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Abstract

We give functional limit theorems for the fluctuation of the rescaled occupation time process
of a critical branching particle system in Rd with symmetric α-stable motion, in the cases
of critical and large dimensions, d = 2α and d > 2α. In a previous paper (Bojdecki et al,
2004b) we treated the case of intermediate dimensions, α < d < 2α, which leads to a long-
range dependence limit process. In contrast, in the present cases the limits are generalized
Wiener processes. We use the same space-time random field method of the previous paper,
the main difference being that now the tightness requires a new approach and the proofs are
more difficult. We also give analogous results for the system without branching in the cases
d = α and d > α.
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1. Introduction

In Bojdecki et al (2004b) (denoted for brevity in the sequel by BGT), we proved a functional
central limit theorem for the rescaled occupation time process of a critical binary branching
particle system in Rd with particles moving according to a symmetric α-stable Lévy process,
in the case of intermediate dimensions, α < d < 2α, which leads to a long-range dependence
limit process. In the present paper we consider the same problem in the cases of critical and
large dimensions, d = 2α and d > 2α, where long-range dependence no longer appears. There
are significant differences in the types of the results and in some aspect of the proofs. Let
us summarize the main differences between the limiting behaviors for different ranges of the
parameters d and α.

The rescaled occupation time fluctuation process is defined by

XT (t) =
1
FT

∫ Tt

0
(Ns − ENs)ds, t ≥ 0, (1.1)
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where (Nt)t≥0 is the empirical measure process of the system, T > 0 (T will tend to ∞), and
FT is a suitable norming. For the initial state N0 we take a standard Poisson random field (i.e.,
with intensity the Lebesgue measure λ). Weak convergence (denoted by ⇒) of the process XT

takes place in the space C([0, τ ],S ′(Rd)) for any τ > 0, where S ′(Rd) is the space of tempered
distributions, dual of the space S(Rd) of smooth rapidly decreasing functions.
(1) α < d < 2α. With the norming FT = T (3−d/α)/2, we have XT ⇒ Cλζ as T → ∞, where C
is a constant and ζ = (ζt)t≥0 is a real long-range dependence centered Gaussian process called
sub-fractional Brownian motion, whose covariance is given by

sh + th − 1
2
[(s+ t)h + |s− t|h], s, t ≥ 0,

with h = 3− d/α. The properties of the process ζ, in particular the long-range dependence, are
studied in Bojdecki et al (2004a).
(2) d = 2α. With the norming FT = (T log T )1/2, we have XT ⇒ Cλβ as T →∞, where C is a
constant and β = (βt)t≥0 is real standard Brownian motion.
(3) d > 2α. With the norming FT = T 1/2, we have XT ⇒ X as T → ∞, where X is a “truly”
generalized Wiener process (i.e., S ′(Rd)-valued but not measure-valued).

Thus, for α < d < 2α the spatial structure of the limit is simple (the measure λ) and
the temporal structure is complicated (with long-range dependence). For d = 2α the spatial
structure is simple (λ) and so is the temporal structure (with stationary independent increments).
For d > 2α the spatial structure is complicated (S ′(Rd)-valued) and the temporal structure is
simple (with stationary independent increments). A salient feature of these results is the larger
size of the fluctuations at the critical dimension d = 2α ((T log T )1/2 instead of T 1/2). This
phenomenon is known to occur in several models of this type, with or without branching, and
related superprocesses (see e.g. Cox and Griffeath, 1984, 1985; Dawson et al, 2001; Deuschel
and Wang, 1994; Hong, 2004; Iscoe, 1986). However, no tightness proofs have been given for the
rescaled occupation time fluctuations of branching systems, except in the case of intermediate
dimensions in BGT.

The above ranges of the parameters are the only ones for which it makes sense to consider
fluctuations of the occupation time. See Remark 2.3(d) for the cases d ≤ α.

Concerning the proofs, the main difference with BGT is in the tightness. In the case α <
d < 2α it is relatively simple; it follows from the covariance formula of the empirical process. In
the cases d = 2α and d > 2α this formula is not used and a completely new approach is needed.
Fourth moments are estimated with the use of a space-time random field method introduced
in Bojdecki et al (1986). This method was applied in BGT for the proof of uniqueness and
identification of limits (see the introduction of BGT for a general description of this approach).
It is noteworthy that the space-time method has turned out to be useful for both purposes in
this paper (identification of limits and tightness).

We also present analogous results for the system without branching, obtaining a similar
change in the spatial vs. temporal behaviors, the critical dimension being d = α instead of
d = 2α. In particular, the case d < α leads to long-range dependence (Bojdecki et al, 2004a,
2004b), represented by fractional Brownian motion with covariance

1
2
(sh + th − |s− t|h), s, t ≥ 0,

where h = 2− d/α. This model was considered by Deuschel and Wang (1994) in the case α = 2
with different methods that are specific for Brownian motion.

