancel out when the
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Nash equilibrium is near a boundary of the set of feasible actions and noise pushes actions

towards the interior, as in a Bertrand game in which the Nash equilibrium price equals average

cost. In such games, small amounts of noise in decision making may have a large "snowball"

effect when endogenous interactions are considered.

The Nash equilibrium in these types of games is often insensitive to parameter changes

that most observers would expect to have a large impact on actual behavior. In a minimum-effort

coordination game, for example, a player’s payoff is the minimum of all player’s efforts minus

the cost of the player’s own effort. With simultaneous choices, both intuition and experimental

evidence suggest that coordination on desirable, high-effort outcomes will be harder with more

players and higher effort costs, despite the fact that any common effort level is a Nash

equilibrium (Goeree and Holt, 1999c). Another well known example is the "Bertrand paradox"

that the Nash equilibrium price is equal to marginal cost, regardless of the number of

competitors, even though intuition and experimental evidence suggest otherwise (Dufwenberg and

Gneezy, 1998).

The rationality assumption implicit in the Nash approach is that decisions are determined

by thesignsof the payoff differences, not by the magnitudes of the payoff gains or losses. But

the losses for unilateral deviations from a Nash equilibrium are often highly asymmetric. In the

minimum-effort coordination game, for example, a unilateral increase in effort above a common

(Nash) effort level is not very risky if the marginal cost of effort is small, while a unilateral

decrease would reduce the minimum and not save very much in terms of effort cost. Similarly,

an effort increase is relatively more risky when effort costs are high. In each case, deviations

in the less risky direction are more likely, and this is why effort levels observed in laboratory

experiments are inversely related to effort cost, despite the fact that any common effort is a Nash

equilibrium in these games.

Many of the counter-intuitive predictions of a Nash equilibrium disappear when relatively

small amounts of noise are introduced into the decision-making process, which is the approach

taken in this paper. This randomness is modeled using a probabilistic choice function, i.e. the

probability of making a particular decision is a smoothly increasing function of the payoff

associated with that decision. One attractive interpretation of probabilistic choice models is that

the apparent noisiness is due to unobserved shocks in preferences, which cause behavior to
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appear more random when the observed payoffs become approximately equal. Of course,

mistakes and trembles are also possible, and these presumably would also be more likely to have

an effect when payoff differences are small, i.e. when the cost of a mistake is small. In either

case, probabilistic choice rules have the property that the probability of choosing the "best"

decision is not one, and choice probabilities will be close to uniform when the other decisions

are only slightly less attractive.

When a probabilistic choice function is used to analyze the interaction of strategic players,

one has to model beliefs about others’ decisions, since these beliefs determine expected payoffs.

When prior experience with the game is available, beliefs will evolve as people learn. Learning

slows down as observed decisions look more and more like prior beliefs, i.e. as surprises are

reduced. In a steady state, systematic learning ceases when beliefs are consistent with observed

decisions. Following McKelvey and Palfrey (1995), the equilibrium condition used here has the

consistency property that belief probabilities which determine expected payoffs match the choice

probabilities that result from applying a probabilistic choice rule to those expected payoffs.

Perhaps the most commonly used probabilistic choice function in empirical work is the

logit model, in which the probability of choosing a decision is proportional to an exponential

function of its expected payoff. This logit rule exhibits nice theoretical properties, such as having

choice probabilities be unaffected by adding a constant to all payoffs. We have used the logit

equilibrium extensively in a series of applications that include rent-seeking contests, price

competition, bargaining, public goods games, coordination games, first-price auctions, and social

dilemmas with continuous choices.1 In the process, we noticed that many of the models share

a common auction-like structure with payoff functions that depend on rank, i.e. whether a

player’s decision is higher or lower than another’s. In this paper, we offer general proofs of

theoretical properties based on properties of the expected payoff functions. Section II

summarizes a logit equilibrium model of noisy behavior for interactive games with rank-based

1 In a couple of these applications, the derivation of some theoretical properties are provided, but they rely on the
special structure of the model being studied (Anderson, Goeree, and Holt, 1997b, 1998a,b, Capra,et al., 1999b, and
Goeree, Anderson, and Holt, 1998). In other cases, theoretical results are absent, and the focus is on estimations that are
based on a numerical analysis for the specific parameters of the experiment (Capraet al., 1999a,b; Goeree and Holt,
1999b,c; and Goeree, Holt, and Laury, 1999). In contrast, this paper provides an extensive treatment of the theoretical
properties of logit equilibria in games with rank-based payoffs.
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outcomes. Proofs of existence, uniqueness and comparative statics follow in section III. In

section IV, we apply these results to a variety of models that represent many of the standard

applications of game theory to economics and social science: coordination, social dilemmas,

auctions, public goods, location, price competition, etc. Comparisons with learning theories and

other ways of explaining behavioral anomalies are discussed in section V, and the final section

concludes.

II. An Equilibrium Model of Noisy Behavior in Auction-Like Games

The standard way to motivate a probabilistic choice rule is to specify a utility function

with a stochastic component. Ifxi denotes decisioni with expected payoffπe(xi), then the person

is assumed to choose the decision i with the highest value of Ui = πe(xi) + µεi, where µ is a

positive "error" parameter andεi is the realization of a random variable. When µ = 0, the

decision with the highest expected payoff is selected, but high values of µ imply more noise

relative to payoff maximization. As noted above, this noise can be due to either 1) errors, e.g.

distractions, perception biases, or miscalculations that lead to non-optimal decisions, or 2)

unobserved utility shocks that make rational behavior look noisy to an outside observer.

Regardless of the source, the result is that choice is stochastic, and the distribution of the random

variable determines the form of the choice probabilities. A normal distribution yields the probit

model, while a double exponential distribution gives rise to the logit model, in which case the

choice probabilities are proportional exponential functions of expected payoffs. In particular, the

logit probability of choosing alternativei is proportional to exp(πe(xi)/µ), where higher values of

the error parameter µ make choice probabilities less sensitive to expected payoffs.2 With a

continuum of decisions on [−x, −x], the logit model specifies a choice density that is proportional

to an exponential function of expected payoffs:

2 An alternative justification for use of the logit formula follows from work in mathematical psychology. Luce
(1959) provides an axiomatic derivation of this type of decision rule; he showed that if the ratio of choice probabilities
for any pair of decisions is independent of the payoffs of all other decisions, then the choice probability for decisioni
can be expressed as a ratio:ui/Σjuj, whereui is a "scale value" number associated with decisioni. If one adds an
assumption that choice probabilities are unaffected by adding a constant to all payoffs, then it can be shown that the scale
values are exponential functions of expected payoffs. Besides having these theoretical properties, the logit rule is
convenient for estimation by providing a parsimonious one-parameter model of noisy behavior that includes perfect
rationality (Nash) as a limiting case.
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where the integral in the denominator is the constant that makes the density integrate to one, and

(1) f (x) exp(π e(x) /µ)

⌡
⌠x

x
exp(π e(y) /µ) dy

,

µ is an "error parameter" that determines how closely densities correspond to expected payoffs.3

Note that payoff differences do not matter as µ goes to infinity, since the argument of the

exponential function in (1) goes to zero and the density becomes flat (uniform), irrespective of

the payoffs. Conversely, payoff differences are "blown up" as µ goes to zero, and the density

piles up at the optimal decision.4 Limiting cases are useful for providing intuition, but we will

argue below that it is the intermediate values of µ that are most relevant for explaining data of

human subjects, who are neither perfectly rational nor perfectly noisy. In this case, choice

probabilities are smoothly increasing functions of expected payoffs, so these probabilities will

be affected by asymmetries in the costs of deviating from the payoff-maximizing decision.

In order to apply this model to interactive games, one must deal with the fact that

distributions of other players’ decisions enter the expected payoff function on the right side of

equation (1). A Nash-like consistency condition is that the decision distributions that determine

expected payoffs on the right side of (1) match the decision distributions on the left that result

from probabilistic choice applied to those expected payoffs. Thus the logit choice rule in (1)

determines players’ equilibrium distributions as a fixed point. This is known as a logit

equilibrium, which is a special case of the "quantal response equilibrium" introduced by

McKelvey and Palfrey (1995, 1998).

3 An independent motivation for the equilibrium condition in (1) is provided by Anderson, Goeree, and Holt
(1997a), who postulate a directional-adjustment evolutionary model that yields (1) as a stationary state. The model is
formulated in continuous time with a population of players. The primitive assumption is that each player adjusts the
decision in the direction increasing expected payoff, at a rate that is proportional to the slope of the payoff function, plus
some Brownian motion. Thus if the payoff function is flat, decisions change randomly, but if the payoff function is steep,
then adjustments in an improving direction dominate the noise effect. We show that the stationary states for this process
are logit equilibria. The advantage of a dynamic analysis is that it can be used to consider stability and elimination of
unstable equilibria. Anderson, Goeree, and Holt (1997a) show that the gradient-based directional adjustment process is
globally stable for all potential games, with a Liauponov function that can be interpreted as a weighted combination of
expected potential and entropy.

