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Competition and Irreversible Investments under
Uncertainty�

Michele Morettoy

Abstract

We examine the e¤ect of competition on investment decisions in an
industry in which each �rm has a completely irreversible investment
opportunity and the product market has positive externalities for a
small market size and negative externalities for a large market size. In
the latter case, which corresponds to the traditional competitive in-
dustries, �rms invest sequentially as market pro�tability develops. In
the former case, which corresponds to industries in which investment
is mutually bene�cial, �rms invest simultaneously after the market�s
pro�tability has developed su¢ ciently to gain all network bene�ts and
to recover the option value of waiting. These extensions of a �real op-
tions�analysis may help explain rapid and sudden developments such
as recent Internet investment, or explain the late take-o¤ phenomenon
of prolonged start-up problems, such as the case of fax machine pro-
duction.
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fects.
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1 Introduction

Investment is de�ned as the act of incurring an immediate cost in the ex-
pectation of future payo¤. However, when the immediate cost is sunk (at
least partially) and there is uncertainty over future rewards, the timing of
the investment decision becomes crucial (Dixit and Pindyck, 1994, p. 3).
In particular, irreversibility and uncertainty make �rms invest only when
the value of the investment is more than the value of the option of waiting
before making an irreversible decision.

This paper extends this model, taking strategic interactions into ac-
count. Speci�cally, we analyze the e¤ect on competition on �rms�optimal
investment strategies in an industry having a large number of identical �rms
engaged in an investment game to enter a new product market. We consider
a sector where each �rm has only one completely irreversible investment op-
portunity and the market has an inverted U-shape relation between pro�ts
and industry size. That is, positive externalities tend to dominate for low
initial market size, while negative externalities dominate at higher market
levels.

Although we do not refer to a particular product, there are many mar-
kets that have greater pro�tability when more than one �rm has already
invested. In the case of goods with �network externalities�, consumer�s ad-
vantage increases as the total number of consumers purchasing the same
or compatible brands increases. An example is the decision by rival �rms
to set up an interconnected network to satisfy an interdependent demand
for telecommunication services by many potential customers (Rohlfs, 2001,
p. 34).1 Another relevant case involves a high degree of complementarity
between di¤erent goods e.g. for software and hardware (Katz and Shapiro,
1985). Generally, software packages are produced by many �rms so that they
can be used by the same hardware. Thus, the greater the variety of soft-
ware supporting a certain hardware, the greater the value of this hardware
and the greater the advantage consumers directly gain from the variety of
software supporting that hardware. Some authors refer to this as �indirect
network externalities�(Shy, 2001, p.52) or �complementary bandwagon ef-
fects�(Rohlfs, 2001, p. 47-48).2 In other cases, the utility of each consumer

1Other examples are access to the web via Internet Service Providers, mobile phones us-
ing a particular standard (GSM,CDMA), Electronic Messaging System (EMS), videotext
system, etc.

2Je¤rey H. Rohlfs (2001) coined the term bandwagon e¤ect for the bene�t that a person
enjoys as a result of others�doing the same thing that he or she does, and speci�cally he
used the term network externalities for the bandwagon e¤ect that applies to the user set
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decreases as more consumers buy the good. This occurs because of conges-
tion, as the communication and information-based industries are recently
experiencing. Even though the introduction of a new Web site increases the
value of the Internet to every existing user, the progressive increase of its
use increases congestion measured in term of excessive delay of transmis-
sion (longer connection time spent to load a Web page) or loss of service
altogether (Odlyzko, 1999). Congestion then reduces consumers�utility of
joining the Internet and passes this disadvantage to the �rms by reducing
the demand of access.3

The negative externalities case corresponds to the traditional competi-
tive industry in which the investment of one �rm lowers the pro�tability of
the others. In this case the introduction of competition has two opposing
e¤ects which o¤set each other. Firstly, competition reduces the expected
pro�t �ow that derives from the investment, which tends to delay invest-
ment. Secondly, competition introduces a strategic bene�t in favour of the
investment as it deters the investments by rivals. Leahy (1993) �rst dis-
covered this property, showing that the optimal investment strategy of a
competitive �rm is equal to that of a single �rm in isolation. In this case,
�rms enter sequentially as market pro�tability increases.

On the contrary, when investments are mutually bene�cial, the optimal
investment policy is essentially a question of coordination. As the timing of
a �rm�s entry is in�uenced by the entry decisions of others, Leahy�s result
cannot be applied. Two equilibria can emerge: either the industry remains
locked-in with no entry as long as very pessimistic expectations dominate
the market, or a mass of �rms simultaneously runs to enter, driven by the
expected rents generated by the positive externalities.4 Excluding the for-
mer, we show that this �network run� is triggered when the pro�tability
of the market has developed su¢ ciently to allow the �rms to capture all
bandwagon bene�ts and to recover the option value of waiting due to the
irreversibility. This also determines endogenously the optimal start-up size
of the industry.

