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Abstract

We revisit the fundamental issue of market provision of variety associated

with Chamberlin, Spence, and Dixit and Stiglitz when firms sell several

products. Both products and firms are envisaged as differentiated. We

propose a nested demand model where consumers decide upon a firm

then which variant to buy, and use it to determine the market’s biases

when firms compete in product ranges and prices. The market system

attracts too many firms with too few products per firm: firms restrain

product ranges to relax price competition, but this exacerbates over-

entry. The results extend to generalized nested CES models.

KEYWORDS: Multiproduct firms, excess variety, nested demand, prod-

uct line competition
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1 Introduction

The economic analysis of the market provision of variety goes back to

Hotelling (1929) and Chamberlin (1933). Hotelling was concerned with

product selection for duopoly, whereas Chamberlin was interested in free

entry equilibrium. The Chamberlinian monopolistic competition model

was later examined rigorously by Spence (1976) and by Dixit and Stiglitz

(1977). These papers, along with almost all of the subsequent literature

have assumed that each firm produces a single product. The intention

of this paper is to broaden the discussion of market performance by

allowing firms to produce several products and developing a tractable

demand system for analyzing the problem.

The analysis of multiproduct firms introduces a further dimension

to competition, that of the product range. When a firm brings in a

further variant to its product line, it attracts more custom but at a cost

of cannibalizing its existing products. The decision also has a strategic

effect that the firm may prefer to mitigate. This is that rivals may price

more aggressively in the face of tougher competition. These effects are

not addressed under the standard assumption of single-product firms.

The product range also contributes a further dimension to performance.

The reason why there has been little theoretical economic analysis

of price competition with multiproduct firms is that the problem is in-

trinsically difficult.1 To characterize profit-maximizing prices for a firm

1See Katz (1984), Champsaur and Rochet (1989), and Shaked and Sutton (1990)

for previous analyses of multiproduct firms under price competition. Recent work

by Johnson and M (2003) and Grossman (2003) treats multiproduct firms under
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selling m products requires simultaneously solving m first-order condi-

tions, each of which involves the derivatives of the demands for m prod-

ucts. Likewise, to find the profit-maximizing product range for a firm

necessitates finding not only the direct effect on profit from an additional

product, but also the equilibrium pricing response of all other firms for

all other products. Finally, the free-entry equilibrium is determined from

the condition that further entry be unprofitable.

To make the problem tractable, we set out a specific model and use

symmetry assumptions liberally for the demand functions (in the tradi-

tion of monopolistic competition). This symmetry leads to a symmetric

welfare benchmark. In our basic model, we parameterize differentiation

at two different levels. These correspond to differentiation of products

within the firm, and differentiation across the firms themselves. The

demand for any particular variant sold by a firm then depends on the

two sources of product variety. Corresponding to the two levels of dif-

ferentiation, market performance can be gauged by two quantities: the

number of products per firm and the total number of firms. These two

measures are to be compared at the equilibrium to the corresponding

magnitudes for the social optimum.

The demand model has considerable interest in its own right. Al-

though we treat all the variants produced by any firm as equally good

substitutes for each other, and we assume symmetry in the choice of

which firm to buy from, the substitution pattern across variants pro-

Cournot competition.
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duced by different firms can be rather complex. We consider a general

nested demand structure that builds on the nested logit model first pro-

posed in the transportation context by Ben-Akiva (1973) and rational-

ized by McFadden (1978). The nested logit model was subsequently used

theoretically by Anderson and de Palma (1992) to study the performance

of multiproduct firms and in several empirical studies in industrial or-

ganization.2 The idea behind our nested demand model is that product

selection can be split into a two-stage process. First, consumers choose a

firm, then subsequently they choose a specific product to buy from that

firm. When choosing a firm, consumers anticipate they will then opti-

mally choose among the products available, although at this stage they

do not know exactly what products are available. Think of restaurants:

a consumer may not know exactly what is on the menu on a given day,

but she knows that she will choose optimally once she gets there, and

she anticipates her expected utility level.3 The two levels of differentia-

tion in the model correspond to the diversity across restaurants and the

diversity within a restaurant’s menu.

In the basic model, we assume that each consumer buys one unit

of one product. This assumption makes it simple to carry out the wel-

fare comparison because social surplus is independent of the price level,

2A sophisticated application of the nested logit model by Goldberg (1995) studies

firm pricing in the car market.
3The two-stage process described here can readily be extended to three or more

stages. For example, a consumer may choose for her vacation a country, then a resort,

then a hotel.
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and we can then directly compare market equilibrium with the first-best

optimum solution. Later on we allow for downward sloping individual

demand. For this case, we compare the second-best (zero profit con-

strained) optimum to the equilibrium. The extension of the basic analy-

sis is fairly straightforward, but it broadens the scope considerably. This

extension also encompasses the nested CES model. We also describe in

this section a class of generalized nested demand models that have a

consumer theoretic foundation with consumers making discrete choices

of which product to buy.4

The performance analysis can be summarized quite succinctly. Firms

hold back on product ranges in order to relax price competition.5 Indeed,

a broader product range makes the firm more attractive to consumers

and so provokes a more competitive price response. Holding back elic-

its instead a more comfortable pricing environment. However, this also

means that firm profitability is higher than it would be with more ag-

gressive (larger) product ranges so that the market signal for firms to

enter (i.e., profit) is stronger than the social signal (surplus contribu-

tion). This means that the market solution has too many firms, each

one with too narrow a product range.6

The structure of the paper is as follows. Section 2 provides an

4Anderson, de Palma, and Thisse (1992) use a similar procedure to disaggregate

the standard CES representative consumer model. Verboven (1996) does likewise for

the nested logit and generalized CES models.
5This is the same reason that firms choose different qualities in models of vertical

differentiation - see Shaked and Sutton (1982).
6Some alternative market structures are discussed in the conclusions.
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overview of the analysis. In Section 3, we introduce the demand func-

tion and the nesting structure. In Section 4, we derive the social welfare

function, establish symmetry, and characterize the first best optimum

number of firms and the optimal variety offered by each firm. In Sec-

tion 5, we compute the equilibrium game: firms decide first whether to

enter the market or not, then how many products to offer, and finally

how to price them. We then compare the market solution and the opti-

mal solution, and show that the market induces over-entry of firms and

under-provision of variety per firm. In section 6, we examine the case of

variable individual consumption. Section 7 concludes with some further

discussion.

