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LEARNING AND NOISY EQUILIBRIUM BEHAVIOR

IN AN EXPERIMENTAL STUDY OF IMPERFECTPRICE COMPETITION

C. Monica Capra, Jacob K. Goeree, Rosario Gomez, and Charles A. Holt*

I. Introduction

Many economic situations have the property that payoffs are determined by the minimum

of all agents’ decisions. For example, in a market for a homogeneous product, firms’ sales only

depend on the lowest posted price. In the absence of capacity constraints and imperfect

information, the low-price firm will obtain all sales, and the familiar Bertrand outcome results.1

This paper considers a model of price competition in which the firm with the lower price has a

larger market share but, unlike the usual Bertrand setup, the market share for the high-price firm

is not zero. This situation may occur when some buyers will seek the low-price firm but others

have contracts that prevent switching if the seller is willing to match the lower price. For

example, buyers with "meet-or-release" contracts cannot abandon a seller who meets a

competitor’s price cut. In this case, the firm that posts the higher price must sell at a price that

matches the other’s low price. With constant marginal cost, the Nash equilibrium for this game

is a price that equals marginal cost, i.e. the Bertrand/Nash outcome, regardless of how close the

market share of the high-price firm is to one half. In contrast, it is intuitively plausible that

prices should increase on average as the market share of the high-price firm approaches one half.

In the literature, there have been two approaches to explaining the Bertrand paradox, i.e.

changing the assumptions about industry structure or changing the assumptions about pricing

behavior. Examples of the first approach include product differentiation (e.g. Anderson, de

Palma, and Thisse, 1992), consumer search costs (e.g. Diamond, 1971), capacity constraints (e.g.

Kreps and Scheinkman, 1983), and trigger-price strategies in repeated games (e.g. Friedman,

1971; Porter, 1983). These changes in structural assumptions add realism and richness to price

competition models, but they cannot be the whole story, since pricing above marginal cost

persists in experiments that implement the standard Bertrand model in finite horizon settings with

* This project was funded in part by the National Science Foundation (SBR-9617784, SBR-9818683). We wish
to thank Jim Cox, John Kagel, and Dale Stahl for useful suggestions, and John Turner for research assistance.

1 Alternatively, in a production process with perfect complementarities the group production is determined by the
minimum of individual workers’ efforts.
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small numbers of sellers (Duwfenberg and Gneezy, 2000).

The second approach to the Bertrand paradox generally involves some relaxation of the

assumption of perfect rationality, e.g., by introducing a set of "near-maximizing agents" (Akerlof

and Yellen, 1985),ε-equilibria (Radner, 1980), or probabilistic choice models of boundedly

rational equilibrium behavior (Rosenthal, 1989; McKelvey and Palfrey, 1995). The intuition

behind the Akerlof and Yellen model is that some firms may not respond optimally to changes

in an exogenous parameter, but this inertia may have only a second-order effect if profit functions

are continuous and prices are near optimal. Radner’sε-equilibrium allows strategy combinations

with the property that unilateral deviations cannot yield payoff increases that exceed (some small

amount)ε. The idea behind this approach is similar to Simon’s (1955) notion of "satisficing

behavior," i.e. it may not be worthwhile to search for opportunities that result in only small gains.

Behavior in anε-equilibrium is "discontinuous" in the sense that deviations do not occur unless

the gain is greater thanε, in which case they occur with probability one. In contrast, the

probabilistic choice approach is based on the idea that choice probabilities are smooth, increasing

functions of expected payoffs. McKelvey and Palfrey’s quantal response equilibrium (QRE)

incorporates probabilistic choice into an equilibrium framework. The analysis of this paper is

an application of QRE to a pricing game with a continuum of feasible choices.

In particular, we use a logit probabilistic choice rule to inject some noise into best-

response behavior. The effect of noise is determined by an error parameter. As the error

parameter is reduced to zero, the equilibrium behavior in this "logit equilibrium" model converges

to the Bertrand/Nash equilibrium. When the error parameter is positive, there will be a

probability distribution of price decisions for any given beliefs about other’s prices. In

equilibrium, the distributions of price decisions that come out of the logit probabilistic choice rule

match the distributions that represent players’ beliefs.2 Since the Nash equilibrium is a limiting

case of the logit equilibrium, econometric estimates of the error parameter can be used to

evaluate the extent to which behavior in laboratory experiments is "close" to Nash predictions.

2 Rosenthal (1989) first proposed the incorporation of probabilistic choice into the equilibrium framework of game
theory. The properties of such equilibria are derived in the classic paper by McKelvey and Palfrey (1995), for a general
class of "quantal response equilibria" that includes the logit equilibrium as a special case. Their analysis pertains to matrix
games; applications to games with continuous strategies can be found in Anderson, Goeree, and Holt (1997, 1999).
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In addition to the equilibrium analysis, we use computer simulations of a dynamic

learning model to predict trends in adjustment to equilibrium. These predictions are derived by

using an error rate and a learning parameter estimated from a prior laboratory experiment (Capra

et al., 1999). The predictions are then evaluated with a new experiment in which the parameter

representing the market share of the high price firm is changed. Finally, the data from the

experiment are used to estimate the logit error parameter in two different ways: with the

equilibrium model applied to data for the final periods and with the learning model applied to

data for all periods. The difference between these two approaches is that beliefs in the

equilibrium model are determined by the requirement that they are consistent with decision

distributions, whereas beliefs in the learning model evolve over time in response to observed

decisions of other subjects. We use simulation techniques to analyze the long-run outcomes of

the learning model and show that the steady-state choice distributions are similar to the logit

equilibrium, although systematic differences exist.

The order of topics is: description of the game and the logit equilibrium and derivation

of comparative statics (section II), description of a naive learning model (section III), report on

the experimental results (section IV), econometric and simulation analysis (section V), and

conclusion (section VI).

II. A Model of Noisy Equilibrium Behavior

Consider a market game in which firms 1 and 2 simultaneously choose pricesp1 andp2

in the range [pL, pH]. Demand is assumed to be perfectly inelastic and the sales quantity of the

firm with the low price,pmin, is normalized to be one, so the low-price firm earns an amount

equal to its price. The high-price firm only earnsαpmin, whereα < 1 is inversely related to the

degree of buyer responsiveness to low price, i.e. a high value ofα corresponds to the case of low

responsiveness. In the event of a tie, the 1+α sales units are shared equally, so each seller earns

