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In the context of simulating the transport of a chemical or bacterial contaminant through a
moving sheet of water, we extend a well established method of approximating reaction-diffusion
equations with Markov chains by allowing convection, certain Poisson measure driving sources and
a larger class of reaction functions. Our alterations also feature dramatically slower Markov chain
state change rates often yielding a ten to one hundred fold simulation speed increase over the
previous version of the method as evidenced in our computer implementations. On a weighted L2

Hilbert space chosen to symmetrize the elliptic operator, we consider existence of and convergence to
pathwise unique mild solutions of our stochastic reaction-diffusion equation. Our main convergence
result, a quenched law of large numbers, establishes convergence in probability of our Markov chain
approximations for each fixed path of our driving Poisson measure source. As a consequence, we
also obtain the annealed law of large numbers establishing convergence in probability of our Markov
chains to the solution of the stochastic reaction-diffusion equation while considering the Poisson
source as a random medium for the Markov chains.

1. Introduction and notation. Recently, the problem of assessing water pollution has become
a matter of considerable concern. For proper groundwater management, it is necessary to model the
contamination mathematically in order to assess the effects of contamination and predict the transport
of contaminants. A large number of models in the deterministic case have been developed and solved
analytically and numerically [see Jennings, Kirkner and Theis (1982), Marchuk (1986), Celia, Kindred
and Herrera (1989), Kindred and Celia (1989), Van der Zee (1990), Xin (1994), Barrett and Knabner
(1997, 1998), Chen and Ewing (1997), Dawson (1998), Hossain and Miah (1999), and Hossain and
Yonge (1999)]. Based upon Kallianpur and Xiong (1994), we consider a more realistic model by intro-
ducing some randomness in a meaningful way. We assume that the undesired (chemical or biological)
contaminants are released by different factories along the groundwater system (or river). There are r
such factories located at different sites κ1, . . . , κr in the region E = [0, L1] × [0, L2]. Each of the fac-
tories releases contaminants at the jump times of independent Poisson processes N1(t), . . . , Nr(t) with
random magnitudes {Aj

i , j = 1, 2, . . . } which are i.i.d with common distribution Fi(da). Upon release,
the contaminants are distributed in the area B(κi, ε) = {x : |x− κi| < ε} ⊂ (0, L1)× (0, L2) according
to a proportional function θi(x) satisfying

θi(x) ≥ 0, suppθi ⊆ B(κi, ε) and
∫
B(κi,ε)

θi(x)dx = 1.

We assume that θi is bounded and continuous on B(κi, ε) (i = 1, 2, . . . , r). For example, we can take

θi(x) =
1

πε2
1B(κi,ε)(x),

which is the uniformly distributed function in B(κi, ε) as used in Kallianpur and Xiong (1994), or
(letting | · | denote Euclidean distance)

θi(x) =

(∫
B(κi,ε)

exp{− 1
ε2 − |z − κi|2 }dz

)−1

exp{− 1
ε2 − |x− κi|2 }, x ∈ E,
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which is a smooth function with decay along radial lines in B(κi, ε). Once released, the contaminants
diffuse and drift through the sheet of water largely due to the movement of the water itself. Also,
there is the possibility of nonlinear reaction of the contaminants due to births and deaths of bacteria or
adsorption of chemicals, which refers to adherence of a substance to the surface of the porous medium
in groundwater systems.

We define and abbreviate

∂1f(x1, x2) :=
∂

∂x1
f(x1, x2) = lim

h→0
(x1+h,x2)∈E

f(x1 + h, x2)− f(x1, x2)
h

, ∂2 :=
∂

∂x2
,∆ := ∂2

1+∂
2
2 ,∇ := (∂1 ∂2)T .

The stochastic model described as above can be written formally as follows

(1.1)

∂

∂t
u(t, x) = D∆u(t, x)− V · ∇u(t, x) +R (u(t, x))

+
r∑
i=1

∞∑
j=1

Aj
i (ω)θi(x)1t=τ j

i (ω), x ∈ [0, L1]× [0, L2],

subject to

∂1u(t, L1, x2) = ∂1u(t, 0, x2) = 0, ∂2u(t, x1, L2) = ∂2u(t, x1, 0) = 0,
u(0, x) = u0(x),

where u(t, x) denotes the concentration of a dissolved or suspended substance, D > 0 denotes the
dispersion coefficient, V = (V1, V2) with V1 > 0, V2 = 0 denotes the water velocity, R(·) denotes the
nonlinear reaction term, {τ ji , j ∈ Z+} are the jump times of independent Poisson processes Ni(t)(i =
1, 2, · · · , r) with parameters ηi, and u0(x) denotes the initial concentration of the contaminants in
the region [0, L1] × [0, L2]. Here, we adopt the Neumann boundary condition which means that the
contaminant concentration is constant across the boundary of the region [0, L1]×[0, L2]. All the random
variables Aj

i and τ ji (or Ni(t)) are defined on some probability space (Ω,F ,P). Moreover, we assume
R : [0,∞)→ R is continuous with

R(0) ≥ 0 and sup
u>0

R(u)
1 + u

<∞,

and for some q ≥ 1, K > 0 as well as all u, v ∈ R+

(1.2) |R(u)−R(v)| ≤ K|u− v|(1 + uq−1 + vq−1), |R(u)| ≤ K(1 + uq).