In Section 2 we state the results and in Section 3 we give the proofs.
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2. Convergence theorems

We recall the description of the particle system (see BGT for more details). The particles
move independently in Rd according to a symmetric α-stable Lévy process (0 < α ≤ 2) and
undergo critical binary branching (i.e., 0 or 2 particles with probability 1/2 each case) at rate
V . Note that the case V = 0 corresponds to the system without branching. Let Nt denote the
empirical measure of the system at time t. For N0 we take a Poisson random field with Lebesgue
intensity measure λ. We will use the same notation as in BGT. The occupation time fluctuation
process (XT (t))t≥0 is given by

〈XT (t), ϕ〉 =
T

FT

∫ t

0
(〈NTs, ϕ〉 − 〈λ, ϕ〉)ds, ϕ ∈ S(Rd) (2.1)

(this is clearly the same as (1.1)), where FT is a norming to be chosen.
In the following theorems and throughout we use the Fourier transform defined as ϕ̂(z) =∫

Rd eix·zϕ(x)dx, z ∈ Rd, where · denotes the scalar product in Rd.

Theorem 2.1 For the system without branching (V = 0),

(a) if d > α and FT = T 1/2, we have XT ⇒ W
(α)
0 in C([0, τ ],S ′(Rd)) as T → ∞ for any

τ > 0, where (W (α)
0 (t))t≥0 is a centered Gaussian S ′(Rd)-process with covariance function

Cov(〈W (α)
0 (s), ϕ1〉, 〈W (α)

0 (t), ϕ2〉) = (s∧t) 1
(2π)d

∫
Rd

2
|z|α

ϕ̂1(z)ϕ̂2(z)dz, ϕ1, ϕ2 ∈ S(Rd);

(2.2)

(b) if d = α and FT = (T log T )1/2, we have

XT ⇒ Cdλβ as T →∞, (2.3)

where β = (βt)t≥0 is a standard Brownian motion in R and

Cd =
(

2d−2πd/2dΓ
(
d

2

))−1/2

. (2.4)

Theorem 2.2 For the branching system (V > 0),

(a) if d > 2α and FT = T 1/2, we have XT ⇒ W (α) in C([0, τ ],S ′(Rd)) as T → ∞ for any
τ > 0, where (W (α)(t))t≥0 is a centered Gaussian S ′(Rd)-process with covariance function

Cov(〈W (α)(s), ϕ1〉, 〈W (α)(t), ϕ2〉) = (s ∧ t) 1
(2π)d

∫
Rd

(
2
|z|α

+
V

|z|2α

)
ϕ̂1(z)ϕ̂2(z)dz,

ϕ1, ϕ2 ∈ S(Rd); (2.5)

(b) if d = 2α and FT = (T log T )1/2, we have

XT ⇒ V 1/2Cdλβ as T →∞, (2.6)

where β = (βt)t≥0 and Cd are as in Theorem 2.1.
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Remark 2.3 (a) More explicit forms of the covariances (2.2) and (2.5) can be given using the
formula (see e.g. Gelfand and Shilov, 1964, p. 194)

1
(2π)d

∫
Rd

ϕ̂1(z)ϕ̂2(z)
|z|γ

dz =
Γ(d−γ

2 )
2γπd/2Γ(γ

2 )

∫
R2d

ϕ1(x)ϕ2(y)
|x− y|d−γ

dxdy, 0 < γ < d. (2.7)

(b) The limit processes in Theorem 2.1(a) and 2.2(a) are homogeneous (in space and time)
S ′(Rd)-Wiener processes; in particular they are continuous Gaussian with stationary indepen-
dent increments. Note that the limit in Theorem 2.2(a) is the sum of two independent S ′(Rd)-
Wiener processes, the first one being the same as in Theorem 2.1(a). Thus, the limit in Theorem
2.2(a) has two parts, one coming from the free (independent) motion of the particles, and the
other one incorporating the effect of the branching, while for α < d < 2α the branching had
a dominating effect (BGT). S ′(Rd)-Wiener processes and Gaussian random fields with covari-
ances of the form (2.7) have appeared in several contexts, e.g., renormalization limits of random
evolutions (Dawson and Salehi, 1980), occupation time fluctuation limits of two-level branching
systems (Dawson et al, 2001), self-intersection local times and related divergence results for
S ′(Rd)-Gaussian processes (Bojdecki and Gorostiza, 1999, Talarczyk, 2001a, 2001b), invariant
measures of S ′(Rd)-Ornstein-Uhlenbeck processes (Bojdecki and Jakubowski, 1999), stochastic
wave equations (Dalang, 1999, Dalang and Mueller, 2003).
(c) The fact that the norming in Theorem 2.2(a) is the “classical” one (i.e., as in the classical
central limit theorem), is intuitively understood because under the condition d > 2α (which
corresponds to strong transience of the α-stable process), the clans (i.e., families of particles
with eventually backwards coalescing paths) independently occupy any given ball only during a
finite random amount of time each. This behavior is studied in Stöckl and Wakolbinger (1994)
for the case α = 2 under equilibrium condition. If instead of the Poisson (λ) initial condition,
the branching system is started off from an equilibrium state (which exists for d > α, Gorostiza
and Wakolbinger, 1991), or from a random N0 which is transported by the α-stable semigroup Tt

to λ as t→∞ (Gorostiza and Wakolbinger, 1992, 1994), we expect that the results of Theorem
2.2 also hold.
(d) For the system without branching the results are complete (for all values of d and α). To
complete the picture for the branching system (in addition to the results for the intermediate
dimensions α < d < 2α, where long-range dependence appears, BGT) it remains to consider the
cases d ≤ α. For d = α it is possible to prove a limit theorem for the rescaled occupation time
process of the empirical measure process, i.e.,