½(1+α)pmin. This type of payoff structure can arise in a market in which some buyers are

protected by "meet-or-release" contracts. These contracts require a seller to meet a rival’s lower
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price or release the buyer from the contract.3 With this admittedly simplified setup, a seller is,

of course, willing to meet the competitor’s price, and earnαpmin, instead of releasing the buyers

and earn nothing. This model is not intended to address subtle issues in contract theory, but

rather, it is intended to provide a parametric example of a situation in which market shares are

not perfectly sensitive to relative price.4

As long as the high-price firm obtains less than half of the market sales (α < 1), the Nash

equilibrium is for both firms to set the lowest possible pricepL. To see this, note that at any

common price, firms have an incentive to undercut the other by a small amount to increase

market share. Moreover, a unilateral price increase will not raise the price that buyers pay, since

they will demand to be released from their contracts. Therefore, the usual Bertrand logic applies,

and the unique Nash equilibrium involves both firms charging the lowest possible price. The

harsh competitive nature of the Nash prediction seems to go against simple economic intuition

that the degree of buyer inertia will affect the behavior of firms. Whenα = 0.8 say, the loss

from having the higher price is relatively small, and firms should be more likely to set prices

abovepL when there is a small chance that rivals will do the same. Indeed, in the extreme case

whenα = 1 it becomes a weakly dominant strategy for both firms to choose the highest possible

price pH. While a standard Nash analysis predicts no change as long asα < 1 (and then an

3 For example, suppose that a proportionβ of buyers are tied to each seller by meet-or-release contracts, where
β < 1/2. The remaining 1 - 2β fraction of buyers are free to switch. The firm with the higher price would rather meet
the low price than end up with zero sales, so the low-price seller will only sell to a fraction, 1 -β, of the buyers. For
notational simplicity, we normalize the sales quantity of the low-price seller to be 1, and the sales quantity of the high-
price seller is thereforeβ/(1-β) = α.

4 Meet-or-release contracts are sometimes used in producer goods markets, where buyers wish to ensure delivery
in periods of temporary shortage without running the risk that other buyers (their downstream competitors) obtain inputs
at a lower price. Industrial organization economists have conjectured that meet-or-release contracts may have anti-
competitive effects because they protect a seller from losing existing sales when a rival cuts price. For example, Holt
and Scheffman (1987) point out that meeting a rival’s price cut allows a firm to maintain its sales quantity as its rival cuts
price. This quantity-holding ability transforms the price competition game into one that is more analogous to a Cournot
game. To see this, note that if one firm cuts price and conjectures that the other will hold its own quantity by matching
the cut, then the only new sales will come from the entry of new buyers or additional units purchased by existing buyers.
The possible anti-competitive effects of these contracts, must of course, be weighed against any efficiencies provided by
having stable buyer-seller relationships. A more general analysis would also have to explain why some buyers sign the
contracts and others do not. For example, supply-side uncertainty could provide some buyers with stable, high valuations
to seek meet-or-release contracts in order to ensure supply in periods of unanticipated excess demand. Buyers with
uncertain needs would be less likely to want to sign such contracts. This insurance role of meet-or-release contracts could
produce efficiencies that offset some or all anti-competitive effects.
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abrupt change whenα ≥ 1), it seems plausible that prices will gradually rise withα. The model

presented in this section captures this comparative static feature.5

The crucial assumption underlying the usual Bertrand result is that firms respond

optimally to any potential gain in profit,no matter how small. Suppose instead that decision-

making is less perfect: firms choose better options more often than worse ones, but do not

necessarily choose the best one with probability one. Just as important, firms are assumed to

realize that others’ decisions are not perfectly predictable when the costs of "errors" are small.

To formalize the interactive effect of these assumptions, we need a rule (other than perfect-

maximization) that relates expected payoffs to decision probabilities. Letπe
i(p) denote the

expected payoff from choosing a pricep, which depends on the distribution of the rival’s price,

denoted byFj(p), with densityfj(p). The expected payoff consists of two terms, depending on

whether or not the firm has the lowest price:

The first term on the right corresponds to the case where the firm has the smaller market, and

(1) π e
i (p) α ⌡

⌠
p

pL

y fj (y) dy p (1 Fj (p)) , i , j 1,2, i ≠ j .

the second term corresponds to the case where it has the larger share. The (imperfect) decision

rule that we will use is the familiar logit rule:

where µ is an "error parameter" that determines how sensitive firms are with respect to

(2) fi (p)
exp(π e

i (p) /µ)

⌡
⌠PH

PL

exp(π e
i (y) /µ) dy

, i 1,2,

differences in expected profits. When µ is very large, payoff differences get washed out and non-

optimal decisions become more likely, i.e. behavior becomes more random. At the other

extreme, as µ tends to zero, the decision rule in (2) limits to the perfect-maximization rule; the

best option is chosen with probability one. Note that (2) is not an explicit solution since the

5 It can be shown that there is no mixed-strategy Nash equilibrium when the maximum price is specified to be
finite. There would be a mixed-strategy equilibrium if demand were inelastic atanyprice no matter how high, but it can
be shown that the properties of this equilibrium are unintuitive, with a high value ofα resulting in lower prices.
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densitiesfi(p) on the left side also appear on the right side (through the expected payoff function

that appears in the exponential terms).6 By differentiating both sides of (2) with respect top,

one obtains the "logit differential equation:"

Thus, in equilibrium, the density of decisions is increasing inp when the expected payoff

(3) µ fi (p) π e
i (p) fi (p) , i 1,2.

function is increasing, and vice versa, so their relative maxima would coincide. Taking the

derivative of the expected payoff in (1), and substituting the result in (3) provides a differential

equation for the equilibrium choice density:

Existence of a solution to (4) is ensured by Theorem 1 of Anderson, Goeree, and Holt (1999).

(4) µ fi (p) [1 Fj (p) (1 α ) p fj (p) ] fi (p) , i , j 1,2, i ≠ j .

As is the case with the Nash equilibrium, the logit equilibrium is unique and symmetric:

Proposition 1. The logit equilibrium is unique and symmetric across players.

Proof. We first prove symmetry. LetF1 and F2 denote the distributions of players 1 and 2

respectively. Suppose, in contradiction, that the distribution functions are not everywhere the

same. Without loss of generality, assume thatF1 > F2 for some prices, as shown in Figure 1.

Any region of divergence between the distribution functions will have a maximumvertical

difference, as indicated by the vertical dashed line at pricep*. The first-order condition for the

distance to be maximized atp* is that the slopes of the distribution functions be identical atp*,

i.e. f1(p
*) = f2(p

*). The second-order condition is that the slope ofF2 increases no slower than

F1, i.e. f2´(p
*) ≥ f1´(p

*). However, sinceF1(p
*) > F2(p

*) and f1(p
*) = f2(p

*), equation (4) implies

6 Although it is reasonable to expect choice probabilities to be increasing functions of expected payoffs, the use
of exponential functions seems somewhat arbitrary, despite the econometric convenience of the logit formulation. One
motivation for using exponential functions in (2) is that additive changes in the payoffs for all decisions have no effect
on choice probabilities, which is one of the requirements imposed by Luce (1959) in his axiomatic derivation of the logit
rule. Alternatively, Anderson, Goeree, and Holt (1997) show that the logit rule results as a steady-state of a dynamic
process in which players alter their decisions in the direction of better responses but make some error in doing so. In that
model, gradient-based evolution with normal noise yields the logit choice rule with exponential functions.
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that f1´(p
*) > f2´(p