2 Overview

Let there be n firms, indexed i = 1...n, and let Firm i produce mi prod-

ucts, indexed k = 1...mi. The demand for product ik (the kth product

of Firm i) is given by

Dik = NPiPk|i, (1)

where N is the number of consumers in the market, Pi is the fraction

of consumers buying from firm i, and Pk|i is the fraction of consumers

who choose product ik given that they have selected Firm i. Costs per

unit produced are constant at rate c, and the fixed costs for Firm i

producing mi products are K (mi) = k0 + k1mi. The optimal allocation

is symmetric, and at a symmetric allocation, Pi will equal 1/n while Pk|i

will equal 1/m.
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The optimum values of n and m are determined from costs and the

consumer benefit function that underlies the demand system. Specifi-

cally, the consumer benefit function may be written as a weighted sum of

the benefits from variety at each level, the two levels being the product

range and the firm. The relative importance of each level is described by

weights σA and σB that reflect the heterogeneity of the two levels. The

key component benefit functions are increasing and concave functions

that are written as A(m) and B(n) respectively, and so depend on the

amount of variety available at each level.

The market equilibrium is the outcome of a three-stage game involv-

ing entry, product ranges, and prices. The equilibrium number of firms

is determined by a zero profit condition, so N
nm
(p− c) = K (m), where

p is the price per unit. The equilibrium number of products per firm is

determined from a marginal profit condition that accounts for both the

direct effect of an extra product in the range and the strategic effect on

other firms’ prices. The latter effect is negative because further prod-

ucts provoke more price competition from rivals, which the firm wants

to avoid. The former effect depends on the extra benefit to consumers

from more product variety, and so is proportional to A0(m): this link to

the optimal problem is what enables us to find the direction of the bias

in the market system.

The equilibrium mark-up is determined from the derivative of Pi

when this is evaluated at a symmetric solution. This mark-up is in-

versely proportional to Ω(n), where Ω(n) is a third key component of
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the model. It, like B(n), is determined by the tastes underlying the con-

sumer demand function. Under symmetry, the marginal social benefit

from a further firm is proportional to B0(n) while the net revenue from

an nth firm is proportional to 1 /nΩ(n) (the constant of proportional-

ity being the same). The comparison of the equilibrium and optimum

numbers of firms is then made possible by using an inequality proved

in Anderson, de Palma, and Nesterov (1995); that B0(n) < 1 /nΩ(n) ,

implying roughly that the private incentive to enter exceeds the social

one. In the sequel, we flesh out the details.

3 Nested demand

Our model of choice is inspired from the nested logit model used in

many econometric applications (see e.g. Train, 2003). We model choice

as a two-step procedure. First, a consumer selects a firm (firms are

synonymous with nests), then she buys one unit of one of the variants

that the selected firm sells.

Recall from (1) that the demand for product ik (sold by Firm i) is

Dik = NPiPk|i, which is written as the product of two fractions: the

fraction of consumers buying from i and the (conditional) fraction of

those buyers who then choose the particular variant. This latter fraction,

Pk|i, is determined from a discrete choice model in the following manner.

Once a consumer has chosen a firm, she draws a vector of match values,

1|i... mi|i (one for each of the firm’smi variants), and chooses the variant
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for which the conditional utility

uk|i = y − pik + σA k|i, (2)

is greatest. Here pik is the price of Firm i’s kth variant, σA ≥ 0 para-
meterizes the degree of substitutability among i’s variants (for a given

distribution of 1|i... mi|i) and y is consumer income.

The N individuals are assumed to be statistically identical and inde-

pendent (that is, their preferences are the realization of the same prob-

ability distribution). The k|i are assumed to be i.i.d. random vari-

ables (across variants and individuals) with zero mean and unit vari-

ance, i = 1...n, k = 1...mi. Their common density function, f(.), is

twice differentiable and log-concave over a convex support I2 (that is,

ln f(.) is concave).7 Since the individuals are statistically identical, the

expected fraction of consumers selecting product k is equal to the condi-

tional probability that an individual, randomly chosen in the population

(given her previous choice of Firm i) selects product k. Therefore (1)

represents the expected demand for product ik. The conditional prob-

ability that an individual selects product k given she chooses nest i is

the probability that product k gives her the highest utility among all

alternatives in nest i. That is Pk|i = Prob{uk|i ≥ u |i, = 1...mi} for
k = 1...mi and i = 1...n, or:

7Most of the usual distributions used in economics (uniform, normal, Gumbell,

log-normal, beta, gamma, etc.) are log-concave. Log-concavity plays an important

role in showing existence of a Nash price equilibrium with differentiated products, as

shown by Caplin and Nalebuff (1991).
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Pk|i ≡
Z
B(k|i)

miY
l=1

f (el) de1...demi
. (3)

Here the integral is taken over the set B (k|i) of realizations ¡e1, ..., emi

¢
for which choice k in nest i yields the largest utility:

B (k|i) ≡
½
ek : y − pik + σAek = max

l=1...mi

(y − pil + σAel)

¾
.

This expression can also be written as a one-dimension integral:

Pk|i =
Z
I2

f(x)

miY
=16=k

F

µ
pi − pik

σA
+ x

¶
dx, (4)

where F (.) is the common cumulative distribution of k|i. To interpret

this expression, notice that F ((pi − pik) /σA + x) in (4) is simply the

probability that product ik is preferred to product i when the match

value for product ik is x. Given the i.i.d. assumption, the product term

in (4) is the probability that ik is the most preferred of i’s variants given

a draw x. Integrating over all possible x then gives the probability that

ik is bought, conditional on buying from i.

The choice of firm is determined in a similar manner using the attrac-

tiveness of the various firms. Let Vi denote the attractiveness of Firm i,

measured as the expected consumer surplus that a consumer selecting

Firm i should expect. Hence Vi is the expected value of the maximum

of the conditional utilities uk|i, i = 1...mi, so we can write

Vi = y +

Z
I2

...

Z
I2

max
k=1...mi

(−pik + σAek)
miY
l=1

f(el)de1...demi
. (5)
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Moreover, since the function f is continuous, then the sufficient con-

dition for differentiability under the integral sign holds, and we have

∂Vi /∂pik = −Pk|i (see (3)), where the domain of integration for demand
is the set of realizations

¡
e1, ..., emi

¢
such that product ik is the most

preferred - which is the domain B (k|i). In summary, we have:

Lemma 1. The within-nest conditional choice probabilities are given

by:

Pk|i = −∂Vi /∂pik . (6)

Note that (5) has all the properties of a (conditional) indirect utility

function (see Anderson et al., 1992), and that it is linear in income, y,

so that the result in the Lemma is effectively Roy’s Identity.

