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Abstract:

The paper investigates structural change among the four-digit (SIC) industries of the U.S.
manufacturing sector during 1958-96 within a distribution dynamics framework. Focus is on
the transition density of the Markov process that characterizes the value added shares of the
industries. This transition density is estimated nonparametrically as well as by maximum
likelihood, in which case the functional form of the density is derived from a search theoretic
model. The nonparametric and the maximum likelihood fits show striking similarities. The
relation of structural change to a relative measure of total factor productivity change is tested
by an application of quantile regression and is found to be significantly positive throughout.

JEL classification: L16, O30, L60, C14
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1 Introduction

Structural change in the economy implies that some sectors or industries grow faster than

others in the long-run. This pattern is associated with shifts of the shares that these sectors or

industries have in the total. Well established are the long-run shifts of the shares of the three

main sectors of the private economy: agriculture, manufacturing and services (see e.g.

Kuznets (1966)). These shifts are to a large extent caused by demand-side changes due to

different income elasticities for agricultural, manufacturing and service goods. Kongsamut et

al. (2001) analyze a three-sector general equilibrium growth model with a common rate of

(exogenous) technological progress and nonhomothetic consumer preferences to explain the

pattern of declining agriculture and manufacturing shares and a rising service share.

In addition to this, supply-side changes caused by technological progress also play an impor-

tant role in the process of structural change. Baumol (1967) provides a theoretical explanation

for the shift of employment from manufacturing to services based on different rates of techno-

logical progress in these sectors. Baily et al. (1996) give a comprehensive descriptive empiri-

cal account of the relation of (labor) productivity change and plant employment changes in

U.S. manufacturing during 1977-87. Their results disagree with the conventional view that

productivity improvements during these years are systematically associated with downsizing

in terms of plant employment. They emphasize the large role of idiosyncratic factors as does

the comprehensive survey of Bartelsman and Doms (2000). Harberger (1998) reviews

research on productivity growth at both the firm and sectoral level and also finds much disper-

sion in the productivity developments.

The present paper aims at expanding the research on structural change by taking a closer look

at the relation of total factor productivity growth and changes of the real value added shares of

industries within the U.S. manufacturing sector. Hence we are interested in intra-sectoral

structural change. The analysis is performed in a distribution dynamics framework with focus

on the investigation of the Markov process that governs the dynamics of the distribution of the

value added shares. A theoretical model based on search theoretic considerations is developed

to motivate the interrelation of share dynamics and differential productivity development in

the distribution dynamics context. This model provides a specific representation of the
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stochastic transition law of the Markov process in form of the transition density which is

subsequently estimated by maximum likelihood. In a last part, the relation of productivity and

structural change is statistically tested using the approach of quantile regression which permits

to uncover differential effects of productivity growth at different positions of the support of

the distribution of the value added shares. The empirical analysis is carried out for U.S.

manufacturing industries on the detailed four-digit (SIC) level of aggregation over the period

1958-96. 

From a methodological point of view, the distribution dynamics framework applied here is

particularly suited to the specific requirements of the analysis of structural change. This

approach allows to deal with the complexity of structural change by summarizing the differen-

tial developments of industries in a way that makes the heterogeneity within an aggregate and

the change of this heterogeneity visible without having to consider each industry separately. In

the economic literature the distribution dynamics approach has been applied to analyze the

dynamics of the world income distribution by Quah (1996a,b), in the theoretical modeling of

intergenerational changes of the income distribution by Loury (1981) as well as in the research

that investigates the firm-size distribution and the validity of Gibrat’s law as summarized by

Sutton (1997).

The results obtained with this approach show that the Markov process that governs the value

added share distribution is associated with a roughly stationary distribution and with a transi-

tion density that shows that structural change is present as a long-run process. These features

can be replicated by a theoretical model which leads to a transition density that, when

estimated by maximum likelihood, looks very similar to the nonparametric kernel estimate.

The intervening role of technological change in the form of productivity growth postulated by

the model is confirmed by the quantile regression estimates. These results show that structural

change in the U.S. manufacturing sector is systematically influenced by technological change.

The plan of the paper is as follows: Following this introduction section 2 contains an empiri-

cal exploration of the distribution of the value added shares of the U.S. manufacturing indus-

tries and the change of this distribution over time. This leads to the identification of certain

critical aspects that the theoretical model introduced in section 3 is intended to explain. This
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model is constructed around a Markov process for the value added shares which is affected by

the productivity growth of the industries relative to each other. A search mechanism is intro-

duced to derive the transition kernel of the Markov process from the distribution of productiv-

ity change via the distribution of the largest order statistic. In section 4, the transition density

associated with this kernel is transformed and estimated by maximum likelihood. Following

the description of the (again nonparametric) procedure to measure productivity change and the

data used for this task in section 5 we proceed in section 6 with a brief description and the

application of the method of quantile regression to test the relation of productivity growth and

structural change postulated in the model. Section 7 summarizes the main findings and

concludes.

2 Exploration of Structural Change

The structural composition of the U.S. manufacturing sector is quantified in this work by the

shares of the four-digit industries in total real value added of the manufacturing sector. The

value added shares are used here to represent the relative importance of the single industries

within the manufacturing sector. Compared to employment, real value added of industries is

more oriented at the contribution to economy-wide GDP and probably less affected by chang-

ing regulations (e.g. of the labor market). The data are taken from the NBER-CES manufac-

turing industry database which covers the period 1958-96 for more than 450 four-digit (SIC)

industries and is described in Bartelsman and Gray (1996). Real value added for each industry

and year is computed as the ratio of the data series for the value added [VADD] and the price

deflator of the value of shipments [PISHIP].2 This real value added variable is subsequently

divided by the total real value added of the whole manufacturing sector in the respective year

to reach the shares of the four-digit industries in total real value added of the manufacturing

sector.

