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1. INTRODUCTION

After the prisoner’s dilemma, the coordination game is perhaps the most widely discussed

paradigm in game theory. Interest in coordination games stems from the presence of multiple

Nash equilibria that can be Pareto ranked, which raises the possibility of "getting stuck" in an

outcome that is undesirable for all players. For this reason, this class of games is of interest to

macroeconomists (Bryant, 1983; Cooper and John, 1988; and Romer, 1996). Since (generically)

all equilibria are strict, standard refinements leave the set of Nash equilibria unchanged, which

has prompted game theorists to search for new selection criteria. An array of alternative theories

of behavior in coordination games have been put forward, both static and dynamic. Static

approaches include Pareto dominance (Harsanyi and Selten, 1988), risk dominance (Harsanyi,

1995; Carlsson and van Damme, 1993), and "noisy" equilibrium models (Anderson, Goeree, and

Holt, 1997b; Carlsson and Ganslandt, 1998). Dynamic models of coordination behavior can be

roughly divided into evolutionary models (Kandori, Mailath, and Rob, 1993; Young, 1993;

Crawford, 1991), adaptive learning models (Crawford, 1995; Van Huyck, Battalio, and Rankin,

1995), and "noisy" learning models (Battalio, Samuelson, and Van Huyck, 1997; Camerer and

Ho, 1999).

Some theorists argue that coordination game experiments are useless for game theory

because the Nash equilibrium and its refinements have no predictive power in this case and, as

a consequence, "anything goes." We feel that the opposite is true: the unexpected empirical

regularities observed in coordination experiments (such as the ones reported in this paper) can

guide further theoretical work. For instance, previous experiments have shown that coordination

problems cannot be ruled out by an assumption that agents somehow find the Pareto-dominant

equilibrium. Indeed, some of the most widely cited results from laboratory experiments provide

cases where subjects end up at the Nash equilibrium that isworst for all concerned (Van Huyck,

Battalio, and Beil, 1990; Cooper et al., 1992; and the survey in Ochs, 1995). Since much of the

theoretical work was motivated by the need to explain coordination failures in the laboratory, it

* This project was funded in part by the National Science Foundation (SBR-9818683). We wish to thank Vince
Crawford and Robert Rosenthal for useful discussion and Rachel Parkin for research assistance.
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is now time to return to return to the laboratory and carry out experiments designed explicitly

to evaluate some of these theories.

This paper reports the results of several new coordination experiments motivated by both

static and dynamic models of behavior in coordination games. The first game to be considered

is one in which pairs of subjects choose an effort level, and the resulting payoff is theminimum

of the efforts minus the cost of one’s own effort. This payoff structure can arise from a joint

production process in which the group output is proportional to the minimum of the individual

inputs, as is the case with perfect complementarity. The different treatments are based on a

change in the common cost per unit of effort. As long as this cost is less than one, the best

response to any set of others’ efforts is just the minimum of those efforts, so (non-critical)

changes in the cost of effort will not alter the set of Nash equilibria in pure strategies, nor will

they change the predictions of any dynamic theory that is based on adjustment toward the best

response to efforts observed in the previous period. Changes in the cost of effort do affect the

relative costs of "errors" in overshooting or undershooting the minimum of other’s efforts, so

theories like risk dominance and maximum potential (discussed below) that take into account the

costs of errors will be sensitive to the effort cost parameter.

The data of this first experiment allow us to test and calibrate an equilibrium model of

noisy behavior. This equilibrium results by maximizing a stochastic potential function and can

be seen as a one-parameter stochastic generalization of the Nash equilibrium. To get a sense for

how robust this approach is, we estimate the relevant parameter using data from the six sessions

with two-person coordination games and use this estimate for "out-of-sample" prediction in seven

new sessions with three-person games. These new sessions include both minimum-effort and

median-effort coordination games.

The paper is organized as follows: the theoretical motivation for the experimental design

is discussed in more detail in section 2, and section 3 presents the laboratory results. The notion

of stochastic potential is introduced in section 4, and is related to the notion of a logit

equilibrium (McKelvey and Palfrey, 1995). Section 5 reports experiments based on three-person

median and minimum-effort games. The final section concludes, and a set of instructions and

the laboratory data can be found in the Appendices.
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2. PARETO DOMINANCE, RISK DOMINANCE, AND MAXIMUM POTENTIAL

The experiment involves a series of single-period coordination games with groups of

randomly matched subjects who make independent "effort" choices. Subjects selected efforts

from a continuous interval [_e, −e], i.e. fractional efforts were allowed. We first review some

standard theoretical results for this game in order to motivate the choice of treatment parameters.

Let the effort for playeri be denoted byei ∈ [_e, −e], i = 1,...,n. The payoffs for a symmetric,n-

person minimum-effort game are:

wherec is the effort cost. As long asc is less than 1, payoffs are maximized when all players

(1)π i (e1, ... ,en) min{ e1, ... ,en} cei , i 1, ... ,n,

choose the highest possible effort.1 Note, however, thatany common effort level constitutes a

Nash equilibrium, since a costly unilateral increase in effort will not raise the minimum, and a

unilateral decrease will reduce the minimum by more than the cost whenc < 1. This argument

does not depend on the number of players, so non-critical changes inc andn will not alter the

set of Nash equilibria in pure strategies, despite the reasonable expectation that efforts should be

high for sufficiently low effort costs and low numbers of participants.2

Harsanyi and Selten’s (1988) notion of risk dominance is sensitive to the effort cost that

determines the losses associated with deviations from best responses to others’ decisions. To

illustrate the concept of risk dominance, consider the two-person minimum-effort game shown

in Figure 1 in which efforts are constrained to be the integers 1 or 2. When both players are

choosing efforts of 1, the cost of a unilateral deviation to 2 is just the cost of the extra effort,c,

which will be referred to as the "deviation loss." Similarly, the deviation loss at the (2,2)

equilibrium is 1-c, since a unilateral reduction in effort reduces the minimum by 1 but saves the

marginal effort costc. The deviation loss from the low-effort equilibrium is greater than that for

1 If the minimum effort in (1) is multiplied by a constantα, as is the case in some laboratory experiments, then
the relevant value ofc is the effort cost divided byα. Although we normalize so thatα = 1, this observation is relevant
in considering the implications of risk dominance for experiments where this is not the case.

2 Anderson, Goeree, and Holt (1997b) show that there are a continuum of (two-point) mixed Nash equilibria, but
that each of these has the perverse comparative statics property that an increase in the effort cost willraisethe probability
associated with the higher of the two effort levels over which randomization occurs.
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the high-effort equilibrium ifc > 1 - c, or equivalently, ifc > 1/2, in which case we say that the

low-effort equilibrium is risk dominant.3 Risk dominance, therefore, has the desirable property

that it selects the low-effort outcome if the cost of effort is sufficiently high.

There is, however, no consensus on how to generalize risk dominance for games with

Figure 1. A 2×2 Coordination Game

Player 2’s Effort

1 2

Player 1’s
Effort

1 1 - c, 1 - c 1 - c, 1 - 2c

2 1 - 2c, 1 - c 2 - 2c, 2 - 2c

more players, a continuum of decisions, etc. A related concept that does generalize is the notion

of maximization of a "potential" of a game.4 Loosely speaking, the idea behind potential is to

find a function for a game that is maximized by a Nash equilibrium for that game. More

precisely, a potential function for a game is a function of all players’ decisions with partial

derivatives that match those of individual players’ payoffs with respect to their own decisions.

