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Abstract. This paper presents a theoretical model of noisy introspection designed to explain
behavior in games played only once. The equilibrium determines layers of beliefs about others’
beliefs about ..., etc., but allows for surprises by relaxing the equilibrium requirement that belief
distributions coincide with decision distributions. The paper contains a convergence proof and
reports estimated introspection and error parameters for data from 37 one-shot matrix games.
The accuracy of the model is compared with that of two alternative approaches: the Nash
equilibrium and the logit quantal response equilibrium.
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I. Introduction

Game theory is a collection of mathematical models that are used to predict and explain

behavior in strategic situations where players’ optimal decisions depend on what other players

are expected to do. An equilibrium in a game is a state of rest in the sense that no player would

want to change their own strategy unilaterally, knowing what strategies others are using. This

notion of equilibrium was formalized by John Nash, in a 1950 Proceedings of the National

Academy of Sciences paper that became the basis of his Nobel Prize in Economics almost fifty

years later. In graduate school, Nash and his fellow students learned about John von Neumann

and Oscar Morgenstern’s work on zero-sum games. While applications of zero-sum games were

limited to simple parlor games in which one player’s gain is another one’s loss, the U.S. Air

Force was already trying to apply game theory to strategic bombing plans. Ironically, it was

Nash, the graduate student, whose work helped game theory achieve the central role that von
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Neumann and Morgenstern had envisioned. In economics, the Nash equilibrium is now as

frequently used to model small-group interactions as the classic notions of supply and demand

are used in the analysis of "thick" markets with large numbers of traders.

Biological and economic market interactions often occur repeatedly, and the notion of

equilibrium is appropriate when decision makers have learned what others can be expected to do.

Many recent applications of game theory outside of economics, however, are more accurately

modeled as games played only once, e.g. legal disputes and international conflicts. If game

theory is to become a unifying theory of social science, we must develop models that predict

behavior in one-shot interactions where it is not possible for players to learn what to expect. In

such cases, it may or may not be appropriate to assume that some process of introspection leads

players to a Nash equilibrium. Humans are capable of many layers of speculation about possible

actions and reactions, like the inspector in Edgar Allen Poe’s The Purloined Letter who tries to

think about where the thief thinks the inspector will look, and where the thief thinks the inspector

thinks the thief will hide the letter, etc. In fact, it is well known that precise iterated thinking

of this kind will lead to a Nash equilibrium, if it converges at all. More analysis is needed,

however, if there are multiple Nash equilibria, or if people are more and more uncertain about

what others think, about what others think they think, etc. This paper presents a new model of

noisy introspection designed to explain behavior in single-shot games.

II. Some Simple Games

Since game theory makes precise predictions on the basis of the payoffs and game

structure, it is natural to test this theory in controlled experiments where the players’ money

payoffs depend on their own and others’ decisions. Many of the initial tests of the Nash’s theory

involved repeated plays of a game for which the outcome with the highest total payoffs for both

players is not an equilibrium. In Table 1, for example, each player chooses between decisions

labeled R or S, with Row’s payoffs listed on the left. The lower-right box shows three variations

of Row’s payoffs that do not alter the fact that this outcome maximizes the sum of the players’

payoffs. This (R, R) outcome is risky in the sense that a unilateral deviation by Row would

increase Row’s payoffs to 25. Anticipating that, Column may also consider switching to S, and
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(S, S) is the only equilibrium with no unilateral incentive to deviate. Notice that iterated thinking

in this manner focuses attention on the Nash equilibrium. In experiments with repeated plays

of games like this, it is common to observe a significant amount of cooperative (R, R) outcomes.

Nash criticized initial tests of his theory using repeated plays with the same individuals, arguing

that the theory should be applied to the whole multiple-round interaction (Nasar, 1998).

In this paper, we will calibrate our analysis using data from 37 one-shot games reported

Table 1. A One-Sided Prisoner’s Dilemma Game (Row Payoff, Column Payoff):
Three Variations Affecting Row’s "Incentive to Defect"

Column Player’s Decision

S R

Row Player’s
Decision

S 6, 12 25, -4

R -4, 18 9 / 18 / 24, 25

by Guyer and Rapoport (1972), including seven asymmetric prisoner’s dilemma games, three of

which are shown in Table 1. The changes in Row’s payoffs from 9 to 18 to 24 successively

increase the attractiveness of the joint-maximizing outcome for Row, without changing the

location of the unique Nash equilibrium at (S, S). These changes caused a sharp reduction in the

incidence of S choices by Row players, from 90% to 84% to 71%. While the best responses that

determine a Nash equilibrium only depend on the signs, not the magnitudes, of payoff

differences, the data seem to be affected by magnitudes in an intuitive manner.