Explored in the context of the distribution dynamics approach are the changes of the shape of

the density function of these value added shares and the stochastic transition law that
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visualizes the intra-distributional changes in the form of the transition density. The latter as a

conditional object gives a complete probabilistic account of the possible transitions and

reveals much more about the data generating process than does the shape of the distribution as

an unconditional object alone (see Brock (1999) and Quah (1996a)). All density functions are

estimated by kernel methods with Gaussian kernels after logging the data to avoid boundary

biases of the kernel estimator (see Wand and Jones (1995)).

To estimate the shape of the density by the kernel density estimator the bandwidth parameter

is determined by the Sheather-Jones method (Sheather and Jones (1991)) which proves to be

the favorable choice in the comparison of Jones et al. (1996). This estimator is applied to the

industry means of the first five years (1958-62) and the last five years (1992-96) of the logged

value added shares. The averaging makes the estimates less sensitive with respect to shocks

that are specific to a single year. Figure 1 shows these density estimates in the left panel by the

dashed and solid lines, respectively.

Figure 1
Shape of the Density of the Value Added Shares
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It is immediate that the shape of the density is approximately the same in the first and last five

years which points to the stationarity of the stochastic process of the value added shares.

However, there may be large changes of the shape of the distribution during the intervening

years. To assure that this is not the case, the densities for all years are plotted simultaneously
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in the right panel of figure 1. This shows that the stability of the distribution is not the result

of an accidental conformity of the distributions at the beginning and the end of the sample

period but instead holds consistently during the whole sample period.

The stationarity of the shape of the distribution does not imply by itself a low intensity of

structural change. Of course, stationarity may be consistent with nearly constant shares of the

industries, but stationarity may also be associated with substantial intra-distributional changes

that compensate each other so that the shape of the distribution is preserved. To get an impres-

sion of the intra-distribution dynamics we estimate the transition density nonparametrically as

explained in Quah (1996a, p. 117). Applied to the value added share dynamics, figure 2 shows

the respective transition density. Each slice through the plot along the x-axis represents the

density of the log mean value added shares of the last five years conditional on a specific log

mean value added share of the first five years on the y-axis.

Figure 2
Nonparametric Transition Density
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Clearly visible from the ridge along the diagonal in the figure is the general tendency of

persistence of the value added shares. However, the dispersion of the distribution shows that

intra-distributional changes and thus structural change are prevalent, especially in the range of

relatively low value added shares. Particularly interesting in this respect is the shape of the

density at the bottom of the figure in the region of log mean value added shares 1958-62

below the value –10. The growth of the four industries that shape the density in this region

was much faster than that of the rest of the manufacturing sector. Remarkably, the four indus-

tries consist of computer storage devices (SIC 3572), computer terminals (SIC 3575),

computer peripheral equipment (SIC 3577) and magnetic and optical recording media (SIC

3695), all of which are strongly related to the computer revolution.

3 Theoretical Model

The statistical results reported in the preceding section show that the stochastic process that

governs the real value added shares of the four-digit manufacturing industries is associated

with a stationary distribution together with substantial intra-distributional changes. These

intra-distributional changes are the trace that the process of structural change leaves in the

data. The theoretical model constructed in this section to explain these empirical results is

built around a Markov process that specifies a law of motion governing the dynamics of the

value added shares. The transition law of this Markov process is assumed to depend on the

productivity of the industries relative to a benchmark. Specifically, a probabilistic search

mechanism generates the distribution of the productivity dynamics which is subsequently used

to derive the transition density of the Markov process.

The dynamics of the real value added shares are supposed to be governed by a general Markov

process with a law of motion

, st � h�st�1,���ãt��

where  is a continuous function that is increasing in both arguments andh : �0, 1� � ‘ � �0, 1�

 indexes time proceeding in discrete steps. The function  depends on thet � 1, 2, ... ���ãt�
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change of the productivity of an industry relative to its competitors  as an operationali-�ãt � ‘

zation of its competitiveness. It thus controls the influence that the change of productivity

relative to the competitors exerts on the change of the real value added shares. This law of

motion specifies a sequence of random variables of a specific industry which is considered

simply as a dummy argument. In the distribution dynamics framework the universe of all

manufacturing industries and their heterogeneity is represented by the associated sequence of

distributions which will be derived below.

Since shares are by definition bounded in the interval  concrete functional specifications�0, 1�

are usually quite restrictive since they are required to map  into itself. The specification�0, 1�

that is analyzed in the main body of this paper is based on the power function ,st � st�1
���ãt�

where the function  has the properties of being positive  and decreasing in its���� ��x� � 0

argument  for all  with the prime denoting the first derivative. This ensures that� ��x� � 0 x � ‘

a larger positive change of relative productivity leads to an increasing value added share. The

limiting properties of the function are assumed to be  and . Anlimx�� ��x� � 0 limx��� ��x� � �

alternative specification based on the logistic function is briefly discussed in the appendix.

That specification is, however, associated with a worse fit to the data.

Associated with this process is a law of motion for the probability measure  of the value�

added shares

,� t�S� � �
�0,1� P�s, S�� t�1�ds�

where  denotes the so-called transition kernel. This transitionP�s, S� � Pr�st � S | st�1 � s�

kernel is required to be a measurable function in the first argument and a probability measure

in the second argument. It provides a complete probabilistic description of all possible transi-

tions from any particular state  to any other part of the state space .s � �0, 1� S � �0, 1�

The derivation of the transition kernel is based on a probabilistic search mechanism in which

the number of independent ideas that are generated by the firms of a specific industry is

assumed to depend on the value added share of this industry  with . A��s� ��s� � �1, 2, ...�

larger value added share allows the firms in the industry to devote more resources to R&D
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activities and in addition enhances the possibilities for learning-by-doing driven productivity

improvements. The relation of the value added share to the generated number of ideas is

assumed to satisfy the conditions ,  and  for .��s� � 0 ��0� � 0 ��s� � ��s �� s � s �

Each of these ideas is associated with a potential relative productivity improvement of �ãt

which is drawn from a distribution with cumulative distribution function (cdf) . ThisF��ãt�

distribution is called the search distribution in what follows. It could be made dependent on

the past relative productivity level which would allow for the possibility of increasing or

diminishing technological opportunities, but we resign from doing so for simplicity.