For example, it is straightforward to show that the potential function for the 2 × 2 coordination

game in Table I is given by:V = p1 p2 - (1 - c)(p1 + p2), wherepi denotes the probability with

which playeri chooses the low effort 1.5 Hence, the potential is maximized in the low-effort

outcome (p1=p2=1) whenc > 1/2 and it is maximized in the high-effort outcome (p1=p2=0) when

c < 1/2. For the 2 × 2 coordination game shown in Table I, risk-dominance and maximum

potential thus coincide, and one can easily show that this equivalence holds for all symmetric 2

× 2 games. Laboratory experiments based on 2 × 2 coordination games show that the risk

dominant/maximum potential outcome has a lot of drawing power when the difference in

3 The application of risk dominance for asymmetric two-person games is equivalent to comparing the product of
the two players’ deviations losses at each equilibrium.

4 Rosenthal (1973) first used a potential function to study properties of a Nash equilibrium. Monderer and Shapley
(1996) provide a general treatment.

5 Player i’s payoff of choosing the low effort with probabilitypi is: πi(pi,pj) = pi pj - pi(1-c) -pj + (2-2c), and it is
straightforward to check that∂Vi/∂pi = ∂πi/∂pi for i = 1, 2.
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potential is large, even though play usually starts out near the Pareto-dominant equilibrium for

which the payoffs may be much higher (see Table 4 in Battalio, Samuelson, and Van Huyck,

1997; see also Straub, 1995).

However, as noted above, risk-dominance does not apply to more general settings while

the notion of maximum potential does. For instance, for then-player minimum effort game given

in (1), the potential function is simply the common production function that determines asingle

player’s payoff, minus the sum ofall players’ effort costs:

The inclusion of all effort costs is needed to ensure that∂Vi/∂ei = ∂πi/∂ei, i = 1,..., n, for all

(2)V(e1, ... ,en) min{ e1, ... ,en} c
n

i 1

ei .

feasible vectors of decisions, when these derivatives exist. The maximization of potential will

obviously require equal effort levels. At any common effort,e, the potential in (2) becomes:

V = e - nce, which is maximized at the lowest effort whennc > 1, and is maximized at the

highest effort whennc< 1. In two-person games, this condition reduces to the risk dominance

comparison ofc with 1/2. Hence, the Nash equilibrium that maximizes potential in this game

is sensitive to parameters that may affect actual behavior.

The notion of potential can be used to evaluate results from previous laboratory

experiments. The most widely cited coordination experiment is that of Van Huyck, Battalio, and

Beil (1990), who conducted games with 14 to 16 players and an effort cost of either 0 or 1/2,

so nc was either zero or about seven.6 Compared to the criticalnc value of 1, these parameter

choices appear rather extreme, which may explain why their data exhibit a huge shift in effort

decisions. By the last round in the experiments in whichnc = 0, almost all (96%) participants

chose the highest possible effort, while over three-quarters chose the lowest possible effort when

nc was around seven. One purpose of Van Huyck, Battalio, and Beil’s experiment was to show

that a Pareto-inferior outcome may arise in coordination games, presumably because it is harder

for large numbers of participants to coordinate on good outcomes in games where the payoff is

6 The minimum effort in the experiment was multiplied by a constant, which is normalized to be 1 in equation (1)
above. Therefore, the relevant value ofc for the experiment is calculated as the ratio of the cost of effort and the
coefficient of the minimum effort.
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determined by the minimum of all efforts. Other experiments were conducted with 2 players,

but the payoff parameters were such thatnc exactly equaled the critical value 1, and, with a

random matching protocol, the data showed a lot of variability.7 Our experiment also

implements two-person random matchings in order to avoid serious possibility of tacit collusion

in repeated games, which may drive efforts to maximal levels in sufficiently long series of

repeated two-person coordination games. Given the knife-edge properties ofc = 1/2 for two-

person coordination games, we conducted one treatment withc = 1/4 and another withc = 3/4.

As noted above, this change does not alter the predictions of theories based on best responses to

others’ decisions, e.g. pure-strategy Nash equilibria.

3. THE EXPERIMENT

Recall that one purpose of our experiment is to generate conditions such that behavior is

"non-extreme," i.e. find conditions under which decisions do not necessarily end up at the

boundaries. One step in this direction is to have more than just a few possible effort levels.

Therefore, we let subjects choose from acontinuous interval: [110, 170]. We chose this

particular range with the object of avoiding a highly focal number like 50 or 100, and we did not

want 150 to be at the midpoint of the range.8 Furthermore, this choice facilitates the comparison

of our results with those of Van Huyck, Battalio, and Beil (1990) who let subjects choose integer

effort levels that ranged from 1 to 7.

The experimental design involved six sessions, each with 10 student subjects recruited

from undergraduate economics classes at the University of Virginia. No subject had previously

participated in a coordination game. Upon arrival, participants were seated in visually isolated

booths. We began by reading the instructions in Appendix A. The payoffs were explained in

words and with symbols, e.g.: "you will receive a penny amount that equals the minimum of the

two efforts chosen, minus the cost of your own effort, which is .25 times your own effort

choice." There were no numerical examples in the instructions, in order to avoid focal

7 When subjects were matched with the same partner period after period the data often converged to the maximum
effort.

8 Although focalness plays no role in our theory, we believe that it can be important, especially in coordination
games.
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suggestions. Questions were asked and answered privately to avoid suggestive statements.

Subjects were told that there would be 10 periods of random pairings determined by draws

of numbered ping-pong balls from a bucket. The noise of ping-pong draws probably made this

random matching procedure more credible. At the start of each period, subjects were prompted

to record an effort decision and write it on a record sheet provided. The range of feasible effort

choices was specified to be the interval [110, 170], with fractional efforts allowed, which they

could select by using decimal points. We then collected the record sheets, paired subjects, and

recorded the "other person’s decision" and the person’s own earnings. The sheets were returned

at the beginning of the next period. The process took about one hour.9

Three sessions were conducted under the high-cost treatment (c = 3/4) and three under

Figure 2. A Coordination Game: Average Effort Decisions by Period
Key: Dashed lines are session averages. Dark lines are averages across all sessions in a treatment.

9 The instructions stated that the 10 periods of random matching would be followed by "a different experiment."
In fact, these two-person coordination games were followed by a series of 6-9 one-period games of chicken, matching
pennies, etc.
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the low-cost treatment (c = 1/4).10 The period-by-period averages for each session are shown

as thin lines in Figure 2, and the averages for all sessions in each treatment are shown as thick

lines. The data exhibit a couple of interesting features. First, the averages of all sessions begin

near the midpoint of the range of feasible effort choices on the vertical axis. Figure 3 shows the

histograms of the effort decisions in the first and in the last three periods for the high-cost

treatment (light) and low-cost treatment (dark). For both values of the effort cost, the null

hypothesis that the initial distributions are equal to a uniform distribution cannot be rejected at

the 10 percent level using a standard Kolmogorov-Smirnov test.11 Second, even though all

sessions start out similarly, a clear separation is apparent by the fifth period. For later periods,

the null hypothesis of no treatment effect can be rejected at the 5 percent level of significance

using a non-parametric test.12 In the last three periods, all decisions in the low-cost sessions

are above the midpoint (140), while almost all decisions are below the midpoint with a high cost,

as shown in Figure 3. Finally, the average effort trajectories seem to spread symmetrically

around the midpoint: the upward trend for the three low-effort-cost sessions is reflected by an

essentially symmetric downward trend for the three high-effort-cost sessions. To summarize the

main findings:a change in the effort cost has a large and significant effect on behavior in the

minimum-effort coordination game, an effect that is not predicted by the Nash equilibrium.

The strong treatment effect that is driving the data is simply not predicted in a Nash

equilibrium, nor do the data converge to extreme values as would be implied by maximum

potential. There is usually some noise in laboratory data with non-extreme payoff parameters,

10 This created somewhat of a dilemma, since earnings are much lower under the high-cost treatment. We dealt
with this issue by increasing the fixed payment from the customary level of $6 to a level, $12, that would ensure
reasonable earnings for the first hour, even for the high-cost treatment. (The $6 initial payment was used in session 1,
with the low-effort-cost treatment, but the higher initial payment was used in all subsequent sessions.) Including the fixed
payment, most subjects’ earnings were in the $7 to $9 range in 0.25 treatment, and in the $16 to $18 range in the 0.75
treatment. These earnings were augmented in the one-period games that followed.

