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Abstract: In a static symmetric duopoly the set of behavioral rules is extended
to different types of markup pricing. Using an equilibrium concept suggested in
Pasche (2001), it is shown that dependend on the markup neither pure Cournot
nor pure Bertrand behavior is a behavioral equilibrium profile. Instead, there is a
rationale for the usage of simple heuristics. The presence of markup rules leads to
Stackelberg outcomes. Furthermore, pure markup behavior is more competitive
than in Cournot case but less competitive than in Bertrand case. It is shown,
that multiple behavioral equilibria and heterogeneous behavior may arise, where
at least one player uses price setting strategies.
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1 Introduction

Since the studies of Hall/Hitch (1939) it is occasionally claimed that the analysis of

industrial organization should focus on empirically observable types of supply behavi-

or. Some of the most prominent heuristics in oligopoly are different types of markup

pricing: Since suppliers often have no idea about marginal cost and marginal revenues

they try to acchieve a price as a fixed ratio (or a fixed amount) to the average cost. One

major problem of such a heuristic behavior is that in general it is in contrast to the

assumption of rational profit maximizing agents which is essential for microeconomic

reasoning. Therefore there exist more empirical studies on markup-pricing than theo-

retical models which account for these heuristics. Grant/Quiggin (1994), for example,

analyse the case of oligopolistic competition where the markups are chosen optimally.

They show that the resulting equilibrium with markup strategies is more competitive

than the Cournot solution.

However, it is by no means clear why such heuristics should be preferred to optimizing

behavior, i.e. there is no economic explanation for the evidence of these rules of thumb.

It seems plausible to argue that under the condition of competition heuristic rules will

be ruled out in the long run by maximizing behavior. The usage of simple rules is then
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due to short run limitations of agent´s abilities or due to market imperfections. In

this paper, however, it is shown that the opposite claim can be true: simple rules may

outperform optimizing behavior and may constitute an equilibrium.

Things are getting more complicated if either the price or the quantity can be chosen

as a strategic variable. It is well known that under rather general conditions pricing

strategies will lead to more competitive outcomes than quantity strategies (Chang 1985,

Vives 1985). Under certain conditions (like non-decreasing returns of scale and a very

close substitution between goods) no economically reasonable equilibrium in pricing

strategies exists. These arguments justify the assumption of quantity setting. However,

one objection is that pure quantity setting behavior is empirically less relevant and the

emergence of prices in markets remains “somewhat mysterious” (Shapiro 1989, p.343).

The paper shows for the case of a multi-stage symmetric duopoly game that there

exists an incentive to use simple price or quantity setting rules. We use an equilibrium

concept which does not only account for the chosen strategies but also for the rules,

how these strategies are chosen (cf. Pasche 2001). Following Rubinstein (1998, pp. 3)

this broader notion of equilibrium allows for the analysis of arbitrary types of boun-

dedly rational decision behavior and may provide a rationale for some of them. We are

interested in equilibria where the players behave differently even when the demand and

cost functions are strictly symmetric. Furthermore it is analysed how the equilibrium

structure depends on price or quantity strategies and how competitive equilibria with

markup rules can be compared with Cournot and Bertrand solutions.

2 Behavioral Equilibria with Markup Rules

2.1 Mixing optimizing and markup behavior

In the following section a differentiated duopoly with complete information is conside-

red. Both players have a quadratic cost function C(qi) = cqi + dq2
i , i = 1, 2, with qi as

the quantity produced by firm i and c, d ≥ 0 as parameters. The demand scheme is

assumed to be linear with pi = a− bqi+ δbqj, a > c, b > 0, δ ∈ [0, 1], i = 1, 2, i 6= j. The

parameter δ captures the degree of substitution: For δ = 0 the goods are completely

differentiated and the players act as monopolists. With δ = 1 the goods are perfect

substitutes, i.e. they are homogeneous. Let σi ∈ {qi, pi} be the strategy variable of

player i. In case of σi = pi the linear demand scheme can simply be solved for qi. If
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players are profit maximizers, the so-called reaction functions can easily be derived as

p∗i = fB(pj) =
1

2

ba(1− δ + γ)(1− δ2) + 2ad(1− δ) + δ(2d+ b(1− δ2))pj
(1− δ2)b+ d

(1)

q∗i = fC(qj) =
1

2

a− bδqj − c
b+ d

(2)

with γ = c/a, i = 1, 2, i 6= j and γ ∈ [0, 1) because of 0 ≤ c < a. The reaction functions

fB and fC represent the behavioral rule of payoff maximization in the case of price

competition (fB for Bertrand behavior) and quantity competition (fC for Cournot

behavior). A vector (fB, fB) or (fC , fC) is called a behavioral profile in contrast to

the strategy profile (p1, p2) or (q1, q2). The Cournot-Nash solution (q∗1, q
∗
2) can also be

denoted as (fC(q∗2), fC(q∗1)) and the Bertrand-Nash solution (p∗1, p
∗
2) can be written as

