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Abstract:

The sources of aggregate productivity growth are explored using detailed data for four-digit
U.S. manufacturing industries during 1958-96 and a decomposition formula which allows to
quantify the contribution of structural change. Labor productivity as well as total factor
productivity are considered and the aggregation is performed with either value-added or
employment shares. It is shown that structural change generally works in favor of industries
with increasing productivity. This effect is particularly strong in the years since 1990, in high-
tech industries and in durable goods producing industries. The impact of the computer revolu-
tion can be clearly identified.

JEL classification: L16, O12, O33, L60

Keywords: aggregate productivity growth, structural change, manufacturing



1 Introduction

Aggregate productivity growth, say in an industry or a broader sector, can have a huge variety

of sources. On the one hand, it may be fostered by the internal productivity growth within the

firms that constitute an industry or by the internal productivity growth within the single indus-

tries that constitute a broadly defined sector such as manufacturing. This internal productivity

growth is itself influenced by deeper factors like R&D, a better educated workforce or the

other factors discussed in Bartelsman and Doms (2000) and Griliches (1995). On the other

hand it is possible that aggregate productivity growth may also be stimulated by the pure

effects of structural change leading to the reallocation of market shares from less productive

entities to more productive entities even without any internal productivity growth. These

contributions to aggregate productivity growth are caused by the process of competition

leading to above-average growth (in terms of sales or employment) of technologically

progressive firms or industries. In the case of firms a further source of aggregate productivity

growth may be the exit of firms with below-average productivity performance and the entry of

firms with above-average productivity performance. Of course, this latter source of aggregate

productivity growth is absent if industries within a broader sector are considered.

In this paper, the aggregate productivity growth of the U.S. manufacturing sector during the

period 1958-96 is investigated using a decomposition formula that permits the separation of

the contributions of the internal sources of productivity growth of the more than 450 manufac-

turing industries at the four-digit level of aggregation from the external sources that are

associated with structural change. Productivity is defined either as labor productivity or as

total factor productivity, computed by a nonparametric approach. Structural change is defined

either in terms of changing shares of the industries within total manufacturing value added or

employment. Different time periods and industry subgroups are considered to gain a more

complete picture of the sources of aggregate productivity growth.

The results show that even thought the internal productivity growth of the single industries

dominates aggregate labor productivity growth, the effects of structural change in the form of

reallocation of value added or employment towards industries with increasing productivity

levels contribute considerably to aggregate labor productivity growth. In the case of aggregate
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total factor productivity growth, structural change is an even more important source of aggre-

gate productivity growth. The effects of structural change tend to be larger if structural change

is measured in terms of changing value-added shares than rather than changing employment

shares. At the same time, structural change in terms of value-added reallocation across indus-

tries appears to be more intense than structural change in terms of employment reallocation.

These results are in particular driven by the industry subgroups of the high-tech and durable

goods producing industries. Furthermore, it can be demonstrated that the computer revolution

is crucial for the association of productivity growth and structural change.

The paper proceeds as follows: Section 2 explains the ways used to compute labor and total

factor productivity. This section also explains the formula used to decompose productivity

growth to shed light on its sources. This is followed by the presentation of the results for labor

productivity in section 3 and total factor productivity in section 4. The relation to results at

higher or lower levels of aggregation reported elsewhere in the literature is discussed in the

concluding section 5.

2 Productivity Measurement and Decomposition

2.1 Data and Labor Productivity

The data for the subsequent computations are all taken from the NBER-CES Manufacturing

Industry Database, described in Bartelsman and Gray (1996). This unique database provides

consistent annual time series over the period 1958-96 for quantity and price data of more than

450 manufacturing industries at the four-digit level of aggregation.1 For each four-digit indus-

try and each year, labor productivity is computed as the real value added divided by the total

number of hours worked in the industry during a year. Since the number of hours worked is

given only for the production workers in the data set, it is assumed that the non-production

employees work the same number of hours as the production workers.2
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1 Used are data for 454 industries. Since the nonparametric productivity measurement described below requires
strictly positive values for all inputs, five industries have to be excluded from the data base because a zero
values for some inputs is computed in some years. These are the SICs 3292 (asbestos), 2384 (robes and dress-
ing gowns), 2395 (pleating and stitching), 3713 (truck and bus bodies) and 3714 (motor vehicle parts and
accessories).