At the end of the period the idea that is associated with the largest relative productivity

improvement (which must not necessarily be positive) is selected and implemented. The

distribution of this largest relative productivity improvement can straightforwardly be estab-

lished using the theory of order statistics (see e.g. Arnold et al. (1992)). Accordingly, the cdf

G of relative productivity growth associated with the implemented idea is

 G��ãt� � F��ãt�
��st�1�

with density function

,g��ãt� � ��st�1�F��ãt�
��st�1��1

� f��ãt�

where  is the density function associated with . Recall that the function f��ãt� F��ãt� ��st�1�

represents the number of ideas generated, depending on the lagged value added share.

Now we are in the position to derive the transition kernel by combining the productivity distri-

bution G with the Markov process for the value added share dynamics .st � h�st�1,���ãt��

Theorem 8.9 of Stokey and Lucas (1989) is the key result for this task; the same approach can

be found in Loury (1981). The basic idea is to construct a set that represents all possible

changes of relative productivity that are associated with the transition to a specific interval of

shares  starting from a specific share . In the present case such aS � �s1, s2� � �0, 1� s � �0, 1�

set is given by . The probability of the set A is equalA � h�1�s, S� � ��a � ‘ : h�s,���a�� � S�

to  and can be calculated explicitly from the productivityPr�st � S | st�1 � s� � P�s, S�
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distribution. Thus, the transition kernel can be derived by integrating the productivity distribu-

tion over the set A, .P�s, S� � �A dG��ãt�

The set A is in the case of the power specification given by

,A � b ln s1
ln s , b ln s2

ln s

where  denotes the inverse function of  and is decreasing in its argument since thisb��� ����

property has been assumed above for the function . The resulting transition kernel is����

.P�s, �s1, s2�� � G�b ln s2
ln s � � G�b ln s1

ln s � � F�b ln s2
ln s ���s� � F�b ln s1

ln s ���s�

The empirical exploration of the value added shares above has shown that these seem to be

associated with a stationary distribution. Therefore the transition kernel should be associated

with a stationary Markov process for the value added shares. Such a process can be mathe-

matically characterized by a stationary (or invariant) measure  with the property��

. Another important notion in this respect in the concept of���S� � �
�0,1� P�s, S����ds�

ergodicity, meaning the convergence of a stochastic process to the stationary (or invariant)

distribution, irrespective of the initial distribution. These properties can be established by

checking the conditions of Hopenhayn and Prescott (1992) which are quite easy to verify

directly from the properties of the transition kernel and thus ideally suited to the case at hand.

To establish the existence of a stationary distribution, corollary 4 of Hopenhayn and Prescott

(1992) requires that the state-space is a compact metric space with a minimum element which

is evidently the case for the interval . In addition, the transition distribution has to be�0, 1�

increasing in the sense of first-order stochastic dominance (see Wolfstätter (1999, ch. 4)). For

the power specification the cdf associated with the transition kernel is

P�s, �0, s2�� � F�b ln s2
ln s ���s�

since  and  by the properties of .lims1�0 ln s1/ ln s � � limx�� b�x� � �� ����
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The transition kernel is increasing in the above defined sense of first-order stochastic

dominance since for  it is true that  because of  and therefores � s � b ln s2
ln s � b ln s2

ln s � b ���� � 0

 since a cdf is monotonically increasing and because of  weF�b ln s2
ln s � � F�b ln s2

ln s� � ��s� � ��s ��

finally obtain .F�b ln s2
ln s ���s� � F�b ln s2

ln s � ���s
��

For the uniqueness and stability and thus ergodicity of the transition kernel theorem 2 of

Hopenhayn and Prescott (1992) claims that the state-space has to contain both a lower and an

upper bound which is trivially satisfied for  and that the transition kernel has to be�0, 1�

increasing which has been just verified in the preceding paragraph. Moreover, a so-called

monotone mixing condition (MMC) has to be satisfied which essentially requires that each

part of the state-space can be reached from any starting point after a certain number of

periods. The MMC condition thus essentially requires a considerable amount of mobility

below the stationary distribution. However, this condition is not satisfied for the power speci-

fication because  and  are absorbing states and thuss � 0 s � 1

 P�1, �0, s��� �
s�1
lim P�s, �0, s��� �

s�1
lim F�b ln s�

ln s ���s� � F�b(�)���1� � 0 �s� � �0, 1�

and 

 P�0, �s�, 1�� �
s�0
lim P�s, �s�, 1�� �

s�0
lim F�b ln 1

ln s ���s� � F�b ln s�
ln s ���s� � 0 �s� � �0, 1�

by the properties of the inverse function  and the limiting behavior of the logarithm. Theseb���

results show that in the case of the power specification a stationary distribution exits but is

neither unique nor stable on the state-space . The reason is that the states 0 and 1 are�0, 1�

absorbing states and will never be left once they are reached by the process. On the state-

space , however, when the absorbing states are excluded, the state-space does not contain�0, 1�

a lower and an upper bound and is thus not any longer a compact metric space. Therefore the

results of Hopenhayn and Prescott (1992) are not applicable in this case. Analyzing the power

specification on the state-space  using the more abstract concepts of irreducibility, recur-�0, 1�

rence and aperiodicity as in Meyn and Tweedie (1993) and Tweedie (2001) leads to the same

result. On the state-space  it is intuitively clear that the Markov process that is induced by�0, 1�

the power specification is irreducible (all parts of the state-space can be reached from any

starting point with positive probability), but recurrence (all parts of the state-space are
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guaranteed to be reached from every starting point in a finite number of steps) can not be

established. The reason is that the process  derived from the power specification is aln�� ln st�

random walk and thus transient. Thus, for the power specification a stationary distribution

exists but the process does not converge to this distribution from an arbitrary initial

distribution.

It is worth emphasizing that the above results are derived with only minimal assumptions

about the properties of the functions  and  and the search distribution F. This ensures���� ����

that the results are robust for wide classes of functions and distributions. In the appendix

another specification based on the logistic function is analyzed which is more favorable from

a theoretical point of view since the ergodicity of the transition kernel can be established.