(fB(p∗2), fB(p∗1)). The corresponding equilibrium payoffs are

πBBi =
Z1(b(1− δ2) + d)

(Z2 + bδ(1− δ))2
(3)

πCCi =
Z1(b+ d)

(Z2 + bδ)2
(4)

with Z1 = a2(γ − 1)2 > 0 and Z2 = 2(b + d) > 0. The upper index BB (resp. CC)

denotes the behavioral profile, where the first letter describes the own behavioral rule

and the second letter the opponent´s rule. For homogeneous goods (δ = 1) Bertrand

competition leads to the competitive result, i.e. price equals marginal costs. Hence, if

the cost function is linear (d = 0) profits are zero, while in the case of a quadratic cost

function the payoffs are still positive. Comparing πCC with πBB, obviously πCC > πBB

for all δ > 0 , i.e. the Cournot scenario is less competitive.

In addition to these optimizing rules there are two heuristic rules of thumb, where the

price is calculated by average cost and a markup. In case of the behavioral rule fM , the

price or quantity will be set in order to let pi/AC(qi) = mi constant, where AC(qi) =

c + dqi are the average costs and mi ∈ IR+ is the markup ratio. The profit per unit is

then a fixed proportion of average cost. Let fN denote another behavioral rule where

the profit per unit is fixed by pi−AC(qi) = mi with mi ∈ IR+ as the markup amount. A

game-theoretic analysis of these heuristics is not very common. Particularly, there is a

lack of economic reasoning why these rules are used by (boundedly) rational players. To

give a rationale for the usage of these rules we extend the equilibrium concept to deal

with non-maximizing behavioral rules. For this reason let Ω be the behavioral repertoire

of the players which contains different rules of decision making. In the present case we
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have Ω = {fC , fM , fN} when σi = σj = x and Ω = {fB, fM , fN} when σi = σj = p.

Since both markup rules can be played with price or quantity decisions, the rules fM

and fN actually have to be indexed by the chosen strategy variable. In order to keep

the notation simple we suppress this index. Since the achievement of the markup mi

depends also on the opponent´s decision, the corresponding reaction function can be

derived. When σi = pi, i = 1, 2, the reaction function of both markup rules can be

calculated by solving the demand function for qi, inserting it into pi = miAC(qi) (or

pi = mi + AC(qi), resp.) and solving for pi:

p∗j = fM(mj, pi) =
mj(bc(1− δ2) + ad(1− δ) + dδpi)

b(1− δ2) +mjd
, (5)

p∗j = fN(mj, pi) =
(mj + c)(1− δ2)b+ ad(1− δ) + dδpj

b(1− δ2) + d
. (6)

The profiles e.g. (fB(p∗2), fB(p∗1)), (fM(m1, p
∗
2), fM(m2, p

∗
1)) or (fB(p∗2), fN(m2, p

∗
1)) are

behavioral equilibria, since an equilibrium is a state where no player has a reason to se-

lect another strategy: in these behavioral equilibria the profit maximizer cannot achieve

a higher payoff by changing the price and the markup agent realises the given mi (cf.

Pasche 2001). Cournot and Bertrand (or in general: Nash) solutions are obviously speci-

al cases of behavioral equilibria where the players are bounded to maximizing behavior.

The existence of a behavioral equilibrium with markup rules requires that the markup

mi is chosen from a subset of IR+ so that there exists at least one σi which realizes mi

in equilibrium. In other words: the markup player has to fix a reasonable markup. This

condition is less demanding than the assumption that markups are chosen optimal-

ly. The latter case will be assumed later on. When all behavioral rules and markups

are Common Knowledge, the agents are able to anticipate the prevailing behavioral

equilibrium.