Therefore, our model is an extension of the dynamic equilibrium in a
competitive industry presented by Leahy (1993) and Dixit and Pindyck

of a communication network.
3See, for example, DaSilva (2000) and Falkner et al. (2000), for a survey on the

literature on how to price congestible networks as Internet.
4This is what Rohlfs (2001, p. 16-17) de�nes a "chicken-egg problem"; nobody joins

the network because the size of the network is zero, but the size of the network is null
because no one has joined it.
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(1994, ch.5).5 Furthermore, Nielsen (2002), focusing on a duopoly model
with positive externalities, predicts a similar result to ours, namely that
�rms invest simultaneously at the market pro�tability given by the duopoly
solution.6 More generally, this result holds in a free entry framework.

The paper is organized as follows. Section 2 states the basic assumptions
behind the model. Section 3 gives the main results of the paper, namely the
optimal entry strategy in the presence of positive and negative externalities.
Section 4 places the paper within the context of the literature on irreversible
investment and market structure. Section 5 concludes and the Appendix
contains the proofs omitted in the text.

2 Model and assumptions

We have considered the decision to enter a new market subject to uncertain
returns by a large number of identical �rms. In order to focus exclusively on
the competitive timing process, we have abstained from explicitly describing
either the product market decisions (price or quantity), or the �rm size, and
we have assumed that entry costs required to initiate the technology projects
are given. These conditions are summarized by the following assumptions:7

1. At any time t an idle �rm may decide to enter a new market. Firms
are risk-neutral and discount the future returns at the risk-less interest
rate �:8

2. All �rms are identical. Their size dq is in�nitesimally small with re-
spect to the market.9

5Baldursson (1998) and Grenadier (2002) extends Dixit and Pindyck�s model consid-
ering Cournot-Nash competition. Their analysis indicates that although qualitatively the
investment process is similar in oligopoly and competitive equilibrium, oligopoly quanti-
tatively slows investment.

6Huisman (2001, ch.8) extends the Nielsen (2002) model introducing asymmetry into
the investment cost of �rms. Although cost asymmetry may reduce the positive exter-
nality e¤ect, both �rms invest simultaneously and early, anticipating that the other will
also invest early.

7These assumptions rule out market structure and monopoly power, which are beyond
the scope of this paper. (see Ericson and Pakes, 1995; Amir and Lambson, 2003).

8 Introducing risk aversion does not change the results since the analysis can be devel-
oped under a risk neutral probability measure (Cox and Ross, 1976; Harrison and Kreps,
1979).

9Many in�nte time models of industry investment evolution show this assumption (see
Dixit, 1989; Dixit and Pindyck, 1994; Jovanovic, 1982; Hopenhayn, 1992; Lambson, 1992;
Bartolini, 1993).
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3. Each �rm can enter by committing forever to a �ow cost w or under-
taking a single irreversible investment which requires an initial sunk
cost K � w=�.

4. Once the investment is undertaken, it cannot be abandoned.10

5. Firms are free to enter. That is, �rst they decide whether or not to
enter (and pay the entry cost K) and then compete for the available
rents (generated by positive externalities).

6. After entry, �rms sell a continuos �ow of one unit of output. Thus, q
indicates the number of �rms currently active (incumbents) as well as
the total demand.11

7. Each �rm produces a �ow of operating pro�ts that we have abbreviated
as:

�(qt; �t) � D(qt)�t (1)

where �t is a multiplicative industry-speci�c shock at time t.12 We may
consider, in a simpler setting, D(qt) as the inverse demand function
(Dixit and Pindyck, 1994, ch. 9; Bartolini, 1993; Nielsen, 2002), or as
a reduced form of a more general pro�t function (Dixit and Pindyck,
1994, ch. 11; Dixit, 1995; Grenadier, 2002). Time is continuous,
t 2 [0;1); and suppressed if not necessary.

8. The function D(q) is twice continuously di¤erentiable in q, and it is
increasing over the interval [0; �q) and decreasing thereafter (see �gure
1). That is, there are positive externalities to investment which can
be caused by �network externalities�or by complementary products,
over [0; �q). After �q it is better that no other has invested for any
individual �rm, given that competition and/or congestion may occur
(Shy, 2001, ch. 5). We also assume that at zero and at some �nite

10Besides irreversibility, this assumption avoids the need to consider such operating
options such as reducing output or even shutting down, thereby considering reducing
variable costs. For further details see e.g., Dixit and Pindyck (1994).
11None of the following results depend on this assumption (Grenadier, 2002).
12This assumption highly simpli�es the analysis of the industry equilibrium without re-

ducing the impact of the results obtained. By considering only industry-wide uncertainty,
a �rm knows that if � rises entry becomes, ceteris paribus, as attractive for the other �rms
as for itself. Then the entry of new �rms may overaccelerate investment if the industry has
positive externalities or it may dampening pro�ts if negative externalities are at work. See
Jovanovic, (1982), Hopenhayn, (1992) and Miao (2005) for models of industry equilibrium
with only �rm-speci�c shocks, and Caballero and Pindyck (1992) for a more general model
where both uncertainties coexist.
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number of �rms Q (Q >> �q); pro�ts falls to zero, i.e. D(0) = 0; and
D(Q) = 0; whatever the value of �: As Q could be arbitrarily large,
this assumption is harmless in our setting.