*), which yields the desired contradiction. Next we prove that there is at most

Figure 1. A Configuration withF1 > F2.

one symmetric equilibrium. Suppose in contradiction that there are two symmetric equilibria,

distinguished by "I" and "II" subscripts. Dropping the player-specific subscripts from (4) yields

the following differential equations for the two candidate solutions:

Without loss of generality, assumeFI(x) is lower on some interval. Any region of divergence

(5)
µ fI fI (1 FI (1 α ) p fI ) ,

µ fII fII (1 FII (1 α ) p fII ) .

between the distribution functions will have a maximumhorizontaldifference, see Figure 2. The

conditions for the horizontal distance to be maximized at heightF* are:fI´(pI) = fII´(pII), and that

fI´(pI) ≥ fII´(pII). However, sincepI > pII, the logit differential equations in (5) imply that

fI´(pI) < fII´(pII), a contradiction. Q.E.D.

Unlike the Nash equilibrium, the logit equilibrium will be sensitive to changes in the

buyer inertial parameter,α, as can be seen from (4). The following proposition shows that the

logit equilibrium has the intuitive property that prices rise when buyers are less responsive.
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Proposition 2. In the logit equilibrium, an increase in the buyer inertia parameterα results in

higher equilibrium prices in the sense of first-degree stochastic dominance.

Proof. Suppose thatαI < αII, and let the corresponding symmetric equilibrium distributions be

denoted byFI(p) andFII(p). The proof requires showing thatFI(p) produces stochastically lower

prices, i.e. thatFI(p) > FII(p). Suppose, in contradiction, thatFI(p) is lower on some interval, as

shown in Figure 2. Any region of divergence between the distribution functions will have a

maximumhorizontaldifference, as indicated by the horizontal dashed line at the height ofF*,

i.e. F* = FI(pI) = FII(pII) for pI > pII. The first and second order conditions for the distance to be

maximized at a height ofF* are that the slopes of the distribution functions be identical atF*,

i.e. fI(pI) = fII(pII), and thatfI´(pI) ≥ fII´(pII). In order to obtain a contradiction, recall that the

distribution functions are determined by the logit differential equation in (4), evaluated at the

appropriate level ofα:

SinceFI(pI) = FII(pII) andfI(pI) = fII(pII), everything except forαI, αII, pI, andpII on the right sides

(6)
µ fI fI (1 FI (1 αI ) p fI ) ,

µ fII fII (1 FII (1 αII ) p fII ) .

of the equations in (6) are identical, when these equations are evaluated atpI andpII respectively.

By assumption,αI < αII and pI > pII, and it follows that (1-αI)pI > (1-αII)pII. Therefore, the

equations in (6) imply thatfI´(pI) < fII´(pII), which contradicts the second-order condition for the

maximum horizontal difference. Q.E.D.

This comparative statics result forms the basis for the experiment, which involved

treatments with both low and high buyer inertia parameters:α = .2 andα = .8, with prices

constrained to the interval [60, 160]. To obtain quantitative predictions about the level of

average prices for these two treatments, we used a previously estimated error rate parameter,
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µ = 8.3, from a different experiment (Capraet al., 1999).7 For these parameter values, the

Figure 2. A Configuration withFII > FI.

differential equation in (4) can be solved numerically to obtain the logit equilibrium densities,

see Figure 3. From these densities it is straightforward to calculate the average price and its

standard deviation: 78 (±7) for theα = 0.2 treatment and 128 (±6) for theα = 0.8 treatment.8

In fact, the values for the treatment parameterα were chosen to ensure that price predictions for

the final periods in the two treatments would be on opposite sides of the range of feasible prices.

It is natural to ask how the logit equilibrium compares to Radner’s (1980)ε-equilibrium

in this context. Recall that the two approaches are similar in the sense that both relax the

assumption of perfect maximization, i.e. the assumption that behavior is completely determined

by signs (not magnitudes) of payoff differences. However, while the continuous probabilistic

choice approach produces a unique logit equilibrium, the discontinuous nature of the responses

implied by anε-equilibrium may result in multiple equilibria. In fact, forε < (1-α) pL there is

7 The game used in Capraet al. (1999) is of a similar degree of complexity as the game considered in this paper,
and the experimental procedures (random matching, subject pools, etc.) were also comparable.

8 The standard deviation of the average is based on a sample size of 10, which is the number of subjects in each
session.
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no pure-strategyε-equilibrium other than the Bertrand/Nash equilibrium, while forε ≥ (1-α) pL

Figure 3. Logit Equilibrium Densities for Both Treatments (µ = 8.3)

there is a continuum of pure-strategyε-equilibria in which the difference between the two prices

does not exceedε. To see this, note that the high price seller earnsα times the low price,pmin,

so a deviation to undercut that price and sell a quantity of 1 would not occur ifpmin - αpmin ≤ ε,

or if pmin ≤ ε/(1-α). Similarly, the low-price will not bother to adjust upward if the two prices

are withinε of each other. With a lower bound on prices,pL, pure-strategyε-equilibria of this

type can exist if and only ifε ≥ (1-α) pL (to ensure thatpmin ≥ pL). Since in the experiment,pL

= 60, this lower bound onε is unrealistically high (48 cents) for the high-α treatment, and it is

12 cents for the low-α treatment. In addition, there is a continuum of mixed-strategyε-

equilibria.9 For instance, the logit equilibrium described above for µ = 8.3, can be interpreted

as such a mixed-strategyε-equilibrium for anε as low as 3 cents for the high-α treatment (the

expected payoff in the logit equilibrium is 110 while the expected payoff resulting from a best

9 See Baye and Morgan (1999) for a derivation of a particular family of mixed-strategyε-equilibria for the standard
Bertrand model.
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response to the logit equilibrium is 113). To conclude, while the intuitive motivation forε-

equilibria is similar to that for the logit equilibrium, we prefer to use the latter since its

uniqueness facilitates estimation and simulation of learning behavior. In addition, the logit

equilibrium is the unique steady-state of a fictitious-play learning model, which is the topic of

the next section.

III. A Geometric Fictitious Play Learning Model

The complicated appearance of the logit differential equation (4) raises the question of

how boundedly rational players will conform to such a model. Our approach is to consider a

naive learning model in which players use observations of rivals’ past prices to update their

beliefs about others’ future actions. As before, the expected payoffs based on these beliefs

determine players’ choice probabilities via a logit rule. This model is used to simulate behavior

in an experiment, in order to derive predictions about the nature of convergence to the logit

equilibrium described above. We also use this dynamic model for econometric estimation of

learning and error parameters, see section V below.

