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Data suggest the distribution of wealth among households in the United States and 
the United Kingdom has become more equal over the last century — though the pattern 
may have reversed recently.   This paper shows that a model in which all households save 
for life–cycle reasons and some for dynastic purposes as well offers a possible 
explanation: the model predicts rising cross–sectional equality of wealth when longevity 
increases.  In terms of recent changes, the model suggests that expansion of social 
security programs and government debt can lead toward more wealth inequality, and that 
slower growth may do the same. 
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Secular Changes in Wealth Inequality and Inheritance

Life–cycle and bequest–related saving seem to occur together in practice, and this pa-
per attempts to demonstrate that an economic model incorporating both has advantages
over conventional analytical approaches which specialize to only one.1 In particular, with a
compound model one can study the consequences of exogenous shifts in the relative impor-
tance of the two motives for saving, and that constitutes the present paper’s focus. This
paper shows how such shifts can affect cross–sectional wealth inequality, and it suggests
possible interpretations for several empirical puzzles.

Darby (1979, c.3) presents one puzzle. He notes that life and retirement spans in the
U.S. have lengthened considerably in the last century, that one would think this should
have substantially increased life–cycle saving, but that data shows a roughly constant
aggregative saving rate. Darby concludes that life–cycle saving may not be quantitatively
important. In contrast, Section 3 below shows that the present paper’s hybrid model can
simultaneously allow a substantial role for life–cycle saving and an increase in that role
without a corresponding change in aggregative wealth accumulation.

Second, data show the U.S. distribution of wealth is more unequal than the distri-
bution of earnings (Diaz–Gimenez et al., 1997). Although the life–cycle model is broadly
consistent with such a relation, it does not seem able to predict the very large wealth
shares of, say, the richest 1 and 5% of U.S. households (Huggett, 1996). Section 6 below
shows that the present paper’s model, on the other hand, can explain a very concentrated
upper tail for the wealth distribution.

Third, various sources suggest that a number of countries have experienced changes
in their wealth distributions during the twentieth century. Wolff (1996), for example, finds
a reduction in wealth inequality in the last 75 years for the U.S., U.K., and Sweden —
perhaps followed by an upturn after 1980 in the United States. Atkinson et al. (1989) find
even sharper reductions for British data 1923–81. Surprisingly, our model shows how this
secular pattern may be related to Darby’s observations on demographic change.

In this paper’s model, some family lines, specifically, a fraction λ, are altruistic in
the sense of caring about the utility of their adult children and subsequent descendants.
Such households may choose to accumulate estates for bequests. Nonaltruistic families
care solely about their own lives. A mixture of bequest–motivated and life–cycle saving
can therefore emerge. The model shows that bequest–motivated wealth accumulation will
tend to be highly interest elastic and, when there is a mixture of saving behaviors, will tend
to cause wealth inequality as altruists save more than nonaltruists. Analysis then implies
that demographic changes which increase incentives for life–cycle saving need not affect the
economy’s interest rate, which interest sensitive dynastic behavior sets. However, as life–
cycle accumulations rise despite the economy’s overall capital stock remaining the same,
the composition of overall saving must adjust, with estate building declining in relative
significance. The latter shift can, in time, diminish wealth inequality.

1 The importance of life–cycle saving seems evident (Modigliani, 1988). For discussions
of the possible quantitative significance of intergenerational transfers, see Kotlikoff and
Summers (1981), Kotlikoff (1988), and Gale and Scholz (1994).
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The idea that only some family lines manifest altruism is necessary for this paper’s
principal outcomes. Empirically, many households do not seem connected to their descen-
dants through positive intergenerational transfers (Altonji et al., 1992, 1997; Laitner and
Ohlsson, 2001; Laitner and Juster, 1996). A simple explanation would be that preference
orderings differ among families. That is this paper’s viewpoint: this paper assumes that λ
is exogenously given and is neither 0 nor 1.2 Alternatively, all families may be altruistic
but earning ability differences may induce only some to want to leave positive bequests.
In other words, high earners may desire to share with their descendants through inter-
generational transfers, whereas low earners may expect their descendants to have higher
consumption than they do without their assistance. Laitner (1992), Fuster (1998), and
Nishiyama (2000) examine such frameworks. The present paper’s model has the virtues of
being simpler and more convenient to analyze, and it may help to develop predictions and
intuitive explanations of comparative static results for the complicated, stochastic systems.

In this paper’s model all households save for life–cycle reasons but, as stated, some
have dynastic time horizons as well. Sections 1–5 present a theoretical analysis of the basic
framework and examine the possible effects of changes in mortality, social security, and the
rate of technological progress. They demonstrate that the model is tractable for studying
both long and short–run issues. Section 6 presents a calibrated numerical example, and it
simulates the possible quantitative impacts of recent policy and demographic changes.

1. A Simple Model

For expositional simplicity, Sections 1–5 assume two–period lives. Throughout, this
paper assumes that within each birth cohort a set fraction 1−λ of households save for life–
cycle purposes alone, and that the remaining fraction λ desire both life–cycle saving and
an estate. Children of bequeathors become bequeathors themselves. Section 6 elaborates
the model to include realistic life spans.
Household Behavior. Suppose each household lives two periods, inelastically supplying
one unit of labor in its first period of life, and spending its second period in retirement.
A household raises children during its first period. The next period the children form
their own households and pass their first period of adult life — while their parents are
retired. For simplicity, think of one–adult households, each raising one child.3 There is
exogenous labor–augmenting technological progress at rate g − 1: a household born at t
supplies gt “effective labor units” in its youth. The wage per effective labor unit is Wt.
Until Section 6, assume all households of the same birth cohort have the same earning
ability.

Conditional on receiving inheritance it and leaving bequest it+1, a household born
at t has lifetime utility

u(it, it+1, t,Wt, Rt+1) = max
c1t,c2t≥0

{(1 − θ) · v(c1t) + θ · v(c2t)}, (1)

2 Woodford (1986) and Michel and Pestieau (1998), for example, also use heterogeneous
preferences.

3 Laitner (1991) shows that this type of formulation is equivalent to having 2–adult
households, 2 children per household, and (strictly) assortative mating.
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subject to: c1t +
c2t

Rt+1
≤Wt · gt + it − it+1

Rt+1
, (2)

where c1t is the household’s first period of adult life consumption, c2t is its second–period
consumption, the price of the single consumption good is always 1, Rt+1 is one plus the
interest rate on savings carried from period t to t + 1, and θ ∈ (0, 1) registers the weight
households put on consumption in old age relative to youth. All households have the same
θ. If households are impatient, θ will be small; similarly, if, for example, minor children
receive a large allocation of households’ total resources, 1 − θ will tend to be high. To
generate the full class of concave, additively separable, homothetic utility functions, one
sets

v(c) =
cγ

γ
, γ < 1 or v(c) = ln(c). (3)

For algebraic simplicity, the first five sections of this paper restrict themselves to the
logarithmic case, corresponding to γ = 0. Most results carry over simply for γ �= 0, as
the comments below indicate. Performing the maximization in (1)–(2) for the logarithmic
case,

c1t = (1 − θ) · [Wt · gt + it − it+1

Rt+1
] and c2t =

θ

1 − θ ·Rt+1 · c1t. (4)

For the fraction of households who are not altruistic, set it = it+1 = 0. Expression (4)
characterizes their behavior. Letting s1t be the saving of young, nonaltruistic households,

s1t = θ ·Wt · gt. (5)

Households which are altruistic have the same lifetime utility function and, conditional
on their inheritances and bequests, solve the same lifetime problem. This paper assumes
that institutions preclude negative intergenerational transfers and that a dynasty chooses
inheritances to solve

max
it+1≥0

∞∑
t=0

ξt · u(it, it+1, t,Wt, Rt+1), (6)

where (1)–(2) determine u(.). The intergenerational subjective discount factor is ξ < 1. In
terms of timing, an altruistic household born at t receives inheritance it as it begins its first
period of life; it then chooses its first period of life consumption, say, cd1t, and saving, say,
sd
1t; as its second period of life begins, its wealth plus interest is Rt+1 · sd

1t, and it divides
this sum between a bequest it+1 to its grown child and its own retirement consumption
cd2t.

