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Abstract:  
Many large data sets are created using clustered, rather than random sampling schemes.  Clustered data 
arise when multiple observations exist on the same respondent, as in panel data, and when respondents 
share a common factor, such as a neighborhood or family.  In the presence of clustered data, methods that 
rely on random sampling to measure the precision of an estimator may be incorrect.  Many researchers, 
however, continue to treat respondents from the same sampling cluster as independent observations and 
thus implicitly ignore the potential intracluster correlation.  In this paper, I use a robust method for drawing 
inferences and data from the Panel Survey of Income Dynamics, to examine the implications of clustered 
samples on inference.  Consistent with the previous survey sampling literature, important differences are 
revealed in comparisons between the estimated asymptotic variances derived assuming random and 
clustered sampling, even when there are only a few observations per cluster.  The estimates derived under 
random sampling are generally biased downward.   
 
 
*I wish to thank Robert Haveman, John Karl Scholz, Steven Stern, James Walker, and the participants at 
the University of Wisconsin and the University of Virginia Econometrics Workshops for their helpful 
comments.  I am especially grateful to Charles Manski for his many insightful comments, and Terry 
Adams for helping me understand the sampling scheme used to create the PSID.  Also, I wish to thank 
the Wisconsin Alumni Research Foundation for financial support. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7191648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

1

1.) Introduction 

 

 Empirical analyses often use data consisting of independent clusters of dependent random 

variables.  In fact, most large surveys in the social sciences, including the National Longitudinal Survey of 

Youth, the Panel Survey of Income Dynamics, and the Current Population Survey, use some type of 

clustered sampling scheme. These data arise when multiple observations exist on the same respondent, as 

in panel data, and when respondents share a common factor, such as a neighborhood or family.  In the 

presence of clustered data, methods that rely on random sampling to measure the precision of an estimator 

may be incorrect (Kish and Frankel, 1974; Scott and Holt, 1982; and Moulton, 1990). 

 Consider, for instance, the Panel Study of Income Dynamics (PSID), one of the most important 

and widely cited surveys in the social sciences.  In 1968, The University of Michigan's Survey Research 

Center selected approximately 4,800 families to interview for the PSID.  This sample of families is 

composed of two sub samples:  The Survey Research Center's (SRC) sample of 2,930 families is 

representative of the households in the United States in 1968 and the Survey of Economic Opportunity 

(SEO) sample of 1,872 families over-represents the low-income minority population (Survey Research 

Center, 1984).1  Each year since 1968, the members and offspring of these families have been surveyed.  

Thus, the 1968 wave of the PSID includes socioeconomic data on 18,224 individuals and the 1992 panel 

includes information on 41,420 individuals and 7,561 households.   

 Since each wave of the PSID includes multiple individuals and households that can all be 

connected to an original 1968 family, these data are clustered.  That is, for each 1968 household, the SRC 

collects potentially dependent information on the associated individuals and derivative households.  

Furthermore, to reduce surveying costs the SRC utilized a complex geographic clustering scheme so that 

groups of respondents share the same 1968 block, city, or county.  

  Arguably, the intracluster correlation in surveys such as the PSID is not zero and traditional 

methods of inference made under the random sampling assumption are inappropriate.  Most researchers, 

however, continue to treat respondents from the same sampling cluster as independent observations and 

thus implicitly ignore potential intracluster correlation.2  

                                                 
     1 To avoid complications that arise from unrepresentative stratification, this analysis only uses the SRC 
subsample.  

2 A random survey of articles published from 1986 through 1995 in the American Economic Review, the 
Quarterly Journal of Economics, the Journal of Labor Economics, and the Journal of Human Resources, 
reveals that nearly 80% of the analyses using the PSID treat respondents who share the same 1968 household 
as independent observations.. 
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 Researchers who do account for the clustering of individuals sharing the same 1968 household or 

geographic region often either arbitrarily exclude observations from the analysis or impose strong prior 

information about the intracluster dependencies.  One approach has been to exclude all but a single 

observation from each 1968 household (see, Solon (1992)).  Conventional panel data methods have also 

used to account for the intracluster dependencies (see, for example, Moulton, 1990).   While these models 

can be used to formalize the intracluster relationships, they only apply to particular parametric 

specifications and typically require prior information about the form of the within cluster dependence.  

Certainly, a more general approach seems useful.   