To obtain a tractable model, the feasible price range [60, 160] is divided into 101 one-cent

categories. Players assign weights to each category and use observations of their rival’s choices

to update these weights as follows: each periodall weights are "discounted" by a factorρ and

the discounted weight of the observed category is increased by 1. In other words, the weight,

w, of an observed category is updated asw → ρ w + 1, whereas the other weights are simply

discounted byρ: w → ρ w. The belief probabilities in each period are obtained by dividing the

weight of each category by the sum of all weights. Hence, the model is one of "geometric

fictitious play" in which the learning parameter,ρ, determines the importance of new

observations relative to previous information.10 Generallyρ will be between 0 and 1. When

ρ = 0, the observations prior to the most recent one are ignored, and the model is one of Cournot

best response. At the other extreme, whenρ = 1, the model reduces to "fictitious play" in which

each observation is given equal weight, regardless of the number of periods that have elapsed

10 See e.g. Cheung and Friedman (1997) for a test of the geometric fictitious play learning model in 2 × 2 games.
A generalization of the geometric fictitious play model can be found in Camerer and Ho (1999); see also Chen and Tang
(1998).
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since that observation. For intermediate values ofρ, the weight given to past observations

declines geometrically over time.

The expected payoffs based on the updated beliefs in any period determine each player’s

decision probabilities via the logit rule in (2) with the integral replaced by a sum:

where theρ notation indicates the dependence of probabilities and expected payoffs on the

(7) Pi ( j |ρ )
exp(π e

i ( j |ρ ) /µ)
101

k 1

exp(π e
i (k|ρ ) /µ)

, i 1,2, j 1, .. ,101,

learning parameter. In this dynamic model, beliefs and hence probabilistic price choices depend

on the history of what has been observed up to that point. Since individual histories are

realizations of a stochastic process, the predictions of this model will be stochastic and can be

analyzed with simulation techniques.11

The structure of the computer simulation program matches that of the experiment to be

reported below: for each session or "run" there are 10 simulated subjects who are randomly

matched in a sequence of 10 periods. We specify initial prior beliefs for each subject to be

uniform on the integers in the set [60, 160]. These priors determine expected payoffs for each

price, which in turn, determine the choice probabilities via the discrete logit rule in (7). The

simulation begins by determining each simulated player’s actual price choice for period 1 as a

draw from the logit probabilistic response to the payoffs for priors that are uniform on [60, 160].

The simulated players are randomly divided into five pairs, and each one "sees" the other’s actual

price choice. These price observations are used to update players’ beliefs using the naive

learning rule explained above, with the estimated value of the learning parameterρ = 0.75, which

was also taken from Capraet al. (1999).12 The updated beliefs, which become the priors for

11 Previous computer simulations of adaptive learning in signaling games has been quite successful in explaining
patterns of laboratory data, even where the observed human data converge to the equilibria that are ruled out by standard
refinements of the Nash equilibrium. See Brandts and Holt (1996) who use adaptive learning with logistic decision error.
Cooper, Garvin, and Kagel (1994) use adaptive learning with an assumption that some players are able to recognize and
avoid dominated strategies.

12 These simulations are used here to makeex antepredictions about dynamic adjustment paths. The data reported
in the present paper will be used in section V to re-estimate these learning and error parameters.



13

period 2, will not all be the same if the simulated subjects encountered different price choices

Figure 4. Simulated Average Prices Obtained From a 1,000 Simulations (dark lines)
Plus or Minus Two Standard Deviations (dotted lines)

and a Typical Run (lines connecting squares)

in period 1. Next, the process is repeated, with the period 2 priors determining expected payoffs,

which in turn determine the logit choice probabilities, and hence the observed price realizations

for that period. The whole process is repeated for 10 periods. Figure 4 shows the sequences of

average prices (dark lines) obtained from 1,000 simulations together with plus or minus two

standard deviations of the average (dotted lines). In addition, a typical "run" or simulation for

each treatment (lines connecting squares) is shown. These simulation results predict that average

prices decline in theα = 0.2 treatment and stay the same in theα = 0.8 treatment. The relation

between the long-run steady-state of the simulated learning process and the logit equilibrium will

be discussed in section V.

IV. The Experiment

The data were collected from six different groups of 10 subjects, who were recruited from
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undergraduate economics classes at the University of Virginia. Participants were told that they

would be paid a $6 participation fee plus all additional money earned. Upon arrival, students

were seated in isolated booths. After the reading of the instructions (reproduced in Appendix A

for α = 0.8), each group participated in a series of ten identical games during a session that lasted

about one hour. As shown in Table I, there were two different treatments:α = 0.8 for three

groups of ten subjects, andα = 0.2 for three other groups.

The price decisions were referred to as "numbers," and the earnings calculations were

Table I. Experimental Design

Treatment Range of Feasible Prices

Sessions 1, 4, 5 α = 0.80 $0.60 to $1.60

Sessions 2, 3, 6 α = 0.20 $0.60 to $1.60

explained in the instructions without reference to any market context. At the start of each period,

subjects were asked to record their choices for that period on their decision sheets. Numbers

were required to be any amount between and including 60 and 160 cents, with decimals being

used to indicate fractions of cents. Subjects were told that individual earnings would consist of

two parts: a fixed payment of 25 cents per period and a percentage of the minimum number

chosen by the corresponding pair of participants. The person choosing the lower number would

receive the fixed payment plus the number chosen, while the subject choosing the higher number

would receive the fixed payment, plus a fractionα of the lower number. If the numbers were

equal, each player would receive the fixed payment of ½(1+α)pmin, which is 90% of the minimum

price for the high-α treatment and 60% of the low-alpha treatment.

Participants were told that the session would consist of 10 periods and that they would

be randomly paired with another person in each period. After decisions for a period were made

and the sheets were collected, draws of pairs of numbered ping pong-balls (without replacement)

were used to determine the random matchings. The "other person’s" decision was recorded on

each person’s decision sheet, and earnings were calculated before we returned the sheets at the

end of the period. Subjects only saw the decision made by the person with whom they were

matched in a given period, not the other’s identity. Total earnings ranged from $2.48 to $12.40



15

per subject, to which we added a $6.00 initial payment for coming on time.13

Figure 5 shows the average prices per period for sessions withα = 0.8 andα = 0.2. The

Figure 5. Average Prices by Session (dashed lines) and Treatment (dark line)

averages for the three sessions in each treatment are plotted as dashed lines and the average

prices for all sessions in a treatment are plotted as a solid line. The Nash equilibrium is 60 cents

regardless of treatment, as indicated by the horizontal line at 60 cents near the bottom of the

figure. A simple non-parametric test for the effect of the buyer inertia parameterα on average

prices is based on the average prices in the final five periods. It is obvious from Figure 5 that

the mean prices in the later periods of the three high-α sessions are all above the mean prices

in the three low-α sessions. There are "six-take-three" = 20 ways that two groups of three

objects can be ranked. Each of these 20 rankings would be equally likely under the null

hypothesis of no treatment effect. Of these 20 rankings, we observed the one that is most

13 This experiment was followed by a series of one-shot matrix games that were unrelated to the game reported
here. The earnings for these one-shot games generally boosted subjects’ total earnings for the two-hour session into the
$20-$30 range.
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extreme in the direction of a treatment effect, so the probability of this is 1/20 = 5%. Thus the

null hypothesis can be rejected at the 5% level, which is the same significance level that would

be obtained by application of a Wilcoxon test. To summarize:an increase in the buyer inertia

parameter,α, results in higher prices, a result that is not predicted by Nash but is consistent with

a logit equilibrium analysis.