4 These effects of µ can be evaluated by taking ratios of densities in (1) for two decisions,x1 and x2:
f(x1)/f(x2) = exp((πe(x1) - πe(x2)/µ).
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Differentiating both sides of (1) with respect tox (and rearranging) yields:

which provides a differential equation in the equilibrium choice density. This density has the

(2) π e (x) f (x) µ f (x) 0 ,

same slope as the expected payoff function in equilibrium, so their relative maxima coincide,

although the spread in the density around the payoff-maximizing choice is determined by µ. The

use of (2) to calculate of the equilibrium distribution is illustrated next in the context of an

example that highlights the dramatic effects of adding noise to a standard Nash equilibrium

analysis.

Example 1. Traveler’s Dilemma

The game that has the widest range of applications in the social science literature is the

social dilemma in which the unique Nash equilibrium yields an outcome that is worse for all

players than a non-equilibrium cooperative outcome. Unlike the familiar prisoner’s dilemma

game, the traveler’s dilemma is a social dilemma in which the Nash strategy is not a dominant

strategy. This game describes a situation in which two people lose identical objects and must

make simultaneous loss claims in a pre-specified interval (Basu, 1994). Each player is

reimbursed at a rate that equals the minimum of the two claims, with a fixed penalty amount $R

being transferred from the high claimant to the low claimant if the claims are unequal. This

penalty gives each an incentive to "undercut" the other, and the unique Nash equilibrium is for

both to claim the lowest possible amount, despite the fact that there is little risk of making a high

claim whenR is small. The traveler’s dilemma game is important precisely because of this sharp

difference between economic intuition and the unique Nash prediction.

The expected payoff function for the traveler’s dilemma game is:

where the first term on the right corresponds to the case where the penaltyR is paid, and the

(3) π e
i(x) ⌡

⌠
x

x

(y R) fj (y) dy ⌡
⌠

x

x

(x R) fj (y) dy, i , j 1,2, j ≠ i ,

second term corresponds to the case where the rewardR is obtained. The derivative of expected
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payoff can be expressed:

The 1 -Fj(x) term picks up the probability that the other claim is higher, i.e. that a unilateral

(4) π e
i (x) 1 Fj (x) 2 R fj (x) .

increase will raise the minimum. The final term in (4) is due to the payoff discontinuity at equal

claims: -2R is the payoff reduction involved in "crossing over" the other’s claim, i.e. losing the

R reward and paying theR penalty. This crossover occurs with a probability that is determined

by the densityfj(x). In most of the applications considered in section IV below, the marginal

expected payoff function will have terms with distribution functions, reflecting the probabilities

of being higher or lower than the others, and terms involving the densities, reflecting "cross-over"

probabilities when there are payoff discontinuities.

In order to solve for the equilibrium distribution, substitute the expected payoff derivative

(4) into the logit differential equation, which yields a second order differential equation in the

equilibrium F(x). Although no analytical solution exists, this equation can easily be solved

numerically for a given value of µ. The top part of Figure 1 shows the equilibrium densities for

µ = 8.5 (estimated from the data) and penalty/reward parameters of 10, 25, and 50. Notice that

the predictions of this model are very sensitive to changes inR. With R = 50, the density piles

up near the unique Nash prediction of 80 on the left side of the graph, but the density is

concentrated at the opposite side of the set of feasible claims whenR = 10. The general pattern

of deviations from the Nash prediction shows up in the bottom part of Figure 1, which shows the

data averages for each treatment, as a function of the period number on the vertical axis (Capra,

et al., 1999a).

The numerical calculations used to construct the upper part of Figure 1 only pertain to

the particular parameters used in the experiment, which raises some interesting theoretical issues:

will a logit equilibrium generally exist for this game and others like it, will the equilibrium be

unique, symmetric, and single-peaked, and will increases in the incentive parameterR always

reduce claim distributions? These theoretical issues were not addressed in the original paper

(Capraet al., 1999a), but are resolved by the propositions that follow.
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Figure 1. The Traveler’s Dilemma.
Key: Predicted Claim Densities (Top) and Actual Claim Averages (Bottom)

for R = 50 (Left), R = 20 (Center), andR = 10 (Right)

Rank-Based Payoffs and the Local Payoff Property

In the traveler’s dilemma example, the payoff function consists of two parts, where each

part is the integral of a payoff function that is relevant for the case of whether the player’s

decision is the higher one or not. This rank-based also arises naturally in other contexts: in price

competition games where the low-priced firm gains more sales, in minimum-effort coordination

games where the common part of the production depends on another’s effort only when it is

lower than one’s own effort, and in location games on a line where the market divides with the
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left part going to the firm with the left-most location. These applications can be handled with

a rank-based expected payoff function that has two parts. First consider two-person games and

let αH(x) andαL(x) be payoff components associated with one’s own decision when it is higher

or lower than the other’s decision. Similarly, letβH(y) and βL(y) be payoff components

associated with the other player’s decision when one’s own rank is high or low. Then the

traveler’s dilemma payoff function in (4) is a special case of:

with αH(x) = - R, βH(y) = y, αL(x) = x, and βL(y) = R. The formulation in (5) also includes

(5) π i
e(x) ⌡

⌠
x

x

[ αH(x) β H(y) ] fj(y) dy ⌡
⌠

x

x

[ αL(x) β L(y) ] fj(y) dy,

cases where the payoffs are not dependent on the relative rank, as in the public goods game

discussed below. As long as these two component payoff functions are additively separable and

continuous in own and other’s decision, it is straightforward to verify that the expected payoff

derivative will have the "local" property that it depends on the player’s own decisionx and on

the other’s distribution and density functions evaluated atx. In this case, we can express the

expected payoff derivative as:πi
e’(Fj(x), fj(x), x, α), as is the case in equation (4), where theα

notation represents an exogenous shift parameter that corresponds to the penalty parameter in the

traveler’s dilemma.

Equation (5) is easily adapted to theN-player case in which one’s payoff depends on

whether one has the lowest (or highest) decision. If having the highest decision is critical, as in

an auction, then theH andL subscripts represent the case where one’s decision is the highest or

not, respectively, and the density used in the integrals is the maximum of theN-1 other decisions,

i.e. f(y) in (5) is replaced with (N-1)F(y)N-2f(y). In a second-price auction for a prize with value

V, for example,αH(x) = V, βH(y) = - y, and αL(x) = βL(y)= 0. Given the assumed additive

separability of theα andβ functions, it is straightforward to verify that (5) (with the density of

the maximum or minimum of the others’ decisions substituted forf(y)) yields an analogous

"local" property forN-player games. In other words, the expected payoff derivative,πi
e’(Fj(x),

fj(x), x, α), depends on the distribution and density functions of allN - 1 other players,j = 1,...,

N, j ≠ i. We will use the termlocal payoff propertyfor games in which the expected payoff
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derivative is only a function of probability-like terms, i.e. of the other players’ distribution and

density functions, and possibly ofx and exogenous parameters.

III. Properties of Equilibrium: Existence, Uniqueness, and Comparative Statics

The expected payoff derivatives for particular games, e.g. (4), can be used together with

the logit differential equation (2) to calculate equilibrium choice distributions for particular values

of the exogenous payoff and error parameters. These calculations are vastly simplified if we

know that there exists a solution that is symmetric across players.

Proposition 1. (Existence) For all games in which players’ expected payoffs are bounded and

continuous in other’s distribution functions, there exists a symmetric logit equilibrium for N-

player games with a continuum of feasible decisions, and the equilibrium distribution is twice

differentiable.

The proof in Appendix A is obtained by applying Schauder’s fixed point theorem to the

mapping in (1); in fact, the proof applies to the more general case where the exponential

functions in (1) are replaced by strictly positive and strictly increasing functions, which allows

other probabilistic choice rules besides the logit/exponential form.

Uniqueness

When the expected payoff derivative satisfies the local-payoff property, the logit

differential equation in (1) is a second-order differential equation with boundary conditionsF(−x)

= 0 andF(−x) = 1. We will show that for many games with rank-based payoffs the symmetric

logit equilibrium is unique. The method of uniqueness proof is by contradiction: we start by

assuming that there exists a second symmetric logit equilibrium, and then show that this is

impossible under the assumed conditions. There are several "directions" in which one can obtain

a contradiction, which explains why there are alternative sets of assumptions for each proposition.