 This paper examines the practical implications of clustered sampling processes for statistical 

inference.  Focusing on the limiting distribution of method of moments estimators, Section 2 formalizes the 

notion of clustered sampling and describes a robust method of statistical inference.  This method, which 

generalizes the White (1980) variance estimator, allows for both arbitrary intracluster dependence and 

applies to the large class of method of moments problems.  To evaluate the finite sample properties of this 

variance estimator, a series of simple Monte Carlo simulations are examined in Section 3.  Using a 

bivariate linear mean regression model, these simulations demonstrate that inferences drawn under the 

assumption of random sampling can be highly misleading if the true sampling process is clustered.  In 

contrast, the test statistic derived using the generalized variance estimator performs relatively well in finite 

samples.   

 In Section 4, I apply this method to various parametric regressions using clustered data from the 

PSID.  Consistent with the previous survey sampling literature, important differences are revealed in 

comparisons between the estimated variances derived assuming random and clustered sampling.  In 

general, the estimates derived under random sampling are biased downward.  Finally, Section 5 

summarizes the main findings. 

 

2.) Statistical Inference in Clustered Sampling  

 

 Let the population be divided into mutually exclusive and exhaustive clusters (e.g, 1968 

households) with a finite number Nc of observations in each cluster c (e.g., individuals residing in the 1968 

household).  Assume that a random sample of C independent realizations of the random vector Z is 

observed, where Zc characterizes the Nc observations within cluster c.  In particular, Zc ≡ [ Zci, i = 1,..., Nc 

] is the Ncx 1 vector of variables for observations i within cluster c.  Thus, the sample includes C 



 

 

3

independent clusters, Nc respondents per cluster, and N observations, where N equals ∑
=

C

c 1

Nc. 

 This clustered sampling scheme leads to a random sample of clusters with information on each 

individual or respondent within the cluster.  Since the random variable Zci is observed for the Nc 

respondents within a cluster, the sample is self-weighting.  That is, the probability of observing any 

individual or cluster in the sample is the same.   

 Furthermore, notice that while the clusters are statistically independent, no assumptions are 

imposed on the dependence between observations within a cluster.  For i ≠ j, the random variables Zci and 

Zcj may be independent or they may be identical.  Random sampling of clusters, however, implies that Zc 

and Zd are independent random variables for all c ≠ d.  In this framework, random sampling is the special 

case where each cluster contains a single respondent.  

 With unknown dependence between respondents within a cluster, methods of inference that rely 

on random sampling may be inappropriate.  However, by treating the cluster rather than the individual as 

the unit of observation, the standard random sampling results are easily generalized.  As the number of 

clusters C goes to infinity, the limiting distribution of the method of moments estimator will be normal with 

mean zero and finite variance.  In addition, the analog estimator of the variance of this distribution, which 

is a generalization of White's (1980) variance estimator, will be consistent.  Full proofs are available from 

the author. 

 

 

3.) Monte Carlo Simulations  

 

 A series of Monte Carlo simulations are used to evaluate the finite sample properties of this robust 

estimator. After drawing 10,000 random clustered samples of size N from a bivariate linear mean 

regression model, I repeatedly test the hypothesis that the estimated slope coefficient equals the population 

parameter, β, at the 5% significance level.  For each pseudo-sample, a test statistic is computed under the 

assumption of both random and random clustered sampling.  Then, the size of the test statistic is estimated 

as the fraction of samples where the null hypothesis is rejected.  Of course, in the limiting case where the 

number of clusters C approaches infinity, this hypothesis should be rejected in exactly 5% of the pseudo-

samples.  

 Formally, assume a linear mean regression model 
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   Yci = α + βXci + ε ci       (1) 

 

where the intercept α equals 1, the slope β equals zero, and E(ε ci|X) = 0.  Furthermore, let 

 

   ε ci = A*Vc + B*Vci  and           (2a) 

   Xci = A*Wc + B*Wci    (2b) 

 

where Vc, Vci, Wc, and Wci are independent standard  normal random variables.  Notice that Vc and Wc 

vary across clusters while Vci and Wci are individual specific random variables.  The parameters A and B 

characterize the intracluster correlation.  In particular, for i≠  j, 

 

  Corr(ε ci,ε cj) = Corr(Xci,Xcj) = A2  / ( A2 + B2 ).  (3) 

 

As A goes to infinity or B goes to zero, the intracluster correlation approaches one.  In contrast, as A goes 

to zero or B goes to infinity, the individual random variables become increasingly important and the 

intracluster correlation approaches zero.  If A equals zero, the sampling process is random. 

