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Abstract:

This paper is concerned with empirical approaches within the field of evolutionary eco-
nomics. Evolutionary economics devotes special emphasis on the heterogeneity of ac-
tors with respect to their technological performance as well as to their inventive and
innovative success. This causes major methodological problems which require appropri-
ate measures and methods for their solution. This article attempts to introduce some
tools which are able to measure and represent technological heterogeneity and its change
and to investigate the determinants consistent with evolutionary theorizing. The tools
suggested constitute basic building blocks of what may be called �evolumetrics�.
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1. Introduction

Neo-Schumpeterian and related evolutionary approaches highlight technological change

and progress as major driving forces of economic development and growth. For under-

standing and analyzing these phenomena a specific methodological point of view is as-

sumed which considers technological performance and technological progress as not

uniformly distributed and homogeneous across actors, which may be individuals, firms,

sectors, regions or even countries. In contrast, technological performance and change are

considered as heterogeneous, in that actors employ different technologies (technological

variety) or they run the same technology with different performance (technological

asymmetry). This observable variety and asymmetry is due to different inventive and

innovative success of actors which in turn is related to differences of technological

knowledge used and accumulated, differences in technological opportunities, appropri-

ability conditions, etc.

Any empirical analysis which explicitly aims at allowing and accounting for this hetero-

geneity is confronted with the problem of applying appropriate measures and methods

for dealing explicitly with heterogeneous technological performance and change. This

article attempts to introduce empirical tools which are able to measure, represent and

investigate the determinants of technological heterogeneity and its change within an

evolutionary framework. In the following we first show how heterogeneous technologi-

cal structures and their change over time can be measured by applying the non-

parametric frontier approach. This procedure relies on a specific index of total factor

productivity which takes into account asymmetry in performance and variety in produc-

tion functions and therefore is able to calculate local (or heterogeneous) technological

advances. Second, by kernel density estimates the results obtained for technological

heterogeneity and change can be visualized in the form of density plots. Third, searching

for determinants of technological heterogeneity and its dynamics quantile regression

analysis is introduced which allows to uncover beyond-the-mean relationships and dy-

namics.
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2. Nonparametric Productivity Measurement

A first central problem is concerned with the measure one should apply in order to ac-

count for technology related and innovation determined heterogeneity. In the following

we suppose total factor productivity and its change over time to be valid measures. By

this we postulate a number of features that this measure has to satisfy in order to fit

within the framework of a Neo-Schumpeterian or evolutionary approach.1

First of all, the measure of total factor productivity (TFP) and its change over time is a

measure which is applicable to a broad range of innovative phenomena on the level of

individuals, firms, sectors, regions or countries. Second, in order to account for better or

worse technological performance � and thus to distinguish innovators from imitators �

and to give a quantitative account of these differences or asymmetries the measure of

total factor productivity should be determined by a frontier analysis where the frontier

function or technology frontier is determined by the best-performing observations. All

worse performing observations are in some distance to this technology frontier and this

distance can be used as a measure for different technological performance. Third, in

order to account also for variety in production functions or output mixes the TFP measu-

re is determined by a nonparametric procedure. Fourth, tracking this measure over time

by the Malmquist productivity index allows to take account of local technological

change and to separate this from sole improvements in productive efficiency.

This brief discussion results in the suggestion of an empirical procedure which differs

considerably from rather traditional approaches to determine total factor-productivity

and its change. Explicitly it neither assumes a parametrically given technology (produc-

tion function) which holds on the average nor determines technological change as af-

fecting all actors equally.

2.1 Technology�Productivity Structures

The non-parametric frontier function approach basically relies on index numbers to meas-

ure total factor productivity similar to the one used in more standard productivity analysis.

                                                
1 For an extensive discussion of these features see Cantner and Hanusch (2001).
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In a sample of n observations for each observation },...,1{ ni ∈  a productivity index ih  is

defined by:

(1)
i

i
ih

xv
yu
′
′

=

Here iy  is a s-vector of outputs },...,1{ sr ∈  and ix  a m-vector of inputs },...,1{ mj ∈  of

observation i. The s-vector u and the m-vector v contain the aggregation weights ru  and

jv , respectively and the prime denotes transposition.

The aggregation functions of the TFP index (1) for the inputs and outputs, respectively, are

of a linear arithmetic type and can be determined by the non-parametric approach relying

only on a minimal set of assumption � in particular, it is not assumed that all observations

of the sample have a common identical production function.

The basic principle of the non-parametric approach is to determine the indices ih  in such a

way that they can be interpreted as efficiency ratings which implies a comparison of each

observation with the relatively best observation(s). The most efficient observations of a

sample are evaluated by 1=ih , less efficient observations by 1<ih . Comparing all obser-

vations with each other we achieve at an account of different technological performance

where the differences are quantified by the measure ih .