These assumptions amount to nonnegativity at 0, linear growth for the positive part of R, a local
Lipschitz condition, and polynomial growth. We will interpret solutions to (1.1) as mild solutions
defined below (see Definition 1.3).

Remark 1.1. Kurtz (1971) introduced the stochastic particle Markov chain method of approximat-
ing differential equations. Arnold and Theodosopulu (1980), Kotelenez (1986, 1988) and Blount (1991,
1994, 1996) studied Markov chain approximation for a chemical reaction with diffusion provided that
the nonlinear reaction term is a polynomial with a negative leading coefficient. Our assumptions on R
are much weaker.

Let us define a differential operator A = D∆ − V · ∇ with Neumann boundary conditions in both
variables. We take the initial domain D0(A) of A to be

{
f ∈ C2 (E) : ∂1f(0, x2) = ∂1f(L1, x2)

= ∂2f(x1, 0) = ∂2f(x1, L2) = 0} , where C2(E) denotes the twice continuously differentiable functions
on E. Letting ρ(x) = e−2cx1 and c = V1

2D , we can rewrite A as

A = D

[
1

ρ(x)
∂

∂x1

(
ρ(x)

∂

∂x1

)
+

∂2

∂x2
2

]
.
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For convenience, we define a Hilbert space H as follows.

Definition 1.2. (H,< ·, · >) is the Hilbert space L2(E, ρ(x)dx) with norm

‖f‖ =
{∫

E

f2(x)ρ(x)dx
} 1

2

.

(A,D0(A)) is symmetric on H and admits a unique self-adjoint extension with domain D(A) = {f ∈
H : |∇f |, ∆f ∈ H and ∂1f(0, x2) = ∂1f(L1, x2) = 0, ∂2f(x1, 0) = ∂2f(x1, L2) = 0}. We define a
random process Θ(t, x) by

Θ(t, x) =
r∑
i=1

θi(x)
Ni(t)∑
j=1

Aj
i (ω),

and find the equation (1.1) can be rewritten as

(1.3) du(t, x) = [Au(t, x) +R(u(t, x))]dt+ dΘ(t, x), u(0) = u0.

We consider pathwise mild solution of our stochastic partial differential equation (SPDE) (1.3). Let
T (t) be the C0-semigroup generated by A.

Definition 1.3. A process u(t), t ≥ 0 is a mild solution to (1.3) in H if it satisfies

(1.4) u(t) = T (t)u0 +
∫ t

0

T (t− s)R(u(s))dt+
∫ t

0

T (t− s)dΘ(s).

For any separable Hilbert space V , CV [0, T ] and DV [0, T ] denote respectively the V -valued contin-
uous and càdlàg functions h such that h(t) ∈ V for all 0 ≤ t ≤ T . For càdlàg functions h, we define

h(τ−)
.=
{
0 τ = 0
lims↗τ h(s) 0 < τ ≤ T.

We shall use the notations C,C(ω), C(N, l), C(T ) and so on, for finite constants (depending on ω, resp.
N, l etc), which may be different at various steps in the proofs of our results in the paper.

In this paper, we discuss unique pathwise DH [0, T ]-valued solutions and Markov chain approxima-
tions (i.e. distribution convergence) to SPDE (1.3). These results are vital for application of filtering
theory to pollution dispersion tracking problem in the sense that the original signal can be replaced
with a tractable Markov chain approximation. (The reader is referred to Kushner (1977), Di Masi and
Runggaldier (1981) or Bhatt, Kallianpur and Karandikar (1999) for justification about this substitution
of signal for calculation purposes.) In this manner, Monte Carlo and Kallianpur-Striebel based methods
of filtering become more feasible. Our Markov chain approximations employ improved rate schemes over
previous works of Kotelenez (1986, 1988) and Blount (1991, 1994, 1996) resulting in far more efficient
computer implementation of approximate solutions to (1.3) and even a more general allowable class of
reaction functions R in (1.3).

The contents of this paper are organized as follows. In Section 2, we shall construct the Markov
chain approximations to our pollution model (1.3) via the stochastic particle method and the random
time changes approach. In Section 3, we shall show that there exists a pathwise unique solution to (1.3)
and give the quenched law of large numbers for each fixed path of our Poisson sources. As a corollary,
we also establish the annealed law of large numbers while considering the Poisson sources as a random
medium of the Markov chains.
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2. Construction of Markov chain via stochastic particle method. The Markov chain ap-
proximation discussed in this paper is motivated by the stochastic particle models of chemical reaction
with diffusion studied by Arnold and Theodosopulu (1980), Kotelenez (1986, 1988) and Blount (1991,
1994, 1996). In their models, the operator A is replaced by the Laplacian and only the internal fluctu-
ation caused by reaction and diffusion was considered. They proved that a sequence of Markov chain
approximations converges to the solution of deterministic models weakly (in the distribution conver-
gence sense). In our models, we have two kinds of randomness, which are the external fluctuation
coming from the Poisson sources and the internal fluctuation in implementing the reaction and diffu-
sion. We also feature a new method of forming the Markov chain approximations that is more efficient
for computer implementation. Before defining the stochastic particle models, we prepare some prelimi-
naries concerning the differential operator A and its discretization. Basic calculations will bear out the
following lemma whose proof is omitted.