Much recent work in game theory pertains to games with multiple equilibria, as in each

of the three variations of the "coordination game" in Table 2, also taken from Guyer and

Rapoport (1972). The S decision is the "maximin" strategy; it maximizes the minimum payoff,

so we will sometimes refer to S as "safe" and R as "risky." The risky decision R is best for each

if the other will also choose R, but S is best if the probability of the other playing S is

sufficiently high. These best response functions for the first variation of this game are shown

in Figure 1 as dark lines, with Row’s probability of S on the vertical axis and Column’s

probability of S on the horizontal axis (please ignore the dotted lines for now). Row’s best
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response stays on the bottom of the figure on the left side, but jumps to 1 as soon as Column’s

Table 2. A Coordination Game with Multiple Equilibria:
Three Variations that Reduce the Risk for Row to "Force" Column

Column Player’s Decision

S R

Row Player’s
Decision

S 10, 19 4, -7

R -14 / -7 / -1, 4 19, 10

probability of S exceeds .39. The crossings of the best response functions at (0,0) and (1,1)

represent Nash equilibria in pure strategies, and the crossing at (0.39, 0.19) is an equilibrium in

randomized strategies.

In the first variation of this game, the percentages of S choices were 89% and 92% for

Row and Column players respectively in the one-shot games reported by Guyer and Rapoport

(1972). These proportions are graphed as an "×" in the upper-right part of the figure. This

outcome is near the (S, S) Nash outcome that is "risk dominant" in the sense of John Harsanyi

and Reinhard Selten (1988), who were the others sharing the game theory Nobel prize with Nash.

This risk dominance criterion is based on the intuitive notion that it is more risky to deviate from

the (S, S) outcome: in the first variation a unilateral deviation costs 24 for Row and 26 for

Column, whereas unilateral deviations from the (R, R) outcome only cost 15 for Row and 6 for

Column. The three variations of this game, going from top to bottom, reduce Row’s "deviation

loss" at the (S, S) equilibrium, but it is still the risk dominant outcome in all cases.1 These

payoff changes do reduce the riskiness of Row’s R decision, and not surprisingly, the incidence

of S play falls from 89% to 88% to 75%. Again we see that magnitudes of payoff differences

seem to matter, even when the "preferred" Nash equilibrium is unaffected.

Theoretical justifications for payoff-magnitude effects can be devised by introducing some

random noise into the decision-making process. Without such noise, the probability of choosing

1 Risk dominance selects the equilibrium for which the product of Row’s and Column’s deviation losses is greatest.
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a decision jumps "sharply" from 0 to 1 as soon as its expected payoff is the highest available.

Figure 1. A Coordination Game:
Best Responses (Dark Lines) and Logit Stochastic Responses (Dotted Lines)

Following Luce (1959), suppose instead that the probability of choosing each decision is a

smoothly increasing function of the expected payoff for that decision. Luce provided an

axiomatic derivation of the popular "logit" rule, which is based on exponential functions.2 When

there are only two possible options with expected payoffs πe(S) and πe(R), the logit probability

of choosing strategy S, say, is given by:

2 The necessary axioms are that choice probabilities be unaffected by adding a constant to all payoffs, and that
ratios of probabilities for two decisions be independent of the payoffs associated with any other decision. An alternative
derivation of the logit rule is based on an assumption that the payoffs for each decision are augmented by an unobserved
preference shock, with a double exponential distribution. This random-preference model was used by Harsanyi (1967-68)
in an equilibrium analysis, which is closely related to the quantal response equilibrium discussed below.
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and the probability of choosing R is simply 1 - p. The denominator in (1) ensures that

(1)

probabilities lie between 0 and 1, and µ is a "noise" or "error" parameter. As µ goes to zero, the

decision with the highest expected payoff is selected with probability one. Indeed, the slight

rounding off of the corners of the response functions in Figure 1 is due to the fact that these were

drawn for a low µ value of 0.1 (instead of 0). An increase in µ softens the corners even more,

and the dotted lines are for logit stochastic responses with µ = 6.6, which we estimated from the

Guyer and Rapoport data as explained below. With this higher amount of noise, the lines only

intersect once, close to the risk-dominant Nash equilibrium. This intersection at (0.97, 0.98) is

a quantal response equilibrium proposed by McKelvey and Palfrey (1995); it is an equilibrium

in the sense that each of these probabilities is a logit stochastic response to the other one. This

equilibrium is a generalization of the Nash equilibrium, and it converges to a Nash outcome as

µ goes to zero (perfect rationality).