These alternative assumptions will enable us to evaluate uniqueness for an array of diverse

examples in the next section. Parts of the uniqueness proof are included in the text here because
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they are representative of the symmetry and comparative statics proofs that are found in the

appendices. In particular, all of these proofs have graphical "lens" structures, as indicated below.

Proposition 2 (Uniqueness). Any symmetric logit equilibrium for a game satisfying the local

payoff property is unique if the expected marginal payoff,πe’(F, f, x, α) is either

a) strictly decreasing in x, or

b) strictly increasing in the common distribution function F, or

c) independent of x and strictly decreasing in f, or

d) a polynomial expression in F, with no terms involving f or x.

Proof for Parts (a) and (b).Suppose, in contradiction to the statement of the Proposition, that

there exist (at least) two symmetric logit equilibrium distributions, denoted byF1 and F2.

Without loss of generality, assumeF1(x) is lower on some interval, as shown in Figure 2.

Case (a) is based on ahorizontal lens proof: Any region of divergence between the

Figure 2. Horizontal Lens Proof: A Configuration that Yields a Contradiction whenF2 > F1

distribution functions will have a maximum horizontal difference, as indicated by the horizontal

line in Figure 2 at heightF* = F1(x1) = F2(x2). The first- and second-order conditions for the

distance to be maximized atF* are that the slopes of the distribution functions be identical atF*,
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i.e. f1(x1) = f2(x2), and thatf1´(x1) ≥ f2´(x2). In Case (a),πe’(F, f, x, α) is decreasing inx, and since

the values of the density and distribution functions are equal, it follows that

Then the logit differential equation in (2) implies thatf1´(x1) < f2´(x2), which yields the desired

(6) π e
I (FI (xI ), fI (xI ), xI , α) < π e

II (FII (xII ), fII (xII ), xII , α) .

contradiction.

Case (b) is proved with avertical lens proof: If there are two symmetric distribution

Figure 3. Vertical Lens Proof: A Configuration that Yields a Contradiction whenF2 > F1.

functions, then they must have a maximum vertical distance atx* as shown in Figure 3. The

first-order condition is that the slopes are equal, so the densities are the same atx*. Under the

assumption (b),πe’(F, f, x, α) is increasing inF, and it follows from (1) thatf1´(x1) < f2´(x2),

which yields the desired contradiction. Q. E. D.

The proof of Proposition 2(c) in Appendix B can be skipped on a first reading since it

involves a transformation-of-variables technique that is not used in any of the other proofs that

follow. Note, however, that Proposition 2(c) implies uniqueness for the traveler’s dilemma

example, since the expected payoff derivative in (4) is independent ofx and decreasing inf.

Proposition 2(d), also proved in the appendix, is based on observation that the logit differential
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equation (1) can be integrated directly when the expected payoff derivative is a polynomial in

F, and the resulting expression for the density produces the desired contradiction.

Comparative Statics

It is apparent from (1) that the logit equilibrium density is sensitive to all aspects of the

expected payoff function, i.e. choice propensities are affected by magnitudes of expected payoff

differences, not just by the signs of the differences as in a Nash equilibrium. In particular, the

logit predictions can differ sharply from Nash predictions when the costs of deviations from a

Nash equilibrium are highly asymmetric, and when deviations in the less costly direction make

further deviations in that direction even less risky, creating a kind of "snowball effect." These

asymmetric payoff effects can be accentuated by shifts in parameters that do not alter the Nash

predictions. Since the logit equilibrium is a probability distribution, the comparative statics

effects will be in terms of shifts in distribution functions. Our comparative statics effects pertain

to shifts in the sense of first-degree stochastic dominance, i.e. the distribution of decisions

increases in this sense when the distribution function shifts down for all interior values ofx. We

assume that the expected payoff derivative,πe’(F, f, x, α), is increasing inα, ceteris paribus.

The next proposition shows that an increase inα raises the logit equilibrium distribution in the

sense of first-degree stochastic dominance. Only monotonicity inα is required, since any

parameter that decreases marginal profit can be rewritten so that marginal profit strictly increases

in the new parameter.

Proposition 3 (Comparative Statics for a Symmetric Equilibrium). Suppose that the shift

parameter increases marginal expected payoffs, i.e.∂πe’(F, f, x, α)/∂α > 0, for a symmetric game

satisfying the local payoff property. Then an increase inα yields stochastically higher logit

equilibrium decisions ifπe’(F, f, x, α) is either

a) decreasing in x, or

b) increasing in F.

The proof is provided in Appendix C. Case (a), which is proved with a horizontal lens

argument, is based on a weak concavity property that will be satisfied by all of the games
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considered in this paper. In the traveler’s dilemma game for example,∂πe’/∂x is exactly 0, so

case (a) applies. Letα = -R. Since the expected payoff derivative in (4) is decreasing inR, it

follows that a decrease inR will raise α and hence will raise claims in the sense of first-degree

stochastic dominance, which is consistent with the data in Figure 1. This increase in claims,

however intuitive, is not predicted by standard game theory, since the Nash equilibrium is the

minimum feasible claim as long isR is strictly positive. The logit result is intuitive given that

a reduction in the penalty parameter,R, raises the slope of the expected payoff function and

makes it less risky and less costly to raise one’s claim unilaterally.

Finally, consider the effects of changes in the error parameter µ. Although one would not

normally think of the error parameter as being under the control of the experimenter, it is

apparent from (1) that multiplicative scaling up of all payoffs corresponds to a reduction in the

error parameter, i.e. multiplying expected payoffs byγ is equivalent to multiplying µ by 1/γ.

Error parameter effects may also be of interest if one believes that noise will decline as subjects

become experienced, and the purification of noise might provide a selection criterion (McKelvey

and Palfrey, 1998). The effects of changes in µ are generally not monotonic, since the wholeπe’

function in (2) is divided by µ, but the case when marginal payoffs are everywhere positive

(negative) can be handled (the proof is essentially the same as for Proposition 3).

Proposition 4 (Effects of a Decrease in the Error Parameter). Suppose that marginal expected

payoffs,πe’(F, f, x), are everywhere positive (negative) for a symmetric game satisfying the local

payoff property. Then a decrease in µ yields stochastically higher (lower) logit equilibrium

decisions (in the sense of first-degree stochastic dominance) ifπe’(F, f, x) is either

a) decreasing in x, or

b) increasing in F.

This result is intuitive: when expected payoffs are increasing, so is the density determined by (1),

and an increase in noise "flattens" the density "pushing" mass to the left. Conversely, if the

expected payoff derivative is negative, the density is decreasing and an increase in noise pushes

mass to the right and causes a stochastic increase in the distribution of decisions.
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So far we have confined attention to games in which the payoff functions are symmetric

across the two firms. However, specific asymmetries are readily introduced. In particular,

suppose the functional forms ofπ1
e’(F2, f2, x, α1) and π2

e’(F1, f1, x, α2) are the same butα1 > α2.

Proposition 5 (Comparative Statics for Asymmetric Payoffs). Suppose that the shift parameter

increases marginal expected payoffs, i.e.∂πe’(F, f, x, α)/∂αi > 0, and let α2 > α1 in a game

satisfying the local payoff property. Then player 2’s logit equilibrium distribution of decisions

is stochastically higher than that of player 1, i.e. the distribution function for player 2 is lower

at each interior value of x, ifπe’(F, f, x, α) is either

a) decreasing in x, or

b) increasing in F.

The proofs in Appendix C are again lens proofs, horizontal for case (a) and vertical for

case (b). In a traveler’s dilemma game with individual-specificRi parameters, this proposition

would imply that the person with higher penalty-reward parameter would have stochastically

lower claims.

Other Properties

For many applications, it is possible to show that the symmetric logit equilibrium density

function that solves (1) is single peaked. Since this proposition pertains to symmetric equilibria,

the player subscripts are dropped. The proof in Appendix D is based on assumed concavity-like

properties of expected payoff function, which ensure that expected payoffs are single peaked, and

hence that the exponential (or any other continuously increasing) functions of those expected

payoffs in (1) are single peaked. Of course, the "single peak" maximum may be at a boundary

point if the density is monotonic, as with the traveler’s dilemma for highR values in figure 1.

Proposition 6. (Single Peakedness) If the logit equilibrium a game satisfying the local payoff

property is symmetric and the expected payoff derivative,πe’(F, f, x, α) is non-increasing in x

and strictly decreasing in the common F function, then the equilibrium density that solves (2) will

be single peaked.
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Even if the symmetric equilibrium is unique, there may exist asymmetric equilibria for

some games, e.g. those with asymmetric Nash equilibria. In experiments we often restrict

attention to symmetric equilibria when subjects are matched from single-population protocols and

have no way of coordinating on asymmetric equilibria (Harrison and Hirshleifer, 1989). In other

games it is possible to use properties the expected payoff function and its slope,πe’(Fj, fj, x, α),

to prove that an equilibrium is necessarily symmetric. The symmetry result in Proposition 7,

which is stated and proved in Appendix D, is based on the assumption thatπe’(Fj, fj, x, α) is

decreasing inFj and non-increasing inx, as is the case in the traveler’s dilemma game.

