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Abstract:

Some multi-sector endogenous growth models make strong predictions about productivity
differences across sectors in the form of a distribution or density function. In this paper it is
demonstrated that this distribution is left-skewed for a wide range of plausible parameter
values. This stands in strong contrast to the right-skewed shape of the respective empirical
distribution estimated by kernel methods for a measure of relative productivity for more than
450 four-digit U.S. manufacturing industries during 1958-96. This difference is interpreted as
evidence in favor of devoting more emphasis on the effects of structural change on the secto-
ral level in growth models.
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1 Introduction

Recent multi-sector Schumpeterian growth models are endowed with microfoundations that

lead to theoretical predictions about differences in the productivity levels across sectors. Thus

even on a balanced growth path there exits persistent heterogeneity in productivity levels

across sectors which can be expressed in form of a stationary distribution. In the models of

Aghion and Howitt (1998, ch. 3) and Aghion et al. (2001) the density functions associated

with this distribution are explicitly derived or numerically computed through simulation,

respectively. In both models the shape and in particular the skewness of this distribution

crucially depends on the size of an innovative step on the quality ladder, which is treated as an

exogenous parameter.

In this paper the value of the step size on the quality ladder that governs productivity growth

or the inseparably associated cost reduction is calibrated using information of a variety of

sources, such as the values used in numerical studies of the above mentioned growth models.

In addition, we derive a plausible range of values from the stylized result of the 80 percent

learning curve that seems to be representative for a wide variety of manufacturing production

processes. All these values lead to a left-skewed theoretical distribution of relative producti-

vity levels. This finding stands in stark contrast to the distribution of relative productivity

levels across the four-digit U.S. manufacturing industries which is estimated using kernel

methods and appears to be consistently right-skewed during the years 1958-96.

The paper proceeds as follows: Section 2 briefly presents the origin of the theoretical distribu-

tion of relative productivity levels and depicts the shape of the density function for various

values of the innovation step size. Section 3 calibrates the plausible range of values of the

innovation step size using the 80 percent learning curve model. Section 4 calculates relative

productivity levels for the four-digit U.S. manufacturing industries using nonparametric

methods of efficiency measurement and presents the respective kernel density plots. The

diametrically opposed skewness properties of the theoretical and the empirical distribution

point to the need of paying more attention to differential growth and structural change on the

sectoral level which is discussed in the concluding section 5.
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2 The Theoretical Distribution

In most multi-sector growth models the sectors of the economy are treated symmetrically, see

Romer (1990) for a leading example. This implies that all sectors have the same productivity

level and thus the distribution of productivity across sectors is uniform. By this, these models

are useless for any analysis concerning structural change in form of the change of the sectoral

composition of an economy. An exception from this rule is the growth model of Aghion and

Howitt (1998, ch. 3) which makes an explicit prediction about the shape of the distribution of

productivity across sectors.

In this model the state of knowledge of the economy at time t is described by the level of the

productivity parameter of the „leading-edge” technology . Each sector of the economyAt
max

invests a certain amount of labor in research which determines the Poisson arrival rate ✘nit

with which a new innovation occurs, where  denotes the amount of labor input invested innit

research in sector i at time t and  is a parameter. An innovation in a particular sector i leads✘

to a jump of the productivity level of this sector  to . The growth of  is governedAit At
max At

max

by the aggregate flow of innovations in the economy of  per unit of time, where  is the✘nt nt

total research labor input of the economy. The steady-state growth rate of aggregate producti-

vity is then derived as , which is identical to the steady-state growth rated ln At
max/dt = ✘nt ln ✏

of output. Herein,  denotes the step-size of the quality ladder in the form of a constant✏ > 1

factor by which each innovation increases the productivity level. In the model, an intertempo-

ral spillover effect is at work postulating that each innovation serves as the basis for discove-

ring other innovations in other sectors of the economy, even though the current innovation can

only be used by the generating sector.