It is reasonable to argue that even non-maximizing (often called “boundedly rational”)

players will prefer high payoffs to lower payoffs, if they have the opportunity to acchie-

ve them. Hence we assume that due to calculation or a learning process the markups

are adjusted so that they maximize the payoff in equilibrium (Grant/Quiggin 1994

follow the same idea). This case will be called a behavioral equilibrium with a balanced

parametrization (cf. Pasche 2001). In case of price competition we have five possible

behavioral profiles (fM , fM), (fN , fN), (fB, fM), (fB, fN), (fM , fN) in addition to

the Bertrand case (fB, fB), on which the selections of optimal markups depend. We

assume that the behavioral rules are fixed. On the first stage of the game players se-

lect their (optimal) markups. On the second stage the usual oligopoly game is played.
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First consider the behavioral profile (fB, fM), which leads to a behavioral equilibrium

(fB(p∗j), f
M(mj, p

∗
i )) with the payoffs πBMi (mj) and πMB

j (mj). The optimal parametri-

zation of rule fM is given by m∗j = arg maxmj π
MB
j (mj) which has a unique solution

and yields the equilibrium payoffs

πMB
j (m∗j) =

1

4

Z1(Z2 − δb(1 + δ))2

(Z2 − bδ2)(1
2
Z2

2 − bδ2(d+ 2b))
(7)

πBMi (m∗j) =
1

4

Z1(b(1− δ2) + d)(b2δ(δ2 − 3δ − 2)− 2dbδ(1 + δ) + Z2
2)2

(Z2 − bδ2)2(1
2
Z2

2 − bδ2(d+ 2b))2
(8)

Calculations show that πMB
j ≥ πBBj . Hence, a player can benefit from selecting rule

fM instead of fB if the opponent is a profit maximizing player. The same result can

be derived for the markup rule fN . In this case the reaction function is linear in mj

which simplifies the calculation of an optimal markup. In case of an optimal m∗j we

have πBNi = πBMi and πNBj = πMB
j . The explanation is simple: In the (p1, p2)-space the

markup mj parametrizes the reaction function fM(mj, pi) (resp. fN(mj, pi)) so that it

intersects the Bertrand reaction function fB at the point where the latter is a tangent

to the highest possible iso-profit curve of player j. Markup agents with a fixed optimal

markup then act like Bertrand-Stackelberg first mover, but in a static duopoly game.

This can easily be proven by inserting the reaction function pi = fB(pj) into the profit

equation of player i and calculating the optimal p∗i .

Now let σi = qi i = 1, 2. The reaction functions of the markup rules are now defined in

quantities and can be derived by inserting pi = miAC(qi) (or pi = mi +AC(qi), resp.)

into the demand scheme and solving for qi:

q∗j = fM(mj, qi) =
a−mjc− bδqi

b+mjd
, (9)

q∗j = N(mj, qi) =
a−mj − c− bδqi

b+ d
. (10)

The eqilibrium payoffs are also parametrized by mj. We analyze the behavioral profile

(fC , fM) with the corresponding equilibrium (fC(q∗j ), f
M(mj, q

∗
i )). The unique optimal

parametrization m∗j = arg maxmj π
MC
j (mj) leads to the equilibrium payoffs

πMC
j (m∗j) =

1

4

Z1(bδ − Z2)2

Z2(1
2
Z2

2 − b2δ2)
, (11)

πCMi (m∗j) =
1

8

Z1(bδ(bδ + Z2)− Z2
2)2

Z2(1
2
Z2

2 − b2δ2)2
, (12)
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which is the Cournot-Stackelberg solution. Again, the markup agent takes the position

of the first mover, and we have πCNi = πCMi and πNCj = πMC
j in case of an optimal

parametrization with m∗j . The explanation is the same as in case of pricing strategies:

in the (q1, q2)-space the markup mj is chosen so that the reaction function fM(mj, qi)

(resp. fN(mj, qi)) intersects with the Cournot reaction function fC in the point where

the latter is a tangent to the highest possible iso-profit curve of player j.

Up to now we have assumed that the behavioral rules are exogenously given. Consider

now that on the first stage of the game both players select a behavioral rule, i.e.

they decide how to decide on prices or quantities (cf. Lipman 1991 on this idea).

An equilibrium concept requires that no player can benefit from deviating from this

behavioral rule, given the rules of the other players. On the second stage the (optimal)

markups are chosen according to the selected behavioral profile on the first stage.