When all of i’s variants are priced at the same price, pi, then Vi

reduces to8

bVi = y − pi + σAA(mi), (7)

where

A (mi) = mi

Z
I2

xf(x)Fmi−1(x)dx. (8)

Since A (mi) is the expected value of the maximum of mi i.i.d. random

variables, it is an increasing and strictly concave function. This is be-

cause getting more draws raises the expected value of maximum but at

8Roy’s identity also applies here insofar as it yields the conditional demand as 1,

which is just the assumption that each consumer buys one unit.
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a decreasing rate.9 Thus A0 (mi) > 0 and A00 (mi) < 0. In what follows

we shall use a condition on the elasticity of A0 (mi):

ASSUMPTIONA:Marginal intra-nest surplus is inelastic with respect

to the product range:

mA00 (m)
A0 (m)

≤ −1.

Note that this assumption holds for standard log-concave distribu-

tions such as the uniform and power functions, exponential, and the

double exponential (in which case the elasticity is −1).
We can now describe the consumer’s choice of firm. Like variants,

firms are also differentiated. Brand name, firm location, waiting time,

and quality of service all contribute to firm differentiation. Consumer

utility from choosing Firm i is assumed to be given by

ui = Vi + σBεi, i = 1...n, (9)

where σB ≥ 0 parameterizes the degree of substitutability across firms.
We assume that the εi are i.i.d. random variables with zero mean and

unit variance with twice differentiable density function g(.), which is

log-concave over its convex support I1. Hence,

Pi = Prob{ui ≥ uj, j = 1...n} =
Z
I1

g(x)
nY

j=1
j 6=i

G

µ
Vi − Vj
σB

+ x

¶
dx, (10)

9When the random terms are distributed according to the double exponential

(also known as the Gumbel), i.e. F (x) = exp [− exp (−x /µ2 − γ)], where γ is Euler’s

constant, then A(mi) = lnmi, which is clearly increasing and strictly concave in mi.

In this case, the IIA property restricts the scope of the demand model.
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where G (.) is the common cumulative distribution of εi (cf. (4) and

(5)). The special case where the random terms are double exponentially

distributed at both levels corresponds to the nested logit model treated

by Anderson and de Palma (1992). The framework considered here

allows for a broad palette of possible demand patterns at each level.

It is important for what follows in the equilibrium analysis to find

the derivative of (10) evaluated where all the Vj’s are the same. This is

given by
∂Pi
∂Vi

=
n− 1
σB

Z
I1

g2(x)Gn−2 (x) dx =
Ω (n)

σBn
(11)

where we have thus defined

Ω(n) ≡ n(n− 1)
Z
I1

g2 (e)Gn−2 (e) de > 0. (12)

We return to this key magnitude in the analysis of equilibrium.

3.1 Properties of the demand system

The nested demand system has some interesting properties that are

worth pointing out before we proceed. As expected, the demand ad-

dressed to Firm i increases as Vi increases and decreases as Vj increases

(j 6= i). The demand derivative for Firm i’s product k with respect to

Firm j’s product h (recalling Dik = NPiPk|i and using Lemma 1) is:

∂Dik

∂pjh
=

∂Dik

∂Vj

∂Vj
∂pjh

= N
∂Pi
∂Vj

∂Vj
∂pjh

Pk|i = −N ∂Pi
∂Vj

Ph|jPk|i ≥ 0, i 6= j.

(13)

Thus variants produced by different firms are substitutes.

For variants produced by the same firm, we have

∂Dik

∂pi
= N

·
Pi
∂Pk|i
∂pi

− ∂Pi
∂Vi

P |iPk|i
¸
, 6= k. (14)
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The first term is non-negative, whereas the second is non-positive.10

Conditional on choosing Firm i, i’s variants are substitutes (first term);

however, when pil rises, Firm i becomes less attractive. This decreases

total demand for i’s variants and hence cuts into product k’s demand.

If the latter effect outweighs the former, variants sold by Firm i are

complements. Otherwise they are substitutes.

Complementarity can arise when the nest effect dominates, mean-

ing that a price rise deteriorates consumers’ evaluations of the firm so

much as to offset within nest substitution into the other variants. If all

goods are substitutes, then McFadden (1981) has shown that under cer-

tain regularity conditions (see Anderson et al., 1992, Ch. 3 for details)

the demand system can be rationalized by a single-stage discrete choice

random utility model with consumer taste heterogeneity described by a

distribution of taste parameters across products and individuals. The

present approach uses a discrete choice random utility model with two

stages, the first for the firm and the second for the particular variant.

Thus, if all variants are always substitutes (i.e., if (14) is always

positive), then the demand system does have a standard discrete choice

representation.11 Otherwise it does not. We shall show below that the

demand system is consistent with a representative consumer regardless.

10The elasticity form of (14) is pi
Dik

∂Dik

∂pi
= pi

Pk|i
∂Pk|i
∂pi

+
h
Vi
Pi

∂Pi
∂Vi

i h
pil
Vl

∂Vi
∂pi

i
. This shows

that variants within the same firm are substitutes if intra-nest elasticity (first term)

dominates the inter-nest elasticity.
11This condition holds, for example, for the nested logit model when σB ≥ σA.
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3.2 Consumer surplus

Just as Vi was interpreted as a conditional benefit function, the expected

maximum of the ui provides a utilitarian measure that we shall use as a

consumer welfare measure. The consumer surplus for the population of

N consumers is (cf. the construction of (5)):

CS = N

Z
I1

...

Z
I1

max
i=1...n

[Vi + σBei]
nY

j=1

g(ej)de1...den, (15)

with Vi given by (5). We show below how (15) enables us to recover

the demand system. Using an argument parallel to that substantiating

Lemma 1, we can establish a parallel property:

Lemma 2 The demand addressed to Firm i is given by:

Di = NPi =
∂CS

∂Vi
i = 1...n

and the demand for product ik is

Dik = −NPiPk|i = −∂CS
∂pik

, k = 1...mi, i = 1...n.

Indeed, the first relation is derived just as before, noting that the

derivative of (15) with respect to Vi uncovers the mass of consumers

who prefer i to the other nests. The second expression then follows from

the chain rule and Lemma 1:

∂CS

∂pik
=

∂CS

∂Vi

∂Vi
∂pik

= −NPiPk|i = −Dik

Once more, these demands are consistent with Roy’s identity and the

reason (as shown below in Proposition 1) is that (15) is a valid indirect

utility function.
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If Firm i sells all its mi variants at the same price and if all the firms

have the same attractivity (i.e. V̂i = V , i = 1...n), then, following the

same procedure as we did for V , we have CS = N [V + σAB(n)] where

B(n) = n

Z
I1

xg(x)Gn−1(x)dx, (16)

and B(.) is increasing and concave in n (i.e., B0 (n) > 0 and B00 (n) < 0).