In contrast to the observed prices in low-α treatment, average prices in the high-α

treatment almost always stay above 100 cents. The averages in the final five periods for both

treatments are given in Table II. The actual averages are remarkably close to the logit

equilibrium predictions of 78 (±7) and 128 (±6) that were based on equation (5) with an error

parameter estimated from a different experiment.14

When described in words, these results are not surprising; that is, prices should be lower

Table II . Average Prices in Periods 6-10 (Standard Deviations)

session 1 session 2 session 3 Pooled Logit Predictions

low-α treatment 63 (14) 72 (20) 73 (32) 69 (13) 78 (7)

high-α treatment 102 (14) 126 (31) 134 (17) 121 (13) 128 (6)

when buyers are more responsive to prices. What is somewhat surprising is the accuracy of the

logit point predictions that were based on out-of-sample data. The dynamic predictions derived

from the naive learning model are also quite accurate, as is apparent from the actual average

price sequences for each treatment in Figure 5. There is a tendency for average prices in the

low-α treatment to decrease and for those in the high-α treatment to stay roughly constant, as

predicted by the computer simulations in Figure 4. Even the price averages in the very first

period of the experiment, (75,90,100) and (105,123,127) for the low and high inertia treatments,

are quite close to the period 1 predictions of 93 (±6) and 126 (±7) (numbers between parentheses

again denote standard deviations of averages based on a sample size ofn = 10) that are based

14 Notice that for both the low and high-α treatment, 2 of the 3 session averages are within one standard deviation
of the logit prediction, and that only one session average is more than two standard deviations off.
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on a logit best response to an admittedly arbitrary uniform belief density on [60, 160].15 To

summarize:computer simulations of the learning model with a diffuse initial prior explain both

the final-period price levels and the most salient feature of the adjustment pattern, i.e. the flat

trajectory of prices in the high-α treatment and the clear price declines in the low-α treatment.

V. Econometric Estimates of Learning and Error Parameters

As noted above, it is straightforward to obtain numerical solutions for the equilibrium

densities for specific values of the error parameter µ, given the buyer responsiveness parameter

α. This solution then can be used to calculate the densities associated with the particular prices

selected by all subjects under each treatment. These densities, in turn, are used to calculate the

value of the likelihood function, i.e. the likelihood of drawing the prices actually selected, given

the assumed value of µ.16 Then a grid search yields a maximum likelihood estimate of µ = 6.7

with a standard error of 0.3 (see Table III). This is of the same magnitude as the value of the

error parameter (8.3) used from Capraet al. (1999) to calculate the logit equilibrium predictions

in section II above, which explains the accuracy of those predictions. It should be noted that the

equilibrium model was estimated using only the data for the final five periods, since it is

apparent from Figure 5 that the data do not stabilize until after period 5.

The equilibrium approach determines beliefs via equilibrium (consistency-of-action-and-

beliefs) conditions. As noted above, an alternative is to model the learning process that generates

beliefs, using data from all periods. To estimate the magnitude of error and learning parameters,

we estimated the dynamic model from Section III, using data forall periods, since much of the

learning occurs in early periods.17 The probabilityPi(j |ρ) that playeri chooses a price in the

15 With a uniform belief distribution the expected payoff in (1) becomesπe
i(p) = -(2-α)/200 (p-160/(2-α))2, and

the logit density is therefore a (truncated) normal on [60, 160] with mean 160/(2-α).

16 The equilibrium model stipulates that the price decisions are independent draws from a stationary distribution.
Thus the likelihood is the product of the densities evaluated at each of the prices selected by each subject in the last 5
periods.

17 The data are reproduced in Appendix B. In each of the six tables, a column corresponds to one of the ten
subjects, S1,...,S10, and a row to one of the ten periods. The tables list both the actual decisions of subjects and the
choice made by the subject they were matched with (given by the number in parentheses). The latter information is used
by players to update their beliefs in each period.
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jth category is given by (7), and the likelihood function is simply a product of such probabilities

over all periods and all players. The log-likelihood function is therefore given by the sum:

wherepi,t denotes playeri’s price in periodt. Table III gives the maximum-likelihood estimation

(8) Log(L)
10

i 1

10

t 1

log(Pi (pi ,t |ρ )) ,

results. The overall estimate of the error parameter is: µ = 8.4, which is roughly in line with

previous estimates we have obtained for other data sets.18 One obvious conclusion to be drawn

from the table is that the null hypothesis of no error (µ = 0) can be rejected at very low

significance levels. This is a rejection of the perfect-rationality assumption that would lead to

the Bertrand-Nash outcome.

The dynamic model applied to all of the data provides an estimate of the same magnitude

Table III . Maximum-Likelihood Estimates

error parameter, µ learning parameter,ρ

logit equilibrium model 6.7 (.3) NA

learning model 8.4 (.4) .72 (.03)

as the error parameter (6.7) that was obtained from the equilibrium model (Table III). Recall that

the equilibrium model was estimated for the last five periods with a completely different

approach, i.e. solving for the equilibrium beliefs instead of modeling them as evolving over time

in response to experience. The dynamic model takes into account the "history dependence" that

18 Both of these estimates are approximately the same as the error parameter estimates obtained for data from a
"traveler’s dilemma" experiment reported in Capra, Goeree, Gomez, and Holt (1997): µ = 8.3 (±0.3) for the equilibrium
model and µ = 10.9 (±0.5) for the dynamic model, where the standard errors are in parentheses. In general, the amount
of noise in the data should depend on the subject pool, the complexity of the game and the importance of un-modeled
factors in the decision-making process. The traveler’s dilemma experiments were also conducted at the University of
Virginia with a 10-period length and random matching. In comparing µ estimates across experiments, it is important to
adjust for the way that payoffs are measured. We typically express payoffs in pennies, but if payoffs are in dollars, the
µ estimates would 100 times smaller than the ones obtained from entering the payoffs in pennies, i.e. 0.085 instead of 8.5.
Another caveat is that McKelvey and Palfrey (1995) and others report the reciprocal of µ, which is therefore a precision
parameter for which high values indicate low error.
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may cause individual decisions to fail to be independent in a statistical sense, and hence is useful

for econometric purposes.