2.2 Total Factor Productivity

For the computation of total factor productivity a nonparametric frontier function approach is

applied. The specific method used here is the Andersen-Petersen variant of data envelopment

analysis (Andersen and Petersen 1993). This is a nonparametric method that calculates an

index of total factor productivity by the radial distance of the input-output combinations of the

N industries towards a piece-wise linear frontier production function that is determined from

quantity data alone without requiring assumptions about the specific form of the production

function and without having to rely on price data. The Andersen-Petersen model calculates

productivity by computing an index that indicates to which level the output of an industry has

to be increased in order to reach a point on the frontier production function that is determined

by the observations of the other  industries in the sample, excluding the industry forN � 1

which productivity is actually computed. Mathematically, the distance measure to the frontier

of industry i in year t is the solution  of the following linear programming problem� it

.max � it : � ityit �
h��1,...,N�\i
� �hyht ;

h��1,...,N�\i
� �hxht � x it ; �����i � 0

Here,  denotes the single output variable and  denotes the 6�1-vector of input variables ofyit x it

industry i in year t.  denotes the (N–1)-vector of weight factors , omitting the i-th�����i �h

element.3 The solution of this linear program is denoted by  and quantifies to which factor� it

the output of industry i in year t has to be increased in order to reach a facet of the frontier

function that is spanned by the observations of the other industries in the same year. Larger

values of  thus imply lower levels of productivity and therefore suggest to use the inverse as� it

the measure of the level of total factor productivity subsequently, i.e. . Note thatait � 1/�it

these productivity measures are always to be interpreted as relative toward the frontier

function of the same year t and may therefore vary from year to year.

The data used to calculate the productivity scores are also taken from the NBER-CES

manufacturing industry database. The nonparametric productivity measurement is performed

- 3 -

3 This procedure is completely deterministic. An alternative econometric approach to the estimation of frontier
functions promises to be able to separate measurement errors from the productivity measure (see e.g. Greene
(1993)). Monte Carlo studies of Banker et al. (1993) and  Ruggiero (1999), however, show that quite large
samples are required for this advantage of the econometric approach to really show up.

appendix of Bartelsman and Gray (1996).



using the real value of shipments [VSHIP/PISHIP] as the output variable.4 The two labor input

variables are the number of non-production workers [EMP–PRODE] and the production

worker hours [PRODH]. Capital input is represented by the real equipment capital stock

[EQUIP] and the real structures capital stock [PLANT], separately. Finally, the two variables

that represent the input of materials and energy are the real cost of non-energy materials

[(MATCOST/PIMAT)–(ENERGY/PIEN)] and the real expenditures on fuels and electricity

[ENERGY/PIEN], respectively.

2.3 The Decomposition Formula

The research on the sources of aggregate productivity growth via the computation of produc-

tivity decompositions originates from empirical studies of entry, exit and growth dynamics at

the level of firms and individual establishments (see Dunne et al. 1988, 1989 and Caves

1998). The empirical studies of Baily et al. (1992, 1996, 2001), Disney et al. (2003) and

Foster et al. (1998) all use alternative descriptive decompositions of a share-weighted measure

of aggregate productivity growth. The decompositions split productivity change into several

terms, each with an illuminating economic interpretation.5

The decomposition formula proposed by Baily et al. (1996) that will be applied in this study is

based on the share-weighted average productivity level . Herein,  denotes theat � � i�1
N sitait sit

share that industry i (out of a total of N industries) has in total employment or value added in

period t and  denotes the productivity level of industry i in period t. The growth rate ofait

aggregate productivity between periods t and t ��1 is calculated as .�at�1 � at�/at � �at�1/at