In some cases, laboratory experiments produce outcomes that are reasonably close to Nash

predictions, both in one-shot play as for the coordination game discussed above, and in settings

where players are randomly rematched with each other for a series of (approximately) one-shot

interactions. There are many situations, however, in which observed play shows systematic

deviations from Nash, and these are often tracked nicely by the quantal response equilibrium (see

McKelvey and Palfrey, 1995; and for continous games, Goeree and Holt, 1999).3 For the middle

variation of the asymmetric prisoner’s dilemma in Table 1, the unique Nash outcome is (S, S),

but the percentage of S choices (84% for Row and 82% for Column) are quite close to the logit

quantal response predictions (81% for Row and 85% for Column).

Both the Nash equilibrium and its quantal response generalization are equilibrium

concepts, e.g. fixed point intersections in Figures 3, that map belief probabilities into actions that

occur with the same probability. In all but the simplest games, equilibrium concepts will have

3 These papers report situations in which both quantal response equilibria and the observed choice data may be
located far from Nash outcomes, in some cases on the opposite side of the set of feasible decisions.
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the most explanatory power when people have the opportunity to learn about others’ decision

probabilities through experience. Such "rational expectations" assumptions may not be

appropriate in one-shot interactions with no chance for learning and adaptation.

To see why surprises may occur in disequilibrium situations, consider again the dotted

stochastic response lines for the coordination game in Figure 1, The logit quantal response

equilibrium is almost at an extreme corner where the probabilities of S are essentially 1. Prior

to the first and only play of a game like this, it may be the case that players are not so sure about

others’ decisions. If the Row player thinks that column will only play S with a probability of

about .70, for example, then the logit response is represented by the asterisk on the dotted line

for Row. A similar asterisk is shown on column’s stochastic response line, and together these

beliefs produce choice probabilities that are somewhat smaller than the logit and Nash

predictions. In fact, beliefs of about 0.7 produce stochastic responses that are close to the actual

choice percentages marked with the "×". Since these two asterisk points do not coincide, the

expectations are not in equilibrium, e.g. Row expects a .7 chance of S, whereas Column plays

S with probability 0.92. Notice that the asterisk points pull decisions away from the logit

intersection toward lower probabilities of S. This "pull to the center" is caused by 1) the

tendency for uncertainty about other’s actions to push beliefs towards 0.5, and 2) the fact that

the dotted line logit response functions in Figure 1 have positive slopes. In games where the

logit response functions have negative slopes, however, the effect is reversed: greater uncertainty

about other’s decisions will pull decisions toward higher probabilities of S than are implied by

the logit equilibrium. This "push to the edge" effect is revisited below in the context of

"chicken" games where it is best to play S (safe) when the other player is playing R (risky) and

vice versa.4

The next section presents a model of noisy introspection that formalizes the intuition from

these examples. We used data from one-shot games to estimate the model parameters, and

section IV contains an assessment of how the model compares with the Nash and logit quantal

response predictions. The final section concludes.

4 These slope effects may be either negated or reinforced if the relevant value of µ is different for logit and
introspection equilibrium, since lower error rates will puch the logit intersection closer to a Nash equilibrium. Estimates
for µ are reported in section IV below.
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III. Iterated Noisy Introspection

Play in many types of one-shot games is likely to contain surprises, no matter how

carefully players think about the payoffs before deciding. We therefore relax the equilibrium

condition of consistency of actions and beliefs by introducing a process of iterated conjectures.

At the same time, we relax the assumption of perfect maximization by injecting some noise into

the system via the logit choice function in (1), which predicts that decision probabilities are

positively (but not perfectly) related to expected payoffs.

The expected payoffs in (1) are determined by a player’s beliefs about the rival. For the

games considered in this paper there are only two possible choices (R and S), and a player’s

beliefs can therefore be represented by a single probability, q, which is the probability with which

the opponent chooses S. For instance, when a player thinks both options are equally likely to

be chosen by the opponent, q is simply 1/2. This belief probability, q, determines the expected

payoffs for decisions R and S, and the logit rule (1) maps these expected payoffs into choice

probabilities. Also the choice probabilities can be represented by a single number, p (the

probability of choosing S). A convenient way to represent the transformation from belief to

choice probabilites is: p = φµ(q), where φµ represents the map on the right side of (1) and the

noise parameter, µ, determines how sensitive choice probabilities are to payoff differences.