However, it has to be recalled that ergodicity is a limiting property which may be without

effect in finite sample situations. Interestingly, the power specification fits the data much

better as the following sections will demonstrate.

4 Estimation of the Transition Density

For the desired maximum likelihood estimation of the transition density it is unfortunate from

a numerical point of view that the number of ideas is an integer magnitude and not a continu-

ous variable. This deficiency can be remedied in a very appealing way by treating the number

of ideas itself as a random draw from a Poisson distribution with expectation  with��st�1� � ‘�

 and deriving the cdf of the distribution of productivity growth by the construction of� ���� � 0

a mixture distribution. To get a valid distribution for the number of ideas with support starting

at unity, the Poisson distribution has to be truncated from below at unity.

From the Poisson distribution with density  we know thatPr�J � j� � � j exp����/j!, j � 0, 1, 2, ...

 and hence that . Therefore the truncated PoissonPr�J � 0� � exp���� Pr�J � 1� � 1 � exp����

distribution has the density function  on thePr�J � j | J � 1� � � j exp����/�j! � �1 � exp������

support .j � 1, 2, ...
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The mixture distribution is formed by a weighted average of the distribution of the largest

order statistic with the truncated Poisson probabilities as weighting factors. The cdf of this

mixture distribution is then

 G��ãt� ��
j�1

� ��st�1�
j exp����st�1��/j!

1 � exp����st�1��
� F��ãt�

j

�
exp����st�1��

1 � exp����st�1��
��

j�1

� ���st�1�F��ãt��
j

j!

 �
exp����st�1��

1 � exp����st�1��
� �exp���st�1�F��ãt�� � 1�

,�
exp���st�1�F��ãt�� � 1

exp���st�1�� � 1

where the result  has been used in the second to last line.�
j�1

� xj

j! ��
j�0

� xj

j! � 1 � exp�x� � 1

This truncated Poisson mixture distribution is associated with the density function

 g��ãt� �
exp���st�1�F��ãt��

exp���st�1�� � 1 � ��st�1�f��ãt�

and leads to the transition distribution

.P�s, �0, s2�� �
exp���s�F�b ln s2

ln s �� � 1
exp���s�� � 1

The main advantage of the truncated Poisson mixture distribution is that it avoids problems

with the integer nature of the number of ideas generated. From a numerical point of view,

imposing this integer restriction would make the subsequent maximization of the likelihood

function much more complicated. Moreover, the cdf of the mixture distribution has shape

characteristics that are very similar to those of the productivity distribution derived from the

distribution of the largest order statistics for a wide range of different parameter values. For

these reasons, we favor the truncated Poisson mixture distribution as the basis for deriving the

transition kernel on which the maximum likelihood estimation of the parameters is based.
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Figure 3 compares the cumulative distribution functions of the largest order statistic (solid

line) and the truncated Poisson mixture (dotted line) where the search distribution F is

assumed to be normal with mean  and unit standard deviation for various values of  and .� � �

Both distributions agree very closely and this finding also holds for a wide variety of other

parameter values and modified assumptions for the search distribution. As general tendency

we observe that the mean of both distributions is higher for larger values of  and that the�

discrepancy between the two distributions (especially at the lower tail) rapidly vanishes as �

grows.

Figure 3
Comparison of Cumulative Distribution Functions
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The transition distribution derived by the mixing procedure now serves as the basis for the

estimation of the transition density by maximum likelihood. For the implementation certain

elements of the loglikelihood function have to be specified more concretely. The search distri-

bution a normal distribution with mean  and standard deviation  is chosen, leading to�0 �1

, where  denotes the standard normal cdf. The parameter of theF��ãt� � ����ãt � �0�/�1� ����
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(truncated) Poisson mixture weights is supposed to depend linearly on the lagged logged value

added share, .��st�1� � �0 	 �1 ln st�1

In the case of the power specification we assume  with the corresponding���ãt� � �0 � �1�ãt

inverse function .3 Taking all this together the transitionb�ln st/ ln st�1� � �1
�1��0 � ln st/ ln st�1�

distribution is 

P�st�1, �0, st�� �
exp���0 	 �1 ln st�1�����0 � ln st/ ln st�1�/��1�1� � �0/�1�� � 1

exp��0 	 �1 ln st�1� � 1

and the conditional density of the logged value added shares is

 p�ln st | ln st�1� �
exp���0 	 �1 ln st�1�����0 � ln st/ ln st�1�/��1�1� � �0/�1��

exp��0 	 �1 ln st�1� � 1

���0 	 �1 ln st�1�����0 � ln st/ ln st�1�/��1�1� � �0/�1�

.���1/��1�1 ln st�1��

The last (Jacobian) factor in the transition density is guaranteed to be nonnegative since  isst�1

bounded between zero and unity. The transition density forms the basis for the loglikelihood

function of all industries  i � 1, ..., N

,ln L � �
i�1

N
ln p�ln sit | ln sit�1�

where  and  denote the averages of the real value added shares of the first and the lastsit sit�1

five years of data available used in the empirical implementation. This loglikelihood function

is maximized with respect to the six parameters , , , ,  and . Numerically the�0 �1 �0 �1 �0 �1

maximization is performed using the BFGS method of Broyden, Fletcher, Goldfarb and

Shanno (see e.g. Dennis and Schnabel (1983, ch. 9) for an exposition) which as a quasi-

Newton method seems to be best suited to the smooth loglikelihood function at hand. A large

number of randomly chosen starting values have been tried in order to find the global

maximum of the loglikelihood function. Other methods, like conjugate gradient and the

Nelder-Mead simplex, proved here to be less satisfactory compared to the BFGS method.

- 14 -

3 Obviously, this specification does not match the limiting properties postulated above. However, this deficiency
is accepted here since this specification is very convenient in the subsequent application of quantile regression.