11 Comparing the empirical distribution functions with a uniform distribution results in a Kolmogorov-Smirnov
statistic of .2 for both treatments, while the critical value is .22 for a sample size of 30 and a confidence level of 10
percent. The null hypothesis that the first-period empirical distributions for the two treatments are the same cannot be
rejected at much higher levels.

12 The intuition behind the test is clear. There are "six-take-three" = 20 possible ways that the effort averages could
have been ranked, and of these the most extreme ranking was observed, with all three low-c sessions having the highest
ranks. The probability of this outcome under the null is, therefore, 1/20 = 0.05.
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and to deal with this it is useful to consider notions of noisy behavior. The next section

Figure 3. Effort Choice Frequencies in Period 1 (Top) and Periods 8 - 10(Bottom)
Key: Light Bars Correspond to High Effort Cost and Dark Bars to Low Effort Cost

introduces a generalization of potential that is related to a noisy version of the Nash equilibrium.

4. STOCHASTIC POTENTIAL AND THE LOGIT EQUILIBRIUM

If a game has a potential functionV, the stochastic potential is based on a consideration

of probability distributions of decisions that determine the expected value of potential (Anderson,

Goeree, and Holt, 1997). In particular, the stochastic potential for given distributions of players’

decisions is the expected value of the ordinary potential, denoted E{V}, plus terms that will make

the maximand sensitive to noise in the choice distributions. These terms that determine the value

of dispersion correspond to the physical concept of "entropy." In the case of a continuous
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density function,fi(ei), entropy is defined as: -∫fi ln(fi) dei .
13 The entropy for the system is the

sum of the entropy terms for individual players’ distributions, weighted by an error parameter

µ. Thus the stochastic potential is: E{V} - µ Σi ∫fi ln(fi) dei, where the sum is over all player

indices and the integral is over the range of feasible effort choices. Since entropy is maximized

by complete randomness (a uniform distribution of decisions), the distribution that maximizes

expected potential plus µ times entropy will be more dispersed as the error parameter increases.

In the other limit as µ→ 0, the entropy term becomes irrelevant and the maximization of

stochastic potential becomes equivalent to the maximization of ordinary potential, which leads

to a Nash equilibrium in this context. Thus the maximization of stochastic potential provides a

generalization of Nash that is parameterized by an error parameter µ. In the remainder of this

section, we will determine the predicted effort distributions for each of the values of the

treatment variablec.

For the case of two players, the expected value of the potential function in (2) contains

a term that is the expected value of the minimum of two decisions. If playeri uses a continuous

choice densityfi(ei), with corresponding distribution functionFi(ei), then the distribution function

for the minimum of the two effort decisions is: 1 - (1-F1(e1))(1-F2(e2)).
14 The stochastic

potential, VS, is calculated by adding weighted entropy terms to the expected value of the

minimum and subtracting the expected effort costs:15

Anderson, Goeree, and Holt (1997b) show that maximization of the stochastic potential requires

(3)VS ⌡
⌠

e

e

2

i 1

(1 Fi (e)) de c
2

i 1
⌡
⌠

e

e

(1 Fi (e)) de µ
2

i 1
⌡
⌠

e

e

fi (e) log( fi (e)) de.

symmetry across players, i.e.F1(e) = F2(e) = F(e), as is the case without noise. Maximization

13 In a more commonly considered discrete case, entropy is -Σi pi ln(pi), where thepi are the probabilities of the
discrete outcomes.

14 This formula can be found in standard treatments of order statistics, or it can be verified directly since the
probability that the minimum is below a given value ofx is 1 minus the probability that both efforts are abovex, which
yields the formula in the text.

15 Recall that the expected value of a random variable with distribution functionF can be written as the integral
of 1 - F (ignoring possible boundary terms that are independent ofF).
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of the stochastic potential with respect to the common distributionF(e) is a straightforward

calculus-of-variations problem, and the necessary condition can be expressed:16

which is a differential equation in the common distribution function.

(4)µ f (e) f (e) ( 1 F(e) c) ,

Consider the intuition behind (4). If the other player is using an effort distribution,F(e),

then an increase in effort ate will raise the minimum with probability 1 -F(e) and increase the

cost at a ratec, so the 1 -F(e) - c term is the derivative of the expected payoff with respect to

one’s own effort. Hence, equation (4) can also be written as: µf´(e) = πe´(e) f(e), which defines

the continuous version of the "logit equilibrium" (McKelvey and Palfrey, 1995).17 Anderson,

Goeree, and Holt (1997b) show that a solution to (4) exists, is unique, and that an increase in the

effort cost lowers efforts in the sense of first-degree stochastic dominance.18, 19 Thus the

prediction of this stochastic-potential approach is consistent with the intuitive notion that

reductions in the effort cost will increase efforts, although not necessarily all the way to the

maximum possible effort.

We used data from the coordination experiment to estimate the equilibrium model in (4)

16 Recall that the Euler condition for maximizing∫I(F, f, x) dx is: δI/δF = ∂I/∂F - d/dx{ ∂I/∂f } = 0, or in the present
context: - 2 (1-F) + 2 c + 2 d/dx{µ + µlnf } = - 2 (1-F-c) + 2µf´/f = 0, wheref´ denotes the derivative of the density
function. This result can be rearranged to obtain the expression in (4).

17 As the error parameter goes to infinity, the marginal payoff becomes irrelevant and the solution to (4) will have
a flat density, i.e.f´(e) = 0, which yields a uniform effort distribution. As the error parameter goes to 0, equation (4)
implies that marginal payoff is zero wheneverf(e) is positive. This in turn requires thatF(e) be constant at 1 -c, which
is contradicted if the density is positive on an interval, i.e. the only possibility is that all mass is concentrated at a single
point in the limit (at one of the common-effort Nash equilibria).

18 In fact, the differential equation (4) can be solved explicitly to obtain a logistic density.

19 We will use the concepts of logit equilibrium and maximization of stochastic potential interchangeably, although
they differ in a subtle way. In particular, the variational condition in (4) is a first-order condition, and therefore, a logit
equilibrium may be a local minimum of the stochastic potential. Anderson, Goeree, and Holt (1997a) show that local
minima are unstable for a dynamic gradient-based adjustment process with Brownian motion, whereas local maxima are
stable. Since we have proved that the logit equilibrium is unique for this game (Anderson, Goeree, and Holt, 1997b), it
is globally stable for the evolutionary adjustment process. Incidentally, the noisy evolutionary adjustment process explains
the symmetric adjustment patterns in Figure 2 (see Goeree and Holt, 1999). It is worth noting that there is a one-to-one
correspondence between logit equilibria and extreme points of stochastic potential, whereas this equivalence does not hold
for the twin concepts of the Nash equilibrium and (deterministic) potential. For example, there is a continuum of Nash
equilibria for the coordination game, but only one maximizes potential whencn ≠ 1/2.
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directly, by dividing the interval [110, 170] into one-cent intervals and replacing the density

function in (4) with probabilities.20 Thus (4) becomes a set of simultaneous equations that

determine the equilibrium probabilities for each effort level, and for a given value of µ the

equations in (4) can be solved using numerical methods. The likelihood is the product of the

calculated probabilities of the decisions actually observed and is maximized by iterating over µ.