A dynasty’s first–order condition for it+1 is

u2(it, it+1,Wt, Rt+1) + ξ · u1(it+1, it+2,Wt+1, Rt+2) ≤ 0 all t,

with equality when it+1 > 0. Using the envelope theorem, the preceding condition becomes
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1
Rt+1

· v′(cd1t) ≥ ξ · v′(cd1,t+1), equality for it+1 > 0.

Or, since utility is logarithmic,

cd1,t+1 ≥ Rt+1 · ξ · cd1t, equality for it+1 > 0. (7)

As stated, altruistic parents beget altruistic children, while children with nonaltruistic
parents are themselves nonaltruistic.

For a dynastic household started at t, saving carried from youth to old age, sd
1t, is the

sum of two components. One is life–cycle saving, given by θ times the right–hand side of
(2). The other is estate–motivated saving. Combining them,

sd
1t = θ · [Wt · gt + it − it+1

Rt+1
] +

it+1

Rt+1
. (8)

Our analysis assumes that in the initial time period, each dynastic household receives
the same inheritance. Given identical preferences and earnings, one dynasty’s subsequent
bequests are the same as another’s.4

Let the total net assets which the household sector carries from time t to t + 1 be
At+1. Then letting the total number of households initiated at each date be N , accounting
implies

At+1 = N · (1 − λ) · s1t +N · λ · sd
1t. (9)

Production Sector. The economy has an aggregate production function

Qt = [Kt]α · [Et]1−α, α ∈ (0, 1),

where Q is GDP, K is the aggregate capital stock, and E is the “effective” labor supply.
The latter is

Et = N · gt. (10)

GDP is homogeneously divisible into consumption and investment goods. All capital which
firms use at time t+ 1 must have been built in prior periods and financed from t to t+ 1.
Letting µ be the rate of physical depreciation, competitive behavior yields

Rt = 1 + α · [Kt]α−1 · [Et]1−α − µ and Wt = (1 − α) · [Kt]α · [Et]−α. (11)

4 In the steady–state analysis below, differences among dynastic households are not
interesting since the initial distribution of inheritances remains unchanged forever. The
distribution would change somewhat, on the other hand, during transitions between steady
states (Caselli and Ventura, 1996). See also Section 6.
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General Equilibrium. Assume that the economy is closed and, at this point, that there is
no government sector. Then household net worth must exactly finance the physical capital
stock. In other words,

At = Kt all t. (12)

2. Steady–State Growth
Define a steady state equilibrium (an SSE) to be an equilibrium for the economy with

(i) a constant interest factor R and (ii) geometric growth at constant rates for Q, K, E,
and W . Condition (11) immediately shows that Kt/Et and Wt must be constant if Rt is,
and (10) shows that E has growth factor g; thus, Kt and Qt have steady–state growth
factor g. It remains to find the constant value(s) of R at which saving and investment —
or the stock of wealth and the stock of capital — are equal. We study the last condition
using a picture (as in Tobin (1967)).

Fig. 1 considers the steady states of a purely life–cycle economy (i.e., λ = 0). With
only life–cycle saving, (5) and (9)–(10) yield

At+1

W · Et
=
N · s1t

W · Et
= θ. (13)

The latter determines the “household wealth supply curve,” Fig. 1’s H–curve.
The downward sloping “production sector curve,” the P–curve in Fig. 1, comes from

the aggregate production function and definition of an SSE. In a steady state, Wt = W ,
Rt = R, and Kt+1 = g ·Kt all t; combining these with (11), for any SSE

Kt+1 · (R + µ− 1)
W ·Et

= g · Kt · (R+ µ− 1)
W · Et

= g · α

1 − α ⇐⇒
Kt+1

W · Et
= g · α

1 − α · 1
R + µ− 1

. (14)

General equilibrium requires Kt+1 = At+1; so, for an SSE we must be at the intersec-
tion e of H and P in Fig. 1. Fig. 1 shows there is a unique SSE when λ = 0.

Fig. 1: The SSE demand (P ) and supply (H) of wealth in the pure life–cycle case
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Turning to the more general model with some dynastic households (i.e., λ > 0), we
first examine the time trend of inheritances. In a steady state, K and Q grow with factor
g. To maintain the capital stock, time–t gross investment must then equal (g− 1 +µ) ·Kt,
which grows with factor g. Since national output equals consumption plus investment,
consumption must also have steady–state growth factor g. Line (4) shows that life–cycle
consumption has this growth factor as well; hence, using the second half of (4) first, cd1t

and cd2t do too. Looking at (7), we can then see that in any SSE,

g ≥ R · ξ.
There are two cases. Either

g > R · ξ, (15)

in which event the first order condition for i requires it+1 = 0 all t; or,

g = R · ξ, (16)

in which case it+1 can be positive. As stated, dynastic consumption has growth factor g
in an SSE. The present value of a dynasty’s consumption from date t + 1 forward equals
R · sd

1t plus the present value of current and future earnings. Earnings grow with factor g;
hence, sd

1t grows with factor g. The accounting relation

cd2t + it+1 = R · sd
1t

then shows that in an SSE,

it = i0 · gt all t. (17)

Collecting these characterizations, and noting that our dynastic results hold trivially
in a steady state with zero inheritances (i.e., in a steady state with (15) instead of (16)),
Proposition 1: In any SSE, cd1t, c

d
2t, c1t, c2t, s1t, sd

1t, and it must grow at rate g − 1.
In a SSE with positive inheritances, equality (16) must hold. In a SSE without positive
inheritances, provided there are at least some dynastic households, inequality (15) must
hold.
In other words, in a steady state, dynasties behave exactly in accordance with the perma-
nent income hypothesis: during its lifetime, each dynastic household consumes its earnings
plus R · it −g · it, the interest on its inheritance less what is needed to maintain the magni-
tude of the latter’s principal relative to future earnings. This description applies regardless
of the magnitude of i0.

Fig. 2 graphs the steady–state wealth supply curve H for an economy with λ > 0. For
a steady state, (8)–(9) and (17) yield

At+1

W ·Et
= (1 − λ) · θ + λ · [θ · (1 +

i0
W

) + (1 − θ) · g
R

· i0
W

] every t. (18)

If i0 = 0, which must be the case for R < g/ξ, there are only life–cycle wealth accumu-
lations, and the curve resembles Fig. 1, with the right–hand side of (18) equaling θ. If
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R = g/ξ, different values of i0 yield the horizontal segment in the H curve — as (18)
shows, a larger i0 moves us further to the right; as the preceding paragraph notes, any i0
is compatible with equilibrium behavior.

Continuing to refer to Fig. 2, when the production–sector curve is P̄ , crossing H below
R = g/ξ, there exists a unique SSE at ē with no inheritances or bequests. If the demand
curve is P , there is a unique SSE at e. In the latter case, the horizontal coordinate at f
gives the life–cycle saving contribution to total wealth accumulation, and the horizontal
difference between e and f measures the contribution of bequest–motivated saving. These
are the only two possible outcomes.

Fig. 2: The SSE demand and supply of wealth with dynastic saving

Summarizing,
Proposition 2: Assume logarithmic utility and λ > 0. Then if an SSE with positive

inheritances exists, it is unique and the steady–state interest rate is R = g/ξ. If no such
SSE exists, there is a unique steady state with only life–cycle saving, R < g/ξ.

In the more general isoelastic case from (3), the vertical segment of H would instead
have a slope — positive if γ > 0, and negative if γ < 0. The section to the right of f would
still be flat, but its height would be the root R of

(R · ξ)1/(1−γ) = g.

