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Abstract. This study intends to verify if, on the stock markets of the Euro zone, the 
integration as a process that lead to their unification is applied, even if several disparities 
exist among the national characteristics of the return-risk. We verify the pertinence of the 
consideration of third and fourth order moments in the comprehension of the arbitration 
mechanisms. 

The first part focuses on establishing the situation of the integration of the 
stock markets from the Euro zone member countries on the basis of the main 
characteristics of the returns and the associated risk premiums. Starting with the 
apparent inadequacy in the traditional theory, the second part considers the usual 
responses to the main questions posed on the empirical plan: non-normality of the returns 
distributions and non-quadratic preferences of the investors. The third part solves the 
apparent contradiction among the risk’s characteristics and price, on one side, and the 
stronger and stronger correlations among the national markets and the European 
indexes, on the other side.  

On the financial markets, the strategic variable is not the stocks’ price or the stock 
market indexes prices, but the growth rate of this price. This rate measures the gains in capital 
made by the investors and can be thought of as the return rate (except of the payment of 
dividends) of stocks or portfolios. This return rate calculated as ( )t t t 1 tR P P P−= − 1−

                                                     

 (where 
Pt represents the assets price at the market closing moment t) presents an interest both for the 
statistician and the investor:  
1. It influences the investors’ opportunities and strategy. 
2. Its statistical attributes (empirical as well as theoretical) are more suitable for treatment than a price 

series: moreover, the returns are stationary which makes the estimation and prediction easier.  
Traditionally, the financial analysis concerns the arbitration among the risky financial 

assets on the basis of the couple return-volatility, appreciated through the first two moments 
of their returns distribution: mean and standard deviation. Indicators such as Sharpe’s ratio1 
synthesize a priori this double dimension of the arbitration.  

However, fort a long time2, the questions on the quality of the information gathered by 
this type of indicator have multiplied. Indeed, except of considering the normal distributions, 
the characteristics of the statistical series distributions can not be summarized only by their 
two first moments. But, the returns’ rates of the financial assets are generally non-normal. 
Consequently, it is not surprising to notice that the researches in finance are interested in the 

 
1 On the origin of the ratio, cf. Sharpe (1966), and on his revision, cf. Sharpe (1994). 
2 We can find the first questions in Samuelson (1970) and Rubinstein (1973).  
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characteristics of the (centred3) moments of higher order, namely of third order (skewness) 
and of fourth order (kurtosis)4.  

This study intends to verify the pertinence of considering third and fourth order 
(centred) moments in understanding the arbitration mechanisms among the directional 
financial assets (in connection to the benchmarks that are the market indexes). More precisely, 
starting from the characteristics of the national “flagship indexes” for the Euro zone, we 
examine the nature of the financial markets’ integration of the states that became members of 
the Euro zone from 1999. 

The first part of the study recalls the principle of the rational investors’ choice on the 
financial markets and the role that the returns distribution moments may play. It sets up the 
description of the integration of the stock markets of the Euro zone member states on the basis 
of the empirical characteristics (including the first four moments) of the returns’ rates of the 
market indexes. 

The second part explains the contribution of the traditional theories centred on the first 
two moments (mean and variance). It raises a contradiction, on the stock markets of the Euro 
zone, between the maintenance of significant differentials of the risk’s characteristics and 
price (traditional sign of non-integration), on one side, and the stronger and stronger 
correlations between national markets and European indexes, on the other side (sign of 
integration). 

The third part starts from the apparent inadequacy of the traditional theory and gives 
relevant answers to the main two questions raised on the empirical plan: the non-normality of 
the returns’ distributions and the non-quadratic preferences of the investors. It shows that, 
despite the apparent disparities of all the returns characteristics associated to the national 
stock markets indexes of the Euro zone (means, standard deviations, Sharpe’s ratios), the 
integration process is at work. The apparent differentials of the price of the risk are expressing 
a rational evaluation of the risk associated to the moments of orders higher than 2, and 
especially of the major risks associated to the negativity of the skewness. The investor asks 
for a premium in order to compensate the high probability of extreme losses.  

The main stock markets of the Euro zone are kept by their flagship indexes: Germany 
(DAX30 written as ALL), Austria (ATX written as AUT), Belgium (BEL20 written as BEL), 
Spain (IBEX35 written as ESP), France (CAC40 written as FRA), Ireland (ISEQ20 written as 
IRL), Italy (MIB30 written as ITA), Netherlands (AEX written as PB), and Portugal (PSI20 
written as POR).  