Baily et al. (1996, p. 265) show that this growth rate can be decomposed according to6

.�at�1
at

�
� i�1

N sit�ait�1

at
�
� i�1

N �sit�1�ait � at�

at
�
� i�1

N �sit�1�ait�1

at

The first term on the right-hand side of the formula is interpreted as the within effect, which is

the share-weighted average productivity growth of the individual industries. The second term

represents the between effect. It is positive if industries with above-average productivity levels
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5 An antecedent to these productivity decompositions at the industry level is Salter (1960).
4 The abbreviations in square brackets are again those defined in the appendix of Bartelsman and Gray (1996).



experience increasing shares between periods t and t �� 1 on average, and industries with

below-average productivity levels experience decreasing shares on average. The third term is

a covariance-type term which is positive if industries with increasing productivity tend to gain

in terms of their shares (or more general, if share change and productivity change tend to have

the same sign). Consequently, this term is called the covariance effect. The between effect and

the covariance effect together reflect the role of structural change in aggregate productivity

growth.

In the literature, several modifications and extensions of this decomposition are discussed.

Baily et al. (1992) and Foster et al. (1998) devise decomposition formulae with additional

terms that represent the contributions of entering and exiting establishments to aggregate

productivity growth. These effects are irrelevant for the investigation of inter-industrial struc-

tural change because of the constant industry coverage over the whole sample period. Grili-

ches and Regev (1995) propose an alternative decomposition formula that is less sensitive to

measurement error but allows no clear identification of the covariance effect, which is of

special importance for the present study. Olley and Pakes (1996) decompose the share-

weighted average productivity level into the sum of the equal-weighted average productivity

and a term that is interpreted as the effect of reallocation from below-average productivity

industries to above-average productivity industries. At the industry level, Fagerberg (2000)

and Peneder (2003) employ a decomposition formula very similar to that of Baily et al.

(1996), although with a slightly different interpretation of the between-industry effect.

3 Labor Productivity Growth

The following tables show the results of the application of the decomposition formula for

labor as well as total factor productivity with either value-added or employment shares used

for the aggregation. Each table contains the results for all industries over the entire sample

period 1958-96 as well as for different subsamples of the data. The results reported in the

tables refer to the periods indicated in the first column or to the entire period 1958-96 when

certain industry subgroups are considered. Subperiods are defined by the years before and

after the first oil crisis, 1958-73 and 1974-96, and, in addition, the period before the impact of
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the computer revolution becomes important, 1958-90. In each case, the period indices t and t

��1 in the decomposition formula are interpreted as referring to the industry means of the first

and last five years of the respective period for both the real value-added shares and the

productivity scores. This should render the results robust with respect to exceptional events in

single years. For ease of comparison, the figures in the tables are each divided by the length of

the respective time spans to which they refer.

Concerning subgroups, the four-digit manufacturing industries are divided into high-tech and

low-tech industries according to the classification of Hadlock et al. (1991),7 where a three-

digit manufacturing industry group is classified as high-tech if the "industry's proportion of

R&D employment in the year 1989 is at least equal to the average proportion for all industries

surveyed" (Hadlock et al. 1991, p. 26) and as low-tech otherwise. Accordingly, high-tech

industries in the present context are all four-digit industries that pertain to one of the three-

digit industry groups classified as high-tech by Hadlock et al. (1991), while the remaining

industries are classified as low-tech. This procedure results in subsamples of 34 high-tech and