The analysis would otherwise be the same.
Suppose we measure the degree of inequality in the distribution of wealth with a Gini

coefficient. Think about the end of period t, households having had time to complete
their current labor and consumption, and elderly households to make bequests. Then
all N elderly households have 0 net worth; the (1 − λ) · N middle–of–life nondynastic
households each have net worth s1t; and the λ ·N middle–of–life dynastic households each
have sd

1t ≥ s1t. Fig. 3 shows the Lorenz curve, ABFE. From A to B, a distance of 1/2,
we have the elderly; from B to C, a distance of (1 − λ)/2, the middle–of–life nondynastic
households; and, from C to D, a distance of λ/2, the middle–of–life dynastic households.
With either λ = 0 or λ = 1, the Gini coefficient would equal twice the area of triangle
ABE; thus, the Gini would be 1/2. For other values of λ, we must add twice the shaded
area. The shaded area equals
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1
2
· FG · [BC + CD] =

1
2
· FG ·BD =

1
2
· FG · 1

2
.

Since the slope of BE is 2, CG = 1− λ. The height of F gives the fraction of total wealth
held by middle–of–life nondynastic households; hence,

FG = (1 − λ) − (1 − λ) · s1t

(1 − λ) · s1t + λ · sd
1t

.

Then the Gini, including the shaded area, is

1
2

+
1
2
· (1 − λ) · (1 − λ) · s1t + λ · sd

1t − s1t

(1 − λ) · s1t + λ · sd
1t

. (19)

Referring back to Fig. 2, let ex be the x–coordinate of equilibrium point e, and let fx be
the x–coordinate of point f . Equilibrium condition (12) shows

ex =
[(1 − λ) · s1t + λ · sd

1t] ·N
W · gt ·N .

From (5),

fx =
N · s1t

W · gt ·N .

So, (19) yields

Gini =
1
2

+
1
2
· (1 − λ) · ex − fx

ex
. (20)

Notice that the (steady–state ) Gini is not dependent on time.

Fig. 3: The Lorenz curve (ABFE) for the cross–sectional distribution of wealth
The intuition for (20) is clear. Dynastic households have higher net worth than purely

life–cycle households because the former save to maintain their family line’s wealth as well
as for their own retirement, while the latter save just for retirement. The distance between
f and e in Fig. 2 shows the margin by which aggregate wealth exceeds accumulation in
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a purely life–cycle economy. For a given λ, the more dynastic wealth which equilibrium
requires, the wider the margin between e and f , and the more overall wealth inequality. For
a given percentage margin of ex over fx, a lower λ implies a smaller subset of households
provides the requisite extra wealth, so that each of the latter households must be richer,
and the degree of inequality correspondingly greater.

Summarizing,

Proposition 3: Suppose our model has a SSE with positive bequests, as at point e in
Fig. 2. Then (20) gives the Gini coefficient for wealth inequality at the close of each
period. In a SSE, the Gini is time–invariant.

3. Longer Lives

Darby’s (1979) tables 1–2 show that the probability of surviving to 65 has increased
substantially in the last century, as have expected remaining life spans for individuals
surviving to 65. In terms of our life–cycle model, these factors presumably raise θ, which
determines the fraction of lifetime consumption that households allocate to retirement.
This section examines the implications of such a change.

A larger θ increases the life–cycle wealth accumulation of young households. In terms
of Fig. 2, the vertical section of the H curve shifts to the right. On the other hand, θ
plays no role in (16), which determines the height of the H–curve’s flat section. So, the
flat section’s height is unchanged. Fig. 4 illustrates. If the old SSE was at ē, with no
inheritances, the new one, shown as ¯̄e, has a lower interest rate and higher capital–to–
labor ratio. If, however, the old SSE was e, and if the increase in θ is not too big, the new
steady state lies again at e, with the same interest rate and capital intensivity. The latter
is the case of interest in this paper.

Fig. 4: The H–curve shifts because of an increase in longevity

At e, when θ rises, the distribution of wealth becomes more equal. Fix λ > 0. As
life–cycle saving increases with a rise in θ, the vertical part of H, and with it point f , shifts
to the right. Proposition 3 shows that as this happens, the Gini coefficient for wealth falls:
dynastic wealth holdings adjust to restore (16); when demographic changes raise life–cycle
accumulations, the equilibrium extra net worth that dynastic households carry for bequests
falls — and the latter is the important source of the economy’s wealth inequality.
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Summarizing,

Proposition 4: Suppose our model has a SSE with positive bequests. Then an in-
crease in θ sufficiently small to allow a new SSE with positive bequests leaves the steady–
state interest rate and the capital–to–effective labor ratio unchanged. However, the distri-
bution of wealth becomes more equal.

Darby attacks the life–cycle model on the basis of demographic changes: if saving is
explained by the life–cycle model, the economy’s capital intensity, he argues, should have
risen substantially over the course of the last century as longevity increased. He is thinking
of the pure life–cycle equilibrium, ē, in Fig. 4. At e, on the other hand, with both life–
cycle and bequest–motivated saving, increasing longevity raises the relative importance of
life–cycle saving, though not, in the long run, the size of the overall capital stock or the
steady–state interest rate.

Going further, Wolff and Atkinson find a secular decline in empirical cross–sectional
wealth inequality, and Proposition 4 suggests an unexpected connection to Darby’s anal-
ysis: if increases in longevity have made life–cycle saving progressively more important,
they may simultaneously have reduced the disequalizing role of inheritances. Section 6
shows the possible quantitative importance of this point.

Although we could examine the adjustment path from the old SSE to the new one
after a change in θ, we postpone our discussion of dynamic analysis until Section 4.

4. Government Debt and Social Security

Wolff’s U.S. data not only shows a secular decline in wealth inequality but also a
recent upturn, and this section suggests one possible explanation for the latter: government
policies may inadvertently have increased the relative weight of dynastic savings.5 Since
the U.S. social security system’s inception in the 1930s, benefits (and taxes) have risen
as periods of retirement became longer and more prevalent, as the system expanded to
include a larger fraction of the workforce, and as Congress raised statutory benefits. It is
also the case that the U.S. national debt rose very rapidly in the early 1940s, and, after
a period of gradual decline, rapidly again in the 1980s. Our model predicts that growth
either in public debt or in the size of an unfunded social security system will, cet. par.,
tend to increase wealth inequality among households.

Consider first an unfunded social security system which taxes labor earnings in order
to pay benefits to retirees. Let the tax be a proportion τss of earnings. The right–hand
side of household budget (2) becomes

Wt · gt · (1 − τss) + τss · Wt+1 · gt+1

Rt+1
+ it − it+1

Rt+1
.

The first term has been modified to reflect social security taxes; the second term, which is
new, registers social security benefits. Assuming a steady state, and solving for the saving
of a young, purely life–cycle household,

5 The equations in this section and results on aggregative capital accumulation closely
resemble Michel and Pestieau (1998) — though the discussion of distributions does not.
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s1t

W · gt
= θ · [1 − τss +

τss · g
R

] − τss · g
R

. (21)

The first right–hand side term reflects private provision for retirement consumption; the
second term reflects the fact that households now receive external resources during retire-
ment. Line (16) shows that g/R = ξ < 1 for an SSE with positive inheritances; therefore,
the first right–hand side term in (21) is smaller than θ. The reduction is due to an income
effect: at equilibrium interest factor R, the present value of a household’s social security
benefits fall short of its taxes, leading to less consumption in both periods of life, and hence
less youthful saving. The second right–hand side term of (21) comes from the intertempo-
ral transfers from earning years to retirement inherent in social security. These, of course,
displace life–cycle saving.

The steady–state saving of dynastic households in youth is analogously affected, with
(8) changing to

sd
1t

W · gt
= θ · [1 − τss +

τss · g
R

+
i0
W

− i0
W

· g
R

] − τss · g
R

+
i0
W

· g
R
. (22)

Since condition (16) is unchanged, the flat part of the H curve in Fig. 2 remains at
the same height. Lines (21)–(22) show the vertical section shifts left (and it now assumes a
positive slope due to the presence of R on the right–hand side of (21)). The demand curve
remains unchanged. Thus, Proposition 3 shows that with positive inheritances, wealth
inequality should increase when τss does.6

Increases in the national debt can have the same effect. Suppose one–period bonds
fund a government debt of size Bt = B0 · gt at time t, with Bt being the stock of bonds
expiring at t, and that society levies lump–sum taxes of τt = τ0 · gt on young households
to fund the debt’s interest liability. The net worth which a nonaltruistic household carries
into retirement is

s1t = θ · [Wt · gt − τt];
the net worth for altruistic households of the same age is

sd
1t = θ · [Wt · gt + it − τt] +

(1 − θ) · it+1

Rt+1
.