Two European indexes have been kept too: EUROSTOXX50 (flagship index written 
as E50) and EUROSTOXX500 (wide index of the European market written as E5000).  

The estimation period starts on January 1st, 1996 and ends on December 31st, 20065 
(except of the Ireland for which the data are available beginning with January 1st, 1998). The 
data are daily data. The returns are measured by the single daily variation of the indexes 
prices expressed in percentages.  

The risk premium associated to these returns is expressed by the difference between 
the daily returns and the returns rates of the German state for 10 years.  

All the data come from the Datastream database.  
 

                                                      
3 Remind that the centered moment of h order of a random variable R is )E(R))E((R=μ h

h − . The variance 
(the square of the standard deviation) is the centered moment of 2nd order. 
4 Skewness and kurtosis are the centered moments standardized by the standard deviation σ of the variable, of 
the form hhμ /σ , with h = 3 for the skewness and h = 4 for the kurtosis.  
5 This period was kept for the reason to analyse the dynamics of the integration for a complete stock market 
cycle, on the one hand, and to explain the situation of the stock markets before the adoption of the single 
currency, on the other hand.  
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I. THE FINANCIAL CHOICES IN A RISKY UNIVERSE: THE ARTICULATION BETWEEN 
THE RETURNS RATES MOMENTS AND THE INVESTORS’ PREFERENCES 
The returns rates of stocks, portfolios, or market indexes should be considered as 

random variables. Indeed, it is possible to consider that the investment in Treasury bonds 
issued by countries such as Germany or France is safe due to the sovereign debt of such 
states. The investor can consider that the return rate of his placement is risk-free. It is not the 
same situation with the stock investments. Indeed, the future evolution of the stock prices can 
not be known with certainty as it is submitted to the markets hazard.  

The traditional assumption is that the investors’ universe is a risky universe. In such a 
universe, the choice criterion is the one defined by Von Neumann and Morgenstern (1944) 
that is the maximisation of the expected utility.  

The investors’ preferences can be expressed by a utility function that depends only on 
the considered asset or portfolio’s return rate R, and written therefore as U(R), with 
U’(R)>06.  

Since the return rate is random, the utility U(R) becomes a random variable. The 
investor’s strategy guides him to maximize his expected utility. It is not always useful to give 
the utility function a specific form. It is enough to develop this function by a Taylor series 
about the return mean E(R), supposed m. In order to simplify, we can write the centred 
variable of the return as: � = R – E(R) = R – m. 

For reasons that will become obvious later on, the utility function will be expanded to 
the fourth order. When U’, U’’, U’’’, and U’’’’ represent the first, second, third and, 
respectively, fourth order derivatives of the utility, we have in that case: 

2 3 41 1 1U(R) U(m ) U(m) U '(m) U ''(m) U '''(m) U ''''(m)
2 3! 4!

= + ε = +ε + ε + ε + ε
 

Then, it is necessary to calculate the expected utility function.  
2 3 41 1 1EU(R) E(U(m)) E( U '(m)) E( U ''(m)) E( U '''(m)) E( U ''''(m))

2 3! 4!
= + ε + ε + ε + ε

 
Arranging7, we obtain:  

2 31 1 1EU(R) U(m) U '(m) E( ) U ''(m) E( ) U '''(m) E( ) U ''''(m) E( )
2 3! 4!

= + ε + ε + ε + ε 4

 
The expression obtained may be reinterpreted, as it is integrates the various 

expectations linked with the centred variable of the returns. We remember that the theoretical 
centred moment (about the mean) of a random variable R is defined by8. Moreover, the mean 
of the centred variable ε is null:  

E(ε) = E((R – m)) = E(R) – m = 0.  
Therefore, it is possible to express the expected utility considering the theoretical 

centred moments:  

(1) 
2 3

1 1 1EU(R) U(E(R)) U ''(E(R)) (R) U '''(E(R)) (R) U ''''(E(R)) (R)
2 3! 4!