Of course, the process does not necessarily stop after one iteration. The logit best

reponses to uniform probabilities can again be used to determine expected payoffs, which lead

to the next level of conjectured probabilities via (1). Iterating in this manner, the thought process

will produce more refined conjectures.5 However, since there is likely to be more error

associated with beliefs about others’ beliefs about ..., etc., every iteration will introduce more

noise. In other words, the iterative procedure will become increasingly complex and we shall

assume that the error rate grows (geometrically) with each further iteration. For example, with

5 For an alternative approach, see Capra (1998). In her model, beliefs are represented by degenerate distributions
that put all probability mass at a single point. The location of the belief points is, ex ante, stochastic. A deterministic
model of introspection in 2 × 2 games is presented in Olcina and Urbano (1994). This model uses an axiomatic approach
to select a prior distribution, which is revised by a simulated learning process. This latter process is essentially a partial
adjustment from current beliefs to best responses to current beliefs. The model has the attractive property that it selects
the risk-dominant Nash equilibrium. Since the simulated learning process has no noise, it will converge to the Nash
equilibrium in games with a unique equilibrium, which is an undesirable feature of the model in light of the one-shot data
reported below.
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a vector of initial belief probabilities, p0, the twice iterated choice probability is given by a noisy

(µ) response to an even noisier (tµ) response to p0, i.e. p = φµ(φtµ(p0)). This process can be

iterated backwards, with the "telescoping" parameter t > 1 determining how fast the noise

parameter blows up with further iterations; the error rate for the nth iteration is given by tn-1 µ.

We are interested in the choice probabilities in the limit as the number of iterations goes to

infinity:

In the Appendix we use continuity arguments to show that this limit is well defined for

(2)

t > 1. Since φ∞ maps the whole probability simplex to a single point, the process is independent

of the initial belief vector p0. The geometrically increasing error rate in (2) captures the idea that

it becomes more and more complex to think further back. For a t value between 2 and 4, say,

the process converges quickly and the iterated probabilities remain more or less the same after

several steps.6 Finally, the limit case t = 1 is of special interest. For some games (e.g. matching

pennies) the process will not converge when t = 1, but when it does, the limit probabilities, p*,

must be invariant under the logit map: φµ(p
*) = p*. A fixed point of this type constitutes a "logit

equilibrium," which is a special case of the quantal response equilibrium defined in McKelvey

and Palfrey (1995). It is in this sense that the logit equilibrium arises as a limit case of the noisy

introspective process in (2). When t > 1, the choice probabilities on the left side of (2) generally

do not match the belief probabilities at any stage of the iterative process on the right. In other

6 The convergence proof in the Appendix can easily be extended to allow the telescope parameter to be person
specific and to differ for different levels of introspection. The only restriction is that the telescope parameters be strictly
positive and that there be more noise at higher levels of iteration. Instead of increases in error parameters from µ to tµ
to t2µ, for example, the increase can be from µ to t1µ to t2µ, where 1 < t1 < t2. This formulation is flexible and allows many
special cases. For instance, if µ = ∞, (2) produces uniform choice probabilities as is the case for Stahl and Wilson’s
(1995) "level-0 rationality." If t goes to infinity, we have a logit best response to a uniform distribution, which
corresponds to Stahl and Wilson’s "level 1 rationality." Higher "levels of rationality" can be generated similarly. Indeed,
in its most general form (2) allows for individual differences and for telescope parameters that are zero up to some point
and then go to infinity. Rather than assuming a fixed number of iterations, (2) allows parsimonious representation of a
wide range of rationality levels. One important use of introspective theories is to model beliefs in the first period of an
experiment. In some papers, we have initialized computer simulations and learning models by assuming that players make
stochastic best responses to uniform distributions of others decisions. Alternatively, one could assume that others are
making stochastic responses to uniform distributons.
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words, the introspective process allows for surprises, which are likely to occur in oneshot games.

Given the payoff parameters, the introspective process in (2) predicts the probability with

which a player chooses strategy S, and this prediction will vary systematically with the values

of the error and telescope parameters. In the next section, we use experimental data to obtain

maximum-likelihood estimates these parameters. These "pooled estimates" allow us to compare

the introspective model with two equilibrium theories, i.e. logit and Nash equilibria.

IV. Experimental Evidence

Guyer and Rapoport (1972) report an experiment in which 214 subjects played a large

number of 2 × 2 matrix games, without feedback, in order to preserve the "one-shot" nature of

the interaction. There were 37 basic games, six of which are shown in Figures 1 and 2.7 In

each game, strategy S is the maximin strategy, and the proportions of S choices for the games

are shown by the dark lines in Figure 2 for Row (top panel) and Column (bottom panel). The

first three games, shown on the left side of each panel, are labeled "DS" at the bottom, which

refers to the fact that S is a dominant strategy for this game. The dots at the top indicate that

S is a Nash equilibrium for these three games. The next group of games also have dominant

strategies, but these are asymmetric games, and hence are labeled as "ADS" at the bottom.