YT (t) =
1
T

∫ Tt

0
Nsds, t ≥ 0,

which is the analogue of Theorem 3 of Iscoe (1986) for super-Brownian motion in dimension
d = 2 (see also Fleischmann and Gärtner 1986). The limit process for the branching particle
system with α = 2 coincides with the case of super-Brownian motion. We only state the result
(see Talarczyk, 2004, for the proof):

YT ⇒ λξ as T → ∞, where ξ = (ξt)t≥0 is a strictly positive (for t > 0) increasing process
with finite-dimensional distributions determined by the Laplace transform (which can be obtained
from the Laplace transform of the corresponding space-time random field) given by

Eexp

{
−

k∑
i=1

θiξti

}
= exp{−〈λ, v(tk)〉},
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for 0 ≤ t1 ≤ . . . ≤ tk, θ1 . . . , θk ≥ 0, where v(x, t) is the mild solution of

∂

∂t
v(t) = ∆αv(t)−

V

2
v(t)2 + ψ(t)δ0, 0 < t < tk,

and

ψ(t) =
k−1∑
i=1

θi11[tk−ti,tk](t) + θk,

(∆α ≡ −(−∆)α/2 is the infinitesimal generator of the α-stable process).
The result for the fluctuation XT with norming FT = T is obtained by subtracting the

deterministic process λt. For d < α it is known that YT (1) → 0 (the null measure) a.s. as
T → ∞ (this follows from the persistence/extinction dichotomy, Gorostiza and Wakolbinger,
1991).
(e) The results of Theorem 2.2 should be the same for any critical finite variance branching
law with V multiplied by the second factorial moment of the law (because the formula for the
covariance of the empirical measure process, i.e. formula (3.1) of BGT, only involves this change;
see e.g. Gorostiza, 1983). Binary branching simplifies the proofs. This observation applies also
for Theorem 2.2 of BGT.
(f) Hong (2004) proved weak convergence of finite-dimensional distributions for the analogue
of Theorem 2.2 in the context of superprocesses (which is easier) with a fixed test function,
but not the tightness. Theorem 2.2 implies weak convergence of finite-dimensional distributions
with any test functions at different times.

3. Proofs

We first recall some formulas involving Fourier transforms that will be used below (ϕ1, and
ϕ2 are functions from Rd to R, bounded and integrable).∫

Rd
ϕ1(x)ϕ2(x)dx =

1
(2π)d

∫
Rd
ϕ̂1(z)ϕ̂2(z)dz (3.1)

(Plancherel formula),∫
Rd
ϕ1(x)ϕ2(x)dµ(x) =

1
(2π)2d

∫
R2d

ϕ̂1(z)ϕ̂2(z′)µ̂(z + z′)dzdz′ (3.2)

for any finite measure µ,
T̂tϕ1(z) = e−t|z|αϕ̂1(z), (3.3)

where Tt denotes the α-stable semigroup.
We will write C,C1, etc. for generic positive constants, with possible dependencies in paren-

thesis.
A direct proof of convergence of finite-dimensional distributions seems very difficult in our

case. Instead we employ the space-time random field method (Bojdecki et al, 1986).
IfX = (X(t))t∈[0,τ ] is a continuous S ′(Rd)-process, we define a random element X̃ of S ′(Rd+1)

by

〈X̃,Φ〉 =
∫ τ

0
〈X(t),Φ(t, ·)〉dt, Φ ∈ S(Rd+1). (3.4)

In order to prove all assertions of the theorems it suffices to show
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(i) 〈X̃T ,Φ〉 ⇒ 〈X̃,Φ〉 as T → ∞,Φ ∈ S(Rd+1), where X is the corresponding limit process,
and

(ii) {〈XT ;ϕ〉;T ≥ 2} is tight in C([0, τ ],R), ϕ ∈ S(Rd),

where in (ii) we also use the theorem of Mitoma (1983).
As explained in BGT, (i) will be proved if we show that

lim
T→∞

Eexp{−〈X̃T ,Φ〉} = exp
{

1
2

∫ τ

0

∫ τ

0
Cov(〈X(s),Φ(s, ·)〉, 〈X(t),Φ(t, ·)〉)dsdt

}
(3.5)

for each non-negative Φ ∈ S(Rd+1).
We assume without loss of generality that τ = 1. We give only the proof of Theorem 2.2,

since the proof of Theorem 2.1 is analogous but simpler.