 Using this model, simulations were run on a total of 36 random clustered samples which varied by 

the number of observations per cluster, the number of  clusters, and the intracluster correlation.  Table 1 

displays the results for clusters of size 5, 20, and 50, for samples of size 500, 1000, and 5,000, and for 

intracluster correlation between 0.10 and 1.00.  In each sample, the number of observations per cluster is 

constant.   Under the assumptions of random and random clustered sampling, the table records the faction 

of type I errors in the 10,000 Monte Carlo experiments.  The program used to perform the simulations was 

written in Gauss for Windows, Version 3.2.22. 

 These simulation results clearly demonstrate that in finite random clustered samples, inferences 

drawn under the traditional random sampling assumption can be highly misleading.  Under random 

sampling, the empirical size of the t-test statistic substantially exceeds the nominal 5% level, especially as 

the cluster size Nc and the intracluster correlation increase.  In fact, when the number of observations per 

cluster and the intracluster correlation are small, the probability of a type I error nearly matches the 0.05 

benchmark.   In 26 of the 36 experiments, however, the size of the test under random sampling exceeds 

0.10, and in 15 cases the size exceeds 0.35. In the worst cases, when the intracluster correlation equals 

one and the cluster size equals 50, the true null is rejected in over 80% of the simulations.   

 Under the assumption of random clustered sampling, the simulation results are markedly different. 
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 Again, the probability of a type I error tends to deviate from the 5% nominal level as the sample size 

decreases and as the number of observations per cluster and the intracluster correlation increase.  

However, in general the probability of a type I error lies between 0.05 and 0.10, exceeding 0.10 in only 6 

of the 36 cases.  In the worst case, the size of the test equals 0.142, substantially less than analogous 

0.817 found under the random sampling assumption. 

 

4.)   Applications  

 

 To empirically investigate the effects that clustered sampling can have on inferences, I use 

clustered data from the PSID to estimate two econometric models.  The first is a mean wage regression 

model similar to the one estimated by Hill (1981); the second is a probit model to examine the relationship 

between birth weight and various background factors including whether the mother smoked cigarettes. 

While the effects of clustering on inferences for both the unconditional mean and the linear mean 

regression have been previously examined (see, for example, Scott and Holt, 1992 and Hill 1981) little is 

known about the practical effects of clustering in nonlinear regressions.  These models are estimated using 

data from the SRC representative sample of the PSID.  Individuals and households in the SRC subsample 

are self-weighting.  

 Using these data I apply the methods of inference described above. In particular, the asymptotic 

standard errors of MOM estimators that apply in both random and clustered sampling are computed.  The 

standard errors derived under the assumption of random sampling are robust to arbitrary heteroskedasticity 

(White, 1980), while those computed under the assumption of clustered sampling are also robust to 

arbitrary intracluster dependence.  Finally, the ratio of the two estimated variances are reported for each 

parameter estimate.  This ratio of the clustered sampling asymptotic variance to the random sampling 

asymptotic variance, termed the design effect in the survey sampling literature, measures the relative 

change in the variance caused by clustered sampling. 

 

 Wage Regression Model 

 Every year since 1968, the SRC records detailed information regarding the job market experiences 

of heads and spouses.  Using these data, numerous studies investigate the relationships between wages 

and socioeconomic background characteristics.  To examine the effects of clustered sampling on a simple 

wage regression model, I use a sample of 4,059 respondents from the 1992 wave of PSID (Morgan, et al., 

1992).  Included are heads and spouses who were at least 25 years old in 1992 and who worked over 500 
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hours in 1991.  These data are clustered.  In particular, the 4,059 respondents are associated with 1,253 

original PSID households.  Thus, on average, this sample contains 3.2 observations per 1968 household.   

 A standard linear wage regression model assumes that E[Yc|Xc ] = Xcβ for all c =1,..., C, where 

Yc is the Ncx1 random vector of log wages for individuals in cluster c, Xc is the NcxK vector of observed 

covariates, and β is a Kx1 vector of unknown coefficients.  This moment condition implies that in random 

clustered sampling, the least squares estimator bc = (X'X)-1X'Y is a method of moments estimator of 

β, where Y is the Nx1 observed vector of log wages and X is the NxK vector of observed covariates. 