106 low-tech three-digit industry groups to which 135 and 319 four-digit industries pertain,

respectively. Another division of the four-digit industries is that into durable goods producing

and nondurable goods producing industries according to the classification of the correspond-

ing two-digit major groups listed in appendix B of Quah and Sargent (1993). This classifica-

tion results in 258 four-digit industries producing durable goods and 196 four-digit industries

producing nondurable goods. Other sample divisions distinguish between industries whose

shares are increasing and industries whose shares are decreasing from the industry means of

the first five years to that of the last five years of the respective sample period. The final

investigation is concerned with the effect of excluding the seven exceptionally fast growing

industries that are identified from the fractile transition matrix for the entire sample period in

Krüger (2005). These industries managed to grow from the lowest (Q1) to the highest (Q5)

quintile of all industries in terms of value-added shares. They are predominantly related to the

computer revolution and are denoted by "Q1 � Q5" in the following tables.8
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3572), computer peripheral equipment (SIC 3577), printed circuit boards (SIC 3672), semiconductors and
related devices (SIC 3674) and electromedical equipment (SIC 3845).

7 This classification has been frequently used in the recent empirical literature on the industry life cycle (see
Agarwal (1996, 1998), Agarwal and Audretsch (2001) and Agarwal and Gort (1996), among others).



Table 1
Decomposition of Labor Productivity Growth (Value-Added Shares)

Note: the results are based on the changes between the averages of the first and the last five years of the
indicated periods; N indicates the number of industries on which the respective results are based; the results
for the industry subgroups are reported for the entire period 1958-96; the division of the industries in high-
and low-tech is due to Hadlock et al. (1991) and the division into durable and nondurable goods producing
industries follows Quah and Sargent (1993, appendix B).

0.00750.00170.04040.0497447excluding Q1 � Q5

0.00170.00080.03450.0369256industries with decreasing shares
0.0163-0.00180.05240.0669198industries with increasing shares

0.01010.00420.04420.0585196nondurable goods industries

0.0302-0.00370.04100.0675258durable goods industries

0.00250.00080.03270.0360319low-tech industries

0.0274-0.00120.05650.0828135high-tech industries

0.01580.00170.03430.0517454period 1974-96

0.0012-0.00150.04020.0398454period 1958-73

0.00780.00100.03890.0476454period 1958-90
0.01980.00060.04270.0630454period 1958-96

covariance
effect

between
effect

within
effect

productivity
growthNsubsample

3.1 Value-Added Shares

Considering first the case of labor productivity growth with value-added shares used for the

aggregation, table 1 shows that results of the application of the decomposition formula to the

different subsamples of the data. As the results in the first row of the table show, aggregate

labor productivity has an average annual growth rate of 6.3 percent during the entire sample

period 1958-96. This aggregate productivity growth is dominated by the within effect which

explains about two thirds during 1958-96. The remaining third is explained by the positive

covariance effect, implying that structural change is associated with productivity growth in a

way that industries with increasing labor productivity also tend to gain in terms of value-

added shares. The between effect appears to be nearly zero. The next rows show that this

outcome is mainly driven by the development during the second subperiod 1974-96 and

especially the years since 1990. Excluding the years 1991-96 lowers aggregate productivity
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growth and simultaneously lets the covariance effect drop by more than half in magnitude

(comparing the first to the second row in the table).

During that period, information technology and computers became increasingly influential for

all parts of economic life. In a related investigation at a higher level of aggregation, Jorgenson

and Stiroh (1999) found that the computer revolution leads to a "massive substitution toward

computers in both business and household sectors" (p. 113) during 1990-96 whereas both

output and total factor productivity grew no faster than during 1973-90. Stiroh (2002) investi-

gates those sources of the acceleration of aggregate U.S. (labor) productivity 1995-2000

compared to the earlier period 1987-95 which are related to the use and the production of

information technology (IT) assets. He concludes that "IT-related industries are indeed driving

the U.S. productivity revival" (Stiroh 2002, p. 1560). All these findings strongly support the

exceptional growth performance of computer-related industries and their impact on productiv-

ity growth in the aggregate.