This yields an estimated value of µ = 7.4(0.3), with the standard error in parentheses.21

Table I shows the average effort levels (standard deviations) in the final three periods by

Table I. Average Effort Levels in Periods 8-10 (Standard Deviations)

session 1 session 2 session 3 Pooled Logit Equilibrium

low cost (c = 1/4) 151 (10) 166 (5) 159 (12) 159 (11) 154 (12)

high cost (c = 3/4) 131 (11) 112 (5) 135 (11) 126 (14) 126 (12)

session and pooled over all three sessions in each treatment. For both values of the effort cost,

two of the three session averages are within one standard deviation of the average predicted by

the logit equilibrium that maximizes stochastic potential. There are, however, unexplained

differences between different sessions in the same treatment (cohort effects). Consider, for

instance, session 2 of the high-cost treatment, in which initial behavior in the first three periods

is more extreme than in the other high-cost sessions. Subsequent effort choices are lower and

20 Clearly, the data show some systematic time patterns in the early periods, which is why we only used the last
three periods to estimate the equilibrium value of µ.

21 The error parameter estimate is of the same magnitude as other equilibrium error rates for different games with
similar procedures and subjects, e.g. Capra, et al. (1999). This error rate, however, is higher than the µ estimates that we
obtained by directly estimating a dynamic learning model based on fictitious play (not reported here). The higher µ
estimate for the equilibrium model is mainly due to "between sessions" variance (rather than "within sessions" variance):
the final-period averages differ significantly between sessions within the same treatment, and only a relatively large error
parameter is consistent with the combined data. This cohort effect is less of a problem for the dynamic model which
allows for history dependence: for example, higher-than-average effort choices in the final periods can be consistent with
a low error rate when they are caused by optimistic beliefs due to high effort choices in the early periods. It is in this
sense that a learning model can describe the (individual) data better than an equilibrium model, although both explain the
cost effects that are not predicted by the Nash equilibrium. Learning models that use data up to periodt to predict
outcomes in the next period will generally have lower prediction errors than equilibrium models that are intended to
predict where decisions will settle down after learning has occurred.
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gravitate towards the lower boundary 110, presumably because beliefs are more pessimistic. This

"history dependence" is not picked up by equilibrium models such as the one implied by

maximizing stochastic potential. Nevertheless, the predictions that follow from maximizing

stochastic potential are remarkably accurate when we aggregate the sessions in the same

treatment. The averages for the two treatments end up at about 126(14) for the high-cost

treatment and at 159(11) for the low-cost treatment, which is only slightly more extreme than the

stochastic potential predictions of 126(12) and 154(12) based on the estimated error parameter.

To summarize:The average effort trajectories spread symmetrically and converge to levels near

those implied by maximizing the stochastic potential function.

5. MINIMUM AND MEDIAN-EFFORT GAMES WITH THREE PLAYERS

Some researchers have suggested that two is the critical number of players for efficient

coordination. For instance, in the minimum-effort coordination experiments of Knez and

Camerer (1994), coordination gets steadily worse with larger groups and the biggest decrease in

efficiency occurs when going from two to three players. Their explanation is that with more than

two players, beliefs about others’ behavior become ambiguous: while two players only have to

worry about each others’ beliefs about one another, the introduction of additional players forces

everyone to think about beliefs one opponent has about another.

From the point of view of maximum (stochastic) potential, however, there is nothing

special about a group size of two: depending on the value ofnc, average effort levels may be

either low or high with two players (see Figure 2), and the same is true for three (or more)

players. To test this prediction, we ran two new minimum-effort coordination sessions, now with

cohorts of twelve subjects being randomly matched in groups of three. The effort-cost was 1/2

in the high-cost treatment and 1/10 and in the low-cost treatment.22 In order to get anex ante

prediction for the average effort levels in the final periods, we shall use µ = 7.4, which was

estimated from the two-person experiment. The population density that maximizes the stochastic

22 We would liked to have setc = 1/6 (instead ofc = 1/10) in the low-cost treatment to preserve symmetry around
nc = 1, but we felt that this would complicate payoff calculations too much and slow down the experiments, which were
done by hand. The low value of 1/10, however, has the disadvantage that it can cause decisions to "lock" onto the upper
boundary.
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potential is characterized by the three-person generalization of equation (4):

Equation (5) can be derived as follows. Recall that, in general, the condition for stochastic

(5)µ f (e) f (e) ((1 F (e))2 c) .

potential maximization is given by the logit-equilibrium condition: µf´(e) = πe´(e) f(e). An

increase in effort raises costs at a ratec and results in a higher minimum effort only if the others’

efforts are higher, which occurs with probability (1 -F)2. Hence marginal payoffs are:πe´ = (1 -

F)2 - c, which together with the logit condition yields (5). Using the estimated value of 7.4 for

the error parameter, equation (5) can be solved numerically and the resulting predictions for the

average effort levels are: 154 forc = 1/10 and 129 forc = 1/2, and the standard deviation of the

average is 8 in each case. The period-by-period average effort levels for both treatments are

shown in Figure 4.

Both sessions start out at the same level, which falls in the same range (between 140 and

Figure 4. A Three-Person Minimum-Effort Coordination Game: Average Effort Decisions
Key: Averages by period forc = 1/10 (top) andc = 1/2 (bottom).
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150) as in the sessions with random pairings. As predicted, however, average effort levels in the

high-cost session fall while average effort levels rise in the low-cost session. The average efforts

for the high-cost session end up quite close to the logit predictions.23

A Median-Effort Coordination Game

Another characteristic of coordination experiments done to date is that when payoffs are

determined by themedian effort, the dynamics exhibit strong history-dependence: i.e. final

outcomes are largely determined by initial play (Van Huyck, Battalio, and Beil, 1991). In all of

the twelve sessions that they report, the median choice remained the same in each period and the

final outcome was completely determined by first-period play. In addition, subjects’ behavior

showed little variation over time, in contrast with the adjustment patterns in minimum-effort

games (see also Crawford, 1995).

The payoff structure in Van Huyck, Battalio, and Beil (1991) differs from (1) in two

ways. The minimum of all efforts is replaced by the median, and, more importantly, a cost is

added that is quadratic in the distance between a player’s effort and the median of all effort

choices. The latter change may have an effect on behavior and could be part of the reason why

the data show such strong history dependence. We will consider a three-person median-effort

coordination game with a payoff structure that is more closely related to (1). In particular, all

three players receive the median, or middle, effort choice minus the cost of their own effort:

πi(e1,e2,e3) = median{e1,e2,e3} - c ei, with c the effort-cost parameter. This median-effort game

has a continuum of asymmetric Pareto-ranked Nash equilibria in which two players choose a

common effort level,e, and the third player chooses the lowest possible effort_e. This

asymmetric outcome is unlikely to be observed when players are randomly matched and drawn

from the same pool, and it seems more sensible to characterize the entire population of players

by a common distribution functionF, with corresponding densityf. The condition implied by

maximum stochastic potential is: µf´(e) = πe´(e) f(e), and the marginal payoff function can be

derived in the same manner as above. An increase in effort raises costs at a ratec and affects

23 The low-cost session, however, provides an example of "lock-in dynamics:" there is no more residual noise and
behavior gets stuck at the upper boundary after period 7.
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the median only if one of the other players is choosing a higher effort level and the other a lower

effort level, which happens with probability 2F(1-F). Hence, the condition for maximum

stochastic potential becomes:

We conducted four sessions with this particular game form, with effort-cost parameters

(6)µ f (e) f (e) (2 F (e) (1 F (e) ) c) .

of c = 0.1,c = 0.4, andc = 0.6 respectively. The predictions for the final-period average effort

levels that follow from (10) (again with µ = 7.4) are: 150 forc = 0.1, 140 forc = 0.4, and 130

for c = 0.6 with a standard deviation of 8 in each case. The observed average efforts in the last

three periods for these sessions were 157 (c = 0.1), 136 and 138 (c = 0.4), and 113 (c = 0.6)

respectively. Notice that three of the four averages are within one standard deviation of the

relevant theoretical prediction.