Proof of Theorem 2.2
To avoid cumbersome notation we prove (3.5) for Φ of the form Φ(t, x) = ϕ(x)ψ(t), ϕ, ψ ≥

0, ϕ ∈ S(Rd), ψ ∈ S(R). So, we fix ϕ,ψ and denote

ϕT (x) =
1
FT

ϕ(x), χ(t) =
∫ 1

t
ψ(u)du, χT (t) = χ

(
t

T

)
. (3.6)

Repeating the argument in BGT (see (3.10)-(3.23) therein) we obtain the Laplace functional
of X̃T defined by (3.4):

Eexp{−〈X̃T ,Φ〉} = exp
{∫ T

0

∫
Rd
ϕT (x)χT (T − u)vϕT ,χT (x, T − u, u)dxdu

+
V

2

∫ T

0

∫
Rd

(vϕT ,χT (x, T − u, u))2dxdu
}
, (3.7)

where

vϕ,χ(x, r, t) = 1− Eexp
{
−
∫ t

0
〈Nx

s , ϕ〉χ(r + s)ds
}
, (3.8)

and Nx
s is the empirical measure of the particle system with initial condition Nx

0 = δx. Moreover,
by the Feynman-Kac formula we know that vϕ,χ satisfies

vϕ,χ(x, r, t) =
∫ t

0
Tt−s

[
ϕ(·)χ(r + t− s)(1− vϕ,χ(·, r + t− s, s))

−V
2

(vϕ,χ(·, r + t− s, ))2
]

(x)ds, (3.9)

hence

0 ≤ vϕ,χ(x, r, t) ≤
∫ t

0
Tt−sϕ(x)χ(r + t− s)ds. (3.10)

We rewrite (3.7) as

Eexp{−〈X̃T ,Φ〉} = exp
{
V

2
(I1(T ) + I2(T )) + I3(T )

}
, (3.11)
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where

I1(T ) =
∫ T

0

∫
Rd

(∫ u

0
Tu−sϕT (x)χT (T − s)ds

)2

dxdu, (3.12)

I2(T ) =
∫ T

0

∫
Rd

[
(vϕT ,χT (x, T − u, u))2 −

(∫ u

0
Tu−sϕT (x)χT (T − s)ds

)2
]
dxdu,(3.13)

I3(T ) =
∫ T

0

∫
Rd
ϕT (x)χT (T − u)vϕT ,χT (x, T − u, u)dxdu. (3.14)

For part (a) of the theorem we will prove

I1(T ) → 1
(2π)d

∫ 1

0

∫ 1

0
(r ∧ r′)ψ(r)ψ(r′)dr′dr

∫
Rd

|ϕ̂(z)|2

|z|2α
dz, (3.15)

I2(T ) → 0 (3.16)

I3(T ) → 1
(2π)d

∫ 1

0

∫ 1

0
(r ∧ r′)ψ(r)ψ(r′)dr′dr

∫
Rd

|ϕ̂(z)|2

|z|α
dz. (3.17)

as T →∞, which, taking into account (2.5) yields (3.5).
Using (3.6) and making obvious substitutions we have

I1(T ) =
T 3

F 2
T

∫ 1

0

∫ 1

u

∫ 1

u

∫
Rd
TT (s−u)ϕ(x)TT (s′−u)ϕ(x)χ(s)χ(s′)dxdsds′du

=
T 2

(2π)d

∫ 1

0

∫ 1

u

∫ 1

u

∫
Rd
e−T (s−u)|z|αe−T (s′−u)|z|α |ϕ̂(z)|2χ(s)χ(s′)dzdsds′du

=
T 2

(2π)d

∫ 1

0

∫ 1

0

∫ r∧r′

0

∫
Rd

∫ r

u
e−T (s−u)|z|αds

∫ r′

u
e−T (s′−u)|z|αds′|ϕ̂(z)|2dzduψ(r)ψ(r′)drdr′,

(3.18)

where in the second equality we used (3.1) and (3.3), and for the last one we put χ(s) =∫ 1
s ψ(r)dr, χ(s′) =

∫ 1
s′ ψ(r′)dr′, and we changed the order of integration. It is now easy to see

that (3.15) indeed holds.
Next, using (3.9) and (3.10) in the same manner as in BGT (see (3.35)-(3.42) therein) we

have from (3.13)
0 ≤ −I2(T ) ≤ 2J1(T ) + V J2(T ), (3.19)

where

J1(T ) =
∫ T

0

∫ u

0

∫ u

0

∫ s

0

∫
Rd
Tu−s′ϕT (x)Tu−s[ϕT (·)Ts−rϕT (·)](x)χT (T − s′)

×χT (T − s)χT (T − r)dxdrdsds′du, (3.20)

J2(T ) =
∫ T

0

∫ u

0

∫ u

0

∫ s

0

∫ s

0

∫
Rd
Tu−s′ϕT (x)Tu−s[Ts−rϕT (·)Ts−r′ϕT (·)](x)χT (T − s′)

×χT (T − r)χT (T − r′)dxdrdr′dsds′du. (3.21)

By (3.6) and boundedness of χ, after obvious substitutions we obtain

J1(T ) ≤ C
T 4

F 3
T

∫ 1

0

∫ u

0

∫ u

0

∫ s

0

∫
Rd
TT (u−s′)ϕ(x)TT (u−s)[ϕTT (s−r)ϕ](x)dxdrdsds′du.
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We now use the self-adjointness of TT (u−s), formula (3.2) with µ(dx) = ϕ(x)dx, and (3.3) to
obtain that the right-hand side of this inequality is equal to

C
T 5/2

(2π)2d

∫ 1

0

∫ u

0

∫ u

0

∫ s

0

∫
R2d

e−T (2u−s′−s)|z|αe−T (s−r)|z′|αϕ̂(z)ϕ̂(z′)ϕ̂(z + z′)dzdz′drdsds′du.