IV. A PPLICATIONS

The applications in this section include many types of games that are commonly used in

economics and other some other social sciences: coordination, public goods, bargaining, auctions,

and spatial location. The applications illustrate the usefulness of the theoretical propositions and

the contrasts between logit equilibrium analysis and the special case of a Nash equilibrium.

Example 2: Minimum-effort Coordination Game

Coordination games, which date back to Rousseau’s stag hunt problem, are second only

to social dilemma games in terms of interest to economists and social scientists. Coordination

games possess multiple Nash equilibrium, some of which are worse than others for all players,

which raises the issue of how a group of people (or even a whole economy) can become mired

in an inefficient equilibrium. First consider the minimum effort game described above, with a

payoff equal to the lowest effort minus the cost of a player’s own effort. Lettingfj(x) andFj(x)

denote the density and distribution functions associated with theother player’s decision, it is

straightforward to write playeri’s expected payoff from choosing an effort level,x:

where the first term on the right side pertains to the case where the other’s effort is below the

(7) π e
i (x) ⌡

⌠
x

0

y fj (y) dy ⌡
⌠

x

x

x fj (y) dy cx, i , j 1,2, j ≠ i ,

player’s own effort,x, and the second term pertains to the case where the player’s own effort is
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the minimum. In order to work with the logit differential equation (2), consider the derivative

of this expected payoff with respect tox:

The intuition behind (8) is clear, since 1 -Fj(x) is the probability that the other’s effort is higher,

(8) π e
i (x) 1 Fj (x) c, i , j 1,2, j ≠ i .

this is also the probability that an increase in effort will raise the minimum, but such an increase

will incur a cost ofc. The expected payoff derivative in (8) is positive ifFj(x) = 0, and it is

negative ifFj(x) = 1, soanycommon effort is a pure-strategy Nash equilibrium, even though all

players prefer higher common efforts. Also, notice that the effort costc determines the extent

of the asymmetry in loss incurred by deviating from any common effort.

Proposition 2(d) implies uniqueness, and the conditions of the comparative statics

Proposition 3 are also satisfied. Sinceπe’ is decreasing in effort costc, efforts are stochastically

lower in a minimum effort coordination game if the effort cost is increased, despite the fact that

changes inc to not alter the set of Nash equilibria as long asc < 1. Goeree and Holt (1999c)

report results for a two-person minimum effort experiment in which an increase in effort cost

from .25 to .75 lowered average efforts from 159 to 126. The logit predictions, based on an

estimated µ = 7.4, were 154 and 126 respectively. The estimated µ had a standard error of .3,

so the null hypothesis of µ = 0 (Nash) can be rejected at any conventional level of significance.

Coordinating on high effort outcomes is far more difficult in experiments with larger

numbers of players, so consider the effect of having more than two players. WithN-1 other

players, the increase in effort will only raise the minimum when allN-1 others are higher, so the

right side of (8) would become the product of all 1 -Fj(x) terms for the others, with the addition

of a term, -c, reflecting the cost effect as before. In a symmetric equilibrium,πe’(x) = (1 -

F(x))N-1 - c, which is decreasing inN, so an increase in the number of players will result in a

stochastic reduction in effort. Again, this intuitive result is notable since the set of Nash

equilibria is independent ofN.

Example 3: The Median Effort and Other Order-Statistic Coordination Games

The minimum-effort game is only one of many types of coordination games. Consider
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a three-person,median-effort coordination game in which each player’s payoff is the median

effort minus the cost of their own effort. Instead of writing out the expected payoff function and

differentiating, the marginal expected payoff can be obtained directly since the marginal effect

of an effort increase is the probability that one’s effort is the median effort minus the effort cost:

The number 2 on the right side of (9) reflects the fact that there are two ways in which one

(9) π e
i (x) 2F(x) (1 F(x)) c.

player can be belowx and one can be abovex, and each of these cases occurs with probability

F(x)(1-F(x)). A similar expression is obtained for anN-player game in which the payoff is the

kth order statistic minus the own effort cost. The marginal value of raising one’s effort is the

probability that an effort increase is relevant, which is the probability thatk-1 others are above

x andN - k others belowx. This probability again yields a formula for the marginal expected

payoff that is anNth order polynomial inF, with a cost term, -c, attached. These intuitive

derivations of expected payoff derivatives are useful because they serve as a check on the

straightforward but tedious derivations based on differentiation.

These coordination games have the local payoff property, since the expected payoff

derivative depends only on powers of the cumulative distribution function. This ensures

existence of a symmetric equilibrium, and by Proposition 2(d), uniqueness. The expected payoff

derivative is non-increasing inx (holding F constant), so proposition 3(a) implies that the

common effort distribution is stochastically increasing in -c, or decreasing inc. This intuitive

effort-cost effect is supported by the data for 3-person median effort experiments in Goeree and

Holt (1999c), where average efforts in the final three periods decreased from 157 to 137 and

again to 113 as effort cost was raised from .1 to .4 and then to .6. There is a continuum of

asymmetric Nash equilibria in the median effort game (with the top two efforts being equal and

the lowest one at the lower bound), which do not explain these intuitive effort cost effects.

Example 4. Spatial Competition

The Hotelling model of spatial competition on a line has had wide applications in

industrial organization, and generalizations of this model constitute the most common application
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of game theory in political science. Suppose that voters are located uniformly on a line of unit

length in a single dimension (e.g. representing preferences on government spending). Two

candidates choose locations on the line, and voters vote for the candidate who is closest to their

preferred point on the line. If the two locations arex1 and x2, then the division point that

determines vote shares is the midpoint: (x1+x2)/2. The unique Nash equilibrium is for each to

locate at the midpoint of the line, which is an example of the "median voter theorem." To make

this model more interesting, lets assume that this is a primary, and that candidates incur a cost

in the general election when they move away from the extreme left point (0), since the extreme

left is the center of the general electorate for this party. Let this cost be denoted bycx, where

x is the distance from the left side of the line. We chose this example because the unique Nash

equilibrium is independent ofc and remains at the midpoint as long asc < 1/2.5

The logit equilibrium will be sensitive to the payoff asymmetries associated with the

location costs. To see this, letfj(x) denote the choice density for the other candidate, then the

expected vote share in the primary for locationx is:

where the left term represents the case where the other candidate is to the right, the middle

(10) π i
e(x) ⌡

⌠
x

x

[ 1 (x y)/2 ] fj(y) dy ⌡
⌠

x

x

[ ( x y)/2 ] fj(y) dy cx,

integral represents the case where the other candidate is to the left, and the final term is the

location cost. In a symmetric equilibrium, the expected payoff derivative can be expressed:

The first term on the right side is the probability of having the "higher"x, times the -1/2 that is

(11) π e
i (x) F (x) /2 (1 F (x)) /2 f (x) (1 2x) c.

the marginalloss from moving to the right, i.e. away from the other candidate’s location. The

second term is the analogous sharegain from moving to the right when this is in the direction

of the other candidate’s position. The third term represents the probability of a crossover,

5 To see this, note that the two locations should be adjacent in any Nash equilibrium, any adjacent locations away
from the midpoint would give the person with the smaller share an incentive to move a small distance to capture the larger
share. Whenc > 1/2, the unique Nash equilibrium is for both candidates to locate at the left boundary and share the vote.
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measured by the densityf(x), times the effect of crossing over atx, i.e. of losing the vote share

x to the left and gaining the vote share 1 -x to the right, for a net effect of 1 - 2x.

Since f(x) determined by logit probabilistic choice rule in (1) will always be strictly

positive, it follows that the expected payoff derivative in (11) is strictly decreasing inx, holding

the other (F, f) arguments constant, so the uniqueness and comparative statics theorems apply.

It can be shown that the equilibrium density is symmetric around 1/2 ifc = 0, and the implication

of Proposition 3 is that increases inc shift the densities the left.6

Example 5. Bertrand Competition in a Procurement Auction

Consider a model in whichN sellers choose bid prices simultaneously, and the contract

is awarded to the low-priced seller (ties occur with probability zero in a logit equilibrium with

a continuum of price choices). With zero costs, it is straightforward to express the expected

payoff for a bid of x in a symmetric equilibrium as:x (1 - F(x))N-1, i.e. the price times the

probability that all others are higher. Differentiation yields:

where the first term on the right represents the probability that a price increase will be relevant

(12) π e
i (x) (1 F (x))N 1 x(N 1)(1 F (x))N 2f (x) ,

(the others are higher), and the second term is the "cross-over" loss atx associated with the

chance of overbidding in a symmetric equilibrium. Since the expected payoff derivative is

decreasing inx, the symmetric equilibrium will be unique. The formula in (12) however is not

decreasing inN, and in fact, an increase in the number of bidders does not result in a stochastic

decrease in prices for any value of µ.7 However, we have calculated the expected value of the

winning (low) bid for various values of µ that are in the range of µ values estimated from other

experiments. An increase in the number of bidders from 2 to 3 to 4 lowers the procurement cost

in this range, see Table I.