Notice that the proportion of S choices (dark line) is high but not equal to 1 when it is a

dominant strategy. The third group of games, labeled "APD," are asymmetric prisoner’s dilemma

games, three of which are shown in Table 1. The three coordination game variations in Table

2 are among those in the next group of asymmetric coordination games, labeled "ACG." Recall

that the coordination games have symmetric Nash equilibria at (S, S), (R, R), and a mixed

equilibrium at an intermediate probability, so there are black dots at the top, middle, and bottom

parts of the graph for this series of games. The remaining games, "chicken" (CK) and "reverse

chicken" (RCK), only have a single symmetric Nash equilibrium, which is in mixed strategies

7 Each game was permuted in all possible ways, by changing the labeling of players and decisions, for a total of
244 permutations. These were presented to subjects in a random order, by shuffling a deck of game cards for each person.
Subjects made a decision for each permutation, yielding a total of 214 × 244 = 52,216 decisions. After all decisions were
made, subjects were paired, and their "point" earnings were determined by matching up the decisions for each of the
games. Final earnings were determined by a $2.50 fixed payment and a conversion of points into cash, with the
conversion factor unreported.
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(indicated by the dots). Finally, the asymmetric matching pennies (AMP) games have a unique

Nash equilibrium in mixed strategies. The structure of these games will be discussed below.

Figure 2. Choice Probabilities for Row (Top) and Column (Bottom):
Guyer and Rapoport Data (dark line), Introspection (thin line), Logit (dashed line), Nash (dots)
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The general picture that emerges from Figure 2 is that choice proportions fall short of

Nash predictions in the first four series of games, and choice proportions generally exceed Nash

predictions in the final matching pennies games.8 In the other two series of chicken games, the

mixed-strategy Nash points are remarkably close to the data averages, a fact that seems to have

gone unnoticed by Guyer and Rapoport, who focused instead on the proportions of maximin

choices. The large drop on the proportion of S choices by Row for the APD games occurs for

the three variations in Table 1 that increase the attractiveness of the (R, R) outcome. Similarly,

the large drop in the incidence of safe choices in the first three ACG games is caused by the

reduction in the riskiness of the R for Row, as shown in Table 2. Also notice that Column

choices are relatively stable for these two series, which reflects the fact that "own payoff" effects

seem to be more important.

The Nash equilibrium, strictly speaking, allows for no error, so any deviation is a rejection

in an uninteresting technical sense. In order to evaluate the Nash concept statistically, it is

necessary to append some randomness, and this was done with the logit formulation in (1). Each

specific value of the error parameter, µ, produces a probability for each decision in all games,

and the product of the probabilities of the observed decisions is a likelihood function that is

maximized by the µ of 6.6 (.1) that was used to construct the logit response lines in Figure 1.

The standard error of the estimate is .1, which allows rejection of null hypothesis of µ = 0

(Nash). The logit predictions for the 37 games are plotted in Figure as dashed lines.9 One way

to measure how well the logit equilibrium tracks the observed data is to compute the mean of

the squared distances between logit predictions and data averages (for both row and column,

using all games). Using percentages rather than probabilities, this mean-squared distance (MSD)

is 379 for logit as compared to 490 for Nash (see also Table 5). Even though the MSD for the

logit predictions is lower than for Nash, the logit predictions are consistently too high or too low

relative to the data in each of the game series, with the exception of the APD games. Maximum

8 Since each of the averages is determined on the basis of more than a thousand decisions, these differences between

Nash predictions and actual choice frequencies are highly significant.

9 Some of the games with multiple Nash equilibria in the ACG, CK, and RCK series also have multiple logit
equilibria for the µ value we estimated. We only plot the symmetric logit equilibria in these cases.

12



likelihood techniques were also used to obtain parameter estimates for introspection model: µ =

4.4 (.1) and t = 4.1 (.1). The standard errors in parentheses are small enough to allow rejection

of the special cases of Nash (µ = 0) and logit (t = 1). The introspection model further reduces

the mean squared distance from 379 for the logit model to 168 for the introspection model. In

addition, the introspection model has a much higher loglikelihood (see Table 5). This

improvement in fit is apparent in Figure 2; whenever the logit predictions are too low, the

introspection predictions tend to be higher (DS, ADS, CK, RCK, and AMP), and when the logit

predictions are too high (ACG) the introspection predictions are lower. These qualitative

comparisons are consistent with the intuition from Figure 1: introspection predictions are

generally lower than logit when logit response functions are positively sloped and are higher

when they are negatively sloped. In addition, the introspection predictions match the accuracy

of the Nash predictions in the chicken games, but like logit, generally do better than Nash in the

other games.