The different productivity levels of the whole continuum of sectors can be succintly summari-

zed by a distribution of the productivity levels across sectors which has support . This[0, At
max]

distribution extends to the right when  grows and also becomes increasingly left-skewed.At
max

Aghion and Howitt normalize all productivity levels by   to reach the relative productivityAt
max

levels  and are able to derive the cross-sectional cumulative distributionait = Ait/At
max c [0, 1]

function of this relative productivity measure which is given by  for ,H(a) = a1/ ln ✏ a c [0, 1]
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irrespective of what happens to the aggregate rate of innovation over time.1 The density

function associated with this distribution is  for  and zero other-h(a) = (a1/ ln ✏−1)/ ln ✏ a c [0, 1]

wise. Figure 1 shows this density function of the theoretical distribution of relative producti-

vity for various values of .✏

Figure 1
Density Functions of the Theoretical Distribution of Relative Productivity
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Since the shape of this density function is solely determined by the step-size of the quality

ladder  we just have to find reasonable values for this parameter in order to compare the✏

shape of this theoretical distribution with the shape of the distribution found in productivity

data of industries. It is immediate that this distribution is left-skewed for all , where,1 < ✏ < e

as usual, .e = 2.71828...

In particular, this range contains the benchmark value  used in the numerical evalua-✏ = 1.135

tions of the related step-by-step innovation model of Aghion et al. (2001) in which the time

unit is taken to be one year (see Aghion et al. (2001, p. 484)). This magnitude implies that

- 3 -
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there are relatively more sectors with productivity levels within the vicinity of the leading-

edge productivity level and therefore small technology gaps. The numerical evaluations of the

step-by-step innovation model in Hoernig (2003) use a ‘middle-of-the-road’ parameter value

of  which is also within the interval of parameter values that are associated with a left-✏ = 1.3

skewed distribution of relative productivity levels (see Hoernig (2003, p. 251)).

In their related work on step-by-step innovation models, Aghion et al. (2001, fig. 5 on p. 486)

also report the steady-state distribution of the technological leads which are essentially

technology gaps measured in discrete units of innovation steps. The distribution depicted there

is right-skewed, implying a high frequency of small technology gaps and correspondingly a

high frequency of large technology gaps. Since the measure of technology gaps is inversely

related to the measure of relative productivity levels the step-by-step innovation model also

predicts a left-skewed distribution in the latter case.

Although the step-by-step innovation model expresses the effect of technological progress in

terms of cost reductions, the step-size parameter of the quality ladder is the same as in models

where technological progress is expressed directly in terms of productivity improvements.

One can say that after k innovations production increases to  units of output per unit of labor✏k

employed or can state that  units of labor are required to produce one unit of output which✏−k

implies that cost per unit of output is proportional to . Both statements are equivalent. In✏−k

the next section we exploit this equivalence to calibrate  using a stylized result from the✏

learning curve literature.

3 Calibration from the Learning Curve

As the previous section has shown, the range of reasonable values of  is crucial for the shape✏

of the distribution of productivity across sectors. This parameter can be related to the basic

origins of learning-by-doing: the widespread result of the 80 percent learning curve. This styli-

zed fact states that in many production processes each doubling of the cumulative output is

associated with a unit cost reduction of 20 percent to about 80 percent of the previous unit
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cost level, due to workers becoming increasingly familiar with their tasks. Cooper and Johri

(2002) and Jovanovic and Nyarko (1995) contain brief surveys and further references.