Figure 1 about here

9. Finally, the industry-speci�c shock � follows a geometric di¤usion
process:

d� = ��dt+ ��dW with �0 = � and �; � > 0: (2)

Applying Itô�s Lemma to (1) and substituting (2) to eliminate d�; an
expression for the pro�t process in terms of the shock and the number of
�rms emerges as:

d� = �(q)�dq + ��dt+ ��dW; with �0 � u(q0)�0 = � (3)

where �(q) � D0(q)=D(q) indicates the direct e¤ect of entry. From (3), entry
in�uences the level of pro�ts through its e¤ect on the market equilibrium,
depending on the initial size of the industry. In particular, given any value of
the shock �; more �rms in the market implies a higher or lower equilibrium
level of pro�ts depending on the presence of positive �(q) > 0 or negative
�(q) < 0 externalities, respectively.

3 The main results

This section summarizes the main properties of the entry process, empha-
sizing the economic reasoning behind it. All proofs are in the Appendix.13

3.1 Negative externalities

If the initial size of the industry is q � �q; we expect entry to work as
follows: for a �xed number of �rms, pro�ts move according to the above
stochastic process with �(q)�dq = 0. If pro�ts then climb to a level �� �
D(q)��; entry will become feasible and pro�ts will drop along the function
D(q): In technical terms this means that the threshold �� becomes an upper
re�ecting barrier on the pro�t process.14 Pro�ts will then continue to move
13Although the inverted U-shape of (1) implies an entry process that meets positive

externalities �rst, we have solved the investment problem by working backward starting
from the negative externalities interval.
14The pro�t function follows a regulated Brownian motion in the sense of Harrison

(1985).
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stochastically without the term �(q)�dq until another entry episode occurs.
In addition, since the industry-wide shock � makes all �rms symmetric, some
random mechanism must be used to select which idle �rm will enter �rst.

A competitive equilibrium can be de�ned as a symmetric Nash equilib-
rium in entry strategies which bound the pro�t process of the �rms. It can
be built simply from the entry policy of a single �rm in isolation regardless
of future entry decisions.15

This remarkable property, �rst discovered by Leahy (1993), has an im-
portant operative implication: the optimal competitive equilibrium policy
need not take account of the entry e¤ect. The pro�t level, say �̂; that trig-
gers entry by an individual �rm in isolation is identical to that of a �rm
that correctly anticipates the other �rms� strategies ��. That is, when a
�rm decides to enter it can claim to be the last to enter the industry, ignor-
ing future entry by other �rms. This behavior can be summarized by the
following proposition.

Proposition 1 The candidate policy for optimal entry in a competitive in-
dustry, characterized by an initial mass of �rms q 2 [�q;Q] is described by
the following upper pro�t threshold:

D(q)��(q) =
�

� � 1(�� �)K � ��(= �̂); with
�

� � 1 > 1 (4)

where � > � and � > 1 is the positive root of the auxiliary quadratic equation
	(x) = 1

2�
2x(x� 1) + �x� � = 0:

Proof. See Leahy (1993) and Appendix
With q incumbents, an idle additional �rm will invest if the present

value of its pro�ts at entry, D(q)�
�(q)

��� ; exceeds the cost of the investment K

augmented by the option to wait 1
��1K.

16 Over the range [�q;Q]; additional
entry occurs every time pro�ts reach to the known threshold ��; if pro�ts
stay below this barrier, no new investment is undertaken.

Although at �rst glance this result seems surprising, it is consistent with
the properties of the dynamic programming principle of optimality for a

15�...., each �rm can make its entry decision by �nding the expected present value of
its pro�ts as if it were the last �rm that would enter this industry, and then making the
standard option value calculation. While the �rm should entertain rational expectations
about the stochastic process �; it can be totally myopic in the matter of other �rm�s entry
decisions�(Dixit and Pindyck, 1994, p.291).
16 In other words, the decision to enter entails the exercise of an option to delay. When

the �rm enters its loss of �exibility is given by 1
�1�1

K:
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symmetric Nash equilibrium in entry strategies. The principle of optimal-
ity states that, given the initial conditions and control values, an optimal
path has the property that the control over the remaining period must be
optimal for the remaining problem, with the state due to the early decisions
considered in the initial condition. This principle matches with the de�ni-
tion of subgame perfect Nash equilibrium where a strategy pro�le is a Nash
equilibrium if no �rm has the incentive to deviate from its strategy given
that other �rms do not deviate (Fudenberg and Tirole, 1991, p. 108).

We can understand the competitive equilibrium better by writing this
threshold in terms of the shock, �: Since �� � D(q)��(q) and D(q) is decreas-
ing in the region [�q;Q]; the optimal policy can be restated by the following
upward-sloping curve (Figure 2):

��(q) � �

� � 1(�� �)
K

D(q)
; for q 2 [�q;Q] (5)

In the area above the curve, it is optimal to enter. A discrete mass
of �rms will enter in a lump to move the pro�t level immediately to the
threshold curve. In the region below the curve the optimal policy is inaction;
�rms wait until the stochastic process � moves it vertically to ��(q) and then
again a mass of �rms will jump into the market, just enough to keep the
pro�ts from crossing the threshold.