Given that the error structure is similar for both the equilibrium and learning models, one

might wonder what the learning model implies about the long-run steady-state distribution of

price decisions. In particular, will geometric learning generate a price distribution that

corresponds to the logit equilibrium distribution? To investigate these issues, it is useful to

consider the extreme cases of the geometric learning model, i.e. standard fictitious play (ρ = 1)

and Cournot best response (ρ = 0). Since there is no "forgetfulness" in fictitious play, any steady

state distribution of decisions will eventually be fully learned by all players, i.e. the empirical

frequencies of price draws from the distribution will converge to that distribution. Since, in this

case, each player is making a logit probabilistic best response to the empirical distribution, a

steady-state of the fictitious play learning model is necessarily a logit equilibrium. Our estimate

of the learning parameter,ρ = .72, however, implies that only the most recent five or six

observations receive much weight, so the above argument does not guarantee that the logit

equilibrium is also a steady state of the geometric learning process. We simulated the learning

process with a cohort of 10 randomly matched players, usingα = .8 and the estimatedρ = .72.

After 1,000 periods, the empirical choice frequencies for all ten players were quite close to the

logit equilibrium distribution, but there was a slight tendency for the empirical distributions to

be too flat at the mode. This can be seen from Figure 6, where the logit prediction is the thin

line and the simulated frequency for a typical simulated player are plotted as the thick line.

The intuition behind the extra flatness in the simulated data withρ < 1 can be understood

by considering the other extreme ofρ = 0, i.e. Cournot type beliefs that only place weight on the

most recent observation. To determine whether a logit equilibrium would be a steady state for

this case, recall that the noise-free Cournot best response to any price observation is just that

observation (minusε), so the distribution of noise-free best responses to draws from a logit

equilibrium distribution will be that distribution. But with µ > 0, there is some noise in the

responses, which would cause a logit equilibrium to be mapped into a more dispersed

distribution. This suggests that the steady state of the Cournot learning model would be flatter

than the logit prediction for a given value of µ > 0. This intuition is consistent with the

simulations that we have run, as can be seen in Figure 7, where the flatter solid line represents
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the empirical choice frequencies of a representative player and the other solid line is the logit

Figure 6. The Logit Equilibrium Distribution (Thin Line)
and Simulated Distribution of Prices Under Geometric Fictitious Play withρ = .72 (Thick Line)

equilibrium. This disparity raises the issue of exactly what is the long-run steady state of the

learning process, i.e. the "stochastic learning equilibrium." With Cournot learning, beliefs are

determined by the most recent draw, so the steady state is a distribution that is a noisy best

response to point beliefs determined by draws from the same distribution. Seen this way, the

stochastic learning equilibrium can be defined as the fixed point of an integral equation, which

can be used to calculate the theoretical long-run steady-state distribution. This distribution is

shown as the dotted line in Figure 7, which is almost indistinguishable from the solid line that

shows the simulated price frequencies forρ = 0.19

19 The relevant integral equation that determines the stochastic learning equilibrium is:



21

VI. Conclusion

Figure 7. The Logit Equilibrium Distribution (Solid Line)
Simulated Distribution of Prices Under Cournot Type Beliefs (Solid Line)

and the Steady-State Learning Equilibrium forρ = 0 (Dotted Line)

Many strategic situations of interest to economists have the property that the minimum

decision drives all players’ payoffs. This paper considers a game in which the firm with the

lowest price captures a larger market share, but a fixed fraction of buyers have price-protection

contracts that allows their current seller to match a competitor’s price cut. Simple intuition

suggests that the resulting buyer inertia may be anti-competitive, since increases in the fraction

of buyers who do not switch to the low-price seller will reduce the profitability of unilateral price

cuts. In contrast, the unique Nash equilibrium for this game produces the Bertrand outcome,

irrespective of non-critical changes in buyer inertia. This paper uses theory, experiments, and

where the logit best responseLBR(p,p’) to point-mass beliefs atp’ is given by
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simulation methods to evaluate the tension between economic intuition and the sharp predictions

made by a standard game-theoretic analysis.

Our previous work on related games indicates that subjects in laboratory experiments are

not perfectly rational, in the sense that estimated error parameters are significantly greater than

zero. We used these parameter estimates to runex antecomputer simulations of experiments

with ten periods of random matchings. These simulated price distributions were then used to

design the experiments with human subjects that are reported here. The human data contain

some surprises, but the big picture is that the average price decision sequences for our student

subjects conform to the predictions based on the simulations: prices fall to low levels when a

high fraction of the demand goes to the low-priced seller, whereas prices stay approximately level

in the upper half of the range when a low fraction of demand goes to the low-price seller. The

simulations use learning and error parameters estimated from the data of a previous experiment

(Capraet al., 1999) to explain why behavior in one treatment falls towards the unique Nash

prediction and why behavior in the other treatment stays well away from the Nash prediction.

The fact that Nash works well for one parametrization and not for another suggests that this

equilibrium concept should be generalized.

The overall price averages for each treatment with human subjects are well explained by

a stochastic generalization of the Nash equilibrium, the logit equilibrium proposed by McKelvey

and Palfrey (1995). We use maximum-likelihood methods to estimate a logit error parameter,

using the equilibrium model that imposes consistency of action and belief distributions, and using

a dynamic model in which beliefs evolve over time via a naive Bayesian learning process. The

parameter estimates from these two very different procedures are quite close, and are of the same

magnitude as estimates we have obtained in experiments for different games with similar (ten-

period, random matching) procedures.
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Appendix A: Instructions

You are going to take part in an experimental study of decision making. The funding for this
study has been provided by several foundations. The instructions are simple, and by following them
carefully, you may earn a considerable amount of money. At this time, you will be given $6 for coming
on time. All the money that you earn subsequently will be yours to keep, and your earnings will be paid
to you in cash today at the end of this experiment. We will start by reading the instructions, and then
you will have the opportunity to ask questions about the procedures described.

Earnings
The experiment consists of a sequence of periods. In each period, you will be randomly matched

with another participant in the room. The decisions that you and the other participant make will
determine the amount earned by each of you. At the beginning of each period, you will be asked to
choose a number between 60 and 160 cents and write down it on a decision sheet that is attached to
these instructions. The number you can choose may be any amount between and including 60 and 160
cents. That is, we allow fractions of cents. The person who you are matched with will also choose a
number between and including 60 and 160 cents. Each of you receives 25 cents plus an amount that
depends on the number chosen. This amount equals a percentage of the minimum of your number and
the other’s number. If the numbers are equal, then the percentage for you and the other person each
equals the 90% of the number chosen. If you are the person choosing the lower number, the percentage
you receive equals the 100% of the number you chose. If you are the person choosing the higher
number, the percentage you receive equals the 80% of the other person’s number.

Example: Suppose that your number is X and the other’s number is Y.
If X = Y, you get 0.9*X, and the other gets 0.9*Y.
If X > Y, you get 0.8*Y, and the other gets Y.
If X < Y, you get X, and theother gets 0.8*X.
(In each case, 25 cents will be added to your earnings.)