Unfortunately this estimation problems suffers from a parameter identification problem so that

it makes no sense to report the individual parameter estimates. This notwithstanding, the

overall fit of the resulting estimate of the transition density is remarkable. Plugging the

parameter estimates into the formula for  and evaluating this function for theln p�ln st | ln st�1�

relevant range of value added shares gives the plot of the fitted transition density that is

depicted in the following figure 4.

Figure 4
Transition Density for Power Specification (ML Fit)
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Comparing this plot with the nonparametric estimate of the transition density in figure 2

above reveals the striking similarity of both densities. Both densities are characterized by a

dominant ridge along the main diagonal which increases for larger value added shares. Thus

the theoretical model encompasses the tendency towards a relatively higher degree of persis-

tence in the case of industries with comparably larger value added shares. The theoretical

model is yet flexible enough to capture the imprint of the computer revolution discussed

above. Like in the case of the nonparametric estimate there appears an exceptional shape of

the density function at the bottom of the figure for log value added shares below –10 in .t � 1

- 15 -



Since the parameter identification problem effectively precludes the test of the relation

between productivity change and the value added share dynamics this issue will be investi-

gated in the remainder of this paper using the approach of quantile regression. Before we turn

to this, we briefly describe the method used to compute the measure of relative productivity

already used in the theory from real data.

5 Productivity Measurement

Productivity change is computed here by the Malmquist index of total factor productivity

together with data envelopment analysis. This nonparametric approach quantifies productivity

change by computing radial distances relative to piece-wise linear frontier production

functions that are formed by the most productive industries of the sample. Thereby the

approach accounts for both efficiency change below this frontier function and shifts of the

frontier function itself. Compared to the Solow residuals (Solow (1957)) usually employed in

the literature, this procedure has several notable advantages. The main advantage is that no

behavioral assumptions such as profit maximization and no presumption of competitive

markets are required. No price data are required for the calculation of the Malmquist index,

instead it relies exclusively on quantity data. The nonparametric nature makes the approach

also less restrictive than the index number or regression methods used in the literature and it is

therefore expected to achieve a better fit to the data. The approach is described in detail in the

technical literature on productivity measurement (see e.g. Färe et al. (1998)) as well as in the

significant economic applications by Färe et al. (1994) and Kumar and Russell (2002) among

many others.

For a brief formal description of the approach, let  and  denote vectors that comprise they ij x ij

output and input quantities used by industry i in period j, respectively.4 Further, let

 S�j� � ��x ij, y ij� : x ij 
 0 can produce y ij 
 0,� i � 1, ..., N�

- 16 -

4 Here j is used to index the single years between 1958 and 1996. This should not be confused with the notation t
and t+1 which refers to the industry averages over the first and last five years of the sample, respectively.



denote the technology set representing the production possibilities available in the manufac-

turing sector in period j which is spanned by the N industries. Based on this a radial distance

function

 Dip(xiq, y iq ) � �sup�� : (xiq,�y iq ) � S�p����1

is defined as the reciprocal of the maximum augmentation of the output values in period q

(holding inputs constant) that is required to reach a boundary point of the technology set in

period p. Setting p and q alternately to j and  four different distance functions can bej 	 1

computed. From these the Malmquist index of productivity change can be assembled as

.Mi,j�1(x ij, y ij, x i,j�1, y i,j�1 ) �
Dij(x i,j�1, y i,j�1 )

Dij(x ij, y ij )
Di,j�1(xi,j�1, y i,j�1 )

Di,j�1(x ij, y ij )

1/2

The first fraction in the square brackets is formed by the ratio of the distances of the observa-

tion of industry i in period j and , respectively, to the frontier of the technology set inj 	 1

period j. Given that industry i is closer to the frontier function of period j in period  than itj 	 1

is in period j, this ratio is larger than unity, implying positive productivity change. The inter-

pretation of the second fraction is analogous with respect to the frontier function of period 

. Since there is no special reason to choose the frontier function of period j over that ofj 	 1

period  as the benchmark for the measurement of productivity change, the Malmquistj 	 1

index is defined as the geometric average of both. Constructed in this way, the Malmquist

index indicates positive (negative) growth of total factor productivity between periods j and

 if  is larger (smaller) than unity.j 	 1 Mi,j�1

With real data the distance functions are calculated by data envelopment analysis (see Charnes

et al. (1994)) as the solution of the linear programming problems in curly brackets

 Dip(xiq, y iq ) � max � : � � y iq �
h�1

N

� �hyhp ;
h�1

N

� �hxhp � x iq ; �1, ..., �N � 0
�1

which does not invoke any assumptions about the functional form of the production relation-

ship and by this nonparametric feature gives the whole procedure a great amount of flexibility.

- 17 -



Returns to scale are assumed to be constant which seems to be reasonably appropriate for U.S.

manufacturing industries according to Basu and Fernald (1997).5

The data used to calculate the Malmquist index are again taken from the NBER-CES

manufacturing industry database. The nonparametric productivity measurement is performed

with the following specification of the output variable and the six labor, capital and

material/energy input variables (the abbreviations in square brackets refer again to those

defined in the data appendix of Bartelsman and Gray (1996)). Output is represented by the

real value of shipments [VSHIP/PISHIP], labor inputs are the number of non-production

workers [EMP–PRODE] and production worker hours [PRODH] and capital inputs are the

real capital stocks for equipment [EQUIP] and structures [PLANT], respectively. Energy input

is measured by the real expenditures on fuels and electricity [ENERGY/PIEN] and material

input is represented by the real cost of materials other than electricity and fuels

[MATCOST/PIMAT–ENERGY/PIEN].

The calculations of the Malmquist index for each year separately result in a balanced panel of

total factor productivity changes  larger than zero for each of the NMij �i � 1, ..., N, j � 2, ..., T�

industries and  years spanning the period 1958-96. The specific measure of productivityT � 39

change of the industries relative to their competitors used subsequently is the geometric mean

over the whole sample period identical to the average annual growth rate of total factor

productivity, computed as  for each industry . Although�ãit � �� j�2
T Mij�

1/�T�1� � 1 i � �1, ..., N�

inessential at this place, the time index t is retained to indicate that this measure of productiv-

ity change is the average over the whole sample period consistent with the variable used in the

theoretical part.