Parallel to Assumption A, we now suppose:

ASSUMPTION B: Marginal inter-nest surplus is inelastic with

respect to the number of nests:

nB00 (n)
B0 (n)

≤ −1.

In the symmetric case (same prices and same number of variants per

firm) the expression (15) reduces to (cf. the argument preceding (7)):

CS = N [y − p+ σAA(m) + σBB(n)] . (17)

One interpretation of the demand model uses the choice of restaurant

meal as an example. The selection of a particular dish at a particular

restaurant can be seen as the outcome of a two-stage process. The first

stage is the choice of restaurant, and the second is that of a specific dish

offered there. The consumer knows that when she gets to the restaurant,

she will order the dish that pleases her most (as per (2)). However, before

getting there she does not know precisely what is on the menu that

day (but she does know her distribution of valuations of dishes). The

valuation she attributes to a specific restaurant comprises an individual-

15



specific match component (σBεi in equation (9)) plus the expected value

of choosing the best dish once gets there (Vi).

Another interpretation of the model is to treat the general form of

(15) as the indirect utility function of a representative consumer:

Proposition 1 The demand model (1) with (4) and (10) is consistent

with the preferences of a representative consumer whose indirect utility

function can be written as (15).

Proof. We need to show that (15) is an indirect utility function.

First note that (from (13)) ∂Dik/∂pjh = ∂Djh/∂pik since ∂Pi/∂Vj =

∂Pj/∂Vi (i 6= j) from the definition of Pi and Pj; from (14), ∂Dik/∂pil =

∂Dil/∂pik since ∂Pk|i/∂pij = ∂Pl|i/∂pik. Hence the matrix of cross-

derivatives is symmetric. This property is equivalent to the symmetry

of the Slutsky matrix for the representative consumer. We also require

that the indirect utility function be quasi-convex in prices (see also Mc-

Fadden, 1981). Indeed, here it is convex in prices since the maximum

of linear functions is convex. The demand model is therefore consistent

with the preferences of a representative consumer whose indirect utility

function is given by (15).

The representative consumer approach provides an alternative theo-

retic underpinning to the demand model. Representative consumer mod-

els (with different structural assumptions) have been previously used by

Spence (1976) and Dixit and Stiglitz (1977) to compare optimum with

equilibrium product diversity when firms sell but one product each.
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4 Welfare analysis

On the cost side, let K(mi) = k0 + k1mi denote the fixed costs of a

firm with mi variants, with k0 therefore the fixed cost per firm. Average

variable production costs for Firm i are constant and given by c per unit.

These cost assumptions can correspond to a single production line which

must be closed down (to alter specifications) to switch production to a

different variant: the more often the line is closed down to switch, the

bigger the cost.12

The welfare maximand is assumed to be the sum of consumer surplus

and firm profits. The social surplus analysis is simplified using prices to

decentralize the optimum: clearly marginal cost pricing does the trick.

We show in Appendix 1 that optimality requires that each firm produces

the same amount of each of its variants and that all product ranges must

be the same size. Hence each firm produces the same quantity of each

of m products. This renders the welfare function, W , quite simple, as

the following result summarizes:

Proposition 2 The social optimum entails each firm producing the same

number of variants, m, and producing an equal quantity, N/mn, of each

12An alternative cost assumption, we can consider Firm i as running mi different

production lines, each with its own fixed and variable costs. The two cost assumptions

are formally equivalent when marginal production costs are constant. The model can

readily be extended (but with additional notational heaviness) to convex production

costs.
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variant. The welfare function is

W (m,n) = N [y + σAA (m) + σBB (n)]− nK (m)− cN. (18)

We can now determine the optimal values of m and n.

4.1 Optimum number of firms and variety

Given Proposition 2, the first-order condition for the optimal choice of

m implicitly defines the locus mo (n) which is the optimal product range

for a given number of firms. Thus mo solves13 ∂W (m,n) /∂m = 0, or

NσAA
0 (mo)− nk1 = 0. (19)

The slope of this locus is

dmo

dn
=

k1
NσAA00(mo)

< 0, (20)

which is necessarily negative since A00 < 0. The larger the number of

firms, the more narrow the desired product range of each one because

more firms can substitute for range size.

Likewise, the first-order condition for the optimal choice of n implic-

itly defines the locus no (m) which is the optimal number of firms for a

given product range and solves ∂W (m,n) /∂n = 0, or

NσBB
0 (no)−K (m) = 0. (21)

13Note that this also corresponds to setting λ = 0 in (41) in Appendix 1 for mj ,

since when M is optimally chosen in the maximization problem the marginal social

benefit of an extra variant is identically zero.
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The corresponding derivative is

dno

dm
=

k1
NσBB00(no)

< 0, (22)

where the negative slope follows from the concavity ofB (.). The solution

does not involve either the number of firms nor the product range size

tending to infinity since the marginal benefit from each source of diversity

goes to zero as n or m get large enough while marginal costs are strictly

positive. The solution does not involve either value going to zero as long

as the corresponding costs are low enough, which we assume.

The loci mo (n) and no (m) (see equations (19) and (21)) are illus-

trated in Figure 1. The intersection of the two loci is the social optimum.

Insert here Figure 1: The optimal number of firms and product ranges.

In the Figure, we have drawn the curve mo (n) as more shallow than

no (m) around the intersection point. We now argue that this relation

must hold under our assumptions. From (20) and (22), this slope con-

dition is
k1

NσAA00(mo)
>

NσBB
00(no)

k1
. (23)

Now, this is also the condition that the determinant of the matrix

of second derivatives of W be strictly negative. Since (19) and (21)

are strictly decreasing in mo and no, respectively, the Hessian of W

is negative definite if the inequality above holds. Thus, if (23) holds

at any intersection of the two loci, then since the loci are continuous
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functions, we know that they can only intersect once and that this unique

intersection point must be a local maximum. The solution does not

involve either the number of firms nor the product range size tending to

infinity since the marginal benefit from each source of diversity goes to

zero as n orm get large enough while marginal costs are strictly positive.

The solution does not involve either value going to zero as long as the

corresponding costs are low enough, which we assume.