Formally, we start from the assumption of a constant growth rate of output of a particular

sector, , expressed in continuous time. This is consistent with the focus ong = d ln y(t)/dt

steady-state dynamics and balanced growth paths in growth theory. The growth path of output

is thus  with . Integrating output over time gives the cumulative outputy(t) = y0egt y(0) = y0

,s(t) = ¶−∞
t

y(j)dj = y0 $ ¶−∞
t

egjdj = y0 $
egt

g

whose logarithm  is the basis for calculating the growth rate of theln s(t) = ln y0 − ln g + gt

cumulative output which is  and thus identical to the growth rate of output. Thed ln s(t)/dt = g

time  that it takes to double the cumulative output can then be obtained fromtd

,s(t + td) = 2 $ s(t)g y0 $
eg(t+td)

g = 2y0 $
egt

g

which implies that  and therefore the doubling time .egtd = 2 td = ln 2/g

Given that each doubling of cumulative output is associated with a 20 percent reduction of

unit cost the unit cost dynamics can be stated as

.c(t + td) = 0.8 $ c(t)

The annual rate of cost reduction z can be deduced from  and using the previous0.8 = e−ztd

expression for the doubling time we obtain . When we assume a balancedz = −g $ (ln 0.8/ ln 2)

growth rate of about 3 percent, , the doubling time is approximately 23 years and theg = 0.03

annual rate of cost reduction is approximately . Assuming a balanced growth rate of 2z l 0.01

percent reduces this rate even more.

However, the further problem arises that this number cannot be used directly since the model

of Aghion et al. (2001) is not casted in real time but instead uses an index for the innovation

sequence. Thus, unit cost dynamics in this model are given by , where  denotesc✦+1 = ✏−1 $ c✦ ✏

the step-size of the quality ladder as above and  denotes the innovation count.✦ = 0, 1, 2, ...
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When innovations arrive with a Poisson rate of  this innovation count sequence can be✘n

translated into real time. Given that  innovations arrive between t and t+1 in real time, unit✒(t)

cost dynamics can be equivalently expressed as

, with , ln c(t + 1) = ln c(t) − ✒(t) $ ln ✏ ✒(t) i Po(✘n)

where  denotes a Poisson distribution with expectation . Thus the expected rate ofPo(✘n) ✘n

decline of unit costs is

E(ln c(t + 1) − ln c(t)) − ✘n $ ln ✏

(see Aghion and Howitt (1998, p. 59) for this kind of argument).

Collecting results and neglecting the expectations operator (or invoking a law of large

numbers) we can state that  and thereby thatln c(t + 1) − ln c(t) = −z l −0.01 l −✘n $ ln ✏

. The latter magnitude is smaller than e whenever  and consequently✏ l e0.01/✘n 0.01/✘n < 1

whenever . Interpreting  as the probability of innovation between t and t+1 this✘n > 0.01 ✘n

implies that  and therefore the distribution of relative productivity is left-skewed whene-✏ < e

ver there is a minimal probability of innovation that leads to a Poisson arrival rate which is

larger than 0.01.

Thus, all exercises performed to deduce  agree on a value that is associated with a left-ske-✏

wed distribution of the relative productivity levels. As will be shown in the next section this

result stands in strong contradiction to the right-skewed shape of the distribution of relative

productivity levels in the U.S. manufacturing sector.

4 The Empirical Distribution

In this section the theoretical distribution of relative productivity is confronted with the distri-

bution of an empirically calculated relative measure of total factor productivity. To quantify

total factor productivity a nonparametric frontier function approach is used that is particularly

suited to the construction of the relative productivity variable of the theoretical model. The
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specific method used is the Andersen-Petersen variant of data envelopment analysis (see

Andersen and Petersen (1993)). This is a nonparametric method that calculates an index of

total factor productivity by the distance of the input-output combinations of the industries

from a piece-wise linear frontier production function that is determined from the data alone

without any assumptions about the functional form of the production relationship and without

having to rely on price data. The Andersen-Petersen model calculates productivity by compu-

ting an index that indicates to which level the output of an industry has to be increased in

order to reach a facet of the frontier production function that is determined by the observations

of the other  industries, excluding the industry for which efficiency is evaluated. Formal-N − 1

ly, this distance measure of industry i in year t is the solution  of the following linear% it

programming problem

 max % it : % ityit [
hc{ 1,...,N} \i
✟ ✘hyht ;

hc{ 1,...,N} \i
✟ ✘hxht [ x it ; ✘✘✘✘−i m 0

which is specialized in the present application to a single output variable  and a  6×1-vectoryit