(3.22)
We need the following trivial estimate which will be used several times (in both forms of the

integral),∫ u

0
e−T (u−r)|z|αdr =

∫ 1

1−u
e−T (r−(1−u))|z|αdr ≤ 1

T |z|α
, 0 ≤ u ≤ 1, z ∈ Rd. (3.23)

We apply (3.23) in (3.22) first to the integral dr and then to ds, ds′, obtaining (since ϕ̂ is
bounded)

J1(T ) ≤ C1T
−1/2

∫
R2d

|ϕ̂(z)|
|z|2α

|ϕ̂(z′)|
|z′|α

dz′dz,

hence J1(T ) → 0 as T →∞, because d > 2α.
J2(T ) can be estimated in exactly the same manner, the only difference being that now we

use (3.2) with µ(dx) = Ts−r′ϕT (x)dx, therefore in the final estimate we obtain

J2(T ) ≤ C2T
−1/2

∫
R2d

|ϕ̂(z)|
|z|2α

|ϕ̂(z + z′)|
|z + z′|α

|ϕ̂(z′)|
|z′|α

dz′dz.

The latter integral is finite since the function

z 7→
∫

Rd

|ϕ̂(z + z′)|
|z + z′|α

|ϕ̂(z′)|
|z′|α

dz′

is bounded, hence J2(T ) → 0 as T →∞. Consequently, (3.16) is proved by (3.19).
We now pass to (3.17). (In BGT I3(T ) → 0 was easy to obtain; in the present situation we

have a non-trivial limit here, hence more work is needed). Using (3.9) we rewrite (3.14) as

I3(T ) = I ′3(T )− I ′′3 (T )− I ′′′3 (T ), (3.24)

where

I ′3(T ) =
∫ T

0

∫
Rd
ϕT (x)χT (T − u)

∫ u

0
Tu−sϕT (x)χT (T − s)dsdxdu, (3.25)

I ′′3 (T ) =
∫ T

0

∫
Rd
ϕT (x)χT (T− u)

∫ u

0
Tu−s[ϕT (·)χT (T− s)vϕT ,χT (·, T− s, s)](x)dsdxdu, (3.26)

I ′′′3 (T ) =
V

2

∫ T

0

∫
Rd
ϕT (x)χT (T − u)

∫ u

0
Tu−s(vϕT ,χT (·, T − s, s))2(x)dsdxdu. (3.27)

If we compare I ′3 to I1 above (see (3.12), (3.18)), we see that it can be treated analogously,
even more easily, and we obtain

I ′3(T ) → 1
(2π)d

∫ 1

0

∫ 1

0
(r ∧ r′)ψ(r)ψ(r′)dr′dr

∫
Rd

|ϕ̂(z)|2

|z|α
dz as T →∞. (3.28)

Next we estimate vϕT ,χT in I ′′3 using (3.10), and we obtain an expression similar to J1 above
(see (3.20)). We apply the same technique based on (3.2), (3.3) and (3.23) to obtain

I ′′3 (T ) → 0 as T →∞. (3.29)
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Finally, after estimating vϕT ,χT in I ′′′3 with the help of (3.10) we arrive at an expression similar
to J2 above (see (3.21)), and in the same way as before we obtain

I ′′′3 (T ) → 0 as T →∞. (3.30)

(3.24)-(3.30) prove (3.17), and this completes the proof of (3.5) for part (a) of the theorem.
For part (b) we will show

I1(T ) → C2
d

∫ 1

0

∫ 1

0
(r ∧ r′)ψ(r)ψ(r′)drdr′

(∫
Rd
ϕ(x)dx

)2

, (3.31)

I2(T ) → 0, (3.32)
I3(T ) → 0 (3.33)

as T →∞ (see (2.6), (3.5), (3.7), (3.11)-(3.14)).
We write (3.18), now with FT = (T log T )1/2, and calculating the integrals ds and ds′ in the

last expression we arrive at

I1(T ) =
1

(2π)d

1
log T

∫ 1

0

∫ 1

0
ψ(r)ψ(r′)

∫ r∧r′

0

∫
Rd

1− e−T (r−u)|z|d/2

|z|d/2

1− e−T (r′−u)|z|d/2

|z|d/2

×|ϕ̂(z)|2dzdudrdr′.

Then (3.31) follows by L’Hôpital’s rule. Indeed, after differentiating w.r.t. T under the integrals
we substitute T 2/dz = z′, then we have |ϕ̂(T−2/dz′)|2 → |ϕ̂(0)|2 = (

∫
Rd ϕ(x)dx)2, and∫

Rd

[
(r − u)e−(r−u)|z′|d/2 1− e−(r′−u)|z′|d/2

|z′|d/2
+

1− e−(r−u)|z′|d/2

|z′|d/2
(r′ − u)e−(r′−u)|z′|d/2

]
dz′

= (2π)dC2
d .

independently of r, r′ and u.
To prove (3.32) we again write (3.19) with J1, J2 given by (3.20), (3.21) respectively. J1 is

bounded above by (3.22) with the only difference that now the coefficient before the integrals
has the form CT 5/2/(log T )3/2.