Figure 5 shows the period-by-period averages for each treatment. Average efforts start

Figure 5: A Median-Effort Coordination Game: Average Effort Decisions
Key: Averages by period forc = 0.1 (top),c = 0.4 (middle), andc = 0.6 (bottom).
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at roughly the same level, but rise in the session with the lowest effort cost and fall in the one

with the highest cost. The sessions with the intermediate effort cost have relatively flat

trajectories, which is consistent with history dependence, but the final level is also predicted by

maximizing stochastic potential. For later periods, the null hypothesis of no treatment effect can

be rejected at the 10 percent level of significance using a non-parametric test.24 To summarize:

behavior in three-person minimum and median-effort coordination games is sensitive to changes

in the effort cost that do not affect the set of Nash equilibria. In most sessions, average effort

levels in final periods are close to those implied by maximization of stochastic potential.

6. CONCLUSION

Coordination games are of interest to both macroeconomists and microeconomists because

the presence of multiple, Pareto-ranked Nash equilibria raises the possibility of failure to

coordinate on a "good" outcome. One direction of research has been to devise and study

mechanisms that facilitate profitable coordination. In addition, theorists have studied coordination

games extensively because the presence of multiple equilibria provides a useful platform for the

analysis of strategic behavior. This paper reports a new set of experimental data generated by

changes in the economic variables, i.e. effort cost and group size, which should affect the

likelihood of successful coordination.

In the continuous minimum-effort game, a unilateral increase in effort above some

common level will reduce one’s payoff byc per unit effort, whereas a unilateral one-unit

decrease in effort will reduce payoff by 1 -c, since the minimum effort is reduced by 1. Thus

any common effort level is a Nash equilibrium, but intuition suggests that the average effort

levels should depend on the relative losses from over-shooting or under-shooting the other’s

effort, i.e. on whetherc is greater than or less than 1/2. The widely cited notion of "risk

dominance" uses these "deviation losses" to predict which outcome will occur in a two-decision

game. One way to generalize risk dominance to economic situations with a continuum of

decisions is to consider the equilibrium that maximizes a "potential function." In the two-person

24 There are 24 possible ways that the effort averages could have been ranked, and of these only two rankings are
as extreme as the one observed. The probability of this outcome under the null is, therefore, 2/24 = 0.09.
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coordination game, this procedure selects the equilibrium with the highest possible effort when

c < 1/2 and with the lowest possible effort whenc > 1/2. This paper presents the results of a

laboratory experiment using effort cost parameters of 1/4 and 3/4. The effort-cost treatment

separates the data nicely, with symmetric increases for low effort costs and decreases for high

effort costs, as shown by the dark lines in Figure 2 that track the average efforts by treatment

for each period.

The data averages do not converge to the upper and lower boundaries, as implied by the

maximization of potential, and the residual noise in the data suggests the incorporation of

stochastic elements, reflecting noisy response to asymmetries in deviation losses. We use a

"stochastic potential" function which includes an entropy term that is weighted by an estimated

error parameter. The final-period averages are close to the levels that maximize stochastic

potential. Follow-up experiments show that this approach is also useful in organizing the data

from different contexts, e.g. three-person minimum and median effort-coordination games.

Overall, this combination of theory and experiment provides a coherent picture of behavioral

responses to key economic incentives and can be useful in designing mechanisms that facilitate

coordination.
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Appendix A: Instructions (for th e c = 0.25 treatment)

Introduction
You are going to take part in an experimental study of decision making. The funding for

this study has been provided by several foundations. The instructions are simple, and by
following them carefully, you may earn a considerable amount of money. At this time, you will
be given $6 for coming on time. All the money that you earn subsequently will be yours to
keep, and your earnings will be paid to you in cash today at the end of this experiment. We will
start by reading the instructions, and then you will have the opportunity to ask questions about
the procedures described.

Earnings
The experiment consists of a number of periods. In each period, you will be randomly

matched with another participant in the room. The decisions that you and the other participant
make will determine the amount earned by each of you. At the beginning of each period, you
will choose a number or "effort level" between 110 and 170. Effort choices will be made by
writing the effort level on a decision sheet that is attached to these instructions. Your effort
choice may be any amount between and including 110 and 170. That is, we allow fractions. The
person who you are matched with will also choose an effort level between and including 110 and
170. Your earnings are determined as follows: you will receive a penny amount that equals the
minimum of the two effort levels chosen, minus the cost of your effort, which is .25 times your
own effort choice. So if the effort levels are equal, both players receive their effort level minus
.25 times their effort level (in pennies). If the effort levels are not equal, both players get the
lower of the two effort levels, minus .25 times their effort level.

Example: Suppose that your effort is X and the other's effort is Y.
If X = Y, you get X - (.25) X, and the other gets Y - (.25) Y.
If X > Y, you get Y - (.25) X, and the other gets Y - (.25) Y.
If X < Y, you get X - (.25) X, and the other gets X - (.25) Y.

To reiterate, you each earn a number of pennies that equals the minimum effort, minus the cost
of your own effort. In addition to the earnings determined in this manner, you will earn a fixed
amount of 60 cents per round.

Record of Results
Now, each of you should examine the record sheet for part A. This sheet is the last one

attached to these instructions. Your identification number is written in the top-right part of this
sheet. Now, please look at the columns of your record sheet for part A. Going from left to
right, you will see columns for the “period,” “your effort,” “other’s effort,” “minimum effort,”
"effort cost," and “your earnings.” You begin by writing down your effort choice in the
appropriate column. As mentioned above, this effort must be greater than or equal to 110 and
less than or equal to 170, and the effort can be any amount in this range, (i.e. fractional effort
levels are allowed). Use decimals to separate fractions. For example, wxy.z indicates wxy units
of effort plus z/10 of a unit.
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After you make and record your decision for period one, we will collect all decision
sheets. Then we will draw numbered ping pong balls to match each of you with another person.
Here we have a container with ping pong balls, each ball has one of your identification numbers
on it. We will draw the ping pong balls to determine who is matched with whom. After we
have matched someone with you, we will write the other’s effort decision, the minimum effort,
the cost of your own effort, and your earnings in the relevant columns of your decision sheet and
return it to you. Then, you make and record your decision for period two, we collect all decision
sheets, draw ping pong balls to randomly match you with another person, and calculate your
earnings as above. This same process is repeated a total number of ten times. Notice that the
far right column in record sheet lists the additional 60 cents that you earn each round.

Summary
To begin, participants make and record their effort choices by writing the effort level in

the appropriate column of the decision sheet. Then the decision sheets are collected and
participants are randomly matched using draws of numbered ping pong balls. Once the matching
is done, the other’s effort, the minimum effort, the effort cost, and the earnings are written on
each person’s decision sheet. Then decision sheets are returned, and participants make and
record their effort levels for the next period. The decisions determine each person’s earnings in
pennies as described above (you will receive an amount that equals the minimum of your effort
and the other person’s effort, minus the cost of your effort, which is (.25) times your effort
level). Note that a new random matching is done in each period. After we finish all periods,
we will read to you the instructions for a different experiment.

Final Remarks
At the end of today’s session, we will pay to you, privately in cash, the amount that you

have earned. We will add together your earnings from all parts of this exercise to determine your
total earnings (earnings will be rounded off to the nearest penny amount). You have already
received the $6 participation payment. Therefore, if you earn an amount X during the exercise
that follows, you will receive a total amount of $6.00 + X. Your earnings are your own business,
and you do not have to discuss them with anyone.