of input variables  of industry i in year t.  denotes the (N–1)-vector of the weight factorsx it ✘✘✘✘−i

 omitting the i-th element.2 This distance measure essentially quantifies the technological✘h

gap towards the frontier function from which a measure of relative total factor productivity

can be obtained by simple inversion, i.e. .% it
−1

The data used to calculate the productivity scores are from the NBER-CES manufacturing

industry database which is described in detail by Bartelsman and Gray (1996). This unique

database provides consistent annual time series over the period 1958-96 for quantity and price

data of more than 450 manufacturing industries on the four-digit level of saggregation.3 The

nonparametric productivity measurement is performed using the following specification of the

output variable and the six labor, capital and material/energy input variables (the abbrevia-

tions in square brackets refer to those defined in the data appendix of Bartelsman and Gray

(1996)):
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w output:
real value of shipments [VSHIP/PISHIP]

w labor inputs:
number of non-production workers [EMP–PRODE]
production worker hours [PRODH]

w capital inputs:
real equipment capital stock [EQUIP]
real structures capital stock [PLANT]

w material and energy:
real cost of materials other than electricity and fuels [(MATCOST–ENERGY)/PIMAT]
real expenditures on fuels and electricity [ENERGY/PIEN]

The computations of the Andersen-Petersen model for each year separately results in a balan-

ced panel of total factor productivity scores  that range between% it
−1 (i = 1, ..., N, t = 1, ..., T)

zero and infinity for  four-digit industries over the  years covering the periodN = 454 T = 39

1958-96. The majority of the observations that do not determine the frontier function get a

productivity score smaller than unity by the solution of the linear programming problem.

Those observations that determine the frontier function get a productivity score larger than

unity. To be consistent with the definition of relative productivity in the theoretical model

these productivity scores are normalized to  for each period and areait = % it
−1/ max{%1t

−1, ...,%Nt
−1}

thus bounded within the inverval .[0, 1]

The density functions for each period are nonparametrically estimated by the univariate kernel

density estimator (see Wand and Jones (1995, ch. 2)) for the normalized relative productivity

scores on a grid of points  x c [0, 1]

, f̂ t(x) = 1
Nht

N

i=1
✟ K x − ait

ht

where the standard normal density is used as kernel function  and the bandwidth  isK($) ht

chosen by the Sheather-Jones 2nd generation bandwidth estimator (Sheather and Jones (1991))

for each period separately. This bandwidth estimator has been found to be the preferred

method for one-dimensional kernel density estimation in the comparison of Jones et al.

(1996).
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Figure 2
Density Functions of the Empirical Distribution of Relative Productivity
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The upper panel of figure 2 shows the kernel density estimates of the productivity distribution

for the years 1958, 1969, 1985 and 1996 which are chosen with regard to Jorgenson (1990)

and provide an approximately equidistant subdivision of the sample period. It is immediate

that the density functions are right-skewed with the bulk of the industries showing relatively

low productivity scores and a few industries with substantially larger productivity scores. This

stands in contrast to the theoretical distribution which is left-skewed for a wide range of

reasonable parameter values for the innovation step-size. The years chosen are in no way

exceptional as the lower panel of figure 2 shows in which the kernel density estimates for all

years 1958-96 are plotted together.

This visual impression can by sharpened by calculating the empirical skewness measure

 for each year separately, where  is the arithmetic mean of the normalizedN−1 ✟ i=1
N (ait − at)3 at

productivity scores of period t. Empirical skewness ranges between 0.0017 and 0.0033 and is

thus positive in each year, consistent with the visual impression of the figures. With this range

of skewness we can gain further evidence regarding the step-size parameter  of the theoreti-✏

cal model.