 Letting the number of clusters C go to infinity, the limiting distribution of this estimator is 

 

 C½( bc - β)  -->d  N[ 0 ,  E-1[ Xc'Xc ] * E[ Xc'ε c ε c'Xc ] * E-1[ Xc'Xc]  ], (4) 

 

where ε c is the Nc x 1 vector of prediction errors(Yc  - Xcβ).  Thus, 

  

      Vc  = ∑
=

C

c 1

(  Xc'Xc)
-1 ∑

=

C

c 1

( Xc'ec)(ec'Xc)  ∑
=

C

c 1

( Xc'Xc)
-1  

            =  (XX)-1 ∑
=

C

c 1

{  (Xc'ec)(ec'Xc) }  (X'X)-1      (5) 

 

where ec is the Ncx1 matrix of residuals (Yc  - Xcbc) is a consistent estimators of the asymptotic variance 

of  bc in clustered sampling, 

 The estimated coefficients for this linear mean regression model are presented in Table 1.  Like 

much of the past literature, these estimates suggest that expected log wage is highest for union men living 

in large cities and lowest for black women living in the south.  Table 1 also displays the estimated 

asymptotic standard errors, which in certain instances are substantively altered by the clustered sampling 

design.  By failing to account for the intracluster correlation, the estimates derived under random sampling 

are generally understated.  In certain cases, the differences are negligible.  The sampling scheme has little 

effect on the estimated asymptotic errors associated with the age, race and gender coefficients.  In 

contrast, the estimated design effects for the coefficients on union status, years of schooling, and whether 

the respondent lived in the south are all greater than 1.15, implying that the estimated standard errors in 

clustered sampling exceed those in random sampling by at least 7% (i.e., the square root of 1.15).  At 

1.30, the design effect for the "south" coefficient implies that the random sampling standard errors are 

understated almost 15%.   
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 Birth Weight Regression Model 

 In 1985, the SRC began recording information on the birth weight of individuals born to a PSID 

head or spouse.  Low birth weight is an important health concern in the United States, accounting for 

nearly 10% of the medical expenses of all children and costing more than $5.4 billion per year (Future of 

Children, 1995).  Here, using a sample of 3,416 observations from the 1992 PSID, I examine the 

association between low birth weight and various characteristics of the respondent's mother.  Included are 

respondents in the 1992 PSID whose parents were PSID heads or spouse for at least one year from 1985 

to 1992, and for whom there exists information on birth weight and the mother's cigarette consumption.   

These data are clustered, with the 3,416 respondents linked to 1,038 original PSID households.  Thus, on 

average this sample contains 3.3 observations per 1968 household.  

 To predict the probability of being a low birth weight baby conditional on the various observed 

characteristics of the mother, I use a standard probit model.  In particular, assume that 

 

  Yc  =  1    if Xcβ + ε c > 0      (6) 

    0    otherwise 

 

for all c = 1,...,C.  Here Yc is a Ncx 1 vector indicating whether individuals in cluster c were low birth 

weight babies, Xc is a NcxK vector of the observed background characteristics, and ε c is the Nc x 1 vector 

reflecting the unobserved determinants of birth weight.   

 Let the marginal distribution of ε c given Xc be normal with mean zero and unit variance.  This 

“probit” model implies that the mean regression is E[Yc| Xc ] = F[ Xcβ], where F(q) is the standard normal 

cumulative distribution function.   Thus, the parameter β satisfies the moment condition  
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where <c =  (Yc  - F[Xcβ]) is the Ncx1 vector of prediction errors and f(q) is the standard normal 
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probability distribution function.3  For this model, the standard method of moments estimator of β will be 

consistent and have an asymptotically normal distribution with a finite variance. 

  Table 2 displays the coefficient estimates along with the associated standard errors.  The 

estimates suggest that the probability of being a low birth weight baby decreases if the mother is married 

and if she graduated from high school and increases if she smoked cigarettes prior to birth.  The results 

also confirm previous findings that blacks are much more likely to be low birth weight than whites, ceteris 

paribus.   

 The estimated design effects displayed in Table 2 reflect the strong intracluster correlation in birth 

weights among families.  With only an average of three individuals from each 1968 family, the clustered 

sampling scheme still has important effects on inferences in this nonlinear regression model.  Again, all of 

the design effects are larger than one except for the measures associated with whether the child was the 

first born, which is negatively correlated within a family.  Otherwise, the design effects exceed 1.15 and 

for the coefficients associated with the race variable, the design effect is 1.7.  Thus, the asymptotic 

standard errors derived under the random sampling assumption are understated by as much as 30% (i.e., 

the square root of 1.70).   