During the experiment, you are not permitted to speak or communicate with the other
participants. If you have a question while the experiment is going on, please raise your hand and
one of us will come answer it. At this time, do you have any questions about the instructions
or procedures? If you have a question, please raise your hands and one of us will come to your
seat to answer it.
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Identification Number: _______________

Choose an effort level that is greater than or equal to 110 and less than or equal to 170, using
decimals to indicate fractions; e.g. wxy.z. Please only make a decision for period 1 at this time,
which is recorded in the top row.

period your
effort

other’s
effort

minimum
effort

effort cost
(.25) * your effort

your
earnings
in cents

additional
payment

1 + 60

2
+ 60
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Appendix B: Data for the Minimum-Effort Game
Session 1: Effort Decisions (Other’s Decision) for Effort Costc = 0.25

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9 subject 10

period 1 135
(140)

140
(155)

120
(110)

110
(120)

140
(135)

135.25
(148)

120
(170)

170
(120)

155
(140)

148
(135.25)

period 2 143.5
(170)

170
(143.5)

115.9
(170)

130
(140)

140
(130)

153.52
(130)

170
(115.9)

130
(153.52)

150
(128)

128
(150)

period 3 155
(111.9)

160
(140)

111.9
(155)

135
(170)

140
(140)

140
(138.9)

170
(135)

140
(140)

140
(160)

138.9
(140)

period 4 140
(140)

160
(150)

135.5
(145)

145
(135.5)

140
(140)

142.85
(170)

170
(142.85)

150
(139)

150
(160)

139
(150)

period 5 150
(150)

150
(150)

140.5
(140)

135.5
(145.28)

140
(140.5)

145.28
(135.5)

160
(139.9)

139.9
(160)

155
(138.9)

138.9
(155)

period 6 155.5
(149.9)

150
(160)

160.5
(140)

140
(155)

140
(148.52)

148.52
(140)

140
(160.5)

160
(150)

155
(140)

149.9
(155.5)

period 7 145
(140)

160
(160)

140.5
(170)

140
(153)

140
(145)

145.98
(150)

170
(140.5)

150
(145.98)

153
(140)

159
(160)

period 8 140
(146.54)

160
(140.5)

140.5
(160)

145
(140)

140
(145)

146.54
(140)

160
(145)

145
(160)

150
(169)

169
(150)

period 9 150
(164)

160
(140)

140
(160)

143
(140)

140
(143)

146.02
(160)

150
(155)

160
(146.02)

155
(150)

164
(150)

period 10 170
(170)

160
(155)

141.1
(140)

143
(160)

140
(141.1)

146.22
(149)

170
(170)

160
(143)

155
(160)

149
(146.22)

Session 2: Effort Decision (Other’s Decision) for Effort Costc = 0.75

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9 subject 10

period 1 150
(139.8)

125
(148)

150
(170)

125
(160)

139.8
(150)

148
(125)

170
(150)

135.2
(110)

160
(125)

110
(135.2)

period 2 136.1
(170)

170
(130)

150
(150)

135
(129.6)

129.6
(135)

169
(140.5)

170
(136.1)

140.5
(169)

130
(170)

120
(120)

period 3 134.7
(170)

170
(110)

170
(134.7)

125
(140)

155
(150)

125
(125)

110
(170)

150
(155)

140
(125)

125
(125)

period 4 138.1
(145)

110
(135)

145
(138.1)

140
(140)

149
(125)

125
(149)

170
(145.5)

145.5
(170)

140
(140)

135
(110)

period 5 141.2
(110)

110
(135)

160
(140)

140
(170)

160
(129.6)

135
(110)

170
(140)

129.6
(160)

140
(160)

110
(141.2)

period 6 135
(145)

110
(150)

150
(110)

150
(140)

130.8
(115)

125
(125)

140
(150)

155.7
(125)

145
(145)

115
(130.8)

period 7 139
(125)

110
(140)

140
(140)

140
(140)

116
(145)

125
(125)

140
(110)

125
(125)

145
(116)

125
(139)

period 8 137
(125)

110
(150)

150
(110)

140
(130)

120
(140)

125
(137)

140
(120)

130
(140)

140
(125)

125
(140)

period 9 131
(140)

110
(135.4)

140
(131)

140
(140)

120
(125)

135
(140)

140
(140)

135.4
(110)

140
(135)

125
(120)

period 10 135
(135)

110
(121)

135
(135)

140
(120)

121
(110)

135
(140)

140
(125)

125
(140)

140
(135)

120
(140)



23

Session 3: Effort Decision (Other’s Decision) for Effort Costc = 0.25

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9 subject 10

period 1 150
(170)

170
(133.3)

133.3
(170)

170
(150)

160.8
(140)

140
(160.8)

170
(110)

120
(170)

110
(170)

170
(120)

period 2 165
(150)

160
(110)

170
(170)

150
(165)

159.7
(140)

140
(159.7)

170
(140)

140
(170)

110
(160)

170
(170)

period 3 160
(160)

160
(140)

170
(140)

150
(170)

140
(170)

140
(160)

170
(150)

160
(160)

150
(170)

170
(150)

period 4 170
(150)

150
(170)

170
(140)

160
(160)

170
(170)

140
(170)

170
(170)

160
(160)

155
(170)

170
(155)

period 5 160
(170)

145
(160)

170
(160)

160
(145)

170
(160)

150
(170)

170
(160)

160
(170)

160
(170)

170
(150)

period 6 160
(160)

160
(170)

170
(160)

150
(150)

170
(170)

150
(150)

170
(170)

160
(160)

170
(170)

170
(170)

period 7 160
(170)

160
(170)

170
(150)

150
(160)

170
(160)

150
(170)

170
(170)

160
(150)

170
(160)

170
(170)

period 8 170
(170)

160
(170)

170
(155)

155
(170)

160
(155)

155
(160)

170
(160)

160
(170)

170
(170)

170
(160)

period 9 170
(170)

169.9
(170)

170
(160)

160
(170)

170
(170)

160
(170)

170
(160)

160
(170)

170
(169.9)

170
(160)

period 10 170
(160)

170
(170)

170
(170)

165
(160)

170
(170)

160
(170)

170
(170)

160
(165)

170
(170)

170
(170)

Session 4: Effort Decision (Other’s Decision) for Effort Costc = 0.75

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9 subject 10

period 1 122
(130.5)

160
(150)

170
(110)

130.5
(122)

134.9
(170)

150
(160)

170
(150)

150
(170)

110
(170)

170
(134.9)

period 2 169
(110)

130
(170)

110
(169)

170
(130)

140
(110)

150
(140)

110
(150)

150
(110)

110
(140)

140
(150)

period 3 131
(195)

140
(140)

120
(140.2)

140.2
(120)

135
(110)

145
(131)

110
(135)

140
(140)

110
(140)

140
(110)

period 4 127
(130)

135
(110)

130
(135)

125
(110)

135
(130)

120
(110)

110
(135)

130
(127)

110
(120)

110
(125)

period 5 134
(110)

110
(130)

130
(110)

110
(130)

130
(110)

110
(134)

110
(110)

130
(110)

110
(110)

110
(130)

period 6 152
(110)

125
(120)

120
(128)

120
(110)

110
(152)

128
(120)

110
(110)

120
(125)

140
(110)

110
(120)

period 7 112
(120)

120
(112)

130
(130)

110
(110)

130
(130)

124
(110)

110
(120)

120
(110)

110
(110)

110
(124)

period 8 110
(115)

115
(110)

120
(110)

110
(120)

130
(110)

110
(130)

110
(110)

120
(110)

110
(110)

110
(120)

period 9 113
(110)

110
(110)

120
(110)

110
(110)

110
(110)

114
(110)

110
(110)

110
(113)

110
(120)

110
(114)

period 10 111
(110)

110
(110)

110
(111)

110
(110)

110
(110)

110
(110)

110
(110)

110
(110)

110
(110)

110
(110)
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Session 5: Effort Decision (Other’s Decision) for Effort Costc = 0.25

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9 subject 10

period 1 157.2
(140)

110
(140)

140
(110)

170
(130)

160
(150)

130
(170)

150
(160)

150
(130)

140
(157.2)

130
(150)

period 2 143
(135)

140
(160)

135
(143)

110
(140)

160
(150)

170
(140)

150
(160)

140
(170)

160
(140)