We now need a slightly more precise (but equally trivial) version of the estimate (3.23):∫ u

0
e−T (u−r)|z|αdr =

∫ 1

1−u
e−T (r−(1−u))|z|αdr ≤ 1− e−T |z|α

T |z|α
, 0 ≤ u ≤ 1, z ∈ Rd. (3.34)

We will also use

sup
T>2

(
1

log T

∫
Rd

1− e−T |z|d/2

|z|d
f(z)dz

)
<∞, (3.35)

which holds for any non-negative bounded and integrable function f , and is checked easily with
L’Hôpital’s rule.

In (3.22) we apply (3.23) to the integral dr, then to ds, and finally (3.34) to ds′. We obtain

J1(T ) ≤ C1

T 1/2(log T )3/2

∫
Rd

|ϕ̂(z′)|
|z′|d/2

dz′
∫

Rd

1− e−T |z|d/2

|z|d
|ϕ̂(z)|dz,

hence, using (3.35) we have J1(T ) → 0 as T →∞.
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J2 can be treated in the same way as in the case with d > 2α, with (3.23) replaced by (3.34).
We obtain

J2(T ) ≤ C

T 1/2(log T )3/2

∫
R2d

(1− e−T |z|d/2
)2

|z|d
1− e−T |z′|d/2

|z′|d/2

1− e−T |z+z′|d/2

|z + z′|d/2

×|ϕ̂(z)||ϕ̂(z′)||ϕ̂(z + z′)|dz′dz.
Using the obvious inequality 1− e−x ≤ x1/8 (x ≥ 0), this is estimated from above by

C

(log T )3/2

∫
Rd

|ϕ̂(z)|
|z|d7/8

∫
Rd

|ϕ̂(z′)|
|z′|d7/16

|ϕ̂(z + z′)|
|z + z′|d7/16

dz′dz.

The last integral is finite (the function z′ 7→ |ϕ̂(z′)|/|z′|d7/16 is square integrable). Hence we
conclude that J2(T ) → 0 as T →∞. This completes the proof of (3.32).

The proof of (3.33) is very easy. We use (3.10) and apply the same technique as before,
based on (3.1) and (3.3). We omit details.

We pass now to the proof of tightness. By Billingsley (1968), it suffices to show that for any
ϕ ∈ S(Rd), ϕ ≥ 0, we have

E(〈XT (t), ϕ〉 − 〈XT (s), ϕ〉)4 ≤ C(ϕ)(t− s)2, (3.36)

0 ≤ s < t ≤ 1, T ≥ 2. Indeed, since each ϕ ∈ S(Rd) can be written as ϕ = ϕ1 − ϕ2, ϕ1, ϕ2 ∈
S(Rd), ϕ1, ϕ2 ≥ 0, then (3.36) implies tightness of the processes {〈XT , ϕ〉, T ≥ 2} for every
ϕ ∈ S(Rd), so tightness of {XT , T ≥ 2} follows by Mitoma’s theorem (1983).

So, we fix ϕ ∈ S(Rd), ϕ ≥ 0 and s, t ∈ [0, 1], s < t. For n > 2/(t− s), let ψn ∈ S(R) be such
that supp(ψn) ⊂ [s, s+1/n]∪[t−1/n, t], ψn ≤ 0 on [s, s+1/n] and

∫ s+1/n
s ψn(u)du = −1, ψn ≥ 0

on [t− 1/n, t] and
∫ t
t−1/n ψ(u)du = 1.

As ψn → δt − δs as n→∞, we have

lim
n→∞

〈X̃T ,Φn〉 = lim
n→∞

∫ 1

0
〈XT (u), ϕ〉ψn(u)du = 〈XT (t), ϕ〉 − 〈XT (s), ϕ〉,

where Φn = ϕ⊗ ψn. Hence, by Fatou’s lemma, to obtain (3.36) it suffices to show that

E〈X̃T ,Φn〉4 ≤ C(ϕ)(t− s)2, (3.37)

n > 2/(t− s), T > 2.
We write the left-hand side of (3.37) as d4

dθ4E
−θ〈X̃T ,Φn〉|θ=0, and this expression suggests the

possibility of using formula (3.7). We apply this formula to θϕ (θ ≥ 0) instead of ϕ, and to
χn(u) =

∫ 1
u ψn(r)dr instead of χ. Observe that

χn ∈ S(R), 0 ≤ χn ≤ 11[s,t], (3.38)

hence (3.37) will be proved if we show that

d4

dθ4
eH(θ)|θ=0 ≤ C(ϕ)(t− s)2 (3.39)

for each χ satisfying (3.38), where

H(θ) = θ

∫ T

0

∫
Rd
ϕT (x)χT (T − u)vθϕT ,χT

(x, T − u, u)dxdu

+
V

2

∫ T

0

∫
Rd

(vθϕT ,χT
(x, T − u, u))2dxdu. (3.40)
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We have
d4

dθ4
eH = ((H ′)4 + 6(H ′)2H ′′ + 4H ′H ′′′ + 3(H ′′)2 +HIV )eH .

On the other hand, v0,χT ≡ 0 (see (3.8)), hence H(0) = 0,H ′(0) = 0, therefore

d4

dθ4
eH(θ)|θ=0 = HIV (0) + 3(H ′′(0))2.