The games where the introspection model predicts poorly are the first chicken game,

Table 3. A Game of Chicken (Row Payoff, Column Payoff)

Column Player’s Decision

S R

Row Player’s
Decision

S 12, 12 15, 32

R 32, 15 -5, -5

shown just to the right of the dotted divider line in Figure 2, and the matching pennies games.

In almost all of these cases, the predicted probability of the S outcome is too low. Consider the

chicken game with payoffs shown in Table 3.10 For both players the sum of payoffs for either

10 The chicken and reverse-chicken games are similar in that the best response to aggressive behavior (R) is passive
(S) and vice versa, so there are asymmetric Nash equilibria (S, R) and (R, S), and there is a symmetric equilibrium in
mixed strategies that is shown by the solid dots in Figure 2. The only difference is that for each R/S outcome, the player
choosing R earns more in the chicken game and the person choosing S earns more in the reverse chicken game.
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decision is 27, so mixed-strategy Nash equilibrium is to choose each decision with probability

1/2. In this case, the best response functions intersect in the center of a graph like Figure 1, at

(0.5, 0.5). The effect of adding noise is to round off the corners, leaving "S" shaped logit

response functions that still intersect in the center. This symmetry causes the symmetric logit

and introspection equilibria to also be at 0.5. The Nash equilibrium produces an expected payoff

of 14.5 for each decision, despite the fact that the payoff variance would be much higher for the

risky decision. The data, in contrast to all three predictions, reveal that 67% of the choices were

the safe decision. This suggests that the high rate of safe choices may be due to risk aversion.

Table 4 shows another game in which the each player’s payoffs from making an S choice

Table 4. Matching Pennies (Row Payoff, Column Payoff)

Column Player’s Decision

S R

Row Player’s
Decision

S 9 / 15 / 24, 5 5, -10

R 26, 9 -10, 26

are considerably less variable than the payoffs for R. Each of the three variations in the table

are "matching pennies games" in the sense that, starting from a match (S, S) or (R, R), Row

would want to deviate to create a mismatch, but then Column would want to deviate to create

a match. In the first variation, the payoff sums for each player’s decisions are approximately

equal, (9 + 5) and (26 - 10). Therefore, the mixed strategy Nash probabilities, which make each

player indifferent and willing to randomize, are close to 0.5, i.e. 0.53 for Row and 0.47 for

Column. These probabilities are determined by the intersection of the two dark best response

lines in Figure 3. Adding some noise to the model (µ = 6.6) rounds off the corners of the best

response lines, making two thin lines that produce a logit equilibrium intersection at about the

same location in the graph (please ignore the dotted lines for now). The introspection predictions

are nearby. To summarize, all three models predict similar outcomes in the center of the figure,

but the actual proportions of S choices were .69 for Row and .73 for Column, located at the
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lower left asterisk in the figure.

The three variations of the matching pennies game in Table 4 increase the attractiveness

Figure 3. Best Responses for a Matching Pennies Game (Dark Lines), Logit Responses (Thin
Lines), Nash Equilibria (Diamonds), Logit Equilibria (Circles), and Data (Asterisks)

of the (S, S) outcome for Row, from 9 to 15 to 24. Not surprisingly, this shift raises the

proportion of S choices, as indicated by the shift of the asterisk data points upward in the figure.

This "own-payoff effect" for Row is not predicted by a Nash analysis. Without noise, an increase

in the attractiveness of the S decision for Row just shifts the (vertical) Row best response line

to the right, producing new intersections at the diamond markers. The dark best response line

for Column is horizontal, so the shifts in Row’s best response line do not increase the probability

that Row plays S in a mixed-strategy Nash equilibrium. This is analogous to an economic market

in which an increase in demand does not raise price when supply is perfectly elastic (horizontal).

The situation is qualitatively different with noise, however. In this case, Column’s logit response

line is positively sloped, and the right-ward shifts in Row’s logit response (dotted) lines produce

higher logit predictions for proportions of S decisions. These predictions (circles) show that

Row’s logit choice probabilities are sensitive to Row’s own payoffs when noise in introduced.
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But the three intersection points do not track the high propensity for players to use their safe, S,

choices, as indicated by the three asterisk markers for the observed choice proportions in the

upper-right part of the figure. Again, one possible explanation is an aversion to high-risk

decisions.