Therefore there is an intersection of the two loci, it is unique, and

constitutes a global maximum of W (m,n) if (23) holds there. For (23)

to hold at any intersection of the two loci, then it must be that (19) and

(21) hold, so that we can use these relations to substitute out the µ’s

and write the desired condition as

moA00(mo)

A0(mo)
<

µ
mok1
K (mo)

B0(no)
noB00(no)

¶
. (24)

Defining ηA0 as the (absolute value of the) elasticity of A
0 and similarly

for ηB0 and ηK =
k1m
K(m)

< 1, we can rewrite this inequality as:

ηA0 >
ηK
ηB0

.

Assumptions A and B imply ηA0 ≥ 1 and ηB0 ≥ 1. The inequality
then must hold since ηK < 1 (marginal cost for increasing the product

range is lower than average cost).

Hence, (19) and (21) characterize the unique global maximum of (18),

and via Proposition 2, of the social welfare. To summarize:

Proposition 3 Under Assumptions A and B, the social optimum num-

ber of firms and the optimum variety are the unique positive solution of
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(19) and (21).

When σA rises, themo (n) locus shifts up in Figure 1 while the no (m)

locus remains unchanged. Thus a greater preference for variety within

the firm leads to larger product ranges which leads to fewer firms since

the two dimensions of diversity are substitutes. Conversely, the case of

single product firms arises for σA is small enough. A similar analysis

implies that the optimal number of firms decreases as σB decreases but

that range size rises. For σB low enough there is optimally a single firm

on the market.

The comparative static properties with respect to market size, N ,

and cost parameters, also involve simple shifts of the loci in Figure 1.

They are quite intuitive and are left to the reader.

5 Market equilibrium

We are interested in characterizing the symmetric equilibrium at which

ne firms each produce me products.14 We proceed in two steps. First

we consider the symmetric equilibrium choice of product ranges for a

given number of firms, me(n). Then we discuss the equilibrium number

of firms, as determined by the zero profit condition, when all firms have

the same size of product range. This gives the ne(m) locus. Throughout

we ignore the integer constraint and treat both n and m as continuous

14We shall not be concerned here about showing that such an equilibrium exists,

although we note that existence and symmetry was proved for the special case treated

in Anderson and de Palma (1992), so we are not dealing with a vacuous problem.
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variables (as in the previous section). The intersection of the ne(m) and

me(n) loci gives the equilibrium.

5.1 Equilibrium price

The equilibrium is that of a three-stage game. In the first stage, firms

enter the market. In the second stage they choose product ranges, and

in the third stage they choose prices, which are the same for all the

products of any firm.15 At each stage they internalize the effects of their

decisions on the subsequent sub-game equilibria. In the last (price) stage,

if all firms produce the same number of variants, m, and all other firms

charge the same price for all their variants, then the inter-firm choice

probabilities are independent of m, so that profit is

πi = N (pi − c)Pi(V̂i, V̂−i)−K(m), (25)

where the second argument in Firm i’s choice probability function, V̂−i,

denotes the vector of all other expected surpluses, given that each firm

charges the same price for all its variants.

The candidate symmetric equilibrium price satisfies:

∂πi
∂pi

¯̄̄̄
Sym

= N (pi − c)
∂Pi(V̂i, V̂−i)

∂bVi ∂bVi
∂pi

¯̄̄̄
¯
Sym

+
N

n
= 0.

Using (11) and recalling ∂bVi /∂pi = −1, the equilibrium price is given

explicitly by:

p (n) = c+
σB
Ω(n)

, (26)

15It can be readily shown that each firm optimally sets the same price for each of

its variants. This property follows from maximizing profit within the nest, subject

to the constraint of providing a given expected surplus level, V̂i.
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where Ω(n) is defined in (12).

Note that the equilibrium price (26) is independent of m since A(mi)

is the same for all firms. This is because the product range effect cancels

out in a cross-firm comparison of attractiveness. The equilibrium price is

a simple mark-up that depends only on the degree of firm heterogeneity

and the number of firms. Since Ω (n) is increasing under log-concavity

of g (.) (see Anderson et al., 1995), the price of each firm’s product range

falls the more competing firms there are.

The quantities Ω(n) and B0(n) depend on the density function g (.)

and satisfy the following property.

Lemma 3 (Anderson, de Palma, and Nesterov, 1995). If the density

function g (.) is log-concave, then nΩ(n)B0(n) < 1.

Anderson, de Palma, and Nesterov (1995) actually show that16

B (n)−B (n− 1) =
Z
I1

[1−G (ε)]Gn−1 (ε) dε ≤ 1

nΩ(n)
.

Since B (.) is strictly concave, the left-hand-side exceeds B0 (n) and so

the inequality given in the Lemma above follows immediately.

5.2 Equilibrium versus optimum varieties

We first determine the equilibrium product range, for n fixed. Then, we

consider the free entry equilibrium. In the product range stage, suppose

16This version would enable us to explicitly consider the issue that the number of

firms should be an integer. The product line analysis is rather more cumbersome

with explicit integer constraints though.
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firm i produces mi variants while all other produce m variants each.

Firm i’s profit is then

πi = N (pi − c)Pi(mi, m̄; pi, p̄)−K(mi), (27)

where K (m) = k0 + k1m. Taking the derivative with respect to mi we

have
dπi
dmi

= N (pi − c)

µ
∂Pi
∂mi

+
∂Pi
∂p̄

dp̄

dmi

¶
− k1, (28)

where dp̄/dmi denotes the change in the equilibrium price set by all

other firms as Firm i increases its product range. Now, noting that

∂Pi
∂mi

= −σAA0(mi)
∂Pi
∂pi
, and that ∂Pi

∂p̄
= −∂Pi

∂pi
, so that:

µ
∂Pi
∂mi

+
∂Pi
∂p̄

dp̄

dmi

¶
= −∂Pi

∂pi

µ
σAA

0(mi) +
dp̄

dmi

¶
.

Using (pi − c) ∂Pi
∂pi
+Pi = 0 (i.e. the first-order condition for pricing) and

evaluating equation (28) at a symmetric equilibrium for the equilibrium

choice of variety, denoted by me yields:

NσAA
0(me) +N

dp̄

dmi
− nk1 = 0. (29)

This equation characterizes the me (n) locus. In comparison with equa-

tion (19), the only difference between the equilibrium and the optimum

is the term Ndp/dmi which can be interpreted as a strategic effect on

equilibrium prices. It is shown in Appendix 2 that this term is negative.

Lemma 4. Rivals’ equilibrium prices fall as Firm i boosts its product

range: dp/dmi < 0.
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The equilibrium product range for a fixed number of firms, me(n), is

therefore smaller than the optimum one. In terms of Figure 1, theme(n)

locus is below the mo(n) locus. As seen from the analysis above, the

difference is completely attributable to a strategic effect that competing

firms internalize. Adding a variant leads to more intense competition

and lower prices of rivals’ variants. At the margin, firms avoid too much

provocation by holding back on their product ranges.