Record of Results
Now, each of you should examine the record sheet. This sheet is the last one attached to these

instructions. Your identification number is written in the top-right part of this sheet. Please look at the
columns of your record sheet. Going from left to right, you will see columns for the "period," "your
number," "other’s number," "minimum number," "your earnings," and "plus 25 cents." You begin by
writing down your own number in the appropriate column. As mentioned above, this number must be
greater than or equal to 60 and less than or equal to 160 cents, and the number may be any amount in
this range, (i.e. fractions of cents are allowed). Use decimals to separate fractions of cents. For
example, wx.z cents indicates wx cents, and a fraction z/10 of a cent. Similarly, x.z cents indicates x
cents and a fraction z/10 of a cent.

After you make and record your decision for period one, we will collect all decision sheets. Then
we will draw numbered ping pong balls to match each of you with another person. Here we have a
container with ping pong balls, each ball has one of your identification numbers on it. We will draw
the ping pong balls to determine who is matched with whom. After we have matched someone with
you, we will write the other’s number, the minimum number, and your earnings in the relevant columns
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of your decision sheet and return it to you. Then, you make and record your decision for period two,
we collect all decision sheets, draw ping pong balls to randomly match you with another person, write
the other’s number, minimum number, and earnings in your decision sheet and return it to you. This
same process is repeated a total of ten times.

Summary
To begin, each participant chooses and records a number by writing it in the appropriate column

of the decision sheet. Then the decision sheets are collected and participants are randomly matched
using draws of numbered ping pong balls. Once the matching is done, the other’s decision, the
minimum number, and the earnings are written on each person’s decision sheet. After all decision sheets
are returned, participants choose and record their numbers for the next period. The decisions determine
each person’s earnings as described above. You will receive an amount that equals 25 cents plus a
percentage of the minimum of your number and the other’s number. If you chose the lower number,
the percentage will be 100% of the minimum number. If you chose the higher number, the percentage
will be 80% of the minimum number. And if you and the other person chose the same number, the
percentage will be 90% of that number. Note that a new random matching is done in each period.

Final Remarks
This experiment will be followed by another, quite different experiment in which you will have

additional opportunity to make decisions that can increase your earnings.
At the end of today’s session, we will pay to you, privately in cash, the amount that you have

earned. You have already received the $6 participation payment. Therefore, if you earn an amount X
during the exercise that follows, you will receive a total amount of $6.00 + X. Your earnings are your
own business, and you do not have to discuss them with anyone.

During the experiment, you are not permitted to speak or communicate with the other
participants. If you have a question while the experiment is going on, please raise your hand and one
of us will come to your desk to answer it. At this time, do you have any questions about the instructions
or procedures? If you have a question, please raise your hands and one of us will come to your seat to
answer it.

Identification Number: _______________
Please choose a number that is greater than or equal to 60 and less than or equal to 160, using decimals
to indicate fractions; e.g. wx.z or x.z.

Period Your
number

Other’s
number

Minimum
number

Your
earnings

Plus 25
cents

1

2
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Appendix B: Individual Decisions

Session 1:α = 0.80

period S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 140
(158)

75
(150)

130
(120)

160
(110.6)

150
(75)

110.6
(160)

150
(80)

80
(150)

158
(140)

120
(130)

2 140
(115)

150
(120)

130
(120)

160
(95)

120
(130)

110.6
(150)

150
(110.6)

95
(160)

120
(150)

115
(140)

3 159.9
(155)

150
(109)

110
(105)

155
(159.9)

109
(150)

110.6
(130)

150.5
(122)

105
(110)

130
(110.6)

122
(150.5)

4 140
(110)

160
(100)

110
(150.5)

155
(109.9)

109.9
(155)

150.5
(110)

151.7
(145)

100
(160)

110
(140)

145
(151.7)

5 140
(115)

150
(157)

120
(125)

157
(150)

109.9
(149)

149.9
(152.8)

152.8
(149.9)

115
(140)

125
(120)

149
(109.9)

6 110
(120)

160
(109.8)

120
(110)

155
(120)

109.8
(160)

149.9
(153.8)

153.8
(149.9)

125
(133)

120
(155)

133
(125)

7 120
(151.7)

160
(120)

120
(160)

149
(125)

109.8
(135)

151.7
(120)

154.8
(130)

130
(154.8)

135
(109.8)

125
(149)

8 130
(151.7)

160
(130)

120
(109.6)

158
(128)

109.6
(120)

151.7
(130)

145
(135)

135
(145)

130
(160)

128
(158)

9 120
(132)

160
(130)

115
(155)

155
(115)

109.5
(130)

135.9
(140)

130
(160)

140
(135.9)

130
(109.5)

132
(120)

10 125
(157)

160
(138)

110
(122)

157
(125)

109.5
(149.9)

149.9
(109.5)

135
(109)

138
(160)

109
(135)

122
(110)

Session 2:α = 0.20

period S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 61.13
(60)

60
(95)

95
(60)

92
(75)

60
(61.13)

90
(61)

60
(99.9)

61
(90)

99.9
(60)

75
(92)

2 60
(60)

60
(60)

70
(99.9)

80
(65)

60
(75)

80
(60)

60
(80)

65
(80)

99.9
(70)

75
(60)

3 60
(65)

60
(64)

78
(69.9)

60
(75)

65
(60)

60
(60)

60
(60)

64
(60)

69.9
(78)

75
(60)

4 60.25
(60)

60
(65)

68
(65)

65
(68)

60
(60)

60
(60.25)

60
(69.8)

60
(60)

69.8
(60)

65
(60)

5 60
(72.99)

60
(60)

72.99
(60)

70
(60)

60
(60)

60
(60)

60
(70)

60
(69)

69
(60)

60
(60)

6 63
(60)

60
(63)

63
(60)

65
(65)

60
(65)

70
(60)

65
(65)

65
(60)

60
(70)

60
(63)

7 65.1
(60)

60
(60)

60
(60)

64.9
(60)

60
(60)

60
(64.9)

60
(60)

60
(65.1)

60
(60)

60
(60)

8 61
(60)

60
(60)

60
(61)

60
(60)

60
(63)

64.8
(60)

60
(64.8)

63
(60)

60
(60)

60
(60)

9 60
(60)

60
(60)

60
(60)

60
(60)

60
(60)

60
(60)

60
(60)

60
(60)

60
(60)

60
(60)

10 60
(60)

60
(60)

60
(60)

159
(60)

60
(60)

60
(60)

60
(60)

60
(60)

60
(159)

60
(60)
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Session 3:α = 0.20

period S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 120
(125)

69
(65)

85
(95.8)

65
(69)

95.8
(85)

68
(100)

120
(155.5)

155.5
(120)

100
(68)

125
(120)

2 100
(60.5)

81
(95.1)

95.1
(81)

94
(120)

82.6
(94)

94
(82.6)

120
(94)

60.5
(100)

60
(110)