Governmental accounting requires

Bt+1 −Bt +N · τt = (Rt − 1) ·Bt . (23)

Equilibrium requires

6 This paper’s simplified model overlooks, of course, possible labor supply effects from
social security taxes. It also follows most existing work in focusing on the equality of the
distribution of private wealth (i.e., wealth excluding capitalized social security benefits).
Line (21) implies that the direction of our outcome would not change if we incorporated
capitalized social security benefits into life–cycle wealth.

12

mtromble
12



N · (1 − λ) · st +N · λ · sd
t = Bt+1 +Kt+1. (24)

Fig. 5 provides a picture. We change from a SSE with no government debt — having
supply curve Hold — to a new SSE with B0 > 0. As g/ξ > g, along the horizontal section
of the H curve government debt requires positive taxes (see (23)). The latter reduce life–
cycle saving, sliding point f to the left. The P curve shifts right as we add Bt+1/Wt · Et

to Kt+1/Wt · Et. The new SSE, assuming positive bequests, is e. Again, Proposition 3
shows that wealth inequality rises as B0 does, because e and f spread further apart.

Fig. 5: The effect of a national debt on the economy’s SSE

Summarizing,
Proposition 5: Consider a steady state for our model with positive bequests. Then a
small increase in social security benefits or in national debt (with taxes for debt service
falling exclusively on young households) will leave the steady–state interest rate unchanged
but will increase wealth inequality.

For all of the changes which we consider, our model allows short–run analysis as well
as a comparison of steady states. Fig. 6 illustrates a transition path following an increase
in national debt. The experiment is as follows: at time 0 upon retiring bonds B0, the
government issues 1% more B1 than the trend increase to g · B0, announcing that future
debt will be Bt = B1 · gt−1, and using the extra time–0 sales revenues for a one–period tax
reduction. Prior to time 0, the economy rested in a SSE. Fig. 6 graphs adjustment paths
to the new steady state for physical capital Kt, the interest rate, the dynastic inheritance
it, and the wealth Gini, presenting percent deviations from original steady–state values.
Parameters are α = .33, ξ = .75, θ = .50, λ = .05, µ = .20, g = 1.08, N = 1, and
B0 = .10. The initial SSE resembles e in Fig. 4–5. Steady–state levels are K0 = .37,
s10 = .22, sd

10 = 5.95, and i0 = 6.54. Despite the fact that they compose only about
5% of the population of family lines, dynastic savers hold roughly 63% of the economy’s
stock of capital and bonds. Middle–of–life dynastic households have over 26 times as much
net worth as nondynastic households of the same age. The initial Gini coefficient for the
cross–sectional distribution of wealth is .77.

We can determine dynamic behavior from accounting and first–order conditions; this
paper’s appendix provides details. The adjustment path is interesting. At time 0, the tax
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reduction for young households increases life–cycle and, to a lesser extent, dynastic saving.
The wealth Gini falls, and the time–1 capital stock rises. At time 1 the tax reduction
is over; taxes, in fact, are above their original level because the national debt is larger.
Life–cycle saving falls. Dynastic saving is temporarily low as well because the high capital
stock lowers the return on assets. The capital stock falls sharply. Resulting higher interest
rates raise subsequent dynastic saving and inheritances. As in Fig. 5, dynastic wealth
accumulation eventually restores the capital stock to its original level — despite the larger
national debt and permanently lower life–cycle saving. The final Gini is about .08% higher
than prior to the policy change.

In addition to showing that our model can be saddlepoint stable with rational expecta-
tions, the dynamic example illustrates a difference between our model and Barro’s (1974)
well–known analysis. Both predict that changes in national debt or social security will
leave the long–run interest rate and capital intensivity of the economy unaffected. How-
ever, in Barro’s framework such policy changes make no difference in the short run either.
Following an increase in the national debt, for instance, households perceive greater future
tax liabilities, and all raise their savings accordingly, providing just enough incremental fi-
nancing to preserve the old interest rate. In contrast, in this paper’s model only a fraction
of households are dynastic. Although dynastic families respond analogously to Barro’s,
purely life–cycle households do not. The impact on saving is, in effect, only λ times as
much as in Barro’s model. In the short run, physical capital is crowded out and interest
rates rise. The latter induces dynastic households to go further, accumulating additional
wealth until the old equilibrium interest factor reemerges. The extra efforts of dynastic
households permanently change our model’s distribution of wealth.

5. Slower Growth

The rate of technological progress in the United States and Western Europe seemed to
slow down after 1970, and we might ask how according to our model that will, eventually
at least, affect the distribution of wealth. This section shows our simple model predicts
that slower growth implies higher steady–state wealth inequality.

Fig. 7: The effect of slower technological change on the economy’s SSE
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If g falls, production relation (14) shows that the demand for capital curve shifts to
the left — from P old to P in Fig. 7 — leading, cet. par., to lower wealth inequality.
Intuitively, to sustain a steady state, the economy must provide enough saving for the
capital stock to grow in step with the effective labor supply; when g is lower, this is
more easily accomplished, requiring less dynastic saving. However, if g falls, (16) shows R
and the corresponding flat section of our household wealth supply curve will fall as well.
In other words, a benefactor requires less inducement to bequeath to descendants whose
consumption opportunities are growing less rapidly. This leads to a higher capital to labor
ratio, shifting the equilibrium point to the right, and tending to increase the inequality of
wealth holdings.

On balance, in our simple model a lower g leads to more steady–state wealth inequality.
This can be established algebraically as follows. Combining (14) and (16),

ex =
Kt+1

Wt · Et
= g · α

1 − α · 1
g/ξ + µ− 1

.

The right–most term is decreasing in g:

∂ex
∂g

< 0.

In terms of Fig. 7, this means that following a decline in g, the new equilibrium, e′, must
be to the right of the old one, e. Equation (20) then shows the Gini must increase.
Summarizing,
Proposition 6: Consider a steady state for our model with positive bequests. Then
a small decrease in g will cause the steady–state interest rate to fall and the degree of
inequality in the cross–sectional distribution of wealth to rise.

Proposition 6, of course, presents comparisons of steady–state equilibria. The recent
changes in Wolff’s data mentioned in the introduction may be too soon after the 1970
slowdown for Proposition 6 to be applicable.7

It is also true that the calculations for Proposition 6 appear more fragile than Propo-
sitions 4–5. On the one hand, the size of γ in utility function (3) becomes important. As
stated above, the vertical section of the H curve assumes a negative slope if γ < 0 — which
is often thought to be the realistic case in practice. With γ < 0, as g and R fall, life–cycle
wealth accumulations climb, creating a tendency toward wealth equalization not evident
in Fig. 7. Further complications arise with multiperiod life spans. One issue is that in
a framework with longer lives, households of many different ages would have positive net
worth, and technological progress essentially gives those born the most recently the most
weight in computing aggregates. Depending on the precise nature of the distribution of
wealth with respect to age, faster technological progress then could either raise or lower

7 As in simpler growth models, a diminution of g also implies a higher SSE average
propensity to save — which is certainly not evident in the U.S. national income and
products account data. Possibly the slowdown is too recent for the economy to have
achieved a new steady state. Or, other factors beyond the scope of this paper, such as the
tremendous rise in common stock prices, may have played a role.
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average life–cycle wealth. A second issue arising when there are multiperiod life spans is
that slower technological change flattens each household’s life–cycle earnings profile. A
flatter profile causes households to begin saving for retirement earlier, tending to increase
average life–cycle net worth. Again, predictions from our simple model may not be reliable.