Risk aversion is a concept that dates back at least to Daniel Bernoulli (1738), who

observed that people were unwilling to pay large amounts for very high-risk gambles with infinite

expected values. He proposed that the utility of money be a concave function of wealth,

exhibiting a diminishing marginal value of additional money. This feature causes the money

value of a gamble to be less than its mathematical expected value. The notion of nonlinear utility

was formalized by von Neumann and Morgenstern (1944). Risk aversion is determined by the

concavity of the function, and the most commonly used empirical model of risk aversion is

probably the constant relative risk aversion form that specifies the utility of an amount x to be

x1-r, where the risk aversion parameter is in the unit interval: 0 < r < 1. Estimates of this risk

aversion parameter generally range from 0.3 to something close to 1. For example, Goeree, Holt,

and Palfrey (1999) estimate a risk aversion parameter of about 0.5 for data from auction

experiments. Risk aversion can be incorporated into the introspection model by replacing

expected payoffs with expected utility expressions.

In order to obtain results that could be compared with our previous estimates, we used

the constant relative risk aversion function shown above, with a constant (17) added to all payoffs

in order to ensure that the lowest payoff for any of the 37 games would be at least 1. The results

of this estimation are: r = .46 (.02), µ = .62 (.05), and t = 4.6 (.1). The risk-aversion parameter

obtained in this manner is approximately the same as that obtained for the auction data, a very

different game with a different subject pool conducted over 25 years later.11 The hybrid

introspection/risk-aversion model has a much lower mean squared deviation of 78, as compared

with 168 for the model without risk aversion.12 The improved fit is largely in the first chicken

11 The estimated error parameter is lower than the risk-neutral estimate because the power function expected utility
numbers are much lower than the expected payoffs.

12 We also estimated a risk aversion parameter for the logit model: r = 0.45, which reduces the mean squared
deviation from 379 with risk neutrality to 343 with risk aversion.
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game and the asymmetric matching pennies (AMP) games.13

Figure 4. Logit Stochastic Best Responses for µ = 4.4 (Curved Lines),
Introspection Beliefs (Asterisks), and Guyer and Rapoport Data (×)

Figure 4 illustrates the way in which the introspection model with risk aversion tracks the

data for the most asymmetric of the three matching pennies games in Table 4, i.e. the one with

payoffs of (24, 5) for the (S, S) outcome. The effect of risk aversion (r = .46) is to increase the

probability of choosing the safe decision, which shifts the logit best response lines up for Row

and to the right for Column. With the lower µ value estimated for the introspection model, the

new intersection is not far from the Nash mixed equilibrium (the diamond marker) for this game.

Unlike a logit equilibrium where the belief probabilities are determined by the intersection, belief

probabilities in the introspection model are determined by iterated stochastic responses. It is

possible to calculate beliefs about the other player’s decision, stopping just before the final

iteration in equation (2). In this case, Row’s beliefs are that Column will play S with probability

0.53, as shown by the vertical dashed line in Figure 4, which intersect Row’s stochastic best

13 Of course, adding an extra parameter increases the danger of "data-mining," and the reader will have to decide

whether the improved fit and consistency with some previous estimates is worth the cost.
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response at a point marked with an asterisk. Similarly, column’s beliefs, calculated iteratively,

are that Row will choose S with probability 0.6, as indicated by the horizontal dashed line in the

figure. The two asterisk marks on the stochastic response functions determine the prediction of

the introspection model, where the dashed lines meet just to the left of the "×" that marks the

actual averages. Here again we see the slope effects, which tend to cause the introspective

prediction to be lower than the logit equilibrium when the logit response line is positively sloped

(Column) and higher than the logit equilibrium when the logit response line is negatively sloped

(Row). The introspection model with risk aversion also improves the fit for all of the other

matching pennies games.

One issue is whether the introspection model, with or without risk aversion, can explain

Table 5. Mean-Squared Distances and Loglikelihoods For Alternative Models.

MSDa Loglikelihoodb

Nash 490 NA

Logit QRE 379 -25,165

Logit QRE + Risk Aversion 343 -25,093

Introspection 168 -23,603

Introspection + Risk Aversion 78 -23,138

a Mean of squared distances between predicted and actual percentages.
b The loglikelihood is given by ∑g Ng (p ln(pm) + (1-p) ln(1-pm)), with Ng the number of decisions made in game g
(∑g Ng =52,216), p is the actual frequency of choice S, and pm is the frequency of S predicted by the model. The
maximum possible loglikelihood occurs for p = pm and is given by -22,460. The random model, in which each
decision is chosen with probability .5, results in a loglikelihood of -33,193.

behavior in more complex games. The results thusfar are encouraging. In Goeree and Holt

(2000) we use the introspection parameters estimated from these 37 matrix games to explain the

qualitative features of deviations from Nash equilibria in a wide variety of one-shot game

experiments, both static and dynamic, with both complete and incomplete information about

others’ payoffs (large matrix games, multi-stage bargaining and threat games, and signaling).
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V. Conclusion

Many strategic encounters are unique, non-repeated interactions. Equilibrium concepts

that build in "rational expectations" about others’ decisions may not be appropriate in such cases.