Now consider the equilibrium number of firms for given symmetric

product ranges, m. This is determined by the zero profit condition:

π =
N

n
(p(n)− c)−K(m) = 0,

Using (26), the equilibrium number of firms, ne, of firms satisfies:

NσB
neΩ(ne)

−K(m) = 0. (30)

This equation characterizes the ne (m) locus and is directly comparable

with (21) for the optimal number of firms. The ne(m) locus lies right

of the no(m) locus if nΩ(n)B0(n) < 1. This is precisely the condition in

Lemma 3.

Insert here Figure 2: Equilibrium and optimum product variety

The consequent results are illustrated in Figure 2, where we see that

the optimum number of firms is smaller than the equilibrium number

and the optimum product variety is larger than the equilibrium one. An-

derson, de Palma, and Nesterov (1995) established over-entry of single-
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product firms: the special assumptions made here allow us to establish

this property more broadly.17 We summarize our results in

Proposition 4 Given unit demand by consumers, the market equilib-

rium involves too many firms and too few products per firm with respect

to the optimum.

Since firms hold back on product ranges to lessen price competition,

prices stay excessively high so that profits exceed the social value of a

firm and too many firms enter the market. In the next section we relax

the assumption of unit demand.

6 Variable consumption

The analysis so far has treated unit demand by consumers insofar as

each consumer has been assumed to buy one unit of the preferred good

independently of the price level. In this section, we broaden the vista to

allow the quantity demanded to depend in a decreasing fashion on price.

We retain the discrete choice assumption at the level of choice of good

to buy, but we allow the quantity of that good bought to decrease with

price. We make extensive use of Roy’s identity in the demand relations.

Our extension allows us to pick up the classic case of CES preferences

here extended to the nested CES.
17In the earlier analysis, the equilibrium and optimum coincide only if the taste

density is log-linear. Here, even if this condition holds for g (.) so that the no (m)

locus is coincident with the ne (m) locus, the divergence of the other loci suffices to

encourage strict over-entry.

26



The basic demand structure is as above except that we write demand

as

Dik = Nq (pik)PiPk|i,

where the function q (.) is to be interpreted as a conditional demand

function (conditional on choosing product ik) and the probability com-

ponents are much as before.

The extension works as follows. Let the conditional (indirect) utility

of consumer buying variant (ik) be uik = y+v (pik)+σAεik, where v (pik)

is the conditional surplus function. This surplus function is increasing

and convex. Applying Roy’s identity yields the conditional demand as

q (pik) = −v0 (pik).18 Given that the consumer who selects Firm i will

choose the variant ik that maximizes uik, the conditional probability of

choosing good ik in nest i when all intra-nest prices are equal to pi is just

Pk|i = 1/mi and the expected demand for the variants sold by Firm i is

just Nq (pi)Pi. Here, Pi is determined by the attractivity of the various

nests, so that Pi = Prob{Vi + σBεi ≥ Vj + σBεj, j = 1...n}, as before,
or:

Pi =
Z
I1

g(x)
Y
j 6=i

G

µ
Vi − Vj
σB

+ x

¶
dx, i = 1...n,

where Vj = y+ v (pj)+σAA (mj), when Firm j set the same price pj for

all of its variants. We return to these expressions below when we find

18In the analysis up to here we have assumed effectively that v (pik) = −pik;
applying Roy’s identity yields the conditional demand as unity, which is consistent

with the unit demand assumption.
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the market equilibrium.

Proposition 5 The nested demand model with variable consumption

is consistent with the preferences of a representative consumer whose

indirect utility function is given by:

CS = N

Z
I1

...

Z
I1

max
i=1...n

[Vi + σBei]
nY

j=1

g(ej)de1...den,

where

Vi = y +

Z
I2

...

Z
I2

max
k=1...mi

(v (pik) + σAek)

miY
l=1

f(el)de1...demi
.

Proof. Following the lines used in the proof of Proposition 1, we

need to show that the matrix of cross-derivatives is symmetric, and that

the indirect utility function is quasi-convex in prices. The first property

follows since ∂CS/∂pjh = NPj∂Vj/∂pjh and ∂Vj/∂pjh = −q (pjh)Ph|j,
so ∂CS/∂pjh = −Djh. (Indeed, the cross-derivative is ∂2CS/∂pjh∂pik =

q (pjh) q (pik)Ph|jPk|i∂Pi/∂Vj, from which symmetry is apparent since in

discrete choice models ∂Pi/∂Vj = ∂Pj/∂Vi). The second argument fol-

lows since v (.) is convex and therefore V (.) is convex in prices (this is

a property of the maximum operator). Moreover, the function CS (.) is

then convex in prices for the same reason.

We now find the optimum allocation. Under symmetry, all of the

V 0s are equal and the social surplus is given by

W = N [y + v (p) + σBB(n) + σAA(m)] + nπ. (31)

We look for a second-best optimum such that firms are constrained to

make zero profits. This means that aggregate net revenues minus the
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total set-up cost is zero or

nπ = N (p− c) q (p)− nK(m) = 0. (32)

The corresponding Lagrangian L (m,n, p, λ) is:

L=N [y + v (p) + σAA(m) + σBB(n)]+(1 + λ) [N (p− c) q (p)− nK(m)] ,

where λ denotes the Lagrangian multiplier associated to the aggregate

zero-profit constraint. The first-order condition for the locus mo (n) is

given by ∂L /∂m = 0 , or:

NσAA
0 (mo) = (1 + λ)nk1. (33)

The locus no (m) is given by ∂L /∂n = 0 , or

NσBB
0(no) = (1 + λ)K(m). (34)

The pricing condition is given by ∂L /∂p = 0 , or, recalling q (pik) =

−v0 (pik),
(1 + λ) =

q (p)

q (p) + (p− c) q0 (p)
, (35)

and the final first order condition is (32).

We now derive the analogous conditions for the equilibrium. The

profit of Firm i is

πi = N (pi − c) q (pi)Pi −K (mi) .