Rewriting the density function as  with  the first threeh(a) = cac−1, a c [0, 1] c = 1/ ln ✏

moments of the theoretical distribution are easily computed as ,E(a) = c/(c + 1)

 and . This allows to express the skewness of the theoreticalE(a2) = c/(c + 2) E(a3) = c/(c + 3)

distribution as

.E((a − E(a))3) = E(a3) − 3 E(a2) E(a) + 2 E(a)3 = −
2c(c − 1)

(c + 1)3(c + 2)(c + 3)

Setting this formula equal to the minimum and maximum value of empirical skewness,

solving numerically for c and translating back to the  scale results in the interval✏

 for  which lies entirely in the range larger than e.[2.947, 3.185] ✏

These findings are illustrated in figure 3, where the solid line is the skewness of the theoretical

distribution depending on . The horizontal and vertical dashed lines mark the zero line and✏

the position of e, respectively. Consistent with the previous results skewness is negative for

 and the distribution is therefore left-skewed in this range. For  skewness becomes✏ < e ✏ > e
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positive and the distribution right-skewed accordingly. The empirically estimated range of

skewness and the associated values of  are indicated by the dotted lines. These values lie in✏

the range of positive skewness and are therefore associated with the right-skewed density

found in the productivity data and plotted in figure 2 above.

Figure 3
Skewness of the Theoretical Distribution
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5 Conclusion

To sum up, the analysis in this paper shows that the distribution of relative productivity

generated by the models of Aghion and Howitt (1998, ch. 3) and Aghion et al. (2001) is

fundamentally different from the distribution of a relative measure of total factor productivity

for the four-digit industries of the U.S. manufacturing sector. The striking difference is that

the theoretical cross-sectoral distribution is left-skewed for a wide range of plausible values

for the innovation step-size parameter on which it solely depends, whereas the empirical

cross-sectoral distribution is consistently right-skewed in each single year during the period

1958-96.
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The most likely explanation for the left-skewed shape of the theoretical distribution is the

strong intertemporal spillover effect working in the model which postulates that the leading-

edge technology discovered by any one sector is available as basis for further improvements to

all other sectors of the economy. This implies that all sectors are closely tied to the leading-

edge technology. Without doubt, technological spillover effects across firms and industries

exist (see Mohnen (1996)) but it seems to be the case that such spillover effects are much

more limited than is assumed in the multi-sector growth models referred to in this paper.

Besides this criticism, it is important to consider structural change in the framework of multi-

sector growth models to reach a fuller understanding of the growth process which is insepara-

bly related to the generation and diffusion of innovation across sectors. Not too long ago,

Harberger (1998) stressed the need to spend more emphasis to the processes of differential

growth at the sectoral level. In Harberger’s "yeast versus mushrooms" story the view that all

sectors expand evenly (like yeast) is confronted with the view that different sectors grow in

unpredictable ways (like mushrooms) caused by a multitude of influences. The empirical

results he reviews are much more favorable for the mushrooms story as a valid description of

industry dynamics both across and within industries. In his own words, "the 'mushrooms' story

prevails just as much among firms within an industry as it does among industries within a

sector or broader aggregate" (Harberger (1998, p.11)). For growth theory this implies that it is

important to devote more attention to the details of structural change on the level of sectors or

industries not at least because structural change as a medium-run phenomenon is of enormous

importance for economic policy.

Notwithstanding this critique of a neglected concern with the issues of structural change on

the sectoral level in growth theory, it does not affect the validity of the assumption of a balan-

ced growth path. At least in the case of the U.S. aggregate economy the time series of log

GDP per capita over the period 1870-1994 fluctuates remarkably close around a linear time

trend with an increasing slope (important exceptions being the years around the great depres-

sion and the second world war) as demonstrated in figure 1 of Jones (2002). Thus, the long-

run aggregate output dynamics of the U.S. economy are well described by a balanced growth

path. This holds also theoretically if structural change occurs on the sectoral level due to
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nonhomothetic preferences since the concept of a generalized balanced growth path introdu-

ced by Kongsamut et al. (2001) and Meckl (2002) assures that structural change and aggregate

balanced growth are not incompatible with each other.
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