6 Goeree and Holt have also applied these techniques to the analysis of three-person location problems (work in
progress) to explain laboratory results that do not conform to Nash predictions.

7 This is because, for givenN, the slope of the equilibrium density at the highest allowed bid must equal the slope

for the lowest allowed bid, which ensures that the distribution functions will cross.
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With an error parameter of about 8, the logit predicted minimum bids are close to those reported

Table I. Predicted Low Bids in Bertrand Game

N = 2 N = 3 N = 4

µ = 1 9.6 7.4 6.5

µ = 5 23.7 16.9 13.9

µ = 8 28.1 19.8 16.0

Laboratory Dataa 26.4 19.0 15.2

a Duwfenberg and Gneezy (1999)

by Dufwenberg and Gneezy (1998), and are inconsistent with the "Bertrand paradox" prediction

that price will be driven to marginal cost (zero in this case) even for the case of two sellers.8

Morgan and Baye (1999) have also pointed out that prices above the Bertrand prediction can be

explained by a (power function) quantal response equilibrium.

Example 6. Imperfect Price Competition with Meet-or-Release Clauses

The Bertrand paradox has inspired a number of models that relax the assumption that the

firm with the low price makes all sales. Suppose that there is a numberαi of loyal buyers who

purchase one unit from firmi. The remaining consumers, numberingβ, purchase from the firm

with the lowest price. For simplicity, assume thatα1 = α2 = α. Thusα represents the expected

sales of the firm with the high price, andβ + α represents the low-price firm’s sales, which we

will normalize to 1. Loyalty has its limits, and therefore buyers have implicit or explicit "meet-

or-release" assurances that the high price firm must meet the lower price or allow the buyers to

switch. Since the market share is higher for the low-price firm, and since their final sales prices

are identical, the unique Bertrand/Nash equilibrium for a one-shot price competition game

involves lowering price to marginal cost, regardless of the size ofα. Intuition and laboratory

evidence, however, suggests that price competition would be stiff for low values ofα and that

8 A small discrepancy is that the average bids predicted by the logit equilibrium are slightly higher than those
reported by Duwfenberg and Gneezy (1999).
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prices would be much higher as the market share of the high-price firm approaches 1/2. This

intuition is again counter to the predictions of the unique Nash equilibrium. The expected payoff

consists of two terms, depending on whether or not the firm has the higher price and sellsα, or

has the lower price and sellsα + β = 1:

which can be differentiated to obtain:

π e
i (x) α ⌡

⌠
x

0

y fj (y) dy x(1 Fj (x)) ,

This is non-increasing inx and increasing inα, so Proposition 3 ensures that prices will be

(14) π e
i (x) (1 α ) x fj (x) (1 Fj (x)) .

stochastically increasing inα, which measures the sales of the high-price firm. In the Capraet

al. (1999b) experiments, prices were restricted to the interval [60, 160], and an increase inα

from .2 to .8 raised average prices from 69 to 129 in the final five periods. The unique Nash

prediction is 60 for both treatments, which contrasts with the logit predictions of 78 (±7) and 128

(±6) respectively, based on an error parameter estimated from a previous traveler’s dilemma

paper (Capra,et al. 1999a).9

Example 7. Capacity-Constrained Price Competition

Market power can arise when capacity constraints are introduced into the standard

Bertrand duopoly model of price competition. Suppose that demand is inelastic atK + Dr units

at any price below−x, whereK is the capacity of each firm andDr is the residual demand obtained

by the high-price firm. In a symmetric equilibrium, the expected payoff for a price ofx is [1-

F(x)]Kx + F(x)Dr x, so πe’ = K - F(x)(K - Dr) - f(x)(K - Dr)x, which satisfies the assumptions of

Propositions 1 and 2, so the symmetric logit equilibrium exists and is unique. The implication

9 A new estimate of the error parameter for this imperfect price competition experiment yields µ = 6.7 with a
standard error of 0.5, which again allows rejection of the null hypothesis associated with the Nash equilibrium (no errors).
This estimated error parameter is quite close to the estimates of 7.4 for the minimum effort coordination game data
(Goeree and Holt, 1999c) and 8.5 for the traveler’s dilemma data (Capraet al., 1999a). These were repeated game
experiments with random matching; we have obtained higher error parameter estimates for games only played once.
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of Proposition 3 is that an increase in firms’ common capacity,K, will result in a stochastic

reduction in prices. This intuitive prediction is also a property of the mixed-strategy Nash

equilibrium obtained by equating expected profit to the safe earnings obtained by selling the

residual demand at the highest price:Dr
−x.10

Example 8. Public Goods

In a linear public goods game, each person makes a voluntary contribution,xi, and the

payoff depends on this contribution and on the sum of the others’ contributions:

whereE is the endowment,RI is the "internal return" received from one’s own contribution, and

(15) π i(xi) E xi RI xi RE j≠i
xj ,

RE is the "external return" received from the sum of others’ contributions. It is typically assumed

thatRI < 1, so it is a dominant strategy not to contribute. The internal return may be greater than

the external return if one’s contribution is somehow located nearby, e.g. a flower garden will be

seen more by the owner than by those passing on the street. Notice that this is a trivial special

case of the rank-based payoffs in (5), since the payoffs do not depend on whether or not one’s

contribution is higher or lower than the others. In any case, the marginal expected return is a

constant,RI - 1, so uniqueness follows from Proposition 2(d). The constant marginal expected

payoff is non-increasing inx, so the comparative statics implications of Proposition 3 are that an

increase in the internal return will result in a stochastic increase in contributions, even though

full free riding is a dominant-strategy Nash equilibrium. Dozens of linear public goods

experiments have been conducted for the special case of (15) in whichRI = RE, which is then

called the marginal per capita return (MPCR). The most salient result from this literature is the

positive MPCR effect (Ledyard, 1995), which is predicted by the logit equilibrium and not by

a Nash analysis.

Goeree, Holt, and Laury (1999) report experiments in which the internal and external

returns are varied independently, since only the internal return affects the cost of contributing,

10 It can be shown that the logit and Nash models have different qualitative predictions in an asymmetric capacity
model, since a firm’s logit price distribution will be sensitive to changes in its own capacity. In contrast, a change in one
firm’s capacity will only affect theother firm’s price distribution in a mixed equilibrium.
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whereas the external return may be relevant if one cares about other’s earnings. The strongest

treatment effect in the data was associated with the internal return, although contributions did

increase with increases in the external return as well. Econometric analysis of the data suggests

that the addition of an altruism factor to the basic preference structure explains the data well, and

the estimated error parameter is highly significant, allowing rejection of the µ = 0null hypothesis.

Example 9: The Best-Shot Game

In the minimum-effort game, the common payoff factor is determined by the lowest effort,

or the "weakest link." The converse situation, which has been applied in some public goods

problems, is known as the "best-shot" game, where the maximum decision determines the

common payoff element (Harrison and Hirshleifer, 1989). Consider an asymmetric version where

the contribution costs may differ. The marginal expected payoff is the probability that one’s

decision is the relevant best shot, minus the cost of the payoff increase:

These derivatives are non-increasing inx, so the player with the higher cost will have a

(16) π e
i (x) Fj(x) ci .

stochastically lower distribution of contributions, by Proposition 5. This intuitive "own-cost"

effect is not predicted in a Nash equilibrium. There are pure-strategy equilibria in which one

player contributes nothing and the other makes a full contribution. It can also be shown that

there is a mixed-strategy equilibrium, but it is a necessary property of a mixed equilibrium that

changes in one’s own payoff parameter do not affect one’s own mixed distribution, which must

remain fixed to keep the other player indifferent over the range of randomization.

The logit equilibrium for this game has a particularly interesting structure whenc1 = c2

= 1/2, so that the logit differential equation,f ′ = (Ff - f/2)/µ, can be integrated to obtain:

This is the formula describing the progression of an epidemic, whereF(x) represents the fraction

))
f (x) f (0) (F (x) F (x)2) / (2µ) f (0) F (x) (1 F (x)) / (2µ) .

of uninfected people at timex, so the rate of new infections, -f(x), is a linear function of

F(x)(1 - F(x)), which is the probability that an uninfected person meets an infected person. It
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is well known that this dynamic system traces out a logistic curve, and therefore, the logit

equilibrium will be a (truncated) logistic distribution.