Consequently, to obtain (3.39) is suffices to prove that

|H ′′(0)| ≤ C(ϕ)(t− s) (3.41)

and
|HIV (0)| ≤ C(ϕ)(t− s)2. (3.42)

It will be convenient to denote

v(θ) = v(θ)(x, T − u, u) = vθϕT ,χT
(x, T − u, u).

We then have, from (3.40),

H ′′(0) = 2
∫ T

0

∫
Rd
ϕT (x)χT (T − u)v′(0)dxdu+ V

∫ T

0

∫
Rd

(v′(0))2dxdu (3.43)

and

HIV (0) = 4
∫ T

0

∫
Rd
ϕT (x)χT (T − u)v′′′(0)dxdu+ 4V

∫ T

0

∫
Rd
v′(0)v′′′(0)dxdu

+3V
∫ T

0

∫
Rd

(v′′(0))2dxdu. (3.44)

By (3.9) we have

v′(0)(x, T − u, u) =
∫ u

0
Tu−u1ϕT (x)χT (T − u1)du1, (3.45)

v′′(0)(x, T − u, u) = −2
∫ u

0
Tu−u1 [ϕT (·)v′(0)(·, T − u1, u1)](x)χT (T − u1)du1

−V
∫ u

0
Tu−u1 [v

′(0)(·, T − u1, u1)]2(x)du1, (3.46)

v′′′(0)(x, T − u, u) = −3
∫ u

0
Tu−u1 [ϕT (·)v′′(0)(·, T − u1, u1)](x)χT (T − u1)du1

−3V
∫ u

0
Tu−u1 [v

′(0)(·, T− u1, u1)v′′(0)(·, T− u1, u1)](x)du1. (3.47)

Before we proceed, let us write down two estimates which follow immediately from (3.38)
and which will be used several times.∫ 1

u
e−T (r−u)|z|αχ(r)dr ≤ t− s, 0 ≤ u ≤ 1, z ∈ Rd, (3.48)∫ 1

0

∫ 1

u
e−T (r−u)|z|αχ(r)drdu ≤ t− s

T |z|α
, z ∈ Rd. (3.49)
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We will prove tightness for part (a) of the theorem. In order to prove (3.41) we estimate the
two terms on the right-hand side of (3.43) separately. Let us consider for instance the second
term (omitting the irrelevant coefficient V ). By (3.45) we have∫ T

0

∫
Rd

(v′(0))2dxdu

=
∫ T

0

∫ u

0

∫ u

0

∫
Rd
Tu−u1ϕT (x)Tu−u2ϕT (x)dxχ

(
1− u1

T

)
χ
(
1− u2

T

)
du1du2du

= T 2

∫ 1

0

∫ 1

1−u

∫ 1

1−u

∫
Rd
TT (u1−(1−u))ϕ(x)TT (u2−(1−u))ϕ(x)dxχ(u1)χ(u2)du1du2du

(by (3.1), (3.3))

=
T 2

(2π)d

∫
Rd
|ϕ̂(z)|2

∫ 1

0

∫ 1

1−u
e−T (u1−(1−u))|z|αχ(u1)du1

∫ 1

1−u
e−T (u2−(1−u))|z|αχ(u2)du2dudz

≤ 1
(2π)d

∫
Rd

|ϕ̂(z)|2

|z|2α
dz(t− s),

by (3.23) and (3.49). It suffices to observe that the last integral is finite since d > 2α.
The first summand on the right hand side of (3.43) is estimated similarly, even more easily.
The proof of (3.42) requires much more work. In fact, looking at (3.44)-(3.47) it is clear

that as many as 11 terms have to be estimated. Fortunately, the idea for treating them remains
the same; it is based on the Fourier transform technique and on estimates (3.23), (3.48) and
(3.49). Let us consider the term which is perhaps most impressive, i.e., the one coming from the
summand involving v′(0)v′′′(0) in (3.44), where in v′′′(0) we take the expression with v′(0)v′′(0)
(see (3.47)), and in v′′(0) we consider the second summand (see (3.46)). Omitting numerical
coefficients and powers of V we have∫ T

0

∫
Rd

∫ u

0
Tu−u1ϕT (x)χT (T − u1)du1

∫ u

0
Tu−u′

1

[∫ u′
1

0
Tu′

1−u2
ϕT (·)χT (T − u2)du2

×
∫ u′

1

0
Tu′

1−u′
2

(∫ u′
2

0
Tu′

2−u3
ϕTχT (T − u3)du3

)2

(·)du′2
]
(x)du′1dxdu

=
1
T 2

∫ T

0

∫ u

0

∫ u

0

∫ u′
1

0

∫ u′
1

0

∫ u′
2

0

∫ u′
2

0

∫
Rd
Tu−u1ϕ(x)Tu−u′

1

[
Tu′

1−u2
ϕ(·)

× Tu′
1−u′

2

(
Tu′

2−u3
ϕTu′

2−u′
3
ϕ

)
(·)
]
(x)dxχ

(
1− u1

T

)
χ
(
1− u2

T

)
χ
(
1− u3

T

)
χ

(
1− u′3

T

)
du3du

′
3du2du

′
2du1du

′
1du. (3.50)

We transform the integral dx using, consecutively, the self-adjointness of Tu−u′
1
, formulas