 To isolate the effect of clustered sampling, both sets of standard errors are estimated using the 

analogs to the general limiting distribution for MOM estimators.  Alternative estimators of the standard 

error derived under random sampling imply larger design effects.  For instance, the design effect for the 

coefficient associated with the race indicator variable increases from 1.7 to 2.1 if the random sampling 

standard errors are computed using the negative of the inverse of the Hessian matrix, and to 2.5  if instead 

the asymptotic standard errors under random sampling are computed using the inverse of the information 

matrix. 

 

 Geographic Clusters in the PSID 

 To reduce interviewing costs, the SRC relied on a geographic clustering scheme which first 

selected counties, then areas within each county, and eventually households along particular blocks (see 

Kish and Hess (1965) for additional details).   By design, the sample is self-weighing at the individual and 

                                                 
    3 With dependence between observations sharing the same cluster, the standard likelihood equation for the 
probit model will not apply.  However, the moment conditional in Equation (7) is equivalent to the moment 
condition satisfied by maximizing the log-likelihood of the standard probit model under iid sampling (see Avery, 
Hansen, and Hotz (1983)).  Thus, this MOM estimator can be interpreted as a quasi-maximum likelihood 
estimator, and can be implemented using standard MLE routines.  Of course, the variance estimator cannot 
rely on standard MLE results, but instead must account for the clustered sampling.  
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household levels and thus the standard MOM estimators apply.   However, research that ignores the 

potential correlation between respondents sharing the same geographic cluster may draw distorted 

inferences.  To evaluate the effects of geographic clustering on inferences from the PSID, I reevaluate 

the design effects for the two models examined above.  Two geographic clusters can be identified in the 

data. The first are the primary sampling units (PSU) that include the 80 counties selected in the first stage 

of the sampling process, and the second are the detailed place codes that identify 329 distinct 

neighborhoods of households selected in an intermediate stage.   

 Table 3 displays the estimated design effects for the estimated regression coefficients using the 

household, the detailed place code, and the PSU as the unit of observation.  In general, the results show 

that the estimated asymptotic standard errors increase with the number of observations per cluster and the 

intracluster correlation.  Inferences drawn regarding outcomes that are likely to exhibit strong intra-

regional correlation, such as wages, appear to be sensitive to geographic clustering.  The design effect for 

the coefficient on whether the respondent lived in the south, for example, increases from 1.31 when the 

household is the unit of analysis, to 3.20 when accounting for the clustering of respondents within counties. 

  In contrast, inferences drawn about outcomes that are arguably independent of geographic locale, such 

as birth weight, appear unaffected.  The design effect associated with the coefficient associated with race, 

for instance, only moves from 1.67 when accounting for household clustering, to 1.77 when accounting for 

 PSU's.  Still, the design effects substantially increase for the coefficients associated with the marital 

status and education of the mother.  

 

5.) Conclusion 

 

 In this paper, I provide several empirical illustrations of a method of inference that is robust to the 

clustering of individuals who share the same sampling cluster (e.g., 1968 household).  While the specific 

results cannot be generalized to other models, they do provide evidence that in clustered samples 

inferences made under the random sampling assumption can be misleading.  Simulations in Section 3 

demonstrate that in finite samples, the empirical size of a simple t-test made under the assumption of 

random sampling are often substantially different than the nominal size. Applications presented in Section 

4, reveal design effects that exceed 2.00 in samples that contain only a few observations per cluster and 

design effects of over 3.00 in samples with nearly 50 observations per PSU.  In general, the estimated 

standard errors derived under the random sampling assumption are biased downward.  These findings 

should not come as a surprise:  the underlying sampling process affects statistical inferences.  Certainly, 
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researchers using clustered samples should be wary of drawing inferences under the assumption that the 

sampling process is random. However, for self-weighting clustered samples like the PSID, the general 

procedures outlined above can be applied.  
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     Table 1      
   Monte Carlo Simulations for a t-test    
  Statistic from a Bivariate Linear Mean Regression   
            
  Fraction of Rejections of the True Null Hypothesis that  
   β = 0at the 5% Significance Level    
            
   Nc = 5  Nc = 20  Nc = 50  
 Intracluster           

N Correlation  CS RS  CS RS  CS RS  
500 0.10        0.058       0.059              0.071       0.067         0.101       0.105   