In his recent survey Balk (2003) shows that the total factor productivity change is related to

both profitability and price changes and in particular that total factor productivity change

measures the real component of profitability change. Thus the change of total factor produc-

tivity as calculated here can be alternatively interpreted as an encompassing measure of the

- 18 -

5 This procedure is entirely deterministic. There exists an alternative econometric approach to the estimation of
frontier functions that promises to be able to divide measurement error from the productivity measure (see e.g.
Greene 1993). However, the Monte Carlo studies of Banker et al. (1993) and Ruggiero (1999) show that this
advantage of the econometric approach over DEA is present only in very large samples, whereas productivity
and measurement error frequently get confused in small to medium sized samples.



change of the competitiveness of industries. See also Lipsey and Carlaw (2000) for additional

discussion of the meaning of total factor productivity change.

6 Quantile Regression Estimates

Quantile regression6 introduced by Koenker and Bassett (1978) is a powerful tool for the

characterization of the entire distribution of a dependent variable given a set of regressors and

not just its mean as in the case of least squares regression. Therefore, quantile regression has

the potential to uncover differences in the response of the dependent variable to changes of the

regressors at different points of the conditional distribution of the dependent variable and by

that provides a large amount of information about the heterogeneity of the observations.

Moreover, coefficient estimates obtained with quantile regression are more robust with

respect to outliers of the dependent variable and in the case of nonnormal errors quantile

regression estimates may be more efficient than least squares estimates (see Buchinsky (1998,

p. 89) and Fitzenberger et al. (2001, p. 1)).

In contrast to the case of ordinary linear regression that solves the least squares problem

, where  is the k-vector of the regressors of observation ,min�����‘k � i�1
N �yi � x i

������2 x i i � 1, ..., N

and estimates the conditional mean of y given x, ordinary quantile regression solves the

problem , where the sum of asymmetrically weighted absolute residu-min�����‘k � i�1
N 	��yi � x i

������

als is minimized. The weighting of the residuals is controlled by the so-called "check

function"  where  denotes the usual indicator function which is	��u� � u � �
 � I�u � 0�� I���

equal to unity if  and zero otherwise.u � 0

Quantile regressions can also be estimated in the context of a generalized instrumental

variables estimator (GIVE). This builds upon the work of Chen and Portnoy (1996).7 In this

procedure the endogenous regressors are first projected on to the space spanned by the exoge-

nous regressors and the instruments, which are uncorrelated with the error terms by assump-

tion. Defining X as the -matrix of all (endogenous and exogenous) regressors and W asN � k

- 19 -

7 See also Arias et al. (2001). I am indebted to Omar Arias for kindly providing his S routines for the instrumen-
tal variables estimation of quantile regression.

6 This brief exposition of the basics of quantile regression in this section draws from the very useful survey
articles of Buchinsky (1998), Koenker (2000) and Koenker and Hallock (2001).



the -matrix (with ) of both exogenous regressors and instruments, this projection isN � l l � k

equivalent to the matrix operation  which does not affect the columns ofX̂ � W�W �W��1W �X

the exogneous regressors but expresses the endogenous regressors as optimal (in the least

squares sense) linear combinations of the variables in W.8 Since all variables in W are exoge-

nous, the variables in the matrix  are exogenous as well by the properties of linear projec-X̂

tions (see Davidson and MacKinnon (2003, pp. 57ff.) for more on the geometry of linear

projections). The matrix  is subsequently used instead of the original regressors X in theX̂

estimation of the quantile regressions.

Among the variables we consider the productivity growth variable is suspect of endogeneity

because it may be the case that not only productivity growth exerts an effect on the share

dynamics but also that the share dynamics simultaneously influence productivity growth. Then

the estimates of the ordinary regression quantiles are inconsistent in general. The other regres-

sors are not affected by this endogeneity problem since they refer to the period  (denotingt � 1

again the industry mean of the first five years) and can thus be safely taken as predetermined.

In the instrumental variable quantile regressions the variable  is instrumented by the�ãit

lagged logged relative productivity level  and its square  in addition to theln ãit�1 �ln ãit�1�
2

other predetermined variables. All instruments together are able to explain about 64 percent of

the variation in  and can thus be considered not only as valid but also as relevant. The�ãit

lagged productivity levels are computed as the industry averages of the first five years of a

productivity measure that is computed by the Andersen and Petersen (1993) variant of data

envelopment analysis using the same specification of the inputs and outputs as above (see

Krüger (2005) for the details of the implementation of this method).

The covariance matrix of these regression quantiles is not valid since the regressors used are

generated by the projection in the first step, however. Here, design-matrix bootstrapping of the

whole two-step procedure is an appropriate way to compute valid confidence intervals for the

regression quantiles estimated by instrumental variables. This approach usually performs well

even if some forms of heteroskedasticity are present (see Buchinsky (1998), Hahn (1995) and

Koenker (1994) for asymptotic as well as simulation results). The design-matrix bootstrap is

based on randomly drawn samples (with replacement) of size N from the original data

- 20 -
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, denoted by . In the case of the instrumental variable�yi, x i�, i � 1, ..., N �yi
�, xi

��, i � 1, ..., N

quantile regression the bootstrap samples are drawn from , where �yi, x i, w i�, i � 1, ..., N w i

denotes the l-vector of instrumental variables of the ith observation. For each of these B draws

either the ordinary or the instrumental variable quantile regression is computed, resulting in B

different bootstrap estimates for . From these bootstrap����̂�b
� � ��̂1�b

� , ..., �̂k�b
� � �, b � 1, ..., B

estimates confidence intervals for each coefficient  and quantile  can be establishedj � 1, ..., k 


such that , where the confidence limits  and  are simply thePr�� j� � �Lj�
� , Uj�

� �� � 1 � � Lj�
� Uj�

�

 quantiles of the respective bootstrap estimates . All bootstrap�/2 and 1 � �/2 ��̂ j�1
� , ..., �̂j�B