= + μ + μ + μ4

                                                     

 
The expression of the expected utility makes possible to infer the strategic criteria of 

the investors’ choice, considering their preferences revealed by the characteristics of the 
returns distribution function. The expected utility is the function of, on the one hand, the 
returns rates moments: the mean and the 2nd, 3rd and 4th order moments and, on the other 

 
6 We refer to the general assumption according to which the marginal utility (the first derivate of the utility) is 
positive. The utility is always an increasing function of the return rate. 
7 Remind that we consider that ε is a random centred variable, m is certain. 
8 The estimators (biased) of these theoretical moments are the empirical moments (centred by the arithmetic 

mean), suppose 
t T1 hˆ (R R)h tT t 1

=
μ = −

=∑ , where Rt represents the return rate in t, T measures the number of 

the observations and R is the arithmetic mean of the returns rates.  
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hand, the utility function form (especially of the 2nd, 3rd and 4th derivates), that is the 
investors’ preferences.  

For the Euro zone, during the period 1996-2006, the characteristics of the daily return 
rates for all the analysed indexes are presented in the Table 1.  

Table 1: Characteristics of the Euro zone daily return rates (1996-2006) 
 ALL AUT BEL ESP FRA IRL ITA PB POR E50 E500 

Mean 0.0491 0.0570 0.0410 0.0558 0.0464 0.0499 0.0458 0.0378 0.0430 0.0439 0.0439
Std. Deviation 1.5275 1.0229 1.1113 1.3339 1.3638 1.2135 1.3558 1.4344 1.0220 1.3860 1.2414
Skewness -0.0536 -0.7627 0.3065 -0.1185 -0.0234 -0.2166 -0.0240 0.0124 -0.4478 -0.0202 -0.1334
Kurtosis 6.0408 8.5252 8.8291 5.9472 5.9828 8.2241 6.1676 7.2707 10.0752 6.2370 6.1700
Sharpe’s Ratio 0.0208 0.0388 0.0213 0.0289 0.0213 0.0276 0.0210 0.0142 0.0251 0.0191 0.0214
Jarque-Bera 1124 3988 4170 1061 1080 2734 1218 2214 6173 1272 1228
Pr(Normality) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

II. THE EVALUATION OF THE INDEXES PERFORMANCE STARTING FROM THE 
FIRST TWO SINGLE MOMENTS 

II.1. The first two moments as the evaluation of the performance or the mean-standard 
deviation criterion  

The financial theory beginning with Markowitz (1952, 1959) and Tobin (1958) 
emphasizes the simplified Mean-Variance criterion. The consideration of the risk aversion 
leads to that the expected utility depends positively of the expected return and negatively of 
the return rates variance (the 2nd order centred moment). In other words, the expected utility 
should take into account this second moment:  

2
1EU(R) U(E(R)) U ''(E(R)) (R)
2

= + μ
 

In order to get an inverse relationship between the expected utility and the variance, it 
is necessary for the 2nd derivative of the utility to be negative: U’’(E(R)) < 0. This implies that 
the utility function is concave that is the marginal utility of the return should be decreasing.  

The mean-variance criterion implies the appeal to two alternative hypotheses: either 
the utility function is quadratic, either the returns are normal.  

II.1.1. The hypothesis of the quadratic utility function 
The particular case usually retained is the one of the quadratic function that is  
b=++where b=+and=< 
This function has the advantage to allow the passage from the Von Neumann and 

Morgenstern criterion (the maximization of the expected utility) to the Mean-Variance 
simplified criterion. Indeed, since b=++, we can infer that: 

2EU(R) a b E(R) c E(R )= + + , as 2EU(R) a b E(R) c E(R) c V(R)= + + +  
The expected utility E(U(R)) can be expressed by the mean E(R) and the variance 

V(R), or the standard deviation, since 2 2EU(R) a b E(R) c E(R) c (R)= + + + σ . 

II.1.2. The hypothesis of normality of the returns  
A quadratic utility function avoids making assumptions on the nature of the return 

rates. Indeed, since the return rate R follows the Normal law, its distribution is perfectly 
characterized by its two first moments, so that the expected utility criterion coincides with the 
mean-variance criterion.  

Indeed, for a normal centred law, all the odd moments are null, whereas the even 
moments can be inferred through the variance9. Thus, knowing the mean and the standard-

                                                      
9 Indeed, when σ assigns the standard deviation, the even ordered centred moment (order 2h) is μ=σ−,with 434μ = σ . 
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deviation is enough for the definition of a normal variable. Moreover, the expected utility (1) 
becomes 

2 41 3EU(R) U(E(R)) U ''(E(R)) (R) U ''''(E(R)) (R)
2 4!

= + σ + σ  

In the line with the evaluation model of the financial assets, known in the Anglo-
Saxon literature under the title of CAPM (Capital Asset Pricing Model)10, the arbitration 
between average return (or risk premium) and variance (or rather standard-deviation) allows 
defining a ratio, known as the Sharpe’s ratio (1966, 1999), that is the criterion for portfolio’s 
performance and the price of the risk. 