The following constrained maximization problem is used to compute such a h-value for a

particular observation },...,1{ ni ∈ :
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Problem (2) determines ih  subject to the constraints that the lh  of all observations (in-

cluding i itself) of the sample are not larger than unity and therefore bound ih  in ]1,0( .

Moreover the elements of u and v are constrained to be strictly positive.
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Since we employ linear arithmetic aggregation functions for inputs and outputs, (2) is a

problem of linear fractional programming. Charnes and Cooper (1962) suggest a transfor-

mation of (2) into a standard linear program which can be solved with the well-known

simplex algorithm. Performing this step and transforming the resulting primal to its corre-

sponding dual problem, one arrives at the well-known Charnes/Cooper/Rhodes (1978)

envelopment form of the non-parametric approach:

(3)

0
0

s.t.
min

≥
≥−
≥

i
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Xλx
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where Y and X are the s×n-matrix of outputs and m×n-matrix of inputs of all observations

of the sample, respectively. The parameter iθ  expresses the percentage level to which the

inputs of observation i can be proportionally reduced, in order to have this observation

producing on the production frontier representing the best practice technologies � it is

identical to ih  and is a relative measure of technological performance. Proceeding in this

way and solving (3) for all observations in the sample, the non-parametric approach de-

termines an efficiency or technology frontier constructed by the best-practice observations.

The efficiency rating of each observation is measured relative to this frontier.

The n-vector iλ   states the weights of all (efficient) observations which serve as reference

for observation i. Efficient observations (with 1=lθ ) are characterized by 1=iiλ and zero

for all other elements. Grouping all observations according to their respective reference

observations allows to detect technological clusters which are distinguished by different

input intensities, output intensities or input coefficients.

2.2 Technology�Productivity Dynamics

In order to track the productivity structure � determined by the above introduced measures

� it is by no means sufficient to compare the results of consecutive periods because they

are relative to different frontier functions. Consequently, to relate consecutive periods we

have to compute relative measures which compare period t with t+1 and vice versa. The
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measure chosen for this purpose is the Malmquist index of productivity change. A striking

interesting feature of this index is that it can be decomposed into a measure of technologi-

cal change and one of efficiency change, i.e. catching-up or falling behind.

The theoretical basis of the Malmquist-productivity index is found in the work of

Malmquist (1953) and Caves/Christensen/Diewert (1982). Färe et al. (1994) have shown

how the efficiency measure iθ  above can be used to compute the Malmquist index.

Following this line of reasoning the Malmquist-productivity index 1+t
iM  states the pro-

ductivity change of observation i between t and t+1 and is defined as follows:

(6)
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,  is the efficiency of observation i in period t when the frontier function of period s

serves as reference measure. Simple manipulation of (6) leads to the following decom-

position of the Malmquist index:
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The second line in (7) states the decomposition of the productivity change into in tech-

nological change 1+t
iMT  and change in productive efficiency 1+t

iME . Whenever

11 <+t
iME  ( 11 >+t

iME ) we find catch-up (falling-behind). In contrast 1+t
iMT  indicates

movements of the frontier. With 11 <+t
iMT  ( 11 >+t

iMT ) we observe technological prog-

ress (technological regress) at the frontier.

The productivity change according to (6) is local in the sense that it is specific to the ob-

servation under consideration. In this respect the degree of this local change depends (a)

on the observation�s ability to shift towards the frontier ( 1+t
iME ) and (b) on the behavior

of the frontier ( 1+t
iMT ). As to (b) the respective change is also local in the sense that for

observation i it is only relevant how the part of the frontier assigned to i (by way of the

elements of the λ -vector) shifts. The decomposition of the index allows to distinguish

these two movements.
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3. Kernel Density Estimation

Once calculated one may want to have a first spot on the heterogeneity in technology or

productivity levels or changes. For that, descriptive statistics have a certain appeal but

even the quantification of the amount of heterogeneity in the sample by the standard

deviation or the span may hide important characteristics such as multimodality. What is

required is a statistical method that gives an impression of the shape of the density

function of a variable while imposing only minimal a priori assumptions. The most ap-

pealing method for this task is kernel density estimation which is a kind of smoothing of

a histogram to eliminate the dependence on the bin edges (see e.g. Scott (1992) and

Wand and Jones (1995)).

Kernel density methods estimate the ordinate of a density function )( yf  at a certain

point y by a weighted average of all n data points ),...,1( niyi = , where the weights are

assumed to decrease with an increasing distance of the data points from y (and therefore

decreasing relevance for the estimation of the density at y). Formally, the density at the

point y is calculated by

(8) �
=

�
�

�
�
�

� −
=

n

i

i

b
yyK

nb
yf

1

1)(� .