In case of a non-observable choice of rules the players have to formulate consistent

beliefs about the opponent´s rules. This case is not considered throughout this paper.

A balanced parametrized behavioral profile where no player has an incentive to change

to another rule is called a balanced behavioral equilibrium profile (see Pasche (2001) for

details). With these definitions we can summarize the results discussed above:

Result 2.1. Consider a symmetric differentiated duopoly with a linear demand scheme

and a quadratic cost function. Let the behavioral repertoire be Ω = {fC , fM , fN} in

case of quantity competition and Ω = {fB, fM , fN} in case of price competition. Then

we obtain the following results:

a) The balanced parametrized profiles (fB, fM) and (fB, fN) have Bertrand-Stackel-

berg equilibrium outcomes where the markup player has the first mover advanta-

ge. The balanced parametrized profiles (fC , fM) and (fC , fN) have the Cournot-

Stackelberg equilibrium outcomes where the markup player has the first mover

advantage.

b) The profiles (fB, fB) and (fC , fC) are not balanced behavioral equilibria profiles.

�

Proof:

a) The claim follows in a straightforward manner from computing the optimal m∗j
and the corresponding payoffs (cf. equations ,(7), (8), (11) and (12)).
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b) The claim follows directly from a), since the Stackelberg first mover position

implies πNB = πMB > πBB and πNC = πMC > πCC . Hence there is an incentive

to select rule fM (or fN) when the opponent is playing according to rule fB or

fC . �

The incentive to change from Cournot or Bertrand behavior to a markup rule does

not require that agents are able to compute the optimal markup exactly, even this is

possible with the assumptions about the given information. For a behavioral rule which

is often associated with “bounded rationality” it should be possible that the optimal

or even a sufficiently good markup can be achieved by simple learning procedures. The

set of all sufficiently good markups is defined by

ΦMB
i = {mi ∈ IR+|πMB

i (fMi (mi, p
∗
j), f

B(p∗i )) ≥ πBBi (fB(p∗j), f
B(p∗i ))} (13)

ΦMC
i = {mi ∈ IR+|πMC

i (fMi (mi, q
∗
j ), f

C(q∗i )) ≥ πCCi (fC(q∗j ), f
C(q∗i ))} (14)

Result 2.2. The set ΦMB
i is convex and m∗i ∈ ΦMB

i . The same holds true for ΦMC
i . �

Proof: In the economically reasonable range IR+ the profits πMB
i (resp. πMC

i ) are

strictly concave in mi, which can easily be proven by calculating the second derivatives.

The convexity of ΦMB
i and ΦMC

i then follows from the epigraph theorem in standard

analysis (cf. Wolfstetter 1999, p. 326). The claim m∗i ∈ ΦMB
i (resp. m∗i ∈ ΦMC

i ) is

trivial. �

In addition to the convexity of ΦMB
i resp. ΦMC

i these sets have the advantage that

the player already knows one point on the boundary of the set: the markup mi on

variable cost which results from the behavioral profiles (fB, fB) and (fC , fC), i.e. if

the players maximize profits. Making a (marginal) step into ΦMB
i or ΦMC

i then improves

the performance. The ability to learn sufficiently good markups is important because

in other scenarios (like in the (fM , fM) profile or in cases of demand uncertaity) the

calculation of the optimal m∗i is analytically complex. In these cases learning procedures

or numerical recipes must be able to identify (almost) balanced parametrizations.

2.2 Mixing price and quantity decisions

Consider a two-stage game where on the first stage the strategy variable (price or

quantity) is chosen and at the second stage the oligopoly game is conducted with payoff
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maximizing players. By rearranging the linear demand scheme it is possible to express

the profits of player i as a function of qi and pj (resp. pi and qj). The corresponding

reaction function in quantities then depends on rival´s price and vice versa. In case of

maximizing agents we have

q∗i = fC(pj) =
1

2

a− c+ δpj − δa
b(1− δ2) + d

, (15)

p∗j = fB(qi) =
1

2

2ad+ b(c+ a)− (2dbδ + b2δ)qi
b+ d

. (16)

The corresponding payoffs are

πCBi =
Z1(bδ − Z2)2(b(1− δ2) + d)

(bδ2(3b+ 2d)− Z2
2)2

, (17)

πBCj =
Z1(bδ(1 + δ)− Z2)2(b+ d)

(bδ2(3b+ 2d)− Z2
2)2

. (18)

Straightforward calculations lead to πCBi ≥ πBBi and πCCi ≥ πBCi , i.e. choosing σi =

qi, ı = 1, 2 as the strategic variable is the dominant solution. It can be expected that

rational players will select the less competitive Cournot solution which depicts the

known results in the industrial organization literature (e.g. Singh/Vives 1984 among

others, cf. Kreps/Scheinkman 1983 for an alternative justification of Cournot behavior).