To shed more light on the sources of the development over the entire sample period, the

sample is divided into several subsamples for which the decomposition is computed. Particu-

larly relevant for productivity driven structural change implied by the large covariance effect

for the whole sample of industries are high-tech industries and durable goods producing

industries. These subgroups have faster aggregate productivity growth and much larger covari-

ance effects than low-tech industries and nondurable goods producing industries. Counter to

expectations, this outcome is not caused by an excessive overlap of durable goods producing

and high-tech industries. Of the 258 durable goods producing industries, only 87 pertain to the

subgroup of high-tech industries (compared to 171 pertaining to low-tech industries). The

industries with increasing value-added shares show a large positive covariance effect, whereas

the covariance effect in the industries with decreasing value-added shares is smaller by an

order of magnitude. The latter industries aggregate productivity growth is almost exclusively

due to the within effect. Finally, the exclusion of the seven exceptionally fast growing core

computer industries weakens the covariance effect by a considerable amount, comparable in

magnitude to the effect of excluding the years since 1990.
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Table 2
Decomposition of Labor Productivity Growth (Employment Shares)

Note: see table 1.

-0.0020-0.00020.03770.0354447excluding Q1 � Q5

0.00120.00080.04190.0439236industries with decreasing shares

0.0063-0.00190.03850.0429218industries with increasing shares

-0.00070.00140.04130.0420196nondurable goods industries

0.0072-0.00240.04010.0450258durable goods industries

-0.00230.00010.03120.0290319low-tech industries

0.0098-0.00280.05930.0663135high-tech industries

0.0016-0.00070.03340.0342454period 1974-96

-0.0005-0.00120.03740.0358454period 1958-73

0.0003-0.00080.03600.0356454period 1958-90
0.0038-0.00070.04060.0437454period 1958-96

covariance
effect

between
effect

within
effect

productivity
growthNsubsample

3.2 Employment Shares

Table 2 shows the corresponding results with employment shares used for the aggregation

instead of the value-added shares. The overall pattern of the results is similar to the previous

results with value-added shares. Exceptions are the facts that aggregate labor productivity

growth appears to be lower for most subperiods and industry subgroups and that the contribu-

tion of the covariance effect is substantially attenuated and in some cases even becomes

negative. Indeed, it appears to be the case that structural change in the manufacturing sector is

more intense in terms of value added than in terms of employment. This can be seen if the

average absolute cross-industry change of the respective shares is computed for each year.

With a single exception, this magnitude is throughout higher for the value-added shares than

for the employment shares. Other indicators such as the cross-industry standard deviations of

the share change give a similar indication.

The essence of the discussion in this section is that the results provide an indication of a

positive relation between differential productivity growth and structural change measured in
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terms of value-added shares (and less so in terms of employment shares). In the next section,

the analysis is repeated for the nonparametrically calculated measure of total factor productiv-

ity and it is shown that the association of productivity growth and structural change is closer

with this more sophisticated measure of technological change than it is with pure labor

productivity change.

4 Total Factor Productivity Growth

4.1 Value-Added Shares

Looking at the results of the decomposition with value-added shares used for the aggregation

in table 3, we find that the growth rates for total factor productivity appear to be much lower

compared to the growth rates of labor productivity. This is on the one hand a straightforward

impact of the increasing mechanization in most manufacturing industries, but is on the other

hand also a result of the nonparametric method used here to compute total factor productivity.

This method measures the total factor productivity of an industry in a specific year by the

radial distance towards a piece-wise linear frontier production function determined by the

best-practice observations of the same year. Thus, the productivity growth rates shown in this

table and the next reflect only changes of the relative productivity positions of the industries

towards this frontier function, but not changes of the frontier function itself. This meaning of

the figures has to be kept in mind for the following interpretation of the results.9

- 10 -

9 The alternative way of pooling all industries across all years together and computing a so-called all-time-best
frontier function as in Cantner and Krüger (2006) leads to rather similar results. An even more sophisticated
approach based on the Malmquist index as followed in Krüger (2004) can not be applied here since the
Malmquist index only gives a measure of productivity change and does not allow to infer the associated
productivity level measures which are required by the decomposition formula.