6. Calibrated Examples

This section develops a calibrated version of our model and examines the theoretical
implications of Sections 2–5 from a quantitative standpoint. Since length of life is impor-
tant to numerical outcomes, the examples allow multiperiod life spans and provide a rather
detailed treatment of mortality. However, all of the analysis assumes the availability of
actuarially fair annuities and life insurance. And, for the sake of computational simplicity,
we limit our attention to steady–state equilibria.

Model. Time is discrete. Let n be the annual population growth factor. Assume each
household begins with a single adult age 20 and raises n20 children. The children remain
under their parent’s care until age 20, at which point they form their own households.
There is no child mortality. The fraction of adults remaining alive at age s ≥ 20 is qs, and
the probability that an adult dies at the close of age s is

ps+1 = (qs − qs+1)/qs.

The maximal age is 99.
To generate a distribution of wealth among life–cycle and among dynastic households,

we assume an exogenous, stationary distribution of earning abilities within each cohort.
The earnings distribution is the same for dynastic and nondynastic households. Each
adult has a (known) earning ability x, constant throughout his life. For simplicity, all
descendants of an adult have the same ability that he does.8 Let the density for the
distribution of x be f(x). In fact, we assume

ln(x) ∼ N(0, σ2
x). (25)

We continue to assume that labor hours are inelastic. Letting es be the product of experien-
tial human capital and labor hours, and g be one plus the rate of annual labor–augmenting
technological progress, an adult of age s, ability x, and birth date t supplies es · x · gt+s

“effective” labor units. In our steady–state equilibria, the wage per effective labor unit is
constant, Wt = W , as is the interest rate, rt = r, the income tax rate τ , and the social
security tax rate τss.

The simulation model’s equations are as follows. Letting V (a, s, 0, x) be remaining
lifetime utility for a household born at time 0, currently age s (20 ≤ s ≤ 99), having
earning ability x, and beginning period s with net worth a, we have

8 This assumption preserves the simplicity of deterministic analysis for dynastic be-
havior. For alternative approaches, see, for instance, Laitner (1992), Fuster (1998), or
Nishiyama (2000).
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V (a, s, 0, x) = max
cs,cks,s

{u(cs, s) + n20 · uk(cks, s) + ps+1 · n20 · U(.s, s)+

β · (1 − ps+1) · V (a′, s+ 1, 0, x)} (26)

with

a′ ≡ Rs−1 ·a+es ·x ·gs ·W · (1−τ −τss)+ssbs · (1− τ2 )−cs −n20 ·cks−ps+1 ·n20 ·.s, (27)

a′ ≥ 0, (28)

where cs is the consumption of the household’s adult and u(cs, s) the corresponding flow
of utility; where cks measures the consumption of each of the household’s minor children
when the adult is age s = 20, ..., 39, and uk(cks, s) is the corresponding addition to the
parent’s utility flow from each minor child; where .s is the term life insurance which the
parent purchases at ages s = 20, ..., 38 to protect each minor child, and U(.s, s) measures
the (parent) household’s utility from the minor child’s consumption if the adult dies at
the close of age s; where β is the subjective discount factor for lifetime utility; where
ssbs(0, x) is social security retirement benefits, half of which are taxed ; and, where Rs is
the net–of–tax interest factor for annuities,

Rs ≡ 1 + r · (1 − τ)
qs+1/qs

.

We assume that bankruptcy laws prevent households from borrowing without collateral,
implying inequality constraint (28). Utility is isoelastic:

u(c, s) =

{
cγ

γ , if s ≤ 65,
υ1−γ · cγ

γ
, if s > 65,

uk(c, s) =
{
ω1−γ · cγ

γ , if 20 ≤ s ≤ 39,
0, if s ≥ 40,

with γ < 1. We discuss the relative weights for retirement consumption, υ, and minor
children, ω, below. Define

R ≡ 1 + r · (1 − τ).

For 20 ≤ s < 39,
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U(.s, s) ≡ max
cks′

39∑
s′=s+1

βs′−s · uk(cks′)

subject to: .s =
ck,s+1

R
+ ...+

ck,39

R39−s
.

For ages s ≥ 39, an adult need no longer buy life insurance to protect his minor children,
and U(., s) = 0.

The framework of (26)–(28) applies to all households. For those which are nondynas-
tic, letting a(s, t, x) be the beginning–of–period net worth of a household born at t and
currently age s, we impose

a(20, t, x) = 0 and a(100, t, x) = 0. (29)

Note that because preferences are homothetic, when R and W are constant, solution of
the analogue of (26)–(29) for t �= 0 yields

a(s, t, x) = gt · a(s, 0, x) and V (gt · a, s, t, x) = gγ·t · V (a, s, 0, x). (30)

Nondynastic households solve (26)–(28) and simultaneously determine inheritances
from an intergenerational maximization problem. Consider a dynastic household with
adult born at t. Label this household “generation 0” in the dynasty. If the present
value at age 20 of the current adult’s inheritance is i0, the dynasty computes its future
inheritances from

max
ij≥0

∞∑
j=1

(ξ · n20)j · V (ij − n20 · ij+1/R
20, 20, t+ 20 · j, x), (31)

with ξ the intergenerational subjective discount factor.9 Let ad(s, t, x) be the beginning–
of–period net worth of a dynastic household born at t and currently age s. At this point,
we will think of a minor child as receiving the present value of his inheritance at birth
(though he cannot begin his own consumption until he is an adult); thus, following the
notation of (31),

ad(s, t+ 20 · j, x) = ij ·Rs−20 for s = 0, ..., 20, and ad(100, t+ 20 · j, x) = 0. (32)

As in previous sections, the fraction of households which are dynastic is an exogenous
constant λ.

There is a Cobb–Douglas aggregate production function

Qt = [Kt]α · [Et]1−α, α ∈ (0, 1),

9 There are no estate taxes in the model. The U.S. estate tax has a very high credit, so
that only a tiny minority of estates are liable.
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where Qt is GDP, Kt is the aggregate stock of privately owned physical capital excluding
consumer durables, and Et is the effective labor force. Kt depreciates at rate µ. The
economy is closed. The price of output is always 1. Perfect competition implies

Wt = (1 − α) · Qt

Et
and rt = α · Qt

Kt
− µ. (33)

Households also own a stock of consumer durables, KD
t . The stock yields a proportion-

ate service flow. In turn, households demand a service flow which is a fixed proportion of
their total consumption. Hence, as our analysis is limited to steady states, our calibrations
assume

KD
t /Qt = constant.

The government issues Bt one–period bonds with price 1 at time t. We assume

Bt/Qt = constant.

Letting SSBt be aggregate social security benefits, we assume

SSBt/Qt = constant.

The social security system is unfunded, so

SSBt = τss ·Wt · Et. (34)

If Gt is government spending on public consumption goods, we assume

Gt/Qt = constant.

The government budget constraint is

Gt + rt ·Bt +Bt = τ · [Wt · Et + rt ·Kt + rt ·Bt] +Bt+1. (35)

Public–good consumption does not affect marginal rates of substitution for private con-
sumption.

Normalizing the size of the time–0 birth cohort to 1 and employing the law of large
numbers,

Et =
99∑

s=20

n(t−s) · gt · qs · es. (36)

Households must finance the private capital stock, government debt, and the stock of
consumer durables; so,

Kt +KD
t +Bt =

99∑
s=20

(n · g)(t−s) · qs ·
∫ ∞

−∞
[(1 − λ) · a(s, t− s, x) + λ · ad(s, t− s, x)] · f(x) dx. (37)
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In “equilibrium” all households maximize their utility and (33)–(37) hold. A “steady–
state equilibrium (SSE)” is an equilibrium in which rt and Wt are constant all t and in
which Q, K, and E grow geometrically with factor g · n. As stated, this section focuses
exclusively on steady–state equilibria.