Summary

Propositions 1 and 2 guarantee the existence of a unique, symmetric equilibrium for all

examples considered (including the symmetric version of the best-shot game). Moreover, all

examples satisfy the conditions of Proposition 3, so theoretical comparative statics results can be

determined, except the numbers effect in the Bertrand game, which we analyzed numerically.

There are laboratory experiments to evaluate the qualitative comparative statics predictions for

six of these games, as summarized in Table II. The left column shows the expected payoff

derivative, and the second column indicates the sign of the comparative statics effect associated

with each variable, where the + (or -) sign indicates that an increase in the exogenous variable

results in an increase (or decrease) in decisions in the sense of first-degree stochastic dominance.

The third column summarizes the directions of comparative statics effects reported in the

experiments cited in the footnotes. For comparison, the comparative statics properties of the

symmetric Nash equilibrium are listed in the right-hand column. In all cases, the reported effects

for laboratory experiments correspond to the logit equilibrium predictions. Most important, none

of the comparative statics effects listed are explained by the Nash equilibrium for that game.

This contrast is due to the fact that the shift variables listed in the table change the magnitudes

of payoff differences but not the signs, so the Nash equilibria are invariant to changes in these

variables.

V. Relationship with Other Approaches to Explaining Anomalies in Game Experiments

The noisy equilibrium models developed in this paper are complemented by noisy models

of learning, evolution, and adjustment. Learning models with probabilistic choices will be

responsive to asymmetries in the costs of directional adjustments, just as the logit equilibrium

will be sensitive to expected payoff asymmetries. These learning models include reinforcement

learning (Erev and Roth, 1995), where ratios of choice probabilities for two decisions depend on

ratios of the cumulated payoffs for those decisions. Even closer to the logit approach is the use

of fictitious play or other weighted frequencies of past observed decisions to construct "naive"
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beliefs, and thereby obtain expected payoffs that are filtered through a logit choice function (e.g.

Table II. Summary of Comparative Statics Results with Supporting Laboratory Evidence

Game:
expected payoff derivative

Logit
Comparative Statics

Laboratory
Treatment Effects

Nash
Comparative Statics

Traveler’s Dilemma
1 - Fj - 2Rfj

R (—) R (—)a R (no effect)

Coordination Game

j≠i(1 - Fj) - c
c (—)
N (—)

c (—)b

N (—)b
c (no effect)
N (no effect)

Median Effort CG
2Fj(1 - Fk) - c

c (—)
N (—)

c (—)a c (no effect)

Bertrand Game
1 - Fj - xfj

N (—) N (—)c N (no effect)

Imperfect Price Competition
-(1-α)xfj + (1 - Fj)

α (+) α (+)d α (no effect)

Public Goods Game
1 - RI

RI (+) RI (+)e RI (no effect)

a Capra,et al. (1999a).
b Goeree and Holt (1999c).
c Comparative statics based on numerical calculations; laboratory data from Dufwenberg and Gneezy (1998).
d Capra,et al. (1999b).
e Goeree, Holt, and Laury (1999).

Mookherjee and Sopher, 1997, and Fudenberg and Levine, 1998). Indeed, we have used these

methods to predict and explain the directional patterns of adjustment in the traveler’s dilemma,

imperfect price competition, and coordination games (Capra,et al., 1995a, 1995; Goeree and

Holt, 1999a). For example, a version of fictitious play with a single learning (forgetting)

parameter, together with a logit choice function, explains why average claims in Figure 1 fall

over time in theR = 50 treatment, stay the same in theR = 20 treatment, and rise in theR = 10

treatment. Simulations using estimated learning and error parameters both track these patterns

in the traveler’s dilemma (Goeree and Holt, 1999a) and were used to predict the directions of

adjustment in the subsequent coordination and imperfect price competition experiments.

On the other hand, learning models that only specify partial or directional adjustments to

best responses to previously observed decisions need to be augmented with probabilistic choice,

since otherwise they are not sensitive to payoff asymmetries. For example, the best response to
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previous decisions in the traveler’s dilemma game is the other’s claim, independent ofR, and the

best response in the minimum effort coordination game is the minimum of other’s efforts,

independent of effort cost, so directional best-response and partial adjustment models cannot

explain the strong treatment effect in these games unless payoff-based (e.g. logit) errors are

included.

Of course, learning models provide lower prediction errors since they use data up to round

t to predict behavior in roundt + 1. Simulations of learning models are quite powerful prediction

tools, and we sometimes use them to predict dynamic data patterns for possible treatments before

we run them with human subjects (e.g. Capra,et al. 1999b). These learning and simulation

models and are complementary with equilibrium models, which predict steady state distributions

when learning slows down or stops, as in the last five periods in Figure 1. To summarize,

learning models are used to predict adjustment patterns and selection in the case of multiple

equilibria; whereas equilibrium models are used to predict the steady state distributions and how

they shift in response to changes in exogenous parameters.

A second approach to the analysis of behavioral anomalies involves relaxing the standard

preference assumptions. Positive contributions in public goods games, for example, are often

attributed in part to concerns about others’ payoffs. Lottery-choice anomalies have been

attributed to non-linear probability weighting. Overbidding relative to Nash predictions has been

attributed to risk aversion. In bargaining experiments, the tendency for inequitable offers to be

rejected has been attributed to inequity aversion. These generalized preference models will be

more convincing if the estimated parameters turn out to be somewhat stable across different

experiments, e.g. a risk aversion explanation of overbidding in private value auctions will be

more appealing if similar degrees of risk aversion are estimated from experiments with similar

payoff levels. Indeed, Bolton and Ockenfels (1999) and Fehr and Schmidt (1997) have developed

models with inequity aversion that are intended to explain behavior in a wide class of games and

markets.

Without any added noise, these preference-based theories will suffer from the same

problem that plagues the Nash equilibrium with perfect rationality, i.e. that choice tendencies

depend on the signs, not on the magnitudes, of payoff differences. For two players, for example,

the Fehr and Schmidt model replaces own payoffs,πi, with a function that depends on whether
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the other person has a higher or lower payoff, i.e. withπi - α(πj - πi) if πj - πi > 0, and with

πi - β(πi - πj) if πj - πi < 0. Here, the "envy" parameter,α, is greater than or equal to the

"guilt" parameter,β, which is assumed to be non-negative. Consider the application of this

model to the minimum effort game. A unilateral increase from any common effort will lower

own payoff due to the increased effort cost, and since the other’s payoff is not changed, this will

create an envy cost. Conversely, a unilateral decrease will decrease both players’ earnings, but

the decrease will save on own effort cost, which creates an additional loss due to the guilt effect.

Thus the effect of the envy and guilt parameters is to increase deviation losses in both directions,

so the set of equilibria is unchanged. As before, any common effort level is an equilibrium with

these generalized preferences, irrespective of the effort cost, so this model of inequity aversion

would not explain the strong (effort-cost) treatment effects observed in this game.

Fortunately, generalized preference models can be combined with logit and other

probabilistic choice models. Fairness and relative earnings considerations are salient in

bargaining. In our own work, inequity aversion explains the strong effects of asymmetric money

endowments on behavior in alternating offer games, where both the inequity and error parameters

estimated from laboratory data are highly significant (Goeree and Holt, 1999b). Similarly, we

have found that noise alone does not explain why bidders bid above the Nash equilibrium in

private value auctions, but a hybrid model yields highly significant error and risk aversion

estimates (Goeree, Holt, and Palfrey, 1999).

Finally, it is well known that subjects in experiments are sometimes subject to systematic

biases, and that complex problems may be dealt with by applying rules of thumb or heuristics.

In a common-value auction, for example, bidders fail to realize that having the high bid contains

unfavorable information about the unknown prize value, and overbidding with losses can occur.

When there is a single identifiable bias, it should be modeled, perhaps with probabilistic choice

appended. When there is not single source of error that can be feasibly modeled, the standard

practice is to put the un-modeled effects into the error term.

VI. Conclusion

The standard techniques for characterizing a Nash equilibrium are well developed and

understood, but the Nash concept fails to explain the most salient aspects of data from a wide
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array of laboratory experiments. For example, a decrease in the penalty rate in a traveler’s

dilemma does not alter the unique Nash prediction at the lowest claim, but successive reductions

in the penalty parameter move the distributions of observed claims progressively toward the

opposite end of the set of feasible decisions. Similarly, increases in effort cost sharply reduce

distributions of observed efforts in experiments, despite the fact that these cost reductions do not

alter the set of Nash equilibria, so again the most prominent feature of the data is not being

explained.