140
(110)

period 3 161.3
(140)

145
(160)

150
(150)

140
(161.3)

150
(150)

150
(160)

150
(110)

160
(150)

160
(145)

110
(150)

period 4 159.9
(130)

160
(170)

130
(159.9)

150
(170)

170
(160)

170
(150)

170
(170)

170
(170)

170
(130)

130
(170)

period 5 132
(150)

170
(170)

150
(132)

150
(170)

170
(140)

170
(150)

140
(170)

170
(170)

160
(130)

130
(160)

period 6 141.8
(146)

170
(160)

146
(141.8)

170
(160)

160
(170)

160
(170)

150
(130)

170
(160)

160
(170)

130
(150)

period 7 142.6
(170)

170
(160)

142
(160)

170
(142.6)

160
(142)

160
(170)

150
(140)

170
(160)

160
(170)

140
(150)

period 8 140.4
(135.5)

165
(144)

144
(165)

160
(150)

170
(170)

170
(170)

150
(160)

170
(170)

170
(170)

135.5
(140.4)

period 9 145.1
(170)

170
(145.1)

151
(160)

160
(151)

170
(170)

170
(170)

150
(170)

170
(150)

170
(140)

140
(170)

period 10 146.5
(150)

170
(170)

147
(170)

170
(140)

170
(147)

170
(170)

150
(146.5)

170
(170)

170
(170)

140
(170)

Session 6: Effort Decision (Other’s Decision) for Effort Costc = 0.75

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9 subject 10

period 1 110
(170)

170
(110)

140
(150)

159
(110)

130
(170)

110
(159)

150
(140)

120
(140)

140
(120)

170
(130)

period 2 170
(110)

170
(120)

140
(150)

120
(140)

140
(170)

110
(170)

150
(140)

120
(170)

140
(120)

170
(140)

period 3 135.15
(170)

170
(140)

170
(110)

111
(170)

170
(111)

110
(170)

150
(170)

170
(150)

140
(170)

170
(135.15)

period 4 141.67
(140)

140
(130)

140
(170)

130
(140)

130
(145)

145
(130)

170
(140)

150
(170)

140
(141.67)

170
(150)

period 5 137.19
(130)

140
(140)

140
(140)

110.1
(160)

130
(170)

130
(137.19)

160
(110.1)

150
(140)

140
(150)

170
(130)

period 6 158.75
(129)

140
(130)

140
(140)

150
(130)

140
(160)

130
(140)

160
(140)

130
(150)

140
(140)

129
(158.75)

period 7 116.85
(135)

135
(116.85)

140
(145)

110.1
(160)

145
(140)

130
(140)

160
(110.1)

140
(129)

140
(130)

129
(140)

period 8 140
(146)

128
(130)

140
(130)

130
(140)

130
(129)

130
(128)

160
(120)

120
(160)

140
(140)

129
(130)

period 9 140.10
(130)

130
(130)

140
(160)

130
(140)

120
(140)

130
(130)

160
(140)

130
(129)

140
(120)

129
(130)

period 10 125.87
(160)

130
(125)

140
(130)

129.9
(129)

130
(160)

130
(140)

160
(125.89)

125
(130)

160
(130)

129
(129.9)
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Appendix C: Data for the Three Person Median-Effort Game
Session 1: Effort Decisions (Others’ Decisions) for Effort Costc = 0.10

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9

period 1 170
(130, 140)

110
(150, 170)

150
(110, 170)

140
(170, 130)

130
(170, 140)

170
(150, 110)

120
(110, 135)

135
(110, 120)

110
(120, 135)

period 2 170
(150, 140)

110
(110, 170)

135
(160, 140)

140
(150, 170)

160
(140, 135)

170
(110, 110)

150
(170, 140)

110
(110, 170)

140
(160, 135)

period 3 170
(110, 170)

110
(160, 150)

170
(110, 170)

110
(170, 170)

110
(150, 170)

150
(160, 110)

170
(110, 150)

160
(150, 110)

150
(110, 170)

period 4 170
(150, 165)

150
(110, 170)

170
(110, 150)

110
(150, 170)

110
(150, 170)

170
(110, 150)

165
(150, 170)

150
(110, 170)

150
(165, 170)

period 5 170
(150, 170)

150
(170, 170)

170
(110, 150)

110
(150, 170)

170
(170, 150)

170
(170, 150)

150
(110, 170)

150
(170, 170)

170
(150, 170)

period 6 110
(150, 170)

150
(110, 170)

170
(130, 170)

110
(160, 170)

170
(110, 150)

170
(130, 170)

130
(170, 170)

160
(110, 170)

170
(110, 160)

period 7 170
(160, 170)

170
(110, 160)

170
(165, 170)

165
(170, 170)

170
(160, 170)

170
(165, 170)

110
(160, 170)

160
(110, 170)

160
(170, 170)

period 8 170
(170, 170)

170
(170, 170)

170
(110, 170)

110
(170, 170)

170
(110, 170)

170
(115, 160)

115
(160, 170)

170
(170, 170)

160
(115, 170)

period 9 170
(170, 170)

170
(110, 160)

170
(170, 170)

110
(160, 170)

170
(170, 170)

170
(120, 160)

120
(160, 170)

160
(120, 170)

160
(110, 170)

period 10 110
(160, 170)

170
(150, 170)

150
(170, 170)

170
(160, 170)

170
(160, 170)

170
(150, 170)

170
(110, 160)

160
(170, 170)

160
(110, 170)

Session 2: Effort Decisions (Others’ Decisions) for Effort Costc = 0.60

subject 1 subject 2 subject 3 subject 4 subject 6 subject 7 subject 8 subject 9 subject 10

period 1 110
(146, 150)

117
(110, 170)

170
(110, 117)

112
(110, 140)

155
(110, 146)

146
(110, 150)

110
(117, 170)

140
(112, 110)

110
(112, 140)

period 2 110
(110, 110)

110
(110, 110)

110
(110, 110)

110
(110, 133)

120
(110, 120)

133
(110, 110)

110
(120, 120)

120
(110, 120)

110
(110, 133)

period 3 110
(110, 110)

112
(115, 167)

110
(110, 115)

110
(110, 110)

115
(112, 167)

167
(112, 115)

110
(110, 115)

115
(110, 110)

110
(110, 110)

period 4 110
(110, 150)

150
(110, 110)

110
(110, 150)

110
(128, 145)

145
(110, 128)

128
(110, 145)

110
(110, 110)

110
(110, 110)

110
(110, 110)

period 5 110
(110, 145)

113
(117, 110)

110
(110, 145)

110
(110, 110)

145
(110, 110)

117
(113, 110)

110
(110, 110)

110
(110, 110)

110
(113, 117)

period 6 110
(110, 111)

111
(110, 110)

110
(110, 110)

110
(110, 110)

111
(110, 125)

125
(111, 110)

110
(110, 110)

110
(110, 111)

110
(111, 125)

period 7 110
(110, 141)

110
(110, 110)

110
(110, 110)

110
(110, 110)

120
(110, 110)

141
(110, 110)

110
(110, 120)

110
(110, 120)

110
(110, 141)

period 8 110
(110, 110)

115
(112, 115)

110
(110, 110)

110
(110, 110)

115
(112, 115)

112
(115, 115)

110
(110, 110)

110
(110, 110)

110
(110, 110)

period 9 110
(110, 110)

120
(117, 121)

110
(110, 110)

110
(110, 110)

117
(120, 121)

121
(117, 120)

110
(110, 110)

110
(110, 110)

110
(110, 110)

period 10 110
(110, 125)

118
(110, 118)

110
(110, 125)

110
(110, 110)

118
(110, 118)

125
(110, 110)

110
(110, 110)

110
(110, 110)

110
(118, 118)
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Session 3: Effort Decisions (Others’ Decisions) for Effort Costc = 0.40

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9

period 1 150
(169, 110)