Table 3
Decomposition of Total Factor Productivity Growth (Value-Added Shares)

Note: see table 1.

0.00020.0008-0.00040.0006447excluding Q1 � Q5

-0.0003-0.0001-0.0019-0.0023256industries with decreasing shares

0.0038-0.00120.00300.0056198industries with increasing shares

-0.00080.0015-0.0011-0.0005196nondurable goods industries

0.0088-0.00180.00150.0085258durable goods industries

0.00030.0003-0.0012-0.0006319low-tech industries

0.0070-0.00070.00250.0088135high-tech industries

0.00420.00140.00120.0068454period 1974-96

0.0007-0.0020-0.0006-0.0020454period 1958-73

0.00150.00030.00710.0089454period 1958-90
0.0038-0.00010.00020.0039454period 1958-96

covariance
effect

between
effect

within
effect

productivity
growthNsubsample

Despite these lower aggregate productivity growth rates, the role of structural change appears

to be more important for aggregate total factor productivity development over the entire

sample period. In this case, the covariance effect explains nearly the whole change of aggre-

gate total factor productivity, leaving only minor roles for the within and between effects. This

implies that structural change also contributes considerably to aggregate total factor productiv-

ity growth in the manufacturing sector since, on average, industries with rising productivity

also grow in terms of shares and industries with declining productivity also experience reduc-

tions of their shares. The between effect, however, appears not to be very important. Although

nothing is said here about statistical significance, the interpretation suggested by this pattern

of results is that productivity growth is positively related to share growth, whereas a once

established productivity position above or below the average is rather unrelated to share

growth. The first (productivity growth) effect outweighs the second (productivity level) effect.

Thus, it is differential technological progress (mediated by productivity growth) which drives

structural change in the first instance and not the relative productivity positions of the past.
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Again the last six years of the sample period seems to play a special role for this outcome.

Their exclusion leads to a dominating within effect instead of the covariance effect while the

between effect remains small. In the years before the onset of the productivity slowdown the

between effect is most important for the explanation of the decline of aggregate total factor

productivity, implying that industries with below-average productivity levels experience

increasing shares on average and vice-versa for industries with above-average productivity

levels. In the following years the between effect weakens and the covariance effect is more

important as a source of aggregate productivity growth.

As in the case of labor productivity before the results for the entire sample period are mainly

driven by the subgroups of the high-tech industries, durable goods producing industries and

the industries with increasing shares. This, together with the substantial weakening of the

magnitude of the covariance effect once the years since 1990 are excluded, are further pieces

of evidence to support the view that the computer revolution leads to widespread reallocation

of value added across industries in favor of industries with rising total factor productivity

leading to the strong positive covariance effect found here. Again, the exclusion of exception-

ally fast growing industries reduces aggregate total factor productivity growth and the covari-

ance effect to values close to zero.

4.2 Employment Shares

The results obtained using employment shares instead of value-added shares to aggregate total

factor productivity are reported in table 4. Quite comparable to the differences between the

results with value-added and employment shares in the case of labor productivity before,

aggregate total factor productivity growth appears to be lower and the covariance effect is

attenuated in magnitude. This is associated with the weaker appearance of structural change

when measured in terms of employment shares. Notwithstanding this, the pattern of the

covariance effect across different subperiods and subsamples is unaffected by the switch from

value-added to employment shares.
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Table 4
Decomposition of Total Factor Productivity Growth (Employment Shares)

Note: see table 1.