3.2 Positive externalities

Working backward, if the initial size q is less than �q; any potential entrant
is subject to positive externalities, so that the timing of a �rm�s entry is
in�uenced by the entry decisions of others. Intuition suggests that Leahy�s
result cannot be extended to cover this case; a single �rm cannot continue
to claim to be the last to enter the industry in constructing its optimal entry
policy. The gist of our argument relies on the presence of �network bene�ts�;
so the more �rms in the industry, the greater the advantage in terms of
pro�t �ow. However, although investing is pro�table, it is �more expensive�
to do it alone than to enter with others or to follow others�decisions. This
mean that the Nash equilibrium is represented by the myopic trigger �̂ and
the sequential investment dynamics are no longer subgame-perfect. By the
disadvantage of moving �rst and the strategic nature of the timing decision,
each �rm can do better by delaying entry.17

17Potentially con�icting preferences over appropriation of the positive �network bene-
�ts�make them face a choice between no entry and agreement.
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However, as all �rms are subject to the same (industry-wide) uncer-
tainty shock, only two equilibrium patterns are possible: either the industry
remains locked-in at the initial size, sustained by self-ful�lling pessimistic
expectations, or a mass of �rms simultaneously enter, driven by the expected
rents.18 In the latter case, we expect entry to work as follows: for a �xed
number of �rms, pro�ts move according to (3) with �(q)�dq = 0. If pro�ts
reach to ��� � D(q)���; it will trigger an entry of more �rms that increases
the industry�s size instantaneously by a jump. The exact shape of the trig-
ger ��� as well as the number of �rms that enter it is given in the following
proposition.

Proposition 2 The candidate policy for optimal entry into a competitive
industry, characterized by positive externalities and initial mass of �rms
q 2 [0; �q); is described by the following upper pro�t threshold:

��� � D(q)���(q) = D(�q)��(�q); for all q 2 [0; �q) (6)

Proof. See Appendix.
Over the range [0; �q), the optimal entry policy is to set the threshold ���

equal to the known threshold D(�q)��(�q) where the pro�t �ow is maximum.
No �rms enter if pro�ts remain below this barrier, but a discrete mass of
(�q � q) new �rms simultaneously enters the �rst time that ��� is reached.

To appreciate the intuition behind this result let us consider a possible
sequential investment starting at q < �q. As the �rms may delay entry until
� reaches the upper level ��(q) (i.e., the �optimal�entry trigger for each idle
�rm in isolation), the �rst �rm (randomly selected) to invest will earn lower
pro�ts D(q)��(q) until some new �rms decide to invest. Hence, indicating
the mass of new �rms with dq, asD(q+dq) > D(q); the trigger ��(q)must be
larger than ��(q + dq). But this implies that once ��(q) is reached, the new
trigger ��(q+dq) is already surpassed and all the dq �rms invest immediately.
As these arguments apply for all (�q � q); in any equilibrium the �rms must
invest simultaneously at ��(q).19 Thus, with network externalities, no �rm
would ever invest at a lower entry trigger than ��(�q) since this trigger is based
on the most optimistic assessment with respect to other �rms, namely they
all invest at ��(�q). On the other hand no �rm �nds it convenient to delay its
entry when other �rms invest; i.e. ��(�q); which is also the most optimistic
investment trigger of the rivals.
18Subgame-perfectness arguments may help to elimiminate the market failure equilib-

rium where nobody invests (Dixit, 1995; Moretto, 2003).
19Huisman (2001), and Nielsen (2002), use the same arguments to con�rm simultaneous

investment in a duopoly model with positive externalities.
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An immediate corollary that follows from propositions 1 and 2 is:

Corollary 1 The pro�t threshold that triggers the �network run�of (�q� q)
new �rms is the same re�ecting barrier that triggers the marginal competitive
entry under negative externalities at �q:

D(�q)��(�q) =
�

� � 1(�� �)K � ���(= ��):

Again, we can understand the equilibrium by writing this threshold in
terms of the aggregate shock �: Since ��� � D(q)���(q) and D(q) is increas-
ing in the region [0; �q); the optimal policy is given by a �at curve starting
at ���(0) = ��(�q) de�ned by:

���(q) = ��(�q) � �

� � 1(�� �)
K

D(�q)
; for all q 2 [0; �q) (7)

Figure 2 summarizes the e¤ect of positive externalities on entry. Starting
at q; if the initial shock is below the known trigger at �q, all �rms wait until
� rises vertically to this level, and then simultaneously enter, creating the
optimal size �q: Once the optimal size is reached, to the right of �q, further
decisions to enter proceed as explained in the previous section. Starting
at any q < �q, (6) (or (7)) locates the optimal entry threshold so as to
maximize the total pro�ts of the incremental number of �rms that enter
(�q � q): The shock value ��(�q) that triggers these �rms��network run� is
the same threshold that justi�es a further marginal entry under negative
externalities.