The theoretical Sharpe’s ratio associated to the return Ri, return of an index or 
portfolio i, is defined as i iRS (E(R ) r) (R )= − σ i

                                                     

, where r measures the rate without risk. 
This ratio is calculated as the ratio between the risk premium of an asset or portfolio i 
(measured by the difference between the expected return and the safe rate r) and the risk of 
the asset or the portfolio (measured by its standard deviation). The premium risk pays 
normally the risk assumed by the investor when he renounces at his portfolio in safe assets.  

II.2. The first two moments as evaluation of Euro zone indexes’ performance and 
integration  

II.2.1. The disparity of the characteristics during the period 1996-2006, as a sign of 
non integration of the markets 
The Table 1 certifies that the apparent characteristics of the national and European 

markets indexes show a strong heterogeneity: this heterogeneity marks not only the expected 
returns but also the standard deviations, and this despite the fact that the average returns and 
the risk premia are always positive.  

Then, we notice that the Sharpe’s ratios11 associated to the different indexes are 
considerably heterogeneous. The Sharpe’s ratio can be interpreted in two different manners: 
firstly, as a performance indicator, and secondly, as a measure of the price of the risk. 

As a performance criterion, the Sharpe’s ratio indicates that the Austrian market is the 
most competitive, whereas the market of Netherlands is the least competitive. But the 
Sharpe’s ratio may also be considered as an indicator of the price of the risk that is in the way 
in which the risk premium related to a portfolio remunerates the risk of this portfolio. In this 
case, considered as indicators of the prices of risk on the various markets, the ratios put 
forward the non- realization of the single price law of the risk, or the absence of a perfect 
integration of the Euro zone stock markets. 

II.2.2. The absence of the convergence of the Sharpe’s ratios: sign of the markets’ 
non-integration  
But the Sharpe’s ratios have been calculated for the entire period 1996-2006. 

Determined for the entire estimation period, these results could give a distorted image for a 
convergence phenomenon that points out a dynamic process. In order to verify this possible 
convergence criterion, it is advisable to measure, for each year, the different Sharpe’s ratios.  

The examination of the Sharpe’s ratios presented in the Table 2, for each year, allows 
us to reach two conclusions.  

Table 2 
 The Sharpe’s ratios for the Euro zone indexes (1996-2006) 

 ALL AUT BEL ESP FRA IRL ITA PB POR 
1996 0.106 0.059 0.078 0.142 0.079 NA 0.020 0.122 0.187 
1997 0.094 0.029 0.075 0.089 0.064 NA 0.115 0.082 0.169 
1998 0.035 -0.041 0.109 0.062 0.062 0.076 0.065 0.056 0.048 

 
10 On this subject, the important contributions are those of Sharpe (1964), Lintner (1965) or Merton (1973). 
11 Tables 1 and 2 present the empirical estimations of the Sharpe’s ratios on the basis of the empirical means and 
standard deviations. 
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 ALL AUT BEL ESP FRA IRL ITA PB POR 
1999 0.084 0.014 -0.028 0.044 0.124 -0.007 0.052 0.061 0.020 
2000 -0.026 -0.060 -0.042 -0.067 -0.008 0.062 -0.002 -0.028 -0.048 
2001 -0.048 0.010 -0.040 -0.021 -0.062 -0.006 -0.072 -0.056 -0.105 
2002 -0.084 -0.013 -0.070 -0.066 -0.069 -0.100 -0.066 -0.069 -0.113 
2003 0.064 0.139 0.024 0.070 0.034 0.069 0.029 0.011 0.059 
2004 0.017 0.180 0.130 0.061 0.018 0.095 0.070 0.001 0.050 
2005 0.108 0.179 0.108 0.085 0.101 0.062 0.057 0.122 0.074 
2006 0.066 0.055 0.081 0.112 0.051 0.089 0.060 0.040 0.152 

 

 
Figure 1: Ratios de sharpe (indices nationaux 1996-2006) 

Firstly, it appears that the Sharpe’s ratios have fluctuated especially during the stock 
boom at the beginning of the 2000’s, during which the risk premia have been negative: this 
means that the average return of the stock markets have been inferior to the safe return 
realized on the German Treasury bonds.  