Anomalous experimental results are not damaging to the Nash paradigm if there is no

obvious alternative, but here we argue for an alternative approach is based on probabilistic choice

functions that introduce some "noise" that can represent either error and bounded rationality

(Rosenthal, 1989) or unobserved preference shocks (McKelvey and Palfrey, 1995). In interactive

games, even relatively small amounts of noise can have a snowball effect if deviations in the

"less risky" direction make further deviations in that direction more attractive. The logit

probabilistic choice function allows decision probabilities to be positively but not perfectly related

to expected payoffs, and the logit equilibrium incorporates the feedback effects of noisy behavior

by requiring belief distributions that determine expected payoffs to match logit choice

distributions for those expected payoffs.

The logit equilibrium is essentially a one-parameter generalization of Nash, obtained by

not requiring an error parameter to be exactly zero. Since the logit model nests the Nash model,

it is straightforward to evaluate them with maximum likelihood estimation based on laboratory

data. In fact, any econometric estimation requires some incorporation of random noise, and the

quantal response approach incorporates noise in a manner that is natural for interactive games,

since it allows error probabilities to be affected by the interaction of other players’ errors and

payoff effects.

The experience with generalized expected utility theory in the last fifteen years, however,

indicates that a generalized approach simply will not be used if it is too messy. The logit

analysis, at first glance, is messy; the equilibria are always probability distributions, which

complicates analysis of existence and uniqueness. Similarly, comparative statics results pertain

to relationships among distributions. In this paper, we provide a general existence result for

games with a continuum of decisions, and for auction-like games we show how symmetry,
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uniqueness, and comparative static results can be obtained from a series of related proofs by

contradiction, based on "lens" graphs. The theoretical propositions are then used to characterize

the comparative statics properties of the logit equilibria for a series of games. All of the logit

comparative statics results in Table II are as predicted, andnoneare explained by the relevant

Nash equilibrium. Although anomalous from a Nash perspective, these theoretical and

experimental results are particularly important because they are consistent with simple economic

intuition that deviations from best responses are more likely in the less risky direction.
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Appendix A: Proof of Proposition 1 (Existence of Equilibrium)

Unlike most of the other propositions in the paper, the existence result only requires that

expected payoffs are bounded and continuous in others’ distribution functions. The latter

condition certainly holds for the "local" payoff functions considered in this paper, but is true

more generally. We also generalize the logit rule by writing the choice density function as:

with g(x) a continuous function that is strictly positive everywhere and strictly increasing inx.

(A1) f (x) g(π e(x) /µ)

⌡
⌠x

x
g(π e(y) /µ) dy

,

Note that boundedness of the expected payoff implies that (for µ > 0) there will be no mass

points, i.e. the equilibrium distribution functions will be continuous.

Proposition 1. (Existence) For all games in which players’ expected payoffs are bounded and

continuous in other’s distribution functions, there exists a symmetric logit equilibrium for N-

player games with a continuum of feasible decisions, and the equilibrium distribution is twice

differentiable.

Proof. Let F(x) denote the vector of choice distributions, whosei-th entry, Fi(x), is the

distribution of playeri, for i = 1,...,n. Integrating the left and right-hand sides of (A1), yields an

operatorT that maps a vectorF(b) into a vectorTF(b), with components:

The vector of equilibrium distributions is a fixed point of this operator, i.e.,TFi(b) = Fi(b) for

(A2) TFi (x) ≡

x

x
g(π e

i (y) /µ) dy

x

x
g(π e

i (y) /µ) dy

.

all x ∈ [x, −x], and i = 1,...,n. As noted above the equilibrium distributions are continuous, so

there is no loss of generality in restricting attention toC [x, −x], the set of continuous functions

on [x, −x]. In particular, consider the set:S ≡ { F ∈ C [x, −x] F ≤ 1}, where denotes the

sup norm. The setS, which includes all continuous cumulative distributions, is an infinite-
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dimensional unit ball, and is thus closed and convex. Hence, then-fold (Cartesian) product

Sn = S × ... × S, is a closed and convex subset ofC [x, −x] × ... × C [x, −x], the set of all continuous

n-vector valued functions on [x, −x]. This latter space is endowed with the normF n = maxi=1..n

Fi . The operatorT maps elements fromSn to itself, but sinceSn is not compact, we cannot

rely on Brouwer’s fixed point theorem. Instead, we use the following fixed point theorem due

to Schauder (see for instance Griffel, 1985):

Schauder’s Second Theorem: If Sn is a closed convex subset of a normed space and Hn is

relatively compact subset of Sn, then every continuous mapping of Sn to H n has a fixed point.

To apply the theorem, we need to prove: (i) thatH n ≡ { TFF ∈ Sn } is relatively compact, and

(ii) that T is a continuous mapping fromSn to H n. The proof of (i) requires showing that

elements ofH n are uniformly bounded and equicontinuous on [x, −x]. From (A2) it is clear that

the mappingTFi(x) is non-decreasing. SoTFi(x)≤ TFi(
−x) = 1 for all x ∈ [x, −x], Fi ∈ S, and

i = 1,...,n, and elements ofH n are uniformly bounded. To prove equicontinuity ofH n, we must

show that for everyε > 0 there exists aδ > 0 such thatTFi(x1) - TFi(x2)< ε wheneverx1 -

x2< δ, for all Fi ∈ S, i = 1,...,n. Consider the difference:

Let πmin andπmax denote the lowest and highest possible payoffs for the game at hand. We can

(A3) TFi (x1) TFi (x2)

x2

x1

g(π e
i (y) /µ) dy

x

x
g(π e

i (x) /µ) dy

.

bound the right side of (A3) by:

Thus the difference in the values ofTFi is ensured to be less thanε for all Fi ∈ S, i = 1,...,n,

TFi (x1) TFi (x2) ≤
g(π max) x1 x2

g(π min) (x x)
.

by setting x1 - x2< δ, whereδ = ε (−x - x) g(πmin)/g(πmax). Hence,TF is equicontinuous for all

F ∈ Sn.
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Finally, consider continuity ofT. By assumption the expected payoffs are continuous in

others’ distributions andg is continuous, sog(πi
e(x)/µ) is continuous in the others’ distributions

and so are integrals ofg(πi
e(x)/µ). And sinceg(πmin/µ) is bounded away from zero, so is the ratio

of integrals in (1). HenceT is a continuous mapping fromSn to H n.

Differentiability of the logit equilibrium densities is established recursively. Since payoffs

are bounded, the logit density in (B1) is bounded, which implies that expected payoffs are

continuous inx. A player’s effort density is a continuous function of expected payoff, and hence

each density is a continuous inx. Therefore the distribution functions are continuous, and so are

the expected payoffs. The effort densities are differentiable transformations of expected payoffs,

and so these densities are also differentiable. Thus all vectors of densities get mapped into

vectors of differentiable densities, and any fixed point must be a vector of differentiable density

functions. Q.E.D.

Appendix B: Proof of Proposition 2, parts (c) and (d) (Uniqueness)

Proposition 2. Any symmetric logit equilibrium for a game satisfying the local payoff property

is unique if the expected marginal payoff,πe’(F, f, x, α) is either: a) strictly decreasing in x, or

b) strictly increasing in the common distribution function F, or c) independent of x and strictly

decreasing in f, or d) a polynomial expression in F, with no terms involving f or x.

Proof of Parts (c) and (d).Case (c) is based on atransformation of variablesthat allows a more

direct application of the logit differential equation (2), since it will produce a graph in which the

transformed densities have slopes that are exactly equal to theπe’/µ functions that are so central

in these arguments. Notice that raising the height of the horizontal slice in Figure 2 will alter

the slopes of the distribution functions at that height. Lety denote the height of the slice in

Figure 2, and letf*(y) denote the density as a function ofy. Thus we are considering the

transformed density,f*(y) whereF(x) = y, and therefore dx/dy = 1/f(x). To derive the slope of

the transformed density as a function of the height of the slice, note that df*(y)/dy =

[df(x)/dx][dx/dy] = f’(x)/f(x) = πe’(x)/µ, where the final equality follows from the logit differential

equation (2). Thus when we graph the transformed density as a function ofy, we get a function
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with a slope that equals the expected payoff derivative divided by µ. Suppose that there are two

Figure 4. A Configuration of Transformed Densities that Yields A Contradiction.

symmetric equilibrium distributions denoted byF1 and F2, with the transformed densityf1
*(y)

being abovef2
*(y) for low values ofy, as shown on the left side of Figure 4. These densities

must cross, or the distribution functions will never come together, as they must at−x, if not before.

In any neighborhood to the right of the crossing, it must be the case thatf1
*(y) < f2

*(y). But since

πe′ is assumed to be independent ofx and strictly decreasing in the density,πe’(y, f1(x1), x1, α) >

πe’(y, f2(x2), x2, α), and therefore, the slope off1
*(y) is greater than the slope off2

*(y) at all points

wheref1 is lower, i.e. to the right of the crossing, which is a contradiction.