Calibration. Table 1 presents our mortality and labor supply data. We use two schedules
for qs, one averaging 1995 United States mortality rates for men and women, and a second
based on 1920 rates.10 Column 4 provides recent data on relative earnings at different
ages. Columns 5–6 multiply column 4 by participation rates. We set es for our “1995” and
“1920” simulations from columns 5–6. Notice that while survival rates past age 65 were
much lower in 1920, participation rates among survivors were much higher. Notice also
that the relative es for different ages within columns 5–6 make a difference in this paper,
but the absolute levels do not.11

Table 2 presents base–case values for other parameters. Labor’s share of output equals
1−α. Letting 1995 wages and salaries from The Economic Report of the President (1999)
be A, proprietor’s incomes be B, and all income be C, we derive α from

1 − α =
A+ (1 − α) ·B

C
.

The real interest rate implied by Huggett’s (1996) capital share, empirical capital–to–
output ratio, and depreciation rate is .06. According to (33),

r1995 + µ =
α ·Q1995

K1995
.

Using the 1995 GDP and stock of business inventories from The Economic Report of the
President (1999), and combining the inventory stock with the 1995 fixed private capital
stock from The Survey of Current Business (1997, p.38), the formula above yields r1995 =
1.059 if we set µ = .08. The latter is our choice in Table 2. KD

t /Qt for 1995 comes from
the same two sources; for 1920, the GDP comes from Historical Statistics of the United
States (1975) (and the stock of durables is extrapolated from 1925).

We employ one value of n reflecting U.S. Census data for 1970–90, and a second based
on 1900–1920. The rate of technological progress has fluctuated during the century, and
our base–case models simply set our progress factor, g, to 1.01.

In Huggett (1996), each household’s x changes from year to year. Using his initial and
annual shocks and autocorrelation and our 1995 es, n, and g, one can simulate the U.S.
earnings distribution. Using our es, n, g, and employing this paper’s assumption that each
adult’s x is constant throughout his life, for each σ2

x (recall (25)) we can generate a second
simulated distribution. Table 2’s σ2

x equates the Gini coefficient for the second simulated
distribution to Huggett’s.

10 According to these figures, life expectancy at age 20 in 1995 was 75.8, whereas in 1920
it was 64.1.

11 One could speculate that lifetime earnings profiles were flatter in 1920 than 1995
because of lower education attainment. That would have tended to narrow differences in
life–cycle saving between the two periods — but it is not taken into account in this paper.

20

mtromble
20



Table 2’s aggregative social security benefits come from Social Security Bulletin (1997,
p.61). The corresponding 1995 tax rate (see (34)) is τss = .061.12 The U.S. had no social
security system in 1920. Bt and Gt for 1995 come from The Economic Report of the
President (1999), referring to Federal debt and spending, respectively; for 1920 they come
(with extrapolation when necessary) from Historical Statistics of the United States (1975).
We derive tax rate τ from (35); in the 1995 base case it is .237, and for 1920 it is .108.

Table 2’s γ comes from Huggett (1996). (As this parameter serves mainly to scale β
in our setup, we do not present simulations below for alternative values of it.) Recalling
utility functions u(cs, s) and uk(cks, s), first–order conditions show that a retiree will have
υ times as much consumption as a nonretiree, cet. par., and a minor child will have ω
times as much consumption as his parent. Retirees tend to have lower consumption needs
(not having work–related expense for clothing and transportation, being able to consume
services at off–peak hours, etc.). For example, a recent TIAA–CREF brochure suggests
“you’ll need 60 to 90 percent of your current income in retirement, adjusted for inflation, to
maintain the lifestyle you now lead”; a recent Reader’s Digest article on retirement planning
states, “Many financial planners say it will take 70 to 80 percent of your current income
to maintain your standard of living when you retire”; and, Mariger (1986) econometrically
estimates that individual consumption falls 50% at retirement. Our base case sets υ = .75.
Tobin (1967) suggests values for ω ranging from .2 to .7; Mariger’s (1986) point estimate
is ω = .3; and, empirically derived scales for consumption needs of 4–person households
relative to 2–person in Burkhauser et al. (1996) suggest ratios of 1.34–1.42. Our base case
follows Mariger.

Turning to β, the first–order condition for adult consumption at consecutive ages
yields

(β ·R)1/(1−γ) · cs ≤ cs+1, (38)

with equality when the liquidity constraint a′ ≥ 0 does not bind. Tables from the 1984–97
U.S. Consumer Expenditure Survey (see http://stats.bls.gov/csxhome.htm) provide data
on consumption at different ages. Since the survey does not impute service flows to owner
occupied houses, for each year we scale survey amounts (less mortgages and repairs on
owner occupied houses) to NIPA aggregate consumption minus aggregate housing service
flows for owner occupied houses, then we allocate the NIPA aggregate service flow from
owner occupied houses to survey age brackets in proportion to average housing values
within the brackets (as given in the survey).13 Finally, we extrapolate to individual ages
and convert to constant dollars with the NIPA personal consumption deflator. The average
ratio of time–(t+1) household consumption at age s+1 to time–t consumption at age s for
households of age 30–39 is 1.0257 — where we include only these ages out of fear that in
practice liquidity constraints bind for earlier ages and minor children begin leaving home

12 Note that our social security benefits refer only to old–age and survivors insurance,
not to disability insurance.

13 Another potential problem, of course, is that the survey measures purchases of con-
sumer durables rather than service flows from them. See, for example, Modigliani (1988).
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at later ages.14 Recalling (38), our base–case β follows from

(β ·R)1/(1−γ) = 1.0257,

where R = 1 + r · (1 − τ) with r = r1995 = .059, τ = τ1995 = .237, and we disregard (at
this point) mortality.

Sections 2–5 and the envelope theorem show that a steady state with positive inheri-
tances requires

R20 · ξ · g(γ−1)·20 = 1. (39)

Our base–case simulations compute ξ = .5588 from this formula using R = 1 + .059 · (1 −
.237) and g = 1.01.15

For future reference, the last rows of Table 2 display 1995 ratios of aggregative house-
hold net worth to total factor payments for labor, and private capital other than consumer
durables to GDP, using the data sources explained above.

Simulations. Tables 3–5 present simulation results.
The computational steps for row 1 of Tables 3–4 is as follows. (i) Compute r and

W from (33), assuming Table 2’s empirical Kt/Qt. (ii) After dividing (35) through by
Qt, one can deduce τ . (iii) Then solve the life–cycle problem of a nondynastic household
with x = 1. Because of homothetic preferences, different x values affect net worth at all
ages proportionately. Taking a ratio of average cross–sectional nondynastic net worth to
average effective labor, compare with the second to the last row of Table 2 to compute the
nondynastic share of total private wealth. (iv) For any choice of λ, dynastic wealth supplies
the remaining part of total wealth, and we can compute the cross–sectional distribution of
wealth, including nondynastic and dynastic households. Huggett (1996) and Wolff (1987)
suggest the Gini coefficient for the actual U.S. distribution of wealth in the late 1980s was
.72, the share of the top 1% of wealth holders was .28, and the share of the top 5% was
.49. We compute the λ such that the sum of squared deviations between the simulated
and actual values of the latter three statistics is minimized. Table 3 reports the λ, and
Table 4 presents distributional outcomes.

There are two additional details in our simulations of the distribution of wealth.
First, our algorithm must specify the age at which dynastic intergenerational transfers
actually take place — though this makes no difference to aggregate wealth, it does affect
distributional statistics. Laitner (1997) argues that parents may withhold their transfers
as long as possible to reduce children’s scope for strategic behavior (for instance, spending
their transfer and asking for more). Our computations follow that spirit. For each dynastic
household, trace the oldest surviving ancestor, “the patriarch.” Assume that he holds the

14 For comparison, Auerbach and Kotlikoff’s (1987, fig.5.2) consumption has an average
growth factor of about 1.0105, and Huggett’s (1996) factor ranges from 1.017 to 1.035,
depending on one’s choice of γ. With our 1.0257 factor, consumption is 2.4 times as large
at age 65 as at age 30.