-0.0001-0.0003-0.0003-0.0006447excluding Q1 � Q5

0.0000-0.00020.00110.0009236industries with decreasing shares

0.0028-0.0012-0.00070.0009218industries with increasing shares

0.0000-0.00060.0001-0.0005196nondurable goods industries

0.0025-0.00050.00070.0027258durable goods industries

0.0002-0.0003-0.0006-0.0006319low-tech industries

0.0032-0.00130.00280.0048135high-tech industries

0.00080.00020.00330.0043454period 1974-96

0.0003-0.0016-0.0030-0.0044454period 1958-73

0.0008-0.00040.00730.0077454period 1958-90
0.0013-0.00060.00040.0011454period 1958-96

covariance
effect

between
effect

within
effect

productivity
growthNsubsample

Thus, compared to the results for labor productivity the association of differential productivity

growth and structural change appears to be stronger in the case of total factor productivity.

Together with productivity growth within the industries, this covariance effect drives aggre-

gate productivity growth of the manufacturing sector, whereas the contribution of the between

effect is again small and negative in most of the subsamples considered. This outcome is

mainly driven by the development since 1974 rather than before. For aggregate productivity

growth as well as for the contribution of structural change the final six years of the sample

period and the seven industries related to the computer revolution seem to be of particular

importance. Regarding the industry subgroups, high-tech industries, durable goods producing

industries and industries with growing value-added shares are much more crucial for the

positive covariance effect and aggregate productivity growth than are low-tech industries,

nondurable goods producing industries and industries with shrinking shares. In the latter

subgroups the within effect (and sometimes the between effect) dominates aggregate produc-

tivity growth.
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5 Discussion and Conclusion

Taken together, the results discussed above show four general features: First, labor productiv-

ity change is throughout positive and much higher than total factor productivity change, which

is sometimes negative. The lower values for total factor productivity change may be due to

increasing mechanization or to some extent caused by the nonparametric method used.

Second, the within effect is the dominating component of the labor productivity decomposi-

tion, but is less important in the case of total factor productivity relative to the other compo-

nents. Third, the between effect appears to be quantitatively unimportant. It also appears to be

more frequently negative when employment shares instead of value-added shares are used for

the aggregation. Fourth, the covariance effect is positive in most cases, especially when its

contribution is large in magnitude. This confirms the theoretically plausible reallocation

pattern of employment or value-added shares towards industries with increasing productivity

levels. The covariance effect also represents a quantitatively more important contribution to

total factor productivity growth compared to labor productivity growth.

Regarding subsamples, the association of productivity growth and structural change is particu-

larly close for the entire sample period 1958-96 (where the years since 1990 seem to play a

special role in driving this outcome), high-tech industries (rather than low-tech industries),

durable goods producing industries (rather than nondurable goods producing industries) and

industries with increasing shares (rather than industries with decreasing shares). The exclusion

of seven exceptionally fast growing industries that are strongly related to the computer revolu-

tion weakens the covariance effect substantially. This, together with the special role played by

the years since 1990 suggests a strong impact of the computer revolution on the process of

structural change in favor of technologically progressive industries experiencing high rates of

productivity growth.

Moreover, structural change is more intense when measured in terms of value-added shares

rather than employment shares. Irrespective if productivity growth is measured using labor

productivity or total factor productivity, aggregate productivity growth is considerably higher

and the covariance effect is larger when value-added shares are used. In addition, technologi-

cal progress measured by total factor productivity growth is more closely associated with
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structural change. Increases in labor productivity may also be due to rising degrees of mecha-

nization of manufacturing production processes, but these appear to be also more closely

associated with value-added reallocations than with labor force reallocations.

These findings are quite similar to related results regarding the effects of structural change

among U.S. manufacturing establishments which are succinctly surveyed by Bartelsman and

Doms (2000) and Haltiwanger (2000). Although the results vary considerably across time

periods, data frequency, the specification of the shares in terms of labor or output, and the

choice of labor productivity or total factor productivity, they can be summarized as follows.

The within effect usually represents the largest contribution to aggregate productivity growth.