Then, at the very end of the period, in 2006, even if the risk premium and therefore the 
Sharpe’s ratio became positive, the ratios are still characterized by a strong heterogeneity. The 
evolution during these years of the annual Sharpe’s ratios show that, in fact, there was not a 
real convergence process (see Figure 1): the dynamics observed is not the one of a regular 
progress towards the formation of a unique price of the risk within the Euro zone. 

We notice that, if there is convergence, this one cannot be captured in terms of 
Sharpe’s ratios convergence. 

II.2.3. The convergent dynamics of the R2 from the market model: sign of the 
integration of markets 
But, the integration process of the stock markets may be estimated in two ways: either 

in terms of trend towards the formation of a single price for the risk (it is what the dynamics 
of the Sharpe’s ratios was supposed to express), or in terms of stronger and stronger 
correlations between the risk premia of the national markets and the risk premium of the 
European market as a whole. 

For each market i of the Euro zone, we estimated for the daily data, by year, models 
that explain the national risk premium by the risk premium for Eurostoxx500 (written RM). 

We started from the explanation of a market model (alternative version of CAPM) 
with constant: it t i i Mt t itR r (R r )− = α +β − + ε  
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Each time, it appeared that the model constant iα  was not significant, so that the 
estimations lead to the classical CAPM12. Therefore: −=β−+ε. 

Here, we are interested only in time behaviour of the obtained determination 
coefficients (see Table 3 and Figure 2). Indeed, R Squared measures the part of the total risk 
of an index i that is explained by the systematic risk of the market. 

risk total
risk systematic1

2
2 =

r)V(R
r)V(Rβ=

r)V(R
)V( ε=R

i

Mi

i

i

−
−

−
−  

More the R Squared is closer to 1, and the portfolio of the national index i is more 
diversified, more its specific risk is low and more the national market is integrated.  

Table 3 
The annual R2 between the Euro zone indexes and the market index (1996-2006) 

 ALL AUT BEL ESP FRA IRL ITA PB POR 
1996 0.584 0.305 0.376 0.376 0.612  0.359 0.601 0.042 
1997 0.744 0.581 0.644 0.623 0.726  0.526 0.74 0.474 
1998 0.898 0.502 0.708 0.74 0.871 0.422 0.793 0.802 0.59 
1999 0.814 0.257 0.497 0.674 0.857 0.117 0.664 0.785 0.33 
2000 0.773 0.146 0.102 0.709 0.876 0.093 0.716 0.742 0.529 
2001 0.838 0.164 0.483 0.78 0.942 0.343 0.823 0.885 0.447 
2002 0.826 0.184 0.786 0.829 0.966 0.441 0.88 0.932 0.444 
2003 0.831 0.097 0.733 0.845 0.951 0.318 0.862 0.907 0.24 
2004 0.944 0.342 0.725 0.805 0.952 0.339 0.832 0.919 0.353 
2005 0.896 0.326 0.613 0.812 0.951 0.357 0.805 0.865 0.252 
2006 0.944 0.475 0.834 0.879 0.96 0.583 0.862 0.919 0.274 

 
The growth of the majority of the determination coefficients starting with the 

coefficients of the most important financial markets shows that the systematic risk of the 
market (represented here by the Euro zone market) explains an increasing part of the risks due 
to the national markets. It even clearly appears a “convergence club” grouping the following 
markets: France, Germany, Netherlands, Italy, Spain and Belgium.  

 
Figure 2 : Coefficients de determination (MEDAF nationaux 1996-2006) 

 

                                                      
12 The estimation method was OLS with Newey-West’s procedure (1987, 1994). 
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These results, favourable to the integration hypothesis, are a priori in contradiction 
with the results previously obtained on the basis of the Sharpe’s ratios heterogeneity. But 
then, is it possible however to merge the integration process taking place in the Euro zone 
with the maintenance of the differences in the price of the risks? Or, is it possible to explain 
the heterogeneity of the Sharpe’s ratios starting from a hypothesis of markets’ efficiency and 
of investors’ rationality?  

The noticed heterogeneity may come from the consideration by the investors of the 
risks included in the information offered by the 3rd and 4th (centred) moments. 

III. THE EVALUATION OF THE INDEXES’ PERFORMANCE CONSIDERING MOMENTS 
OF AN ORDER HIGHER THAN 2 

III.1. The deficiencies of the double criterion mean-variance 
When identifying risk by volatility, the classical theory assimilates Sharpe’s theory on 

the price of the risk. Consequently, this theory founds the arbitration process exclusively on 
the consideration of the couple made of the two first moments: mean and standard deviation 
of the returns. As we saw, this approach is implicitly founded on two alternative hypotheses: 
either the returns are normal, or the utility functions of the investors adverse to risk are 
quadratic.  