15 Using a somewhat different model, Nishiyama (2000, table 8–9) derives estimates .51
and .58 for a parameter analogous to ξ/β20 = .63 in the present paper.
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dynasty’s wealth. On the birth of each descendant, he creates a “trust” account in that
descendant’s name, funding it with the present value of the amount the descendant will
inherit less what the descendent himself will bequeath, and annuitizing on the recipient’s
life. Each year the account makes the minimal inter vivos transfers to the descendant
necessary for him to implement his lifetime consumption program derived from (26)–(28).
When the patriarch dies, the balances for all trust accounts pass to the oldest surviving
descendants in each line radiating from the patriarch. The model’s distribution of wealth
reflects this: as long as a parent, for example, holds trust accounts for his children, the
balances of the accounts are counted as part of the parent’s (rather than the children’s) net
worth. Analogously, the parent himself does not inherit the principal of his own inheritance
until his parents, grandparents, and great grandparents are deceased.

Second, although the model fully determines the SSE distribution of wealth among
nondynastic households, the distribution of dynastic wealth — though not its aggregate
amount — is indeterminate. This section assumes that the distribution of wealth among
dynastic households of each age is proportional to their “abilities.” This is strictly anal-
ogous to Sections 2–5: the dynastic wealth distribution there was indeterminate, but we
assumed that all — having the same ability — had the same wealth.

For row 1 of Table 3, nondynastic households explain about 68% of the economy’s
total wealth. As in Huggett (1996), the distribution of nondynastic wealth matches the
empirical Gini quite well but understates the concentration at the top of the distribution
by a wide margin — see Table 4. When we add dynastic households, the match with the
upper tail is very close, although the Gini overshoots its corresponding actual value. The
fraction of dynastic households yielding the best fit is quite low, λ = .083. Table 3 shows
that the dynastic households have on average almost 7 times as much net worth as purely
life–cycle households, despite the fact that earnings distributions are the same for both
groups. Table 5 compares average net worth at different ages. The disparity in net worth
becomes very great for the elderly: purely life–cycle households begin decumulating net
worth around retirement age, but dynastic households build wealth, through inheritances
and interest accumulations, until death. The average inheritance of a dynastic household,
in present value at age 20, is about $450,000.

Rows 2–5 follow the same steps, using parameters which deviate from the 1995 base
case as shown in Table 3. When we increase the importance of retirement consumption
or decrease the early in life burden of raising children, the share of nondynastic private
wealth rises about 10 percent. The requisite λ then drops precipitously — as dynastic
wealth, with a smaller overall role, must be more concentrated to match the actual wealth
distribution’s upper tail.

Rows 6–10 of Tables 3–4 present comparative–static results. Instead of calibrating
λ, β, ξ, and µ to match empirical distributional statistics, consumption growth with age,
the interest rate, and wealth–to–earnings ratio, we fix these four parameters from row 1’s
simulation. In row 6, we change KD

t /Qt, n, SSBt/Qt, Bt/Qt, Gt/Qt, and our mortality
and labor–force participation schedules (see Table 1) to 1920 levels. Then we compute the
new steady–state interest rate, consumption–growth–with–age rate, wealth–to–earnings
ratio, τ , τss, and distributional statistics. Row 7 repeats the computations with only
mortality and participation changing to 1920 levels (i.e., withKD

t /Qt, n, SSBt/Qt, Bt/Qt,
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and Gt/Qt remaining at 1995 values). Row 8 returns to 1995 levels ofKD
t /Qt, n, SSBt/Qt,

Bt/Qt, Gt/Qt, and mortality and participation, but it raises SSBt by 50%. Then it
computes a new steady–state interest rate, consumption–growth–with–age rate, wealth–
to–earnings ratio, τ , τss, and wealth distribution. Rows 9–10 do the same after raising Bt

by 50% (for row 9) and the rate of technological progress by 100% (for row 10).
Row 6 of Tables 3–4 bears out the theoretical analysis of Section 3. With shorter lives

and higher labor force participation among survivors, the life–cycle saving of nondynastic
households in 1920 accounts for less than one–half of private wealth, as opposed to two–
thirds in 1995, and average dynastic wealth is 13 times as high as nondynastic wealth,
as opposed to 7 times in 1995. In the simulation for 1920, the Gini coefficient for the
overall distribution of wealth is .87 and the share of the top 1% is .35, while for 1995
the simulation’s Gini is .79 and the share of the top 1% is .27. The net of tax interest
rate, nevertheless, is the same for both years. Row 7 shows the comparison would be even
starker had not social security, national debt, and government spending changed between
1920 and 1995: the share of nondynastic wealth in 1920 would have been only .29, average
dynastic net worth would have been 33 times as high as nondynastic wealth, the Gini of
the wealth distribution would have been .91, and the share of the top 1% would have been
.45.

Rows 8–9 of Tables 3–4 confirm Section 4’s theoretical analysis of how social security
and national debt can raise the relative importance of dynastic saving and thereby increase
wealth inequality. In row 8, a 50% increase in the size of the (1995) social security system
lowers the share of private wealth held by nondynastic households from .68 to .55, raising
the Gini for the steady–state wealth distribution from .79 to .83, and raising the share
of wealth held by the top 1% from .27 to .35. Evidently the effects of social security
changes of this magnitude would be almost as great as the combined demographic and
governmental changes between 1920 and 1995. Row 9 shows a 50% increase in the steady–
state national debt–to–output ratio is less potent: such a change reduces the share of net
worth of nondynastic households from .68 to .63, raises the wealth Gini from .79 to .80,
and raises the share of the top 1% of wealth holders from .27 to .30.

Row 10 of Tables 3–4 is consistent with Proposition 6 of Section 5. Row 10 shows
that an increase in the rate of technological progress raises the steady–state interest rate
substantially and reduces wealth inequality. The absolute change in inequality in this last
case, however, is not as great as demographic and social security outcomes in rows 6–8:
the Gini for the simulated distribution of wealth falls from .79 with g = 1.01 to .78 with
g = 1.02, and the share of the top 1% falls from .27 to .24.

7. Conclusion
This paper presents a life–cycle model augmented with intentional bequests. A princi-

pal feature of the model is heterogeneity of preferences: most households feel no obligations
to their grown children; however, a small fraction of the population has dynastic, or “al-
truistic,” sentiments.

Despite its simplicity and tractability, the model has a number of interesting implica-
tions. (i) It shows that lengthening life spans and falling rates of labor force participation
among older age groups could have increased life–cycle saving in the U.S. and other coun-
tries over the course of the twentieth century without affecting long term interest rates or
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aggregative capital to labor ratios. (ii) It shows how the same demographic phenomena
might have played a role in decreasing the degree of inequality in cross sectional distribu-
tions of wealth over the same time period. (iii) It shows that government policies regarding
national debt and social security can influence wealth inequality, as can changes in the rate
of technological progress. (iv) It shows why so–called Ricardian neutrality might hold in
the long run yet not in the shorter term.

Recent empirical work has tended to yield what seems to be at most quite mild
support for the altruistic model of household behavior. The present paper offers possible
interpretations, however. For instance, Altonji et al. (1992) show that intergenerational
linkages apparently are far from universal, and evidence in Laitner and Juster (1996)
seems to imply that linkages which do exist are hard to predict on the basis of economic
variables. Both findings are consistent with this paper’s analysis. Even more recently,
regressions in Altonji et al. (1997) and Laitner and Ohlsson (2001) based on inter vivos gifts
and inheritances, respectively, in the Panel Study of Income Dynamics derive coefficient
estimates which conform in sign to the altruistic model but are much smaller in magnitude
than the theory predicts. In the present paper, the calibrated examples fit distributional
data best when dynastic behavior is rare, perhaps manifested by 10% of all households
or less. On the one hand, this suggests that intergenerational transfers evident in general
data sets, where their frequency is 20–40%, may represent a mixture of altruistic and
nonaltruistic behavior — and that the mixing may bias econometric results. On the other
hand, our simulations imply substantial differences between the net worth of dynastic and
nondynastic households, perhaps, in turn, indicating a need for special data sources able
to capture the behavior of very wealthy households.
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Appendix

This appendix describes the simulations for Fig. 6 in Section 4.
First, we develop a system of three equations determining the evolution of a state

vector zt ≡ (K̃t, s̃
d
1,t−1, ĩt), where K̃t ≡ Kt/g

t, s̃d
1,t−1 ≡ sd

1,t−1/g
t−1, ĩt ≡ it/g

t. Without
loss of generality, set N = 1. One equation comes from an accounting relation for dynastic
families,

Rt · sd
1,t−1 = cd2,t−1 + it; (A1)

the marginal condition for such a family in its second period of life,

θ

cd2,t−1

= ξ · 1 − θ
cd1t

⇐⇒ cd1t =
1 − θ
θ

· ξ · cd2,t−1; (A2)

and first period of life accounting,

cd1t = Wt · gt − τt + it − sd
1t. (A3)

Combining the three, we have

Wt · gt − τt + it − sd
1t =

1 − θ
θ

· ξ · [Rt · sd
1,t−1 − it]. (A4)

Using Bt = B0 · gt and government budget constraint (23) to eliminate τt, using (11) to
characterize Rt and Wt from Kt, and then dividing through by gt, this yields an equation
in zt and zt+1.