Figure 2 about here

4 Comments on the literature

The previous section showed that for q < �q the candidate policy ��(�q) is the
unique threshold beyond which a mass (�q�q) of idle �rms �nd it optimal to
move simultaneously. It has also been shown that once entry has exhausted
positive externalities, new �rms will enter following the competitive rule (5),
where in equilibrium the option value of waiting drops to zero. Obviously,
simultaneous investment may arise under very di¤erent circumstances from
those considered here. For example in Bartolini (1993), simultaneous invest-
ment is driven by a constraint on the total size of the industry. He considers
a competitive industry in which the �rms initially enter following the op-
timal policy as in proposition 1, until a �critical� size is reached. At this
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�critical� size, rent competition generates a �competitive run� that imme-
diately �lls the rest of the quota. During this run the �rms reduce current
pro�ts in an attempt to capture the rent that the industry size is expected
to generate. Unlike Bartolini, a run in our model is generated by the maxi-
mization of the rent associated with positive externalities. These rents will
be dissipated in the future by the competitive entry of �rms with negative
externalities. In Grenadier (1996), however, simultaneous investment occurs
because two �rms rush to enter a declining real estate market that will oth-
erwise leave space for only one �rm. In Moretto (2000), simultaneity arises
because of a bandwagon e¤ect on entry costs. Two �rms are engaged in an
�attrition�game generated by the presence of incomplete information plus
positive externalities on the investment costs; i.e. it is more expensive to go
�rst than to adopt the technology at the same time or later when others have
already done so. Although the �rst-mover disadvantage leads to sequential
investment, if the asymmetry between �rms is not too high the investment
occurs as a cascade.20 At the opposite end, Huisman and Kort (1999) and
Pawlina and Kort (2001) show that under complete information simultane-
ous investments may arise also in the presence of negative externalities.21

Finally, Maison and Weeds (2001) show the same result in a similar duopoly
model. Although they consider the simultaneous presence of negative and
positive externalities, the only case in which both �rms enter simultaneously
is when they know that if the investment occurred sequentially, the leader
would lose out considerably once the follower decided to enter.

5 Conclusion

We have o¤ered a preliminary investigation into the e¤ect of competition on
�rms�irreversible investment decisions under uncertainty as a generalization
of the �real options�approach. We considered a product market that allows
simultaneous treatment of positive externalities for a small market size and
negative externalities for a large market size. The latter corresponds to a
traditional competitive industries where the investment of one �rm lowers
the pro�tability of others. In that case, �rms invest sequentially as market
pro�tability develops. The former case corresponds to industries in which

20Dosi and Moretto (1998, 2007), examine a war of attrition game induced by spillover
bene�ts on the cost of adopting �green� technology. They show that auctioning green
investment grants is a better policy to stimulate simultaneous investment than standard
subsidies that lower investment costs.
21See also Thijssen and Huisman and Kort (2002) for simultaneous entry when �rms

use mixed strategies.
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investment is mutually bene�cial, i.e. the investment of one �rm increases
the pro�tability of other �rms�investments. In this case we �nd that �rms
invest simultaneously after the pro�tability of the market has developed
su¢ ciently. The pro�t level that triggers an initial investment under nega-
tive externalities endogenously determines the optimal start-up size of the
industry.

Our theoretical results may help to explain both the rapid and sud-
den development that has occurred for certain network goods such as the
telecommunication services (Williams et al. 1988; Rogers, 1995; Schoder,
2000; Lim et al. 2003), as well as for the recent boom of Internet invest-
ment, for example the setting up of dotcoms on the World Wide Web for
e-commerce (Odlyzko, 1999), and the many prolonged start-up problems
while awaiting market development as in the case of digital fax machines
(Rohlfs, 1974, 2001; Economides and Himmelberg, 1995).22

Furthermore, our results complement the recent new line of research on
adoption and di¤usion of new technology. This line of research incorpo-
rates the idea that any single decision by a potential user is not between
adopting or not adopting, but is a choice between adopting now or deferring
the decision later. From this point of view, the adoption of a new tech-
nology is similar to any other investment decision under uncertainty about
future bene�ts and irreversibility, which generates an option value of waiting
(Stoneman, 2001; Luque, 2002; Hall and Khan, 2003). Then the adopter�s
decision process can be modelled as suggested by Dixit and Pindyck (1994),
and used here, providing another reason why di¤usion of new technology
may be rather slow (Hall and Khan, 2003, p.3).

Some extensions can easily be incorporated, such as the inclusion of
�nitely-lived capital projects, stage investments, growth options, and opera-
tive options that lead to suspension or de�nitive abandonment of the invest-
ment. The model also permits study of the e¢ ciency of the investment-entry
pattern. Is the equilibrium investment-entry time e¢ cient? Does the e¢ -
cient entry pattern occur in equilibrium? Such a study can be conducted
considering the cooperative solution where by the investment decisions are
determined by maximizing the sum of the �rms�value functions or intro-
ducing a true social value function. Finally, a more substantial modi�cation
concerns a comparison with the case in which there is a monopolist who
possesses all investment opportunities. Although the start-up problem in

22These are both examples of interlinked network services competitively supplied. Each
consumer enjoys network externalities not only with respect to the consumers of his or her
own supplier. The history of the fax machine also illustrates the importance of interlinking
in making the demand grow to solve the start-up problem.
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that case is much simpler, the analysis of the start-up conditions and the
optimal network size is particularly interesting. Speci�cally, where network
externalities are present, it may be pro�table for the monopolist to sacri-
�ce pro�ts in the short-run in the hope of raising prices in the future after
demand has grown and consumers are enjoying network e¤ects.
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A Appendix

The aim of this Appendix is to prove that the candidate policies (4) and
(6) are indeed optimal. The analysis is restricted to a single entry trigger
strategy, i.e. as if each �rm uses a stopping rule (a pure Markovian strategy),
that speci�es the critical value of the state variable � beyond which the �rms
invest. This assumption greatly simpli�es analysis as it rules out mixed
strategy equilibria. Our choice of pure strategies can be justi�ed for at least
for two reasons. First, they are very simple strategies which require �rms
to have only a low level of rationality. Second, the simultaneous investment
scenario with mixed strategies is outcome equivalent to �rms employing pure
strategies.23

For the proof, we have referred to certain dynamic optimization solutions
extensively studied in the Operations Research literature where by an Itô
process is constrained never to leave an (optimal) region (see Harrison and
Taksar, 1983, Karatzas and Shreve 1984; Harrison, 1985), to some well-
known applications to a competitive economy (see Leahy, 1993; Bartolini,
1993; Dixit and Pindyck, 1994) and to scale economies (Dixit, 1995).