� �

estimates reported in this work are based on  replications.B � 10000

Also available for regression quantiles is a goodness-of-fit statistic, proposed by Koenker and

Machado (1999), which is a natural analog to  in a least squares context and can be calcu-R2

lated for the  regression quantile by . Here,  is
-th R� � 1 � V̂�/Ṽ� V̂� � min�����‘k � i�1
N 	��yi � x i

������

the minimized value of the unconstrained objective function for the  regression quantile
-th

and  is the minimized value of the constrained objective functionṼ� � min�1�‘ � i�1
N 	��yi � �1�

for the  regression quantile with only the intercept included as regressor. It is immediately
-th

clear that  is bounded in  for every .R� �0, 1� 


When stated in logs of the value added shares the power specification leads to the estimation

equation

 ,ln sit � ���ãit� ln sit�1 	 uit � �0 ln sit�1 � �1�ãit ln sit�1 	 uit

where here . In this specification productivity change appears interacted���ãit� � �0 � �1�ãit

with the initial value added share, thereby ensuring that the shares are bounded within .�0, 1�

The results of the quantile regression estimates are summarized in the following figures for

the ordinary quantile regression estimation and the quantile regression estimation involving

instrumental variables. Each figure is divided in a number of separate graphs containing the

coefficients estimates for the routinely added intercept, the parameters ,  and the�0 �1

goodness-of-fit measure R, reading from left to the right. The title of the first column denotes

the dependent variable and the notations of the regressors are denoted at the ordinate of each

separate graph. Therein the solid line originates from the connection of the coefficient
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estimates for the  quantile, where here  are considered as quantiles.
-th 
 � �0.05, 0.1, ..., 0.95�

This solid line is surrounded by two dotted lines indicating the upper and lower 95 percent

confidence bounds. These confidence intervals are calculated by the design-matrix bootstrap

based on  replications as outlined above. In addition, the horizontal dashed lineB � 10000

represents the position of the least squares coefficient estimate (either OLS or GIVE). The last

graph shows the goodness-of-fit statistic  for each quantile.9R�

Turning to the power specification in figure 5 we observe that the intercept is negative and

quite precisely estimated. The regression quantiles for the initial log value added shares are

significantly positive throughout and show a declining shape. This implies that persistence is

higher for lower quantiles compared to higher quantiles. In industries with relatively low

actual value added shares, the quantile regression estimates tend towards unity which corre-

sponds to the unit root case in the time series literature. The relevant null hypothesis for the

unit root case is . Based on the confidence intervals of the regression quantiles thisH0 : �0� � 1

null can not be rejected for industries with small value added shares in favor of the alternative

, whereas it can be rejected for industries with large value added shares. Thus,H1 : �0� � 1

value added share dynamics of industries with large value added shares are in a sense "more

stationary" compared to industries with small value added shares.10 This reasoning could also

be interpreted in the spirit of a modified version of Gibrat’s law applied to the value added

shares. This law would hold if the estimates for  are equal to unity consistent across all�0�

quantiles, implying that in this case growth is independent of size (with both growth and size

measured in terms of value added shares). Since the estimates of  are significantly below�0�

unity for the majority of quantiles, the modified version of Gibrat’s law can be rejected for the

manufacturing industries.

The regression quantiles for productivity growth interacted with the initial value added shares

are positive and statistically significant across all quantiles. This implies that industries with

higher productivity growth tend to reach a relatively larger value added share for a given

initial value added share. The results give strong support for the positive relation between

- 22 -

10 A similar discussion of the quantile estimates of interest rate dynamics is contained in section 5 of Koenker and
Xiao (2004), although in that paper the analysis is performed in a time series context.

9 This very efficient way to report the results of quantile regressions is borrowed from Koenker and Hallock
(2001).



productivity growth and value added share dynamics asserted by the theoretical model,

although there seem to be no marked differences in the coefficient magnitudes across

quantiles. Instead, the shape of the regression quantiles appears to be essentially flat implying

the absence of differential effects of technological change. The goodness-of-fit statistics

indicate that the power specification is able to explain considerably more than 30 percent of

the variation of the (log) value added shares consistently across all quantiles.

Figure 5
Quantile Regression Results for the Power Specification (Ordinary QR)
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Note that the dotted lines indicate the 95 percent confidence intervals based on 10000 bootst rap replications.

The results for the corresponding instrumental variable quantile regression in figure 6 show

compared to the ordinary quantile regression estimates little changes regarding the effect of

the initial value added share and the associated persistence interpretation. With respect to

productivity growth the general result of a significantly positive influence of this variable is

also not affected by the introduction of the instrumental variables. The confidence intervals,
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however, are noticeably wider now. The fit appears to be slightly lower compared to the

ordinary quantile regression estimates.

Figure 6
Quantile Regression Results for the Power Specification (QR with IV)
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Note that the dotted lines indicate the 95 percent confidence intervals based on 10000 bootst rap replications.

To summarize the results of the quantile regression estimates, the main findings are besides

the expected persistence of the share dynamics that productivity change exerts a positive

effect on the share dynamics which is statistically significant across all quantiles. Thus, indus-

tries with larger productivity growth relative to the leading industry systematically gain in

terms of value added shares. Moreover, the efficiency loss often observed in instrumental

variables estimations seems to be quite modest in the present case and the overall fit of the

quantile regressions is quite acceptable for cross-section regressions in industrial organization

applications.
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7 Summary and Conclusions

The present investigation of structural change within the U.S. manufacturing sector and the

investigation of the role of productivity in this process has been entirely conducted in the

distribution dynamics framework. We started with a statistical exploration of the value added

share dynamics finding a stationary shape of the distribution that is associated with substantial

movements within this distribution as revealed by a nonparametric estimate of the transition

density. The next step was to construct a model based on a Markov process for the value

added shares and then to invoke a search mechanism for innovations that are associated with

specific productivity improvements to derive the transition density. This has been done for

two different specifications, the power specification in the main text and the logistic specifica-

tion in the appendix. Although theoretically more appealing (at least on the state-space ),�0, 1�

the latter specification fits much worse to the data compared to the former specification. The

superior empirical fit of the power specification becomes strikingly evident from the

maximum likelihood estimate of the transition density of the model which replicates all essen-

tial characteristics of the nonparametric fit of the transition density. In addition, the quantile

regression estimates show a better fit in the case of the power specification compared to the

logistic specification, although the statistical inference regarding persistence and the through-

out significantly positive effect of productivity change appear to be the same in both cases.