However, both of the hypotheses cannot be validated empirically.  

III.1.1 The rejection of the hypothesis of normality of return rates 

III.1.1.1. The 3rd and 4th ordered moments, the skewness and the kurtosis 

The non-normality of the returns and the premium risk is a general phenomenon that 
can be easily confirmed in the case of Euro zone stock markets. For this, it is enough to 
calculate the 3rd and 4th order centred moments of the return rates distribution, or more 
precisely, to calculate the standardized centred moments.  

The 3rd order centred moment allows defining the skewness coefficient that is the ratio 
between the centred moment µ3, and the standard deviation at power three, 3SK 3= μ σ 13. 

The 4th order centred moment allows defining the kurtosis coefficient that is the ratio 
between the µ4 and the standard deviation at power four: 4KU 4= μ σ 14. 

III.1.1.2. The skewness and the kurtosis of the return rates in the Euro zone 

The estimations of the two coefficients (skewness and kurtosis) 15 are presented in 
Table 1. At first sight, the skewness coefficients are all negative, except for the Netherlands. 
In other words, the return rates are right tailed: the highly negative returns (very important 
losses) are frequent on the European stock markets. Above all, it appears that the return rates 
for all the observed stock indexes present a very important kurtosis: the return rates are highly 
leptokurtic.  

This phenomenon is essential for understanding the investors’ behaviour. Indeed, a 
leptokurtic variable is characterized by a distribution with fat tails. This means that the 
extreme values (negative or positive) of the distribution are more frequent than the “normal”. 
In the case of the return rates, it shows that the investor exposes himself frequently to very 
important losses, even if, in compensation, he can benefit, with the same frequency, from 
important gains. 
                                                      
13 We know that skewness is null for a symmetric variable and hence for a normal variable. It is positive for a 
right tailed variable and negative when the variable is left tailed.  
14 For a normal law named mesokurtic, the kurtosis value is equal to 3. For a variable more flatten than the 
normal law (platykurtic variable), the kurtosis is inferior to 3. It is superior to 3 for a variable less flatten than the 
normal law (leptokurtic variable). 
15 The estimations are based on the empirical estimations (biased estimation for the variance) and on the 2nd, 3rd 
and 4th order centred moments. On this subject, see Bickel and Doksum (1977). 
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III.1.1.3. Tests of the return rates non-normality 

The single analysis of the two coefficients is not sufficient to reject the hypothesis of 
normality of returns. This hypothesis must be verified in a rigorous way.  

The best normality test is a global test (both of the skewness and kurtosis), the Jarque-
Bera test (1980). It is based on the JB statistics that is expressed by 

T T T T2 2 2ˆ ˆ ˆ ˆJB SK (KU 3) (SK (KU 3) )
6 24 6 4

= + − = + − 2
 

The variable JB under the null hypothesis of normality H0 is a Chi Square with 2 

degrees of freedom: 2
2JB = χ . We accept the normality hypothesis if the variable JB is inferior 

to the threshold value 5.99.  
The Table 1 for all the return rates of the Euro zone presents the JB statistics and its 

probability. If this probability is higher than 5%, we accept the hypothesis of normality H0. 
For all cases, the probability is null, as the JB value is very high: the return rates, on 

the European stock markets on the whole, are not normal.  

III.1.2. The rejection of the quadratic utility function  
The first hypothesis (the normality of return rates) judging on the basis of the mean-

standard deviation criterion is not validated.  
It remains to confirm if the second hypothesis (the quadratic nature of the investors’ 

utility function) may be verified. The behavioural analyses traditionally lead to rejecting this 
second hypothesis.  

Indeed, the economic agents’ behaviour and, particularly, the investors’ behaviour 
show, in a systematic way, the preference for odd moments (mean and skewness) and also an 
aversion for the even moments (standard deviation and kurtosis). The investors’ revealed 
preference is highlighted either by the behavioural experiences or by noticing the market’s 
irregularities.  

III.1.2.1. The revealed behaviour towards the moments with order higher than 2 

Concerning the behavioural analysis, by way of example, we can refer to two 
lotteries16: in the first one, for 1 Euro, the player has one chance in a million to win 1 million 
Euros; in the second, the payer wins in all situations 1 Euro, but he has one chance out of a 
million to pay 1 million Euros.  