Let us consider the value of a �rm V (q; �); that is active in the market,
as the expected discounted stream of pro�ts:

V (q; �) = max
�
E0

�Z 1

0
e��tD(qt)�tdt� J[t=� ]K j q0 = q; �0 = �

�
(8)

where J[t=� ] is the indicator function and the expectation is taken consid-
ering that the number of active �rms may change over time by new entry.
The solution to (8) can be obtained starting within a time interval within
which no new entry occurs. Over this interval the number of �rms is �xed
and the �rm is an asset which pays a �ow of pro�ts D(q)� per unit of time,
and experiences a �capital�gain E[dV (q; �)] as � evolves stochastically. As-
suming V (q; �) to be a twice-di¤erentiable function with respect to � and
using Itô�s Lemma to expand dV (q; �); the solution of (8) is given by the
following di¤erential equation (Dixit and Pindyck, 1994, p. 179-180):

1

2
�2�2V��(q; �) + �

2�V�(q; �)� �V (q; �) +D(q)� = 0 (9)

23Using of a simple discrete-time game, Moretto (2003) showed that, for the problem at
hand, by letting the �rms play mixed strategies is outcome equivalent to the one in which
the �rms employ pure strategies. The intuition is that as the market develops closer to
a level su¢ cient to gain all network bene�ts, the probability of mistakes reduces and the
coordination problem among potential entrants becomes less severe.
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Provided that � > �, a family solution of (9) can be written as: V (q; �) =
A(q)�� + B(q)�
 + D(q)�

��� , where 1 < � < �=�; 
 < 0 are, respectively,
the positive and the negative roots of the characteristic equation 	(x) =
1
2�

2x(x � 1) + �x � � = 0; and A; B are two constants to be determined.
To keep V (q; �) �nite as � becomes small, i.e. lim

�!0
V (q; �) = 0; we discard

the term in the negative power of �; setting B = 0. Moreover, the boundary

conditions also require that lim�!1
n
V (q; �)� D(q)�

���

o
= 0; where the second

term in the limit represents the discounted present value of the pro�t �ow
over an in�nite horizon starting from � (Harrison 1985, p. 44). Then, the
general solution reduces to:

V (q; �) = A(q)�� +
D(q)�

�� � (10)

Since the last term represents the value of the active �rm in the absence of
new entry, then A(q)�� is the correction of the �rm�s value due to the new
entry and A(q) must be negative. To determine this coe¢ cient we need to
impose some suitable boundary conditions. First of all, perfect competition
(free entry) requires the idle �rms to expect zero pro�ts at entry. Indicating
by ��(q) the value of the shock, �; at which the q-th �rm is indi¤erent
between entry right away or waiting another instant, the matching value
condition requires:

V (q; ��(q)) � A(q)��(q)� + D(q)�
�(q)

�� � = K (11)

The �rm�s competitive behavior keeps the value of active �rms below the
levelK; by increasing the number of �rms in the market. As we assumed that
the �rm�s size is in�nitesimal, then the trigger level, ��(q); is a continuous
function in q:

Secondly, as the term �� in (11) is always positive, any change in q
either raises or lowers the whole function V (q; �); depending on whether the
coe¢ cient A(q) increases or decreases. By totally di¤erentiating (11) with
respect to q we get:

dV (q; ��(q))

dq
= Vq(q; �

�(q)) + V�(q; �
�(q))

d��(q)

dq

= A0(q)��� +
D0(q)��

�� � +

�
A(q)���(q)��1 +

D(q)

�� �

�
d��(q)

dq
= 0

where, as long as each �rm rationally forecasts the future development of the
whole market and new entries by competitors, at the optimal entry threshold
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we get Vq(q; ��(q)) = 0 (Bartolini, 1993; proposition 1; Grenadier, 2002, p.
699). Then:

V�(q; �
�(q))

d��(q)

dq
�
�
A(q)���(q)��1 +

D(q)

�� �

�
d��(q)

dq
= 0 (12)

This smooth pasting condition states that either each �rm exercises its entry
option at the level of � at which its value is tangent to the entry cost, i.e.
V�(q; �

�(q)) = 0, or the optimal trigger, ��(q); does not change with q:
While the former means that the value function is smooth at entry and the
trigger is a continuous function of q; the latter indicates that a single �rm
would bene�t from marginally anticipating or delaying its entry decision. In
particular, if V�(q; ��(q)) < 0; it means that the value of a �rm is expected to
increase if � drops. On the contrary, if V�(q; ��(q)) > 0; it means that a �rm
would expect to make losses versus a future drop in �. In both situations
(12) is satis�ed by imposing d��(q)

dq = 0:
The rest of the proof is devoted to showing that for q � �q; the smooth

pasting condition reduces to a traditional one, such that V�(q; ��(q)) = 0 and
��(q) is increasing in q: For q < �q; we get V�(q; ��(q)) > 0 which requires
d��(q)
dq = 0:

A.1 Proof of proposition 1

To prove proposition 1 we need to show two results: (1) in the case of
q � �q, the smooth pasting condition (12) reduces to V�(q; ��(q)) = 0; (2) the
optimal competitive trigger, ��(q); is equivalent to the trigger of a �rm in
isolation, that is of a �rm claiming to be the last to enter. For (1), let us
consider the value of an active �rm starting at the point (q; � < ��); a �rm
that would follow the optimal policy hereafter. Indicating by T the �rst
time that � reaches the trigger ��; the optimal policy must then satisfy:

V (q; �) = max
��
E0

�Z T

0
e��tD(q)�tdt+ e

��TV (q; ��(q)) j q0 = q; �0 = �
�

(13)

= max
��

�
D(q)E0[

Z T

0
e��t�tdt j �0 = �] +KE0[e��T j �0 = �]

�
where the second equality follows from the fact that, by (11), V (q; ��(q)) =
K: Moreover, by using some standard results in the theory of regulated
stochastic processes (Dixit and Pindyck, 1994, p. 315-316): E0[

R T
0 e

��t�tdt j
�0 = �] =

����(��)1��
��� and E0[e��T j �0 = �] =

�
�
��
��
, we can rewrite (13)
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as:

V (q; �) = max
��

"
D(q)�

�� � �
�
D(q)��

�� � �K
��

�

��

��#
(14)

To choose ��; the �rst order condition is:

@V

@��
=

�
(� � 1)D(q)

�� � � �
K

��

��
�

��

��
= 0 (15)

which gives:

D(q)��(q) =
�

� � 1(�� �)K � ��; with
�

� � 1 > 1 (16)

Since D(q) is decreasing in the interval [�q;Q]; ��(q) is increasing. Substi-
tuting (16) into (14) we can solve for A(q); which is negative as required by
(10):

A(q) = �K�
�(q)��

� � 1 � �(�
�)1��D(q)�

�(�� �) < 0 (17)

Finally, substituting (17) into (14) and rearranging we obtain (10):

V (q; �) = �(�
�)1��D(q)�

�(�� �) �� +
D(q)�

�� � (18)

from which it is easy to verify that Vq(q; �) 6= 0 within the interval � < ��(q)
and is zero at the boundary.

For (2), let us consider an idle �rm pretending to be the last to enter the
industry. With q �rms already active, if the �rm decides to enter when the

shock is �̂; it pays K and receives in return an asset that values D(q)�̂��� . Now
write F (q; �) for the value of the �rm�s option to enter at time zero. This
takes the form:

F (q; �) = max
�̂
E0

(
e��T [

D(q)�̂

�� � �K] j q0 = q; �0 = �
)

(19)

where T indicates the �rst time that � hits the trigger �̂: Rearranging, we
get:

F (q; �) = max
�̂

(
[
D(q)�̂

�� � �K]E0[e
��T j �0 = �]

)
(20)

= max
�̂

 
D(q)�̂

�� � �K
!�

�

�̂

��
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Taking the derivative of this expression with respect to �̂ and solving, we can
show that the optimal threshold �̂ is equivalent to (16). By direct inspection
of (14) and (20) we immediately to note that the value of an active �rm (14)
is the di¤erence between the value of an active myopic �rm and the value of
an inactive myopic �rm as expressed by (20). Competition, therefore, not
only does not alter the incentive to trade an idle �rm for an active �rm, but
also encourages both to have the same price at entry. Using (16) in equation
(18) gives V (q; ��(q)) �K = 0, i.e. in equilibrium �rms expect zero pro�t
at entry (Dixit and Pindyck, 1994, ch.8).

Since, by (3), the myopic pro�t process and the competitive pro�t process
are identical until ��, the pro�t �ow that the �rm is able to obtain following
the policy �̂ is the best that it can do, at least until T: However, by the
principle of optimality this choice is also optimal for the rest of the period
as (13) shows; if the optimal policy of the single �rm calls for it to be active
at �� tomorrow; it is obvious that the optimal policy today is to enter at
�̂. Finally, as (13) is a continuous function in ��; the limit as �� ! �̂ shows
that �̂ is a Nash equilibrium (Leahy, 1993; proposition 1).

A.2 Proof of proposition 2

In the case of q < �q we have to show three things: (1) that a single �rm
can no longer claim to be the last to enter the industry and therefore, the
optimal competitive trigger is no longer equivalent to the trigger of a �rm in
isolation; (2) that the candidate policy described in proposition 2 satis�es
the necessary and su¢ cient conditions of optimality; (3) that it is a subgame
perfect equilibrium.