The optimality condition for the number of products offered by Firm i

is:
dπi
dmi

= N (pi − c) q (pi)

·
∂Pi
∂mi

+
∂Pi
∂V

∂V

∂mi

¸
− k1,
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where V denotes the common attractivity of each other firm. Note

that V incorporates the sub-game equilibrium prices ensuing from the

product range game. Using an argument analogous to that in Appendix

2, ∂V
∂mi

is positive: rival firms decrease their equilibrium prices (as so raise

their attractivities) when Firm i increases its product range. Note too

that the expression for dπi
dmi

also uses the envelope theorem in the fact

that pi is optimally chosen by Firm i in the pricing sub-game. Now, ∂Pi
∂mi

may be decomposed as ∂Pi
∂mi

= ∂Pi
∂Vi

∂Vi
∂mi
, while ∂Pi

∂V
= −∂Pi

∂Vi
. Substituting,

we get:
dπi
dmi

= N Ψ

·
∂Vi
∂mi

− ∂V

∂mi

¸
− k1, (36)

where Ψ = (pi − c) q (pi)
∂Pi
∂Vi
.

We can use the first-order condition for the choice of pi to rewrite Ψ.

This pricing first-order condition (dπi
dpi
= 0) is:

q (pi)Pi + (pi − c) q0 (pi)Pi +Ψ
∂Vi
∂pi

= 0. (37)

Substituting Roy’s identity (∂Vi
∂pi

/∂Vi
∂y
= v0 (pi) = −q (pi)), we get:

Ψ =
q (pi) + (pi − c) q0 (pi)

q (pi)
Pi. (38)

At a symmetric equilibrium, Pi = 1/n, and noting that ∂Vi
∂mi

=

σAA
0 (m), we get:

dπi
dmi

|sym = N
q (p) + (p− c) q0 (p)

q (p)

1

n

·
σAA

0 (m)− ∂V

∂mi

¸
− k1 = 0

or
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N

·
σAA

0 (m)− ∂V

∂mi

¸
=

q (p)

q (p) + (p− c) q0 (p)
nk1. (39)

Comparing this expression with the relation for the optimum, (33) with

(35), for the same values of n and p, the value ofm solving this expression

is lower, so that me (n) < mo (n).

Similarly, the free entry condition is: π = N (p− c) q (p) /n−K (m) =
0. Recall that Ψ = (pi − c) q (pi)

∂Pi
∂Vi

and that ∂Pi
∂Vi

= Ω(n)
σBn

(by (11)) so

that this zero profit condition becomes NΨσB/Ω (n) = K (m). Now

from (38) we can write the equilibrium condition as:

NσB
nΩ (n)

= K (m)
q (p)

q (p) + (p− c) q0 (p)
. (40)

From (35), the LHS is simply K (m) (1 + λ) when the price is the

same as at the optimum (i.e., when the zero-profit constraint holds).

Comparing then (34) with (40) and using Lemma 3 (nΩ (n)B0 (n) < 1)

shows that for the same values of m and p, the value of n solving (40)

is higher. This means that ne (m) > no (m).

In summary, both relations hold just as in Figure 2 for the extension

to variable (price-sensitive) individual demand. This implies that the

conclusion of the previous section applies to this case, with the qual-

ification that the welfare benchmark is the second best subject to a

zero-profit constraint. In summary:

Proposition 6 The market equilibrium involves too many firms and too

few products per firm with respect to the zero-profit constrained second-

best social optimum.
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7 Conclusions

We have emphasized in this paper that there is a systematic market

bias towards over-entry of firms and too narrow product lines. The

latter effect provokes and attenuates the former: because product line

competition is strategically restricted to moderate price competition,

profits are kept higher than is optimal. This in turn encourages and

exacerbates the excess entry that is the hallmark of models on optimal

and market variety for single product firms.

Our analysis follows the Chamberlin (1933) tradition in its interest in

comparing equilibrium and optimal diversity, but there is another par-

allel that bears developing. Chamberlin looked at single-product firms

and assumed a production cost structure that is familiar in standard

perfectly competitive analysis, a U-shaped average cost function. He

noted that his “tangency condition” of the perceived demand (dd) with

average production cost implied that production is below minimum effi-

cient scale, namely the “excess capacity” theorem. He then noted that

this configuration may be close to the optimum because a preference

for product variety implies that production efficiencies ought not be ex-

hausted. Instead, production at a lower scale enables more varieties to

be produced, albeit at a higher price per unit bought. We have concen-

trated on the product range of multiproduct firms, but in the text have

assumed that production costs are constant as a function of both output

per variety and the number of varieties. The more interesting of the two

generalizations is to allow the cost function for varieties to be U-shaped
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as a function of mi.

That is, suppose now that K (m) /m has the classic U shape as a

function of m (with K 0 (m) passing through its minimum).19 Notice

first that the (zero profit constrained) optimum solution has the range

size below the minimum average cost if consumers value products pro-

duced by different firms more than an extension in the range of a given

firm at the margin.20 The equilibrium relation then looks similar to a

Chamberlinian tangency, although his demand curve is replaced by an

average revenue curve per product. This slopes down because of the

cannibalization effect and the property that a larger range toughens the

competition. This tangency equilibrium is at a lower range level than

the optimal range by the result we have emphasized that firms’ keep

their ranges too narrow.

Our equilibrium analysis also yields some predictions for empirical

regularities. For example, larger markets (higher N) typically attract

more firms in standard models of product differentiation (and in actual

markets, comparing across cities or countries). This source of higher

product diversity underscores a key source of gains from trade in the

context of globalization. The endogenous product ranges in the current

19The elasticity form of the optimality condition corrsponding to (24) is now ηA0+

ηK0 >
ηK
ηB0
, where ηK0 is the elasticity of K0 (m).

20To see this, suppose that product ranges were above the minimum efficient scale.

Then reducing product ranges and creating new firms at the same time (in order

to keep the total number of products constant) would raise consumer benefits from

variety. At the same time this would reduce average production costs per variety, so

there is a distinct gain in shifting.
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analysis provide a further source of potential gains from market expan-

sion. Larger markets provide the incentive for firms to bring in broader

product ranges (for given firm numbers) since the fixed costs of bring-

ing in more products is spread over a broader consumer base. Larger

markets also lead more firms to enter, for any given product range size.

In terms of Figure 2, both curves shift out with N . Thus one would

expect both wider product ranges and more firms in larger markets, so

two types of increased variety.

Finally, the over-entry result bears comment. Our solution concept

uses free-entry equilibrium with many firms driving profit to zero. In

markets that are small relative to costs of firm and product introduction,

there is room for more complex strategic behavior with respect to entry

deterrence. In particular, it was noted in the text that broader product

ranges give rise to more intense competition. For entry deterrence, this is

a good thing (see also Schmalensee, 1979). Indeed, insofar as one might

then expect fewer firms, and more products per firm than our current

solution, this type of deterrence equilibrium may be closer to the social

optimum than the free entry equilibrium we consider. The deterrence

solution remains an open research question.
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Appendix 1

Proof of Proposition 1. Assume that Firm i has product range mi.