Both of the lotteries have the same expected gain (equal to 0), the same variance 
(999,999) and the same kurtosis (999,998). But they are different in their skewness. In the 
first case, the skewness is positive (999.9985) while it is negative in the second case (-
999.9985). Consequently, the players will normally show a preference towards the first 
lottery. 

III.1.2.2. The irregularities of the market and the moments of an order higher than 2 

Concerning the market’s irregularities, the investors’ aversion to a negative 
skewness17 may be expressed by two examples: 
 On one side, there is an overestimation of the puts matched with an implicit high volatility 

of their subjected variables: they allow limiting the excessive losses and reducing thus the 
negativity of the skewness of the subjected variables. 

 On the other side, the stocks overestimation manifests itself by abnormal high levels of the 
PER (price earning ratio), expressing the existence of a strong potential to increase: this 
overestimation remunerates the positivity of the skewness.  

                                                      
16 This example is drawn from Athayde & Flores (2000). 
17 On this subject, see Harvey (2002). 
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III.2. The role of the first four moments  
In situations of non-normality, the investors’ strategies must be more logically based 

on the optimisation of a global criterion linking the first four moments of the return 
distribution. Traditionally, this criterion corresponds to the maximisation of the expected 
utility in a risky future.  

We find the general18 rule of the equation (1) that we can express on the basis of 
skewness (SK) and kurtosis (KU). 

2 3 41 1 1EU(R) U(E(R)) U ''(E(R)) (R) U '''(E(R)) (R) SK(R) U ''''(E(R)) (R) KU(R)
2 3! 4!

= + σ + σ + σ  
The investors’ revealed preferences show that the utility is an increasing function of 

the 1st and 3rd order moments, and decreasing of the 2nd and 4th order moments. Thus, we must 
have19 U’ and U’’’ > 0, with U’’ and U’’’’ < 0. 

In the financial analysis, the interpretation and the judgement of these conditions can 
be easily done. The investors certainly show preference for assets and portfolios with high 
return (U’ > 0), and they show aversion towards the risk measured by the volatility of the 
returns (U’’ < 0). 

In the same way, the investors appreciate the skewness while it is positive (U’’’ > 0): 
in this case, very important gains are relatively frequent as the returns distribution is rightly 
biased (towards high return rates). Oppositely, the investors are reluctant to exposing to 
negative skewness: thus, the probability distribution of the returns is not only asymmetric but 
moreover it is biased towards negative returns. Therefore, we can say that, frequently enough, 
the investors expose themselves to suffering very important losses.  

Finally, the investors show a general aversion to risk. The risk can be measured by the 
volatility of the return rates of stocks and portfolios. But it can also be measured by the 
kurtosis: the leptokurtic returns allow the investor to obtain frequently very important gains 
and, in the same time, they expose him as frequently to suffer very important losses (U’’’’ < 
0). 

Consequently, it seems relevant to ask oneself on the role that the high order moments 
can play in the determination of the risk premia. Thus, the risk wouldn’t be reduced to the 
single volatility of the returns, but could be expressed by the negativity of the skewness and 
by the excess of the kurtosis, the last ones contributing to the new systematic risks20. 
Therefore, the differentials of the risks premia and of the Sharpe’s ratios revealed on the 
European stock markets as a whole could translate only the evaluation of the others forms of 
risks21.  

III.3. The price of risk (the Sharpe’s ratio) and the two last moments 
In order to measure the sensibility of the prices of risk (Sharpe’s ratios, noted RS) to 

the two characteristics of the risk measured by skewness (noted SK) and kurtosis (noted KU), 
pooling estimations were calculated for all the indexes (national and European) on annual data 
during the period 1996-2006. 

The estimation of the equation (2) implying only the skewness, allows verifying the 
signification of a decreasing relationship between the price of risk and the skewness. Thus, 
the price of risk required by the investor values the risk inherent to a negative skewness.  
 