For (1) and (2), let us consider an (idle) �rm that follows the optimal
policy ��(q). As ��(q) is decreasing in the interval q < �q, the higher the
number of �rms in the industry, the greater the pro�t �ow at entry. The
(idle) �rm would then maximize its entry option by claiming to be always the
last to enter the market, expecting an inadmissible upward jump in pro�ts.
At � = ��(q), the �rm�s value is simply V (q; ��(q)) � D(q)��(q)

��� . Then, we
can see that:

V (q; ��(q))� lim
�!��(q)

V (q; �) =
K

� � 1 > 0 (21)

In (21), the inequality holds since it represents the correction due to the new
entry (i.e. A(q)�� in (10)). This contradicts the smooth pasting condition
V�(q; �

�(q)) = 0; and then the optimality of ��(q): As all (idle) �rms are
equal, all expect an upward jump in pro�ts at � = ��(q) if no other �rm
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enters afterwards. This may induce each to delay entry waiting for the others
to enter �rst. However, as ��(q) is decreasing in the interval q < �q, the
upward jump in pro�ts would decrease as more �rms have already entered
and it disappears at q = �q; where the �rm�s value function at entry is simply
the known function (18). This con�rms that: a) the candidate policy for
the interval q < �q is to impose d��(q)

dq = 0; b) the optimal level of shock that
triggers entry is ��(�q); where the pro�t �ow is maximum for all the discrete
sizes of investment (�q � q); c) at �q the necessary condition for optimality,
V�(�q; �

�(�q)) = 0; turns out to be satis�ed again.
To verify whether the necessary conditions are satis�ed, we calculate the

value of an active �rm starting at the point (q; �); and that follows a policy
so de�ned: wait until T; at which the process � rises to a level c > �; which
corresponds to an immediate increase of the industry size to b > q: Using
(13) the expected payo¤ V (q; �) from this policy is equal to:

V (q; �) = E0

�Z T

0
e��tD(q)�tdt+ e

��TV (b; c) j q0 = q; �0 = �
�
(22)

=
D(q)�

�� � �
�
D(q)c

�� � � V (b; c)
��

�

c

��
The best moment for the industry size to jump as well as the dimension of
the jump, are given by the following �rst order conditions:

@V (q; �)

@c
=

�
(� � 1)D(q)

�� � � �
V (b; c)

c
+
@V (b; c)

@c

��
�

c

��
= 0

@V (q; �)

@b
=
@V (b; c)

@b

�
�

c

��
= 0

When b and c are chosen according to the candidate policy so that b = �q and
c = ��(�q); the value function reduces to (10) and the matching value con-
dition requires V (b; c) = K: These prove that the candidate policy satis�es
the �rst order conditions.

By processing (21) we can say more about the necessary conditions.
Let the �rm, as in (22), wait until the �rst time the process � rises to the
myopic trigger level c � ��(b); corresponding to an immediate increase of
the industry size to b > q: Assume also that the �rm expects no more entry
after b: Therefore its expected payo¤ V (b; �) from this time onwards equals
the discounted stream of pro�ts �xed at D(b); i.e.:
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V (b; �) =
D(b)�

�� � (23)

Comparing (23) with (10) gives A(b) = 0: Therefore, to obtain the constant
A(q); subject to the claim that beyond b no other �rm will enter the market,
we substitute (10) into the condition Vq(q; ��(q)) = 0 to get A0(q)��(q)� +
D0(q)��(q)
��� = 0; resulting in:

A0(q) = ��
�(q)1��D0(q)

�� � � �(�
�)1��

�� �
D0(q)

D(q)1��
(24)

Integrating (24) between q and b gives:Z b

q
A0(x)dx = �(�

�)1��

�� �

Z b

q

D0(x)

D(x)1��
dx

Taking account of the fact that A(b) = 0; this integral gives the constant
A(q) as:

A(q) =
(��)1��

�(�� �)

h
D(b)� �D(q)�

i
(25)

Substituting (25) into (10), which we rewrite to make explicit its dependence
on the end size b, yields:

V (q; �; b) =
(��)1��

�(�� �)

h
D(b)� �D(q)�

i
�� +

D(q)�

�� � (26)

As long as D(b) > D(q); the �rst term in (26) is positive and it forecasts the
advantage the �rm would experience by the entry of b� q �rms when � hits
��(b): That is, if the �rm were able to choose the optimal dimension of the
jump, it would be b! �q which happens the �rst time that � reaches ��(�q).
Thus, as opposed to before when non-sequential investments are possible,
the necessary conditions would coordinate an optimal simultaneous entry
by all �rms. Finally, if D00(q) < 0 the above necessary conditions are also
su¢ cient.

Since each �rm foresees the bene�t from the entry of others and observes
the state variable �; it instantaneously considers when to enter by maximiz-
ing (26). Then, with simultaneous investment the �rms�optimal strategies
are easy to �nd; each �rm invests as if it were the only to invest but, with
the expectation of earning all network bene�ts; i.e. ��(�q) is a (symmetric)
Pareto-dominant Nash equilibrium for all q < �q. In addition, as the reac-
tion lags are literally non-existent, no �rm is incentivated to deviate from
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the entry strategy � ! ��(�q) and b ! �q; given that the other �rms do not
deviate. Finally, since � is a Markov process in levels (Harrison, 1985, p.
5-6), the conditional expectation (22) depends only from the starting states
�: Therefore, at each date t > 0; the �rm�s values resemble those described
in (26), which makes the equilibrium subgame perfect.
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