In case of markup rules it is an open question which strategy variable σi will be selected.

Although the term markup pricing suggests price setting this is not neccessary the case.

For σi 6= σj we have the reaction functions

q∗i = fM(pj,mi) =
a(1− δ)−mic+ δpj
b(1− δ2) + dmi

, (19)

p∗j = fM(qi,mj) =
mj(da+ cb− dbδqi)

b+ dmj

, (20)

q∗i = N(pj,mi) =
a(1− δ)−mi − c+ δpj

b(1− δ2) + d
, (21)

p∗j = N(qi,mj) =
da+ cb+ bmj − dbδqi

b+ d
. (22)

The resulting equilibrium payoffs depend on mi,mj. Again, consider the case in which

a profit maximizing agent j plays against a markup agent i. Calculating the optimal

markups yields the following result.

Result 2.3. With an optimal markup m∗i it follows that the payoffs πNBi = πNCi =

πMB
i = πMC

i and πBNj = πCNj = πBMj = πCMj represent the Cournot-Stackelberg
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solution in case of σi = xi and the Bertrand-Stackelberg solution in case of σi = pi. In

both cases the solution is independent from σj of the optimizing player. �

Proof: The claim follows in a straightforward manner by computing the equilibrium

payoffs (cf. (11), (12) in case of σi = xi and (7), (8) in case of σi = pi). �

Since the markup rule with balanced parametrization m∗i is equal to the “first move”

of the Stackelberg solution it is irrelevant for the optimzing agent whether he selects

the price or the quantity in order to maximze profits.

2.3 Pure markup equilibria

For the reaction functions (5) and (6) in case of σi = σj and (19) – (22) in case of

σi 6= σj ten different behavioral profiles with markup rules are possible. The resulting

equilibrium payoffs are listed in appendix A. For arbitrarily parametrized behavioral

equilibria we obtain the result that in case of pure markup profiles the outcome is

completely independent from the chosen strategy variable.

Result 2.4. Let mi,mj be given. The following claims hold true:

• For (fN(q∗j ,mi), f
N(q∗i ,mj)), (fN(p∗j ,mi), f

N(q∗i ,mj)) and (fN(p∗j ,mi), f
N(p∗i ,mj))

the payoffs πNNi = πNNj are identical.

• For (fM(q∗j ,mi), f
M(q∗i ,mj)), (fM(p∗j ,mi), f

M(q∗i ,mj)) and (fM(p∗j ,mi), f
M(p∗i ,mj))

the payoffs πMM
i = πMM

j are identical.

• For (fM(q∗j ,mi), f
N(p∗i ,mj)), (fM(p∗j ,mi), N(q∗i ,mj)), (fM(p∗j ,mi), f

N(p∗i ,mj)) and

(fM(q∗j ,mi), f
N(q∗i ,mj)) the payoffs πMN

i and πNMj are identical. �

Proof: The claims follows in a straightforward manner by computing the equilibrium

payoffs (cf. appendix A). �

With the exception of profile (fN , fN) with price and/or quantity strategies the cal-

culation of optimal markups is analytically difficult because m∗j is a nonlinear reaction

function of mi and vice versa. But it is possible to prove that in the economically rea-

sonable part of the (m1,m2)-space all markup reaction functions are quasiconcave with

a positive intersection with the ordinate and hence have a unique symmetric solution.