110
(60)

3 60
(90.3)

62
(75.5)

90.3
(60)

90
(87.1)

87.1
(90)

137
(60)

110
(80)

75.5
(62)

60
(137)

80
(110)

4 80
(75.4)

69
(60)

75.4
(80)

85
(89.9)

89.9
(85)

142
(60.5)

100
(80)

70.5
(142)

60
(69)

80
(100)

5 65
(98)

64
(80)

82.3
(60)

88.5
(70)

84.9
(75)

98
(65)

75
(84.9)

70
(88.5)

60
(82.3)

80
(64)

6 70
(75.5)

65
(70)

72.4
(62.3)

160
(75)

77.7
(80)

62.3
(72.4)

75
(160)

75.5
(70)

70
(65)

80
(77.7)

7 75
(60)

67
(61.8)

60.5
(60)

72.5
(160)

79.6
(75)

61.8
(67)

75
(79.6)

160
(72.5)

60
(60.5)

60
(75)

8 75
(60)

60
(95.9)

60
(75)

95.9
(60)

70.2
(69.9)

61.7
(60)

75
(60)

69.9
(70.2)

60
(61.7)

60
(75)

9 75
(73.2)

60.64
(60)

73.2
(75)

65
(60)

62.9
(60)

60
(62.9)

70
(70)

70
(70)

60
(60.64)

60
(65)

10 75
(60)

60.64
(66.7)

74.5
(60)

60
(62)

62
(60)

60
(75)

66.7
(60.64)

69.9
(60)

60
(74.5)

60
(69.9)

Session 4:α = 0.80

period S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 150
(90)

145
(100)

125
(120)

108.9
(150)

160
(81)

81
(160)

100
(145)

150
(108.9)

120
(125)

90
(150)

2 150
(125)

95
(100)

125
(150)

128.9
(80)

100
(95)

84
(120)

61
(130)

80
(128.9)

130
(61)

120
(84)

3 145
(100)

99
(95)

120
(100)

118.9
(119.9)

100
(120)

95
(99)

100
(120)

120
(100)

119.9
(118.9)

100
(145)

4 125
(118.9)

95
(109.9)

119.9
(90)

118.9
(125)

100
(97)

97
(100)

109
(125)

90
(119.9)

109.9
(95)

125
(109)

5 125
(118.9)

100
(150)

99.98
(100)

118.9
(125)

100
(119)

98.5
(100)

119
(100)

100
(98.5)

100
(99.98)

150
(100)

6 125
(99.9)

125
(95)

94.98
(99.5)

114.9
(100)

100
(114.9)

99.5
(94.98)

99.9
(100)

95
(125)

99.9
(125)

100
(99.9)

7 125
(100)

100
(90.1)

89.49
(96)

114.9
(100)

100
(114.9)

90.1
(100)

99.5
(99.9)

96
(89.49)

99.9
(99.5)

100
(125)

8 120
(120)

95
(125)

89.48
(99.4)

118.9
(95)

120
(120)

93.5
(98.8)

98.8
(93.5)

95
(118.9)

99.4
(89.48)

125
(95)

9 120
(100)

95
(95)

89.48
(101)

89.99
(89.8)

101
(89.48)

94.9
(89.9)

89.8
(89.99)

95
(95)

89.9
(94.9)

100
(120)

10 100
(93.5)

94.9
(89.9)

89.47
(78.99)

78.99
(89.47)

100
(94)

93.5
(100)

84.49
(160)

94
(100)

89.9
(94.9)

160
(84.49)
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Session 5:α = 0.80

period S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 150
(160)

75.5
(100)

97
(80)

160
(60)

160
(150)

67
(100)

60
(160)

80
(97)

100
(75.5)

100
(67)

2 155
(128)

75.5
(160)

128
(155)

159.9
(98)

160
(75.5)

98
(159.9)

160
(65)

65
(160)

99
(88)

88
(99)

3 156
(135)

95.5
(160)

135
(159)

159.1
(136)

150
(99.9)

136
(159.1)

160
(95.5)

135
(156)

99.9
(150)

159
(135)

4 157.9
(160)

160
(157.9)

145
(159)

140
(160)

160
(140)

67
(70)

159
(145)

70
(67)

99.99
(120)

120
(99.99)

5 159
(158)

155
(140)

150
(66)

159.5
(99.7)

140
(155)

66
(150)

158
(159)

75
(98)

99.7
(159.5)

98
(75)

6 160
(72)

149.5
(62)

145
(140)

155
(157)

140
(145)

62
(149.5)

157
(155)

85
(99.5)

99.5
(85)

72
(160)

7 160
(91)

139
(140)

140
(139)

150
(156)

140
(152)

152
(140)

156
(150)

86
(99.4)

99.4
(86)

91
(160)

8 159
(140)

139
(140)

140
(139)

150
(93)

140
(159)

160
(155)

155
(160)

77
(118)

118
(77)

93
(150)

9 156
(90)

139.5
(92)

138
(154)

130
(117)

150
(60)

60
(150)

154
(138)

90
(156)

117
(130)

92
(139.5)

10 155
(138.5)

138.5
(155)

145
(94)

125
(140)

140
(125)

60
(100)

150
(116)

100
(60)

116
(150)

94
(145)

Session 6:α = 0.20

period S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 100
(160)

60
(80.5)

82
(60)

160
(100)

75
(72.3)

109.9
(100)

72.3
(75)

60
(82)

80.5
(60)

100
(109.9)

2 90
(60)

60
(69.9)

75
(60)

60
(99.9)

60
(75)

99.9
(60)

69.9
(60)

100
(60)

60
(100)

60
(90)

3 70
(160)

60
(99.8)

60
(60)

70
(60)

74.9
(94.9)

99.8
(60)

160
(70)

60
(60)

94.9
(74.9)

60
(70)

4 80
(160)

60
(60)

60
(60)

60
(99.8)

84.9
(68)

99.8
(60)

68
(84.9)

160
(80)

60
(85)

85
(60)

5 100
(60)

60
(70.2)

60
(70)

60
(100)

65
(60)

60
(65)

70.2
(60)

60
(60)

60
(60)

70
(60)

6 79
(60)

60
(79)

60
(60)

60
(60)

65
(60)

60
(60)

70
(60)

60
(60)

60
(60)

60
(70)

7 60
(60)

60
(60)

60
(60)

60
(60)

160
(60)

60
(60)

60
(60)

60
(160)

60
(60)

60
(60)

8 60
(60)

60
(60)

60
(60)

60
(160)

160
(60)

60
(60)

60
(160)

160
(60)

60
(60)

60
(60)

9 60
(60)

60
(60)

60
(60)

60
(60)

160
(60)

60
(160)

72
(60)

60
(60)

60
(60)

60
(72)

10 60
(160)

60
(60)

60
(60)

60
(60)

160
(60)

60
(60)

60
(60)

160
(60)

60
(160)

60
(60)
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