Case (d) is based on acone proof: If the πe’ is a polynomial inF of the form: A +

BF + CF2 + .., then when it is multiplied byf(x) in (2), we get an expression forf’(x) that can

be integrated directly to obtain:

Obviously, any solution to (B1) is determined by the initial condition,f(0). Suppose that there

(B1) f (x) f (0) AF(x) BF2/2 CF(x)3/3 ...

are two solutions, and without loss of generality,f1(0) > f2(0). The two distribution functions

must intersect at least once since they must intersect at the upper bound of the support, if not

before. Letx* be the lowest intersection point. Then at any point where the distribution

functions cross, i.e. whereF1(x
*) = F2(x

*), it follows from (B1) thatf1(x
*) - f2(x

*) = f1(0) - f2(0) > 0.

This contradicts the fact thatF1(x) must cutF2(x) "from above" when they cross. Q.E.D.
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Appendix C: Comparative Statics Proofs

Proposition 3 (Comparative Statics for a Symmetric Equilibrium). Suppose that the shift

parameter increases marginal expected payoffs, i.e.∂πe’(F, f, x, α)/∂α > 0, for a symmetric game

satisfying the local payoff property. Then an increase inα yields stochastically higher logit

equilibrium decisions (in the sense of first-degree stochastic dominance) if either

a) ∂πe’/∂x ≤ 0, or b) ∂πe’/∂F ≥ 0.

Proof. Suppose thatα2 > α1, and let the corresponding symmetric equilibrium distributions be

denoted byF1(x) andF2(x). The proof requires showing thatF2(x) dominatesF1(x) in the sense

of first-degree stochastic dominance, i.e. thatF1(x) > F2(x) for all interior x. Suppose, in

contradiction, thatF1(x) is lower on some interval, as shown in Figure 2. First consider case (i).

Any region of divergence between the distribution functions will have a maximum horizontal

difference, as indicated by the horizontal dashed line at the height ofF*. As in the proof of

Proposition 3(a), the first and second order conditions for the distance to be maximized at height

F* = F1(x1) = F2(x2) are that the slopes of the distribution functions be identical atF*, i.e. f1(x1)

= f2(x2), and thatf1´(x1) ≥ f2´(x2). In order to obtain a contradiction, recall that the distribution

functions satisfy the differential equation (2), evaluated at the appropriate level ofα:

SinceF1(x1) = F2(x2) andf1(x1) = f2(x2), everything except forα1 andα2 and the argumentsx1 and

(C1) µ fi (x) π e (Fi , fi , x, αi ) fi (x), i I , II .

x2 on the right sides of the equations in (C1) are identical, when these equations are evaluated

at x1 andx2 respectively. The assumption for Case (a), together withα2 > α1 andx2 < x1, implies

that f1´(x1) < f2´(x2), which contradicts the second-order condition for the maximum horizontal

difference. Next consider Case (b), in which the payoff derivative is non-decreasing in the

distribution function. Any region of divergence between the distribution functions will have a

maximumvertical difference, as indicated by the vertical dashed line atx* Figure 3, where the

two distributions forα2 > α1 are now denoted byF1 and F2. The first and second order

conditions for the distance to be maximized at heightx* are that the slopes of the distribution

functions be identical, i.e.f1(x
*) = f2(x

*), and thatf1´(x
*) ≥ f2´(x

*). However, sinceπe’(Fj, fj, x, αj)
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is increasing inFj andF1(x
*) < F2(x

*) by assumption, it follows that

Then the logit differential equation in (2) implies thatf1´(x
*) < f2´(x

*), which yields the desired

contradiction. These arguments apply to theN player case, since by symmetry, the density and

distribution functions of all players are identical and have the same value atx*. Q.E.D.

Proposition 5 (Comparative Statics for Asymmetric Payoffs). Suppose that the shift parameter

increases marginal expected payoffs, i.e.∂πe’(F, f, x, α)/∂αi > 0, and let α2 > α1 in a game

satisfying the local payoff property. Then player 2’s logit equilibrium distribution of decisions

is stochastically higher than that of player 1, i.e. the distribution function for player 2 is lower

at each interior value of x, if either: a)∂πe’/∂x ≤ 0, or b) ∂πe’/∂F ≤ 0.

Proof. Suppose thatα2 > α1, and let the corresponding equilibrium distributions be denoted by

F1(x) and F2(x) for players 1 and 2 respectively. We wish to show thatF1(x) > F2(x) for all

interior x (i.e.,F2(x) dominatesF1(x) in the sense of first-degree stochastic dominance). Suppose

not, so thatF1(x) is lower on some interval, as per Figure 3. As in the proofs of Proposition 1,

the first and second order conditions for the vertical distanceF2(x) - F1(x) to be maximized at

actionx* imply that f1(x
*) = f2(x

*), and thatf1´(x
*) ≥ f2´(x

*). This in turn implies that we must

have π1
e’(F2, f2, x*, α1) ≥ π2

e’(F1, f1, x*, α2); but, sinceα2 > α1 and πi
e’ is increasing inα, it

follows from the assumption in case (a) that this can only hold ifF1(x
*) > F2(x

*), contradicting

the original condition. Case (b) is proved with a horizontal lens argument based on Figure 2.

This proposition also applies to the case of more than two players, since the effects of others’

densities and distributions affect bothπ1
e’(F2, f2, x*, α1) ≥ π2

e’(F1, f1, x*, α2) in the same manner,

when evaluated at the same value ofx. Q.E.D.
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Appendix D: Symmetry and Single Peakedness

Proposition 6. (Single Peakedness) If the logit equilibrium for a game satisfying the local payoff

property is symmetric and the expected payoff derivative,πe’(F, f, x, α), non-increasing in x and

strictly decreasing in the common F function, then the equilibrium density that solves (2) will be

single peaked.

Proof. The assumptions, together with Proposition 7 below, imply that the equilibrium is

symmetric across players, so we will drop the player subscripts from the notation that follows.

Since the density in (1) is proportional to an exponential function of expected payoffs, we need

to show that the expected payoff function is concave inx. To do this, consider the second

derivative of expected payoff with respect tox, i.e. the derivative ofπe’(F(x), f(x), x, α) with

respect tox, taking into account the direct effects and the indirect effect through arguments in

the density and distribution functions. This derivative is:

The first and third terms on the right side of (D1) are negative by assumption, and the logit

(D1) dπ e /dx ∂π e /∂F f (x) ∂π e /∂f f (x) ∂π e /∂x.

differential equation (2) implies that the second term is zero at any stationary point withπe’ = 0.

It follows that the right side of (D1) is negative at any stationary point of the expected payoff

function, and therefore, that any stationary point will be a local maximum. Q.E.D.

Proposition 7. (Symmetry) Any logit equilibrium for a game satisfying the local payoff property

is necessarily symmetric across players if the expected payoff derivative,πe’(F j, fj, x, α), is either

(a) strictly decreasing in the Fj functions for all other players, or (b) weakly decreasing in the

Fj and fj functions.

Proof. Case (a): First consider the case of two players and suppose, in contradiction, that their

equilibrium distributions are not the same. Without loss of generality, assumeF1(x) is lower on

some interval, as shown in Figure 3. Any region of divergence between the distribution functions

will have a maximumvertical difference, as indicated by the vertical line atx*. The first and
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second order conditions for the distance to be maximized at heightx* are that the slopes of the

distribution functions be identical, i.e.f1(x
*) = f2(x

*), and thatf1´(x
*) ≥ f2´(x

*). However, since the

densities are equal atx* andπi
e’(Fj, fj, x, α) is decreasing in theother player’s distribution,Fj,

it follows that

Then the logit differential equation in (2) implies thatf1´(x
*) < f2´(x

*), which yields the desired

(D2) π e
1 (F2(x ), f2(x ) , x , α) < π e

2 (F1(x ), f1(x ), x , α) .

contradiction. This proof generalizes to theN player case, since the others’ density and

distribution functions, evaluated atx*, would have the same effect on both distribution functions.

Case (b): Consider the asymmetric configuration in Figure 3 again. Just to the right of

the left-side crossing of the distribution functions, there must be an interval whereF2 > F1, and

f2 > f1. For anyx in this interval, it follows from assumption (b) thatπ2
e’(F1(x), f1(x), x, α) ≥

π1
e’(F2(x), f2(x), x, α), and hence thatf2(x) π2

e’(F1(x), f1(x), x, α) ≥ f1(x) π1
e’(F2(x), f2(x), x, α). But

this latter inequality is, by (2), a condition thatf2’(x2) > f1’(x1), so the horizontal distance

betweenF1 andF2 will never decrease, in contradiction of the fact that these distributions must

meet, at the uppermost value ofx if not before. Q.E.D.
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