For the profile (fN , fN) we have linear markup reaction functions

m∗i =
(a(d+ b(1− δ))(1− γ) + bδmj

Z2
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and the balanced parametrized payoff is given by

πi(m
∗
i ,m

∗
j) =

Z1(b(1− δ) + d)(b+ d)

(Z2 − bδ)2(b(1 + δ) + d)

The following result is important to make some considerations about the degree of

competition when the players use different behavioral rules:

Result 2.5. Assume a balanced parametrization for all behavioral equilibria. Then it

follows that πBB ≤ πNN ≤ πCC and πBB ≤ πMM ≤ πCC independent from the chosen

strategy variables for fM , fN . �

Proof: Result 2.4 states the independence from the strategy variable for all mi,mj and

henceforth also for optimal m∗i ,m
∗
j . In case of profile (fN , fN) the inequalities follow

directly from computing the difference of the equilibrium payoffs:

πNNi (m∗i ,m
∗
j)− πCCi =

−Z1Z2b
3δ3

(b(1 + δ) + d)(Z2 − bδ)2(bδ + Z2)2
≤ 0,

πNNi (m∗i ,m
∗
j)− πBBi =

Z1db
2δ3(bδ(1 + d− δ) + Z2)

(b(1 + δ) + d)(Z2 − bδ)2(bδ(1− δ)− Z2)2
≥ 0.

Since the equilibrium payoff πMM
i (m∗i ,m

∗
j) is represented by an analytically exceedingly

long expression, the claim is proven in another way (see appendix B). �

The result that markets with the behavioral profiles (fM , fM) and (fN , fN) are more

competitive than Cournot and less competitive than Bertrand does not imply that

these rules constitute balanced parametrized equilibrium profiles.

Result 2.6. Consider σi = qi and δ > 0. Then (fN , fN) is not a balanced behavioral

equilibrium profile. �

Proof: Straightforward computation of the balanced equilibrium payoffs yields πCNi >

πNNi , i.e. if the opponent plays with rule fN there is an incentive to select fC . �

The results 2.1 and 2.6 imply that for a behavioral repertoire Ω = {fN , fC} only

(fN , fC) and (fC , fN) are balanced parametrized equilibrium profiles. Henceforth the

equilibrium behavior is heterogeneous even if demand and cost functions are strictly

symmetric.

3 Endogenous Heterogeneity

The selected equilibrium profile and the associated outcomes depend on the repertoire Ω

and the chosen strategy variables. This will be demonstrated with a numerical example.
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Let a = 30, b = 1, δ = 0.5, c = 1, d = 1. Matrix 1 and 2 contain the equilibrium payoffs

for the cases σ1 = σ2 = x with Ω = {fC , fM , fN} and σ1 = σ2 = p with Ω =

{fB, fM , fN}. The matrix contains only the payoffs of the row player (for the column

player the payoffs are given by the transformed matrix due to symmetry reasons). Each

matrix has to be interpreted as a one-shot-game in which the rules are selected on the

first stage, the optimal markups are chosen on the second stage and the market game

is conducted on the third stage.

Matrix 1 fC fM fN

fC 83.062 82.727 82.727

fM 83.083 82.719 82.693

fN 83.083 82.404 82.384

Matrix 2 fB fM fN

fB 81.481 82.514 82.514

fM 81.683 82.719 82.693

fN 81.683 82.404 82.384

In case of quantity strategies (matrix 1) we have four balanced equilibrium profiles:

(fM , fC), (fN , fC), (fC , fM) and (fC , fN), all of them representing the Cournot-

Stackelberg solution and hence heterogeneous behavior of the two players. In case

of price competition (matrix 2) we have (fM , fM) as a unique equilibrium profile. If

one assumes one additional stage where the player first decide on the strategy variable,

then on the behavioral rule, the parametrization and finally on the price or quantity

itself, we obtain the one-shot-game denoted in matrix 3. The markup rules now have

an index reflecting the stratgy variable chosen on the first stage.

Matrix 3 fB fC fMx fNx fMp fNp

fB 81.481 81.660 82.727 82.727 82.514 82.514

fC 82.868 83.062 82.727 82.727 82.514 82.514

fMx 83.083 83.083 82.719 82.693 82.719 82.693

fNx 83.083 83.083 82.404 82.384 82.404 82.384

fMp 81.683 81.683 82.719 82.693 82.719 82.693

fNp 81.683 81.683 82.404 82.384 82.404 82.384

In this case we have nine balanced behavioral equilibrium profiles, namely all possi-

ble Cournot-Stackelberg solutions (fMx , f
C), (fMx , f

B), (fNx , f
C), (fNx , f

B), (fC , fMx ),
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(fC , fNx ), (fB, fMx ), (fB, fNx ) and the profile (fMp , f
M
p ). Optimizing behavior can but

need not be part of a behavioral equilibrium profile. In contrast, the presence of a mark-

up heuristic is neccessary. Note that the pure markup equilibrium profile (fMp , f
M
p ) is