 0.20  0.061 0.075  0.070 0.172   0.111 0.211  
 0.50  0.061 0.156  0.094 0.433  0.136 0.537  
 1.00  0.064 0.394  0.105 0.690  0.142 0.817  
           

1000 0.10  0.050 0.055  0.064 0.068  0.073 0.119  
 0.20  0.052 0.070  0.064 0.140  0.077 0.193  
 0.50  0.058 0.163  0.074 0.451  0.094 0.559  
 1.00  0.052 0.383  0.071 0.668  0.101 0.800  
            

5000 0.10  0.052 0.058  0.051 0.074  0.050 0.100  
 0.20  0.054 0.070  0.055 0.157  0.059 0.272  
 0.50  0.055 0.174  0.055 0.428  0.060 0.588  
 1.00  0.047 0.374  0.054 0.665  0.063 0.787  
            
Note: CS = Clustered Sampling; RS = Random Sampling; N=Number of Observations; 
          Nc = Number of Observations per Cluster     
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Table 2 

Linear Mean Wage Regression Coefficients 

     

Estimates and the Associated Asymptotic Standard Errors 

Assuming Random and Random Clustered Sampling 

     

       Y = Natural Log of Wages     

 Coefficient Estimated Standard Error Design 

Variable  Estimate in RS in CS Effect 

Constant -0.132 0.119 0.127 1.144 

Years of School 0.107 0.004 0.004 1.204 

Age in Decades 0.543 0.053 0.055 1.080 

Age in Decades Squared -0.054 0.006 0.006 1.077 

Union Status (1 = in Union) 0.260 0.020 0.022 1.175 

Whether in South -0.029 0.018 0.021 1.311 

Whether in Large City 0.158 0.025 0.026 1.125 

Female -0.303 0.016 0.016 0.979 

Black -0.161 0.031 0.032 1.035 

     

Note: RS = Random Sampling; CS = Clustered Sampling   

          The sample size N = 4,059 and the cluster size C = 1,253.   
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Table 3 
Probit Model Regression Coefficients 

     
Estimates and the Associated Asymptotic  Standard Errors 

Assuming Random and Random Clustered Sampling 
     
              Y = 1 if Low Birth Weight    

 Coefficient Estimated Standard Error Design

Variable  Estimate In RS in CS Effect

Constant -1.66 0.17 0.19 1.22 
Marital Status of Mother at Birth (1=Married) -0.04 0.15 0.16 1.22 
First Birth -0.01 0.08 0.08 0.92 
Mother Graduated From High School -0.10 0.09 0.10 1.16 
Mother Smoked Cigarettes Before Birth 0.25 0.08 0.09 1.32 
Black 0.39 0.12 0.16 1.67 
     
Note: RS = Random Sampling; CS = Clustered Sampling    
          The sample size N = 3,416 and the cluster size C = 1,038.   
 



Table 4 
            

Estimated Design Effects Under Various Definitions for Clusters 
             
            

   Linear Mean Regression:  Y = ln(wage)                   Probit Model: Y = 1 if Low Birth Weight, 0 Otherwise 

        Family Place PSU    Family Place PSU

Constant     1.14 1.27 1.28  Constant 1.22 1.39 1.60 
Years of School  1.20 1.35 1.89  Marital Status of Mother at Birth (1=Married) 1.22 1.41 1.56 
Age in Decades  1.08 1.19 1.31  First Birth (1 = first birth, 0 otherwise) 0.92 0.77 0.54 
Age in Decades Squared 1.08 1.21 1.30  Mother Graduated From High School 1.16 1.30 1.44 
Union Status (1 = in Union) 1.18 1.22 1.34  Mother Smoked Cigarettes Before Birth 1.32 1.22 1.24 
Whether in South  1.31 1.82 3.20  Black 1.67 1.58 1.77 
Whether in Large City  1.13 1.50 2.16         
Female   0.98 0.92 0.95      
Black    1.04 1.20 1.02      

Average Number of Observations per Cluster 3.24 13.44 50.74    3.29 11.86 42.70 
Number of Clusters  1253 302 80   1038 288 80 

                        
Note: PSU stands for Primary Sampling Unit, which reflects the original county or SMSA cluster selected    
          by the SRC. Place is the detailed place clusters used to create the SRC subsample.  These clusters    
          reflect a block or street, so that two households with the same place code share the same neighborhood.     
          



 