Without an opportunity to learn, players must think about others’ decisions, others’ theories of

one’s own decisions, etc., but such speculation is likely to become increasingly noisy with

successive iterations. In this paper we propose a general model of iterated noisy introspection

and prove convergence. Parsimonious versions of this model were estimated using data from 37

2 × 2 matrix games, and the model predictions are more accurate than those of equilibrium

theories, both with noise (logit) and without noise (Nash).

The mixed-strategy Nash equilibrium is remarkably accurate in symmetric games (e.g.

chicken), but it is quite inaccurate in some matching pennies games where the only Nash

equilibrium is mixed. The reason for this difference is that human subjects do not seem to follow

the mixed-strategy prediction that decision probabilities depend only on other’s payoffs. In the

symmetric chicken games, this asymmetry bias does not occur because the parameter changes

affect both players in the same manner. Moreover, Nash predictions do not pick up systematic

"own-payoff" effects that alter quantitative but not qualitative payoff comparisons. In contrast,

the logit (quantal response) equilibrium is sensitive to magnitudes of payoff differences. The

logit equilibrium has provided remarkably accurate predictions of behavior in games with

learning opportunities (McKelvey and Palfrey, 1995; Goeree and Holt, 1999). In one-shot games,

however, beliefs do not seem to move far enough toward equilibrium levels, and the logit

predictions tend to be is systematically biased (above the data for games with negatively sloped

stochastic response functions and below the data for games with positively sloped stochastic

response functions). The model of noisy introspection follows the Nash predictions in games

where they are on track, and it is generally much closer to the data in other games. The most

notable failures of all of these theories are in games where one decision is safe and the other can

result in very high or very low payoffs, and the inclusion of an estimated risk aversion parameter

reduces the mean squared error by more than half.
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Appendix: Proof of Convergence

Here we prove that the noisy introspection process converges as the number of iterations

tends to infinity. The proof applies to symmetric two-player games in which both players have

K strategies (the generalization to other games is straightforward). Let SK denote the K-

dimensional simplex and let p0 be its centroid, i.e. all elements of the vector p0 are 1/K. We wish

to study Φ = limn→∞ Φn, where Φn is a composition of (n+1) stochastic best response functions:

and µ > 0, t > 1. We consider the following generalization of the logit best reponse functions:

where φi
µ is the probability that option i is selected and g is some strictly positive, strictly

(A1)

increasing, differentiable function on . (Note that (A1) reduces to the logit rule when g(x) =

exp(x).) Since φ∞(p) = p0 for all p ∈ SK, the limit function Φ (if it exists) maps the whole

simplex into a single point. Convergence is proved by showing that the sequence {Φn(p0)} for

n = 1, 2,..., is a Cauchy sequence. Let the distance between two points p and q on the simplex

be defined as: d(p,q) = maxi=1,..,K pi - qi . For all m > n we have:

where p´ is defined as:

Convergence is established in two steps. First, we show that the distance between p0 and p´

tends to zero as n tends to infinity, and then we use the Mean-Value Theorem to prove that also

d(Φn(p0),Φn(p´)) → 0 as n → ∞.

Let p´max ≥ 1/K and p´min ≤ 1/K be the largest and smallest elements of p´ respectively.

The distance between p0 and p´ is the greater of p´max - 1/K and 1/K - p´min. Hence, the distance
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is less than or equal to the sum, which equals p´max - p´min. Let πmax and πmin denote the highest

and lowest possible payoffs for the game, then we can bound p´max - p´min by:

Hence the distance between p0 and p´ tends to 0 as n → ∞, because the numerator converges to

0 and the denominator converges to K g(0) > 0.

The next step is to bound the distance d(Φn(p0),Φn(p´)). Using the Mean-Value Theorem

we have:

where ∇ denotes the gradient and λ is a point on the line connecting p0 and p´. Hence,

d(Φn(p0),Φn(p´)) is at most K d(p0,p´) times the largest element of the gradient matrix ∇Φ n(λ).

Since

the chain rule implies the following upper bound for the elements of ∇Φ n(λ):

where the tn(n+1)/2 in the denominator results from the product t0 * t1 * ... * tn. Since g is

(A2)

differentiable, elements of ∇φ 1 will be bounded when payoffs are, so the right side of (A2) tends

to zero as n goes to infinity.

To summarize: d(Φn(p0),Φm(p0)) = d(Φn(p0),Φn(p´)) ≤ K d(p0,p´) max ∇Φ n(λ), and since

both d(p0,p´) and ∇Φ n(λ) tend to zero, the distance between Φn(p0) and Φm(p0) becomes arbitrarily

small in the limit as n tends to infinity. Q.E.D.
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