Pareto-dominated by the other equilibrium profiles. But in (fMp , f
M
p ) the Nash equili-

brium condition is strictly fulfilled while in the Cournot-Stackelberg cases there is an

indifference between fB and fC on the one hand and between fMx and fNx on the other

had. Since the optimizer´s strategy variable is irrelevant in these cases it is possible

to assume price setting behavior while the markup agent adjusts the quantity to ac-

chieve the optimal markup. Not only in behavioral equilibria with given rules, but also

in almost all balanced behavioral equilibrium profiles the behavior of the duopolists

is different. This heterogeneity is not due to an asymmetric demand scheme, diffe-

rent production techniques or other exogenous reasons, but is a result of the strategic

interdependence.

In contrast to the set of strategies and parameters the behavioral repertoire Ω cannot

be considered as exogenously given to the players. The behavioral rules are rather

created by experimentation, learning, habit formation and so on. While the choice of

optimal strategies and markups can be modelled as an optimization problem, this is an

artificial assumption in case of choosing the rules. Especially in case of applying new

or modified behavioral rules it is not possible to explain this by optimizing behavior

since optimizing presumes a closed set of well known alternatives. Instead, the set Ω is

principally open. A closed and well defined set Ω, however, may be useful for analysing

the comparative performance of different rules, detecting equilibria profiles and the

conditions under which some rules are part of an equilibrium. If Ω is an open set there

is no possibility to derive optimal parametrizations analytically. Then the behavior of

oligopolistic players may be a drift in price-quantity space. Such a “market without

equilibrium” (v. Stackelberg) can then be interpreted as a result of an agent´s search

of rules which improve performance.

Do there exist behavioral rules which lead to perfect collusion? Rules which lead to

higher payoffs than markup rules also have at least one free parameter which can be

chosen optimally. In the (σi, σj)-space each balanced parametrized reaction function

will lead to a tangential solution where the slope of j´s reaction function equals the

slope of the highest possible iso-profit curve of player i. In the symmetric duopoly,

perfect collusion implies that the slopes of the iso-profit curves are identical and equal

to one, hence also the reaction functions must possess this slope. One may construct
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such functions even for the static game. But they are not plausible because the unique

intersection point would be dynamically unstable (cf. Dixit 1986). For this reason it

is not reasonable to expect collusion rules for static games. Since we have seen that

multiple behavioral equilibrium profiles exist, one may think about trigger strategies

in iterated games which lead to collusive behavior on stages t < T (with T as the last

stage of the game).

4 Discussion

In order to take simple but empirically relevant decision rules into account we employed

two different markup heuristics in a symmetric duopoly model. It was shown that

depending on the chosen markups the presence of these rules leads to Stackelberg

outcomes when the markup rule has the first mover advantage. Hence there is an

incentive for (at least) one player to deviate from optimizing and turning towards

markup behavior. Pure Cournot or Bertrand behavior does not represent a behavioral

equilibrium profile. Furthermore, it was shown that pure markup behavior is more

competitive than Cournot and less competitive than Bertrand, independent of the

chosen strategic variable (price or quantity). It turned out that in case of a combination

of markup and optimizing behavior only the strategy variable of the markup agent

determines the outcome.

It is questionable how it can be justified that payoff optimzing behavior is “full ratio-

nal”, like the decision theoretic position claims, while this behavior can be outperformed

by simple rules and does not constitute a behavioral equilibrium profile. To what ex-

tent does it make sense to call agents only “boundedly rational”, when they are able to

anticipate equilibrium profiles and hence select best performing simple heuristics? Lip-

man (1991) argues that no logical inconsistency exists in modelling bounded rationality

by “optimal” decision making about how to make decisions. The extended notion of

(behavioral) equilibrium used in this paper requires also another notion of rationality

in an explicative and a normative sense (cf. Güth/Kliemt 2001 on this topic).

Furthermore, the question arises whether the concept of a representative firm is valid

since behavioral equilibrium profiles are constituted by heterogeneous rules. The idea

of a representative firm requires that for each firm an incentive exists to behave in

the same way like all other firms do. The concept of behavioral equilibrium profiles

instead may imply (depending on Ω) that a firm behaves according to rule f 1 because

13



the other firm decides according rule f 2 and vice versa even in case of completely

symmetric conditions.