The implications of these results can be summarized in three points. First, structural change

takes place but seems to be bounded in some way, at least during the period 1958-96. The

computer revolution leaves a distinct imprint in the transition law of the value added shares,

although this is confined only to some of the core industries. The exceptional growth of these

industries gives a hint at the enormous growth prospects of these technologies for the rest of

the economy. Second, there are differences in the persistence of the value added share dynam-

ics across industries. This points to the existence of asymmetries in the adjustment dynamics

of the value added shares as response to shocks. Third, the change of competitiveness in the

form of total factor productivity growth relative to the competitors is a variable that exerts a

significant influence on the process of structural change. Here again, the effect of the

computer revolution and the increasing intensity of computer applications in the other indus-

tries may be one of the forces that drive these results.
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Appendix: Logistic Specification

This specification features the logistic nature of growth processes taken over from biology. As

the power function it ensures that the shares are bounded within the interval  and is�0, 1�

furthermore consistent with a unique and stable stationary distribution as shown below. The

logistic specification assumes that the value added shares develop according to the law of

motion , where  now has the properties  andst � �1 	 exp����ãt� � �0st�1��
�1 ���� ��x� � ‘

 for all  which in part deviate from the power specification. The limiting proper-� ��x� � 0 x � ‘

ties are in this case  and .limx�� ��x� � �� limx��� ��x� � �

The set A is here given by

,A � b �0s � ln s1
1�s1

, b �0s � ln s2
1�s2

where  denotes again the inverse of . In the case of the logistic specification the cdfb��� ����

associated with the transition kernel is

 P�s, �0, s2�� � F�b �0s � ln s2
1�s2

���s�

since  and  by the properties of .lims1�0 ln s1
1�s1

� �� limx�� b�x� � �� ����

This transition kernel is increasing in the above defined sense since for  it follows thats � s �

 which implies b �0s � ln s2
1�s2

� b �0s � � ln s2
1�s2

F�b �0s � ln s2
1�s2

� � F�b �0s � � ln s2
1�s2

�

and thus .F�b �0s � ln s2
1�s2

���s� � F�b �0s � � ln s2
1�s2

���s
��

Here, the MMC condition of Hopenhayn and Prescott (1992) is satisfied for  since therem � 1

exists an  such thats� � �0, 1�

 P�1, �0, s��� � F�b(�0 � ln s�
1�s� )���1� 
 0 �s� � �0, 1�

and

.P�0, �s�, 1�� � 1 � F�b(� ln s�
1�s� )���0� 
 0 �s� � �0, 1�

This establishes the existence and ergodicity of the stationary distribution in the case of the

logistic specification.
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The cdf of the truncated Poisson mixture distribution is in this case

 P�s, �0, s2�� �
exp���s�F�b �0s � ln s2

1�s2
�� � 1

exp���s�� � 1

Assuming  leads to  as the inverse���ãt� � ��1�ãt b��0st�1 � ln st
1�st � � �1

�1�ln st
1�st � �0st�1�

function and the respective transition distribution and density functions

 P�st�1, �0, st�� �
exp���0 	 �1 ln st�1����ln st

1�st
� �0st�1�/��1�1� � �0/�1�� � 1

exp��0 	 �1 ln st�1� � 1

 p�ln st | ln st�1� �
exp���0 	 �1 ln st�1����ln st

1�st
� �0st�1�/��1�1� � �0/�1��

exp��0 	 �1 ln st�1� � 1

 ���0 	 �1 ln st�1����ln
st

1�st � �0st�1�/��1�1� � �0/�1�

,��1/��1�1�1 � st���

where the last (Jacobian) factor is again always nonnegative since . Plugging thest � �0, 1�

formula for the transition density into the loglikelihood function  as above in the case ofln L

the power specification and numerically maximizing this with respect to the same six parame-

ters using the BFGS method gives the transition density depicted in figure 7.
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Figure 7
Transition Density for Logistic Specification (ML Fit)
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This plot reveals that the differences of the persistence in the case of industries with small and

large value added shares are also captured by this transition density. Overall, however, this

plot differs considerably from the nonparametric estimate in figure 2 above.

The logistic specification can be transformed to a linear functional estimable by quantile

regression by the means of the logit transformation. Point of departure is the logistic function

 from which the logit transformation leads tosit � �1 	 exp����ãit� � �0sit�1��
�1

 ,ln�sit/�1 � sit�� � �0sit�1 � ���ãit� 	 uit � �0sit�1 	 �1�ãit 	 uit

where  in this case.���ãit� � ��1�ãit

The ordinary quantile regression results for the logistic specification are reported in figure 8.

They show that the intercept is again significantly negative. The effect of the initial value

added share, which appears without logarithm in this specification, is now increasing but only

weakly so. The regression quantiles for productivity growth are approximately constant and
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significantly positive for all quantiles. The overall fit of the logistic specification is lower, in

particular for the lowest quantiles. This resembles the greater differences of the estimated

transition density of the logistic specification in figure 7 to the nonparametric estimate

compared to the respective transition density of the power specification.

Figure 8
Quantile Regression Results for the Logistic Specification (Ordinary QR)
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Note that the dotted lines indicate the 95 percent confidence intervals based on 10000 bootst rap replications.

The comparison with the instrumental variable estimates of the logistic specification in figure

9 shows that the main conclusions also hold under these circumstances, although marginally

wider confidence intervals can be recognized.

- 29 -



Figure 9
Quantile Regression Results for the Logistic Specification (QR with IV)
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Note that the dotted lines indicate the 95 percent confidence intervals based on 10000 bootst rap replications.
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