(3.2) with µ(dx) = Tu′
1−u2

ϕ(x)dx and (3.3), and the fact that the Fourier transform of a product
is the convolution of the transforms. We obtain∫

Rd
. . . dx = C

∫
R3d

e−(2u−u1−u′
1)|z|αe−(u′

1−u′
2)|z′|αe−(u′

2−u3)|z′−w|αe−(u′
2−u′

3)|w|α

×e−(u′
1−u2)|z+z′|αϕ̂(z)ϕ̂(z′ − w)ϕ̂(w)ϕ̂(z + z′)dwdz′dz. (3.51)

We put this back into the right hand side of (3.50), bring the space integrals outside and look
at the time integrals.
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After obvious substitutions we have

1
T 2

∫ T

0

∫ u

0

∫ u

0

∫ u′
1

0

∫ u′
1

0

∫ u′
2

0

∫ u′
2

0
. . . du3du

′
3du2du

′
2du1du

′
1du

= T 5

∫ 1

0

∫ 1

r

∫ 1

r

∫ 1

r′1

∫ 1

r′1

∫ 1

r′2

∫ 1

r′2

e−T (r1+r′1−2r)|z|αe−T (r′2−r′1)|z′|αe−T (r3−r′2)|z′−w|α

×e−T (r′3−r′2)|w|αe−T (r2−r′1)|z+z′|αχ(r1)χ(r2)χ(r3)χ(r′3)dr3dr
′
3dr2dr

′
2dr1dr

′
1dr

= T 5

∫ 1

0

∫ 1

r
e−T (r1−r)|z|αχ(r1)dr1

∫ 1

r
e−T (r′1−r)|z|α

∫ 1

r′1

e−(r2−r′1)|z+z′|αχ(r2)dr2

×
∫ 1

r′1

e−T (r′2−r′1)|z′|α
∫ 1

r′2

e−T (r3−r′2)|z′−w|αχ(r3)dr3
∫ 1

r′2

e−T (r′3−r′2)|w|αχ(r′3)dr
′
3dr

′
2dr

′
1dr.

(3.52)

We apply (3.23), consecutively, to the integrals dr′3, dr3, dr
′
2, then (3.48) to dr2 and (3.23)

once again to dr′1, and finally (3.49) to dr1dr. Consequently, taking into account (3.51) we
obtain that the left-hand side of (3.50) is estimated from above by

C

∫
R3d

|ϕ̂(z)|
|z|2α

1
|z′|α

|ϕ̂(z′ − w)|
|z′ − w|α

|ϕ̂(w)|
|w|α

|ϕ̂(z + z′)|dwdz′dz(t− s)2

≤ C1

∫
Rd

|ϕ̂(z)|
|z|2α

dz

∫
Rd

1
|z′|α

∫
Rd

|ϕ̂(z′ − w)|
|z′ − w|α

|ϕ̂(w)|
|w|α

dwdz′(t− s)2.

It suffices now to observe that all integrals are finite since d > 2α. Note that f(w) = |ϕ̂(w)|/|w|α
belongs to L1(Rd) ∩ L2(Rd), hence f ∗ f is bounded and integrable.

The remaining terms in (3.44) can be estimated in a similar way, thus yielding (3.42). This
completes the proof of tightness for part (a) of the theorem.

The proof for part (b) goes along the same lines. Only the final estimates have to be slightly
more precise. Let us look for example at the counterpart of (3.52). It looks exactly the same,
with the only difference that an additional factor 1/(log T )2 appears before the integrals. Now
we apply, consecutively, (3.23) to the integrals dr′3, dr3, then (3.34) to dr′2, (3.48) to dr2, (3.34)
once again to dr′1, and finally (3.49) to dr1dr. We obtain that the left-hand side of (3.50) is
estimated from above by

C
1

log T

∫
Rd

1− e−T |z|d/2

|z|d
|ϕ̂(z)|dz 1

log T

∫
Rd

1− e−T |z′|d/2

|z′|d/2

×
∫

Rd

|ϕ̂(z′ − w)|
|z′ − w|d/2

|ϕ̂(w)|
|w|d/2

dwdz′(t− s)2.

We now use (3.35) twice; for the first factor with f = |ϕ̂| and for the second one with

f(z′) = |z′|d/2

∫
Rd

|ϕ̂(z′ − w)|
|z′ − w|d/2

|ϕ̂(w)|
|w|d/2

dw.

Observe that this f is indeed bounded and integrable since

f(z′) ≤ C

(∫
Rd
|ϕ̂(z′ − w)| |ϕ̂(w)|

|w|d/2
dw +

∫
Rd

|ϕ̂(z′ − w)|
|z′ − w|d/2

|ϕ̂(w)|dw
)
.

Arguing similarly for all the remaining cases we obtain (3.41) and (3.42), and tightness is
proved.
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The proof of Theorem 2.2 is complete. �

The proof of Theorem 2.1 is analogous but easier, since the fundamental formulas (3.7) and
(3.9) have simpler forms (with V = 0). We also note that the proof of tightness can be made
more directly in this case (by no means trivially, though), i.e., without the use of the space-time
method, since E〈XT , ϕ〉4 can be calculated explicitly.
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