It seems promising to extend the present model in several ways: An extension to n

players requires simpler demand and cost functions but may lead to more complex

balanced behavioral equilibrium profiles. Furthermore the selection of rules and para-

metrizations can be analyzed under the assumption that the rival´s rule is not obser-

vable. The decision is then also based on expectations. In addition, it is reasonable to

assume some uncertainty regarding the demand scheme and the cost function of other

players. Finally, an extension to multi-period market games in order to study e.g. mark-

up adaption procedures will be interesting. From a methodological point of view the

relation between the concept of (balanced) behavioral equilibria profiles and the con-

cepts of evolutionary game theory and Darwinian dynamics require further studies (cf.

Rhode/Stegeman 2001, Qin/Stuart 1997).

Appendix A

The payoffs are calculated by solving the corresponding system of reaction functions

(cf. eq. (19) – (22)). Let Z3 = (b+ d), Z4 = (1− δ), Z5 = (mi − 1).

For (fM(qj,mi), f
M(qi,mj)), (fM(pj,mi), f

M(qi,mj)), (fM(pj,mi), f
M(pi,mj)) we ha-

ve

πMM
i =

a2(bZ4 +mjd(1− γmi) + bγ(δmj −mi))(bγ(1 + δ) + d)(bZ4 +mjd)Z5

(b2(1− δ2) + bd(mi +mj) +mimjd2)2

For (fN(qj,mi), f
N(qi,mj)), (fN(pj,mi), f

N(qi,mj)), (fN(pj,mi), f
N(pi,mj)) we have

πNNi =
((a(1− γ)−mi)Z3 + bδ(a(1− γ)−mj))mi

Z2
3 − δ2b2

For (fM(qj,mi), f
N(pi,mj)), (fM(pj,mi), f

N(qi,mj)), (fM(pj,mi), f
N(pi,mj)),

(fM(qj,mi), f
N(qi,mj)) we have

πMN
i =

(a(1−mjγ)Z3 + bδ(a(1 + γ)−mi))Z5(a(d+ bγ)Z3 − bd(γa(Z4 + bd) + δmi))

(Z3(b+mid)− b2δ2)2

(23)

πNMj =
((a(1− γ)−mj)(b+ dmi)− bδa(1− γmi))mj

Z3(b+mid)− b2δ2
(24)
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Appendix B

Proof of πBBi ≤ πMM
i ≤ πCCi with arbitrary σi, σj for the markup rule and balanced

parametrization: Note that πMM
i is independent from σi, σj (result 2.4). Since a balan-

ced parametrization is symmetric let mj = mi. In a behavioral equilibrium we have

q∗i (mi,mj) = q∗j (mi,mj) = q∗(mi). Solving q∗(mi) = qci to mi, where qci is the Cournot

quantity, we have mc as the markup which leads to πMM
i (mc

i ,m
c
j) = πCCi . It follows

that
∂πMM

i

∂mi

(mc
i ,m

c
j) =

a2(1− γ)(d(1 + γ) + γb(2 + δ))3b2δ2

(bδ + Z2)3(bγ(1 + δ) + d)W1

≤ 0

with W1 = bd(δ − 2) + b2γ(δ2 + δ − 2) − 2d(bγ + d) < 0. The partial derivative is

negative (or zero). This indicates that mc
i is not optimal and that there is an incentive

for both players to decrease the markup. Since the markup reaction function is strictly

quasiconcave and there is a unique solution m∗i = m∗j it follows that mc
i ≥ m∗i . Hence,

in a balanced parametrized equilibrium a lower iso-payoff curve can be achieved as in

the Cournot case. Solving q∗(mi) = qbi to mi, where qbi is the Bertrand quantity, we

have mb as the markup which leads to πMM
i (mb

i ,m
b
j) = πBBi . The partial derivative

∂πMM
i

∂mi

(mb
i ,m

b
j) =

a2(1− γ)(γb(δ(1− δ)− 2)− d(1 + γ))2dbδ2W2

(bδZ4 + Z2)3(bγ(1 + δ) + d)W3

≥ 0

with W2 = b(1 + γ(1 + δ) − δ2) + 2d > 0 and W3 = γb2(2 − δ)(1 − δ2) + ab(Z4(2 +

δ) + 2γ) + 2d2 > 0 is positive (or zero). This indicates that there is an incentive for

both players to increase the markup. Hence, in a balanced parametrized equilibrium

a higher iso-payoff curve can be achieved as in the Bertrand case. This completes the

proof.
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