The second equation comes directly from Section 4:

sd
1t = θ · [Wt · gt + it − τt] +

(1 − θ) · it+1

Rt+1
. (A5)

The final equation comes from (24):

Kt+1 +Bt+1 = (1 − λ) · θ · [Wt · gt − τt] + λ · sd
1t. (A6)

For Fig. 6, differentiate the detrended system generated from (A4)–(A6) with respect
to B0, producing a difference equation

dzt+1

dB0
= M · dzt

dB0
+ m, (A7)

where M is a 3×3 matrix and m a 3–element vector. Evaluate the terms in M and m at the
old steady state, producing a linearization there. As we start, history provides initial values
for K̃t and s̃d

1.t−1, but not for ĩt; thus, under rational expectations, a linearized version of
the dynamic system needs exactly two eigenvalues of absolute value less than one to avoid
indeterminacy and instability — i.e., to achieve so–called “saddlepoint stability.” That
turns out to be the case for the example, the eigenvalues being 1.39, 0.65, and 0.35.
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Simulation of (A7) yields, for example, dKt/dB0 all t = 0, 1, 2, ..... Letting Kt be the
capital in the old steady state, Fig. 6 graphs

dKt

dB0
· B0

Kt
· [
B00 −B0

B0
],

with (B00 − B0)/B0 set to 1%, and B00 the new time–0 government debt. See Lait-
ner (1990), for instance, for more discussion of this general methodology.
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Table 1. Household Data: Survival Fractions, Labor Force Participation,
and Experiential Human Capital

Age s 1995 Fraction 1920 Fraction Life–Cycle Life–Cycle Life–Cycle
20 Yearolds 20 Yearolds Earnings Earnings × Earnings ×
Remaining Remaining Participation Participation

Alive Alive Rates 1995 Rates 1920
20 1.00 1.00 5,814 4,678 5,174
25 .99 .97 13,341 11,615 12,176
30 .99 .94 19,333 17,973 18,085
35 .98 .91 23,323 21,601 22,269
40 .97 .88 26,666 24,566 25,133
45 .96 .84 28,967 26,179 26,947
50 .94 .79 28,885 25,320 26,517
55 .91 .74 26,941 20,545 24,435
60 .87 .67 23,763 14,984 21,553
65 .82 .57 12,719 4,274 11,536
70 .73 .46 6,396 1,477 3,988
75 .63 .33 4,788 603 1,629
80 .49 .20 3,264 69 185
85 .32 .09 1,740 0 0
90 .13 .03 215 0 0
95 .02 .00 0 0 0
100 .00 .00 0 0 0

Source: Column 2: average death rates 1990, Statistical Abstract of the United States (1998, p.95).
Column 3: death rates 1920, Historical Statistics of the United States (1975, p.60).
Column 4: Median earnings men 1990,
Social Security Bulletin Annual Statistical Supplement (1993, p.165).
Column 5: column 4 multiplied by 1995 male labor force participation rates,
Statistical Abstract of the United States (1997, p.397).
Column 6: column 4 multiplied by 1920 male labor force participation rates,
Historical Statistics of the United States (1975, p.132).



Table 2. Base–Case Parameters
and Empirical Ratios

Year
Base–Case
Parameters 1995 1920

α .3251 .3251
µ .0800 .0800

KD
t /Qt .3196 .3437
n 1.0101 1.0166
g 1.0100 1.0100
σ2

x .5344 .5344
SSBt/Qt .0410 .0000
Bt/Qt .4532 .2634
Gt/Qt .1866 .0824

γ -.5000 -.5000
υ .7500 .7500
ω .3000 .3000
β .9941 .9941
ξ .5588 .5588

1995 Empirical Ratios
[Kt + KD

t + Bt]/[(1 − α) · Qt] 4.6102
Kt/Qt 2.3386

Source: see text.



Table 3. Simulated Fraction of Dynastic Family Lines

Trial Simu– Deviation Non– Ratio R R Frac–
lation from dynastic Average Net Gross tion
Year Year’s Share Dynastic of of Dynas–

Base– of Total to Non– Tax Tax tic
Case Private dynastic Fami–
Para– Wealth Wealth lies:

metersa λ
Base–Case 1995 and Sensitivity Analysis

1 1995 none .678 6.702 1.045 1.059 .083
2 1995 υ = .85 .761 12.791 1.045 1.059 .027
3 1995 ω = .20 .740 9.786 1.045 1.059 .040
4 1995 σ2

x = .6344 .678 5.734 1.045 1.059 .100
5 1995 µ = .06 .619 5.742 1.061 1.079 .130

Comparative Statics: β, ξ, and λ from Trial 1
6 1920 none .494 13.341 1.045 1.051 .083
7 1920 trial 1 parameters; .285 33.268 1.045 1.059 .083

1920 mortality and
participation rates

8 1995 SSBt/Qt = .062 .551 10.822 1.045 1.059 .083
9 1995 Bt/Qt = .680 .627 8.182 1.045 1.060 .083
10 1995 g = 1.02 .722 5.631 1.061 1.079 .083

a. See Tables 1–2.



Table 4. Simulated Distribution of Wealth

Nondynastic Households All Households

Triala Gini Share Share Frac– Gini Share Share Frac–
Top Top tion Top Top tion
1% 5% zero 1% 5% zero

wealth wealth
Base–Case 1995 and Sensitivity Analysis

1 .690 .098 .300 .284 .787 .267 .505 .303
2 .687 .098 .299 .284 .762 .285 .462 .295
3 .672 .095 .292 .263 .758 .283 .469 .281
4 .705 .109 .322 .284 .793 .257 .509 .304
5 .703 .101 .307 .363 .811 .256 .537 .408

Comparative Statics: β, ξ, and λ from Trial 1
6 .778 .127 .376 .550 .871 .353 .650 .547
7 .743 .111 .337 .508 .907 .448 .785 .516
8 .693 .099 .301 .324 .827 .349 .599 .356
9 .690 .098 .300 .284 .803 .301 .544 .319

10 .695 .099 .303 .324 .777 .239 .474 .339

a. Parameter values as in Table 3.



Table 5. Average Household Net Worth (dollars)
at Selected Ages: 1995 Base–Case Parameters

Nondynastic Dynastic Overall
Age Household Household Household

Net Worth Net Worth Net Worth
20 0 1,106 92
25 0 3,477 290
30 0 10,471 873
35 1,111 28,266 3,375
40 10,267 68,052 15,084
45 66,852 161,454 74,739
50 138,403 344,627 155,595
55 204,771 623,045 239,642
60 246,880 1,010,905 310,576
65 231,846 1,464,889 334,643
70 221,226 2,122,170 379,705
75 209,734 2,772,003 423,347
80 181,234 3,181,128 431,331
85 136,147 3,331,539 402,543
90 88,396 3,637,942 384,317
95 44,001 4,090,848 381,381
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