Two elements in equation (8) influence the resulting density estimate. The first element

is the kernel function )(wK  which controls the weights and is assumed to satisfy the

general properties of a symmetric probability density function

(9) wwK ∀≥ 0)( , � =1)( dwwK , � = 0)( dwwwK  and � ∞<< dwwKw )(0 2 .

By construction of the kernel density estimator all continuity and differentiability prop-

erties of the kernel function carry over to the estimated density function. Common

choices are the standard normal density and the functions listed in Scott (1992, p. 140).

The kernel density estimate is in general rarely affected by the choice of the kernel

function.

In contrast, second element in equation (8), the bandwidth parameter b, has substantial

influence on the density estimate. A too large value of b leads to an oversmoothed den-

sity with a possible loss of detail, whereas a too low value of b results in undersmooth-
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ing of the density which appears to be quite jagged and shows spurious structure in this

case. The computation of b relies on different variants of cross-validation and is dis-

cussed e.g. in Wand and Jones (1995, ch. 3). Especially in cases where the data may be

multimodally distributed simpler rules-of-thump are preferred, which tend to lead to an

oversmoothed kernel density estimate.

The estimation of a whole density function rests on choosing a grid of values for y on

which )(� yf  is computed. It has to be noted that the result of kernel density estimation

is not an explicit functional form of the density but only a vector containing the ordi-

nates of the density function at the chosen grid points is obtained. The whole procedure

is purely nonparametric in that no assumptions about the shape of the density have to be

made a priori. The outcome of such an analysis depends exclusively on the information

contained in the data.

4. Quantile Regression

Measurement and representation/visualization of technological heterogeneity using non-

parametric methods are important parts of empirical analyses in evolutionary econom-

ics. If we want to proceed to find possible sources of heterogeneous technological

structures and development it would be unfortunate if we had to rely on correlation

techniques like least squares regression analysis. Even nonparametric regression meth-

ods, although at first glance well suited to evolutionary principles because of their flexi-

bility, are not appropriate because they only estimate the mean of a dependent variable

conditional on one or more explanatory variables. What is required for evolutionary

empirical analyses is a regression method that provides a characterization of the entire

distribution of a dependent variable given a set of explanatory variables and not just its

mean.

A promising method in this respect is the approach of quantile regression which has the

potential to uncover differences in the response of the dependent variable to changes of

the explanatory variables at different points of the conditional distribution. By that a

large amount of information about the heterogeneity of the reactions of the sample items

to changes of their characteristics or their environment can be gained. In addition to
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these conceptual advantages, the coefficient estimates obtained with quantile regression

are robust with respect to outliers in the dependent variable and in the case of nonnor-

mal errors quantile regression estimates may be more efficient than least squares esti-

mates (Buchinsky (1998), Koenker and Hallock (2001)).

To understand the logic of quantile regression we first consider the case of a univariate

real valued random variable y with a continuous cumulative distribution function )(yF .

The τ -th, ]1,0[∈τ , (population) quantile of this random variable is defined as

)(})(:inf{)( 1 τFτyFyyQτ
−=≥= . Thus, the quantile function represents the same

information about the heterogeneity of the observations as does the cumulative

distribution function, although in a different way. From the definition of the quantile it

is clear that the calculation involves a sorting operation of the observations. The key

point here is that we can replace this sorting operation by the operation of optimization.

Doing so, the τ -th quantile can equivalently be defined as the solution to the minimiza-

tion problem

(10) ))((Emin ξyρτξ
−

ℜ∈

where ))0(()( <−⋅= uIτuuρτ  denotes the "check function" and )(⋅I  represents the

usual indicator function which is equal to unity if 0<u  and zero otherwise. Since )(⋅τρ

can be interpreted as an asymmetric loss function, equation (10) is equivalent to

straightforward minimization of expected loss

(11)
��

�
∞

∞−

∞

∞−

−⋅+−⋅−=

<−−⋅−=−

ξ

ξ

τ

ydFξyτydFξyτ

ydFξyIτξyξyρ

)()()()()1(

)())0(()())((E

with respect to the parameter ξ . Employing the integration-by-parts formula, the first-

order condition to this minimization problem is

0)()()()1(
))((E

=−=⋅+−⋅−−=
−

τξFξFττξFτ
ξd

ξyρd τ

and its solution )(1 τFξ −=  is exactly the definition of the τ -th quantile. If )(⋅F  is

strictly monotone this solution is unique. A special case of this solution is the median
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)( 2
11−F  which is the solution to the minimization of absolute expected loss (the case

2
1=τ ).