(2) b=++ε 

                                                      
18 We will find two recent examples in Ranaldo & Favre (2003) or Jondeau & Rockinger (2004). 
19 The conditions have been settled by Scott & Horvath (1980). 
20 The extension of MEDAF beyond the first two moments was initiated by Rubinstein (1973) and especially by 
Kraus & Litzengerger (1976). For a recent development of the 4 co-moments see Harvey (2002). 
21 For performance measures integrating superior moments see Prakash & Bear (1986), Stephens & Proffitt 
(1991). 
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Table 4 
Results for the estimations of the equation 2 

Equation 2 a b Number of 
observations 

R2 Adjusted R2

 0.032 -0.036 119 0.0498 0.0417 
 (4.872) (-2.477)    

The Student t values are given between brackets below the value of the coefficients. 
The estimation of the equation (3) allows us verifying the signification of an 

increasing relationship between the price of risk and the kurtosis. Thus, the price of the risk 
required by the investor values the risk inherent to a strong leptokurtosis.  

(3) =+ε 
Table 5 

Results for the estimations of the equation 3 
Equation 3 Constant c Number of 

observations 
R2 Adjusted R2

 Non 0.007 119 0.0197 0.0197 
 significant (6.449)    
 

The estimation of the equation (4), introducing jointly the skewness and the kurtosis, 
confirm the negative effect of the skewness but leads to rejecting the influence of the kurtosis.  

(4) it it it itRS a b SK c KU= + + + ε  
Table 6 

Results for the estimations of the equation 4 
Equation 4 a b c Number of 

observations 
R2 Adjusted R2

 0.014 -0.032 0.004 119 0.0644 0.0483 
 (0.936) (-2.171) (1.344)    
It is possible that this result expresses the existence of collinearity between the 3rd and 

4th order moments. The estimation of the relationship between these moments (equation 5) 
highlights the inverse relationship between skewness and kurtosis. 

(5) =++ε 
Table 7 

Results for the estimations of the equation 5 
Equation 5 Constant d e Number of 

observations 
R2 Adjusted R2

 4.970 22.171 119 0.0390 0.0308 
 (-1.056) (-2.180)    

In other words, it appears that the negative values for skewness are linked to the 
leptokurtosis: thus, not only that the extreme values are more probable but they take the form 
of extreme losses implying a negative skewness. The residues of the equation (4) allowed 
orthogonalising the variable kurtosis. 

(6) it it it itRS a b SK c ' KU '= + + + ε   
where KU’ measures the orthogonalised (non dependent of the skewness) part of the kurtosis. 

Table 8 
Results for the estimations of the equation 6 

Equation 6 a b c Number of 
observations 

R2 Adjusted R2

 0.032 -0.036 0.004 119 0.0644 0.0483 
 (4.889) (-2.486) (1.344)    
The equation 6 comes back to the estimation of the relationship between the Sharpe’s 

ratio, on one side, and the kurtosis and skewness, on the other side. But, this time, the 
explanatory variable, representing the kurtosis, measures only that part of the kurtosis that is 
not explained by the skewness. Consequently, we find the results of the equation (4): the 
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skewness is still the only explanatory variable of the Sharpe’s ratio. This suggests the extent 
of the content in information of the skewness: this one informs directly on the characteristics 
linked to the 3rd moment and indirectly on the characteristics of the 4th moment. 

On the whole, these results reveal that the consideration of the (centred) moments of 
an order higher than 2 wouldn’t outdate the Sharpe’s ratio as a theoretical measure of the 
price of risk and as an empirical measure of the performance.  

Indeed, the price of the risk contained by the Sharpe’s ratio incorporates the risks 
linked to the (centred) moments of an order higher than 2. More precisely, it means that the 
market values the negativity of the skewness through its determination by the price of risk. 

CONCLUSIONS 
This study allowed us to show that, in spite of the permanence of the disparities in all 

the characteristics of the returns linked to the national stock indexes within the Euro zone 
(means, standard deviations, Sharpe’s ratios, skewness and kurtosis), the integration process is 
working.  

Consequently, the apparent differentials in the price of risk, as measured by the 
Sharpe’s ratio, express the rational evaluation of the risk linked to the moments of an order 
higher than 2.  

Between the 3rd and 4th order (centred) moments, the skewness plays a strategic role 
due to the importance of its content in information on all the risks linked to these moments. 
Thus, the investor demands a higher return in exchange of a negative skewness. Doing so, he 
implicitly values the high probability of extreme losses.  

This crucial role of the skewness allows for understanding the strategic importance of 
the studies on this subject and, more generally, of the studies on the risk of markets’ fall. But, 
these studies reach such conclusions that the market underestimates the risk linked to the 
skewness and refer to the necessity of undertaking coverage against the downside risk (for 
example, through buying puts). On the contrary, we show that the market values the risk, and 
the required returns include a premium supposed to ensure the risk coverage expressed by the 
skewness. 
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