The between effect is sometimes found to be quite small in absolute magnitude while the

covariance effect is frequently positive and of considerable magnitude. Regarding entry and

exit, the general pattern is that more productive entering establishments replace less produc-

tive exiting establishments. Overall, net entry contributes positively to aggregate productivity

growth. Entering establishments are usually less productive than incumbents but experience

considerable productivity growth upon survival. Comparisons of different time periods show

that the contribution of reallocation to average productivity growth is higher during cyclical

downturns.

Concerning studies for other countries, Cantner and Krüger (2006) investigate German

manufacturing firms during 1981-98 with a decomposition formula and find a pattern rather

similar to that for U.S. establishments. Especially after the German reunification the compo-

nents referring to structural change and net entry are much more important than the within

component. Disney et al. (2003) perform a similar productivity decomposition for of U.K.

manufacturing establishments during 1980-92 to identify the contribution of internal restruc-

turing (technological and organizational change among survivors) versus external restructur-

ing (market share reallocations, entry and exit). The findings show that external restructuring

accounts for about 50 percent of labor productivity growth and 80-90 percent of total factor

productivity growth. A sizable contribution comes from entry and exit because entrants tend

to be more productive than exitors. Much of this effect can be attributed to multi-

establishment firms closing down poorly performing plants and opening new plants which
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operate at high productivity. External competition appears to be an important determinant of

internal restructuring and productivity growth even if sample-selection issues are taken into

account.

Haltiwanger (1997, 2000) emphasizes that structural change is much more intense within

industries rather than between industries, even at the detailed four-digit level of

disaggregation.10 This may also be attributed to the quite short time spans used in the micro-

economic studies. Over longer time spans such as used in the present study this finding may

reverse. The widely evident turbulence at the level of firms and establishments also stands in

contrast to the perception of inter-industrial structural change as a rather smooth process.

There is no contradiction, however, as Schumpeter recognized long ago, when he wrote that

"the development of whole industries might still be looked at as a continuous process, a

comprehensive view 'ironing out' the discontinuities which occur in every single case"

(Schumpeter 1928, p. 382).

At higher levels of aggregation than the four-digit level in this study the effects of structural

change on aggregate productivity growth appear to be weaker. Applications of decomposition

formulae to international industry-level data are reported in Fagerberg (2000) and Peneder

(2003).11 Fagerberg (2000) investigates a data set of 24 manufacturing industries in 39

countries during the period 1973-90. He finds that for most countries the within effect

dominates average labor productivity development, whereas the between effect is not very

important in quantitative terms. The covariance effect appears to be negative in most

countries. He concludes that on average inter-industrial structural change has not contributed

much to aggregate productivity growth. Only in countries with an increasing share of the

electronics industry, productivity growth was noticeably higher.12 In his sample of three-digit

manufacturing industries in the countries of the European Union, Peneder (2003) finds only a

- 16 -

12 The magnitude of the effect exerted by the electronics industry is disputed by Carree (2003), however.

11 The antecedent to these productivity decompositions at the industry-level, Salter (1960), finds that across 28
U.K. industries roughly at the two-digit level during 1924-48 the within-industry effect is about as large as the
components of the labor productivity (output per head) decomposition that represent structural change. This
effect of structural change is found to be considerably smaller in a comparable sample of U.S. industries.

10 A particularly striking fact is that during the 1970s and 80s about 10 percent of all manufacturing jobs in the
U.S. were lost in each year and about the same number were created. Out of these, only 13 percent are associ-
ated with reallocations across four-digit industries (see Haltiwanger 1997, pp. 57f.). See also Davis et al.
(1996) for related findings.



weak impact of structural change on aggregate labor productivity growth. There is no system-

atic tendency for labor force reallocation towards industries with high rates of productivity

growth. The results for different industry groups are very heterogeneous and many effects

cancel out in the aggregate.
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