Replacing )(yF  by the empirical distribution function )(Σ)( 1
1 yyInyF i

n
in ≤= =

−  for a

sample of size n, ),...,( 1 ′= nyyy , the expected loss is replaced by ))(Σ 1
1 ξyρn iτ

n
i −=

−

and the minimization of the latter yields the τ -th sample quantile. This problem can be

expressed as a linear programming problem

(12) }|)1({min
2),,(

yvueveue
vu

=−+′−+′
+ℜ×ℜ∈

ξττ
nξ

,

where u and v are n-vectors of slack variables that represent the positive and negative

parts of the vector of residuals and e is a conformable vector of ones.

Turning now to the case of linear regression it is familiar that the solution to the least

squares problem 2
1 )(Σmin βxβ ii

n
i yk ′−=ℜ∈

, where ix  denotes the k-vector of the ex-

planatory variables of observation },...,1{ ni ∈ , allows to estimate the conditional mean

of y given x. Koenker and Bassett (1978) show that by minimizing the sum of asymmet-

rically weighted (again through the check function) absolute residuals

(13) )(Σmin 1 βx
β

iiτ
n
i yρ

k
′−=

ℜ∈

and denoting the solution by τβ� , the so-called regression quantile, we can estimate the

τ -th conditional quantile function by ττ y βxx �)|(Q� ′= . This is analogous to the problem

of estimating a single unconditional quantile in the case βx′=ξ . Varying τ  between 0

to 1 one can trace the entire conditional distribution of y given x. The marginal change

τjijτ βxy �/)|(Q� =∂∂ x  has the same interpretation as the coefficient estimate of a linear

least squares regression.

The above minimization problem again has a computationally convenient linear pro-

gramming representation (see the appendix of Koenker and Bassett (1978))

(14) }|)1({min
2),,(

yvuXβveue
vuβ

=−+′−+′
+ℜ×ℜ∈

ττ
nk

,
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where X denotes the usual n×k regression design matrix with rows ix′ . The solution to

this kind of problems is numerically straightforward by the simplex or related algo-

rithms.

Buchinsky (1998) demonstrates that the first-order condition of the quantile regression

problem can be interpreted as a conditional moment function which fits into the GMM

framework of Hansen (1982). From that insight consistency and asymptotic normality of

the regression quantiles can be easily established under certain regularity conditions (for

details see Buchinsky (1998, pp. 95ff.)). Different approaches to estimate the covariance

matrix of the regression quantiles and test are discussed extensively there. Confidence

intervals for the regression quantiles can be calculated by regression rank score inver-

sion (Koenker (1994)) or computationally intensive bootstrap methods (see e.g. Buchin-

sky (1998, pp. 102ff.)). Both methods have good coverage properties in iid as well as

heteroskedastic situations.

Also available for quantile regression is a goodness-of-fit statistic, proposed by Koenker

and Machado (1999), which is a natural analog to 2R  in a least squares context and can

be calculated by τττ VVR ~/�1−=  for the τ -th regression quantile. Here,

)(Σmin�
1 βxβ iiτ

n
iτ yρV k ′−= =ℜ∈

 is the minimized value of the unconstrained objective

function for the τ -th regression quantile and )(Σmin~
111
βyρV iτ

n
iβτ −= =ℜ∈  is the mini-

mized value of the constrained objective function for the τ -th regression quantile with

only the intercept included as a regressor. ]1,0[∈τR  thus quantifies the explanatory

power of the regression specification in addition to a simple regression on a constant.

It is important to recognize that all computed quantities (the regression quantiles, the

confidence intervals and the goodness-of-fit statistic) refer to a specific quantile τ .

Calculating these quantities for a sequence of quantiles allows to realize the promized

complete characterization of the conditional distribution of y beyond the more limited

information content that a traditional least squares regression provides. The regression

quantiles estimate the effects of change of the explanatory variables on the position of

the respective quantiles.
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Therefore, the quantile regression approach is able to uncover different effects of the

explanatory variables in differents part of the support of the conditional distribution of

the dependent variable. For each quantile it can be determined whether the effect of a

specific explanatory variable is positive or negative and how strong this effect is

compared to other quantiles. This provides a huge amount of information about the

heterogeneity of the reactions of the sample items beyond the determination of the

average reaction.

5. Conclusion

Although there exist other methods which are appealing from an evolutionary point of

view such as Markov chain methods and cluster analysis we have presented here three

tools that are well suited to measure, visualize and explain technological differences and

their change over time. Especially kernel density estimator and quantile regression have

a much broader applicability than just the analysis of productivity data. All three meth-

ods share the capability to obtain distribution related information from the data that go

far beyond the sole consideration of mean and variance. This qualifies them as basic

building blocks that may constitute an emerging branch of empirical research for which

we suggest the expressive label �evolumetrics�.
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