110
(150, 169)

140
(110, 110)

110
(140, 110)

110
(110, 170)

170
(110, 110)

169
(110, 150)

110
(110, 170)

110
(140, 110)

period 2 110
(140, 150)

111
(170, 170)

170
(111, 170)

110
(111, 170)

170
(111, 170)

150
(110, 140)

111
(110, 170)

170
(110, 111)

140
(110, 150)

period 3 110
(110, 113)

113
(110, 110)

170
(110, 140)

110
(110, 113)

145
(140, 150)

140
(110, 170)

150
(140, 145)

110
(140, 170)

140
(145, 150)

period 4 110
(140, 169)

170
(170, 170)

170
(170, 170)

169
(110, 140)

170
(170, 170)

140
(110, 110)

140
(110, 169)

110
(110, 140)

110
(110, 140)

period 5 110
(110, 155)

120
(140, 170)

170
(120, 140)

170
(110, 130)

110
(110, 155)

130
(110, 170)

155
(110, 110)

110
(130, 170)

140
(120, 170)

period 6 110
(130, 140)

160
(170, 140)

170
(145, 170)

170
(160, 140)

170
(145, 170)

130
(110, 140)

145
(170, 170)

140
(160, 170)

140
(110, 130)

period 7 110
(110, 145)

110
(110, 170)

170
(110, 170)

110
(170, 170)

170
(110, 170)

110
(110, 145)

145
(110, 110)

170
(110, 110)

110
(110, 170)

period 8 110
(110, 170)

170
(154, 170)

170
(110, 110)

154
(170, 170)

170
(154, 170)

130
(110, 140)

110
(110, 170)

140
(130, 110)

110
(130, 140)

period 9 110
(110, 140)

170
(170, 140)

170
(110, 140)

170
(170, 140)

110
(110, 140)

140
(110, 110)

110
(140, 170)

140
(170,170)

140
(110, 170)

period 10 110
(110, 170)

170
(110, 110)

110
(110, 140)

110
(110, 170)

170
(110, 110)

110
(110, 140)

110
(110, 170)

140
(110, 110)

110
(110, 140)

Session 4: Effort Decisions (Others’ Decisions) for Effort Costc=0.40

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9

period 1 155
(170, 110)

110
(155, 170)

160
(168, 125)

125
(160, 168)

150
(110, 150)

168
(125, 160)

170
(110, 155)

150
(110, 150)

110
(150, 150)

period 2 145
(110, 169)

110
(145, 169)

166
(130, 160)

130
(160, 166)

110
(110, 170)

169
(110, 145)

170
(110, 110)

160
(130, 166)

110
(110, 170)

period 3 160
(120, 169)

110
(140, 150)

170
(110, 160)

160
(110, 170)

150
(140, 110)

169
(120, 160)

110
(160, 170)

140
(110, 150)

120
(160, 169)

period 4 160
(150, 145)

110
(120, 160)

162
(110, 115)

110
(115, 162)

150
(145, 160)

160
(110, 120)

145
(150, 160)

115
(110, 162)

120
(110, 160)

period 5 160
(160, 161)

110
(160, 155)

160
(160, 161)

161
(160, 160)

150
(120, 145)

160
(110, 155)

145
(120, 150)

155
(110, 160)

120
(145, 150)

period 6 160
(162, 169)

110
(120, 150)

162
(160, 169)

145
(160, 145)

150
(110, 120)

169
(160, 162)

145
(145, 160)

160
(145, 145)

120
(110, 150)

period 7 140
(110, 170)

110
(120, 169)

170
(110, 140)

110
(140, 170)

150
(145, 150)

169
(110, 120)

145
(150, 150)

150
(145, 150)

120
(110, 169)

period 8 160
(120, 140)

140
(141, 165)

165
(140, 141)

141
(140, 165)

125
(140, 169)

169
(125, 140)

145
(120, 160)

140
(125, 169)

120
(145, 160)

period 9 150
(110, 110)

110
(110, 150)

160
(120, 155)

110
(125, 160)

125
(110, 160)

160
(110, 125)

110
(110, 150)

155
(120, 160)

120
(155, 160)

period 10 150
(110, 145)

110
(150, 164)

164
(110, 150)

110
(145, 150)

125
(110, 160)

160
(110, 125)

145
(110, 150)

150
(110, 164)

110
(125, 160)
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Appendix D: Data for The Three Person Minimum-Effort Game
Session 1: Effort Decisions (Top) and Others’ Decisions (Bottom) for Effort Costc = 0.50

subject 1 subject 2 subject 3 subject 4 subject 5 subject 6 subject 7 subject 8 subject 9 subject 10 subject 11 subject 12

125
110,140

125
140,170

125
130,170

170
125,130

130
170,170

170
125,140

170
130,170

170
130,170

140
110,125

140
125,170

130
125,170

110
125,140

110
110,170

110
170,170

150.5
150,150

130
150,170

150
150.5,150

170
110,110

170
110,110

170
130,150

110
110,170

150
150,150.5

150
130,170

110
110,170

150
110,140

110
110,160

144.9
110,155

150
170,170

155
110,144.9

170
150,170

110
110,160

170
150,170

110
140,150

160
110,110

140
110,150

110
144.9,155

150
110,110

170
170,170

115
110,170

170
110,150

150
110,170

170
170,170

110
110,150

170
170,170

110
150,170

170
110,115

110
115,170

110
110,150

110
110,170

170
110,120

110
110,150

150
110,110

110
120,170

170
110,110

120
110,170

170
140,140

110
110,170

140
140,170

140
140,170

110
110,150

120
130,170

140
110,140

120
110,110

140
110,140

120
150,170

170
120,135

110
110,120

150
120,170

110
110,170

135
120,170

170
120,150

110
110,120

130
110,120

110
170,140

112
110,130

130
110,170

150
110,170

170
110,150

110
130,170

170
110,140

110
140,140

140
110,170

170
110,130

110
150,170

120
120,130

120
130,170

130
120,120

120
120,130

130
110,170

140
110,110

120
110,130

170
120,130

110
112,130

130
120,170

110
120,130

110
110,140

130
110,140

125
120,120

120
120,125

130
120,125

120
140,150

140
110,130

120
110,170

170
110,120

110
110,140

140
120,150

150
140,120

110
120,170

110
130,140

125
130,170

119.9
110,110

125
125,110

170
125,130

140
110,130

110
110,119.9

130
110,140

110
110,119.9

125
110,125

130
125,170

110
125,125

Session 1: Effort Decisions (Top) and Others’ Decisions (Bottom) for Effort Costc = 0.10

subject
1

subject
2

subject
3

subject
4

subject
5

subject
6

subject
7

subject
8

subject
9

subject
10

subject
11

subject
12

168
110,150

159.4
125,170

170
159.4,125

159
110,160

170
110,135.5

110
150,168

150
110,168

125
159.4,170

135.5
110,170

110
135.5,170

160
110,159

110
159,160

110
164,170

164
110,170

170
135.5,170

150
145,160

170
169.9,168

170
110,164

170
135.5,170

160
145,150

168
169.9,170

135.5
170,170

145
150,160

169.9
168,170

170
170,170

164
168,170

170
140,145

140
145,170

170
150,170

170
164,168

170
150,170

150
170,170

168
164,170

170
170,170

145
140,170

170
170,170

170
145,170

164
168,199

170
170,170

145
170,170

170
160,170

170
170,170

170
170,170

160
170,170

168
164,169

170
145,170

170
160,170

169
164,168

170
170,170

164
170,170

170
164,170

170
157,169

170
170,170

170
170,170

170
170,170

170
170,170

169
157,170

170
170,170

170
164,170

157
169,170

170
170,170

170
170,170

170
170,170

170
167.5,170

170
167.5,170

170
170,170

170
170,170

170
170,170

167.5
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170

170
170,170
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