Optimality requires that it charges the same price, denoted pi, for all

its variants. Under symmetry, Vi reduces to bVi = y − pi + σAA(mi) (see

(7)).

Using (15) we can write consumer surplus as CS = CS
hbV1...bVni and

we recall from Lemma 2 that ∂CS/∂bVi = −∂CS/∂pi = Di. Suppose

the total number of variants is fixed at M =
Pn

i=1mi. The choice of

the number of variants per firm is given by the solution to the following

Lagrangian:

max
{m1...mn}

CS
hbV1...bVni+ nP

i=1

(pi − c)Di

−
nP
i=1

K(mi) + µ

·
M −

nP
i=1

mi]

¸
Note first that the optimal choice of prices requires

nX
i=1

(pi − c)
∂Di

∂pj
= 0, j = 1..n.

This is clearly satisfied by marginal cost pricing.21 Now note that

∂CS
hbV1...bVni
∂mj

=
∂CS

∂bVj σAA0 (mj) = σAA
0 (mj)Dj.

Given that prices are optimally chosen, and treating the mi as perfectly

divisible, the first-order conditions to the maximization problem yield

σAA
0 (mj)Dj +

nX
i=1

(pi − c)
∂Di

∂mj
− k1 = µ. (41)

21It is also satisfied by choosing identical markups over marginal cost, sincePn
i=1 ∂Di/∂pj = 0, for all j = 1...n.
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Since mark-ups are identical, the middle term on the LHS is zero, and

thus σAA0 (mj)Dj − k1 = µ, j = 1...n. This implies that mj = mi =

m, i, j = 1...n, since A(.) is concave and Dj is increasing in mj. Q.E.D.

Appendix 2

Proof of Lemma 4.

We show here that dp̄/dmi < 0, i.e. that competitors decrease their

prices p̄ as a deviant firm (Firm i) increases its product range, mi. The

first-order conditions defining the price sub-game are

(pj − c)
∂Pi
∂pj

+ Pj = 0, j = 1...n. (A1)

For the deviant firm we have

Pi =
Z
I1

f(x)F n−1(α+ x)dx, (A2)

where α ≡ [A(mi) − A(m̄) + p̄ − pi]/σA, the relative attractiveness of

firm i. We henceforth set σA = 1 to ease clutter. Note also that

∂Pi
∂pi

= −(n− 1)
Z
I1

f(x)f(α+ x)Fn−2(α+ x)dx. (A3)

For the other firms, we must evaluate Pj and ∂Pj/∂pj at a symmetric

common price, p̄, so

Pj = P =
Z
I1

f(x)F n−2(x)F (−α+ x)dx (A4)

and
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∂Pj
∂pj

(p̄) = −
Z
I1

(n− 2)f2(x)F n−3(x)F (x− α) + f(x)Fn−2(x)f(x− α)ds

(A5)

Note this is not the derivative of (A4) since (pi, p̄) should be the Nash

equilibrium price sub-game stemming from (mi, m̄).

To find dp̄/dmi, we totally differentiate the two types of (A1) - for

firm i and for a representative firm k 6= i. Define

h(pi, p̄,mi) = (pi − c)
∂Pi
∂pi

+ Pi = 0 (A6)

and

g(pi, p̄,mi) = (p̄− c)
∂Pk(p̄)
∂pk

+ P = 0, (A7)

where all arguments are then to be evaluated at a symmetric solution,

mi = m̄ and pi = p̄. From (A6) and (A7) we have

dp̄

dmi
=

∂g
∂pi

∂h
∂mi
− ∂g

dmi

∂h
∂pi

∂h
∂pi

∂g
∂p̄
− ∂g

∂pi

∂h
∂p̄

. (A8)

The denominator is the product of own effects minus the product of

cross effects, which we assume positive corresponding to the standard

stability condition. Now, ∂g
∂pi
= − ∂g

∂α
and ∂g

∂mi
= A0(mi)

∂g
∂α
, so we wish to

show that ∂g
∂α
(−A0(mi)

∂h
∂pi
− ∂h

∂mi
) < 0. From (A6), the term in brackets

is simply −A0(mi)
∂Pi
∂pi

> 0, so it suffices to show that ∂g
∂α

< 0. From (A7)

we have

∂g

∂α
= (p̄− c)

∂
³
∂Pk(p̄)
∂pk

´
∂α

+
∂P
∂α

. (A9)
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We can use the first order condition (A7) to simplify the remaining terms

so that it suffices to show that

− P
∂Pk(p̄)
∂pk

∂
³
∂Pk(p̄)
∂pk

´
∂α

+
∂P
∂α

< 0. (A10)

Now, evaluated at a symmetric equilibrium, (pi = p̄, mi = m̄), P = 1/n

and (see (A4) and (A5))

∂Pk(p̄)
∂pk

=
1

(n− 1)
∂P
∂α

= −(n− 1)
Z
I1

f2(x)Fn−2(x)dx

Furthermore, from (A5) we have

∂
³
∂Pk(p̄)
∂pk

´
∂α

¯̄̄̄
¯̄
α=0

=

Z
I1

(n− 2)f3(x)Fn−3 + f 0(x)f(x)F n−2(x)dx,

so (A10) becomes

R
I1
[(n− 2)f3(x)Fn−3(x) + f 0(x)f(x)Fn−2(x)] dx <

n(n− 1)
hR

I1
f2(x)Fn−2(x)dx

i2 (A11)

To prove (A11), recall that log-concavity of f (·) implies that Pi is log-
concave. The latter condition implies that [∂Pi/∂α] /Pi is decreasing in

α, or, using (A2) and (A3), this implies that the expression

(n− 1) R
I1
f(x)f(α+ x)Fn−2(α+ x)dxR

I1
f(x)Fn−1(α+ x)dx

is a decreasing function of α. Evaluating the derivative at α = 0 means

that
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(n−1)
n

R
I1
[(n− 2)f3(x)Fn−3(x) + f 0(x)f(x)F n−2(x)] dx

−(n− 1)2
hR

I1
f2(x)F n−2(x)dx

i
< 0.

This condition is equivalent to (A11). Q.E.D.
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Figure 1: The optimal number of firms and product ranges 
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Figure 2: Equilibrium and optimum variety 
 
 

 

me 

m 

no

mo 

nne O 

mo(n) 

no(m) 

ne(m) 

me(n) 