Lemma 2.1. The eigenvalues and eigenfunctions {(λp, φp)}p=(p1,p2)∈(N0)2
of A are given by

λp = λ1
p1 + λ2

p2 , φp(x) = φ1
p1(x1)φ2

p2 (x2), p1, p2 ∈ N0,

λ1
0 = 0, λ1

p1 = −D
(
p1π

L1

)2

−Dc2, p1 ∈ N,

λ2
0 = 0, λ2

p2 = −D
(
p2π

L2

)2

, p2 ∈ N;

φ1
0(x1) =

√
2c

(1− e−2cL1)
, φ2

0(x2) =
√
1
L2

,

φ1
p1(x1) =

√
2
L1
sin

{
p1πx1

L1
+ αp1

}
exp {cx1} , p1 ∈ N,

φ2
p2(x2) =

√
2
L2
cos

{
p2πx2

L2

}
, p2 ∈ N,

where αp1 = tan−1
(
− p1π
L1c

)
, c = V1

2D .

Now, we divide [0, L1)× [0, L2) into L1N × L2N cells of size 1
N × 1

N :

Ik
.=
[
k1 − 1
N

,
k1

N

)
×
[
k2 − 1
N

,
k2

N

)
, k = (k1, k2), k1 = 1, 2, . . . , L1N, k2 = 1, 2, . . . , L2N.

Let HN = {ϕ ∈ H : ϕ is constant on each Ik}. To facilitate the removal of the discrete gradient as
we did in the continuous limit case, we define the uncommon discrete gradient in the first variable

∇V1
N f(x) = DN2(1 − e−

c
N )

[
f(x+

e1

N
)− f(x)

]
+DN2(e

c
N − 1)

[
f(x)− f(x− e1

N
)
]

and the usual discrete Laplacian

∆Nf(x) = N2
[
f(x+

e1

N
) + f(x− e1

N
)− 2f(x)

]
+N2

[
f(x+

e2

N
) + f(x− e2

N
)− 2f(x)

]
.= ∆Nx1f(x) + ∆Nx2f(x),

where e1 = (1, 0) and e2 = (0, 1). Now, we look at the discretized approximation: AN .= D∆N −∇V1
N .

We define the following discrete gradients:

∇̃Nxif(x) = N
[
f(x+

ei
2N

)− f(x− ei
2N

)
]
, ∇+

Nxi
f(x) = N

[
f(x+

ei
N
)− f(x)

]
4



and
∇−
Nxi

f(x) = N
[
f(x− ei

N
)− f(x)

]
, i = 1, 2.

In order to take the boundary conditions into account for the discretized approximation scheme, we
extend all function f ∈ HN to the region [− 1

N , L1 + 1
N ]× [− 1

N , L2 + 1
N ] by letting

f(x1, x2) = f(x1 +
1
N

, x2), x1 ∈ [− 1
N

, 0), x2 ∈ [0, L2];

f(x1, x2) = f(x1 − 1
N

, x2), x1 ∈ [L1, L1 +
1
N
), x2 ∈ [0, L2];

f(x1, x2) = f(x1, x2 +
1
N
), x1 ∈ [0, L1], x2 ∈ [− 1

N
, 0);

f(x1, x2) = f(x1, x2 − 1
N
), x1 ∈ [0, L1], x2 ∈ [L2, L2 +

1
N
)

and denote this class of functions by HN
bc . Then, H

N
bc is the domain of AN . We have the following

lemma whose proof is sketched in Appendix A.

Lemma 2.2. (i) AN with domain HN
bc is self-adjoint on H and can be represented as

(2.1)

ANf(x) := D

[
1
ρ
∇̃Nx1(ρ∇̃Nx1) + ∆Nx2

]
f(x)

= −D
{

1
2ρ(x)

[
∇−
Nx1

(ρ(·+ e1

2N
)∇+

Nx1
f)(x) +∇+

Nx1
(ρ(· − e1

2N
)∇−

Nx1
f)(x)

]
+
1
2
[∇−

Nx2
(∇+

Nx2
f)(x) +∇+

Nx2
(∇−

Nx2
f)(x)

]}
.

(ii) The eigenvalues and eigenfuntions {λNp , φNp }(L1N−1,L2N−1)
p=(p1,p2)=0 for AN are given by

λNp = λ1,N
p1 + λ2,N

p2 , φNp (x) = φ1,N
p1 (x1)φ2,N

p2 (x2),

λ1,N
0 = 0, λ1,N

p1 = 2DN2 cos
p1π

L1N
−DN2(e

c
N + e−

c
N ) (p1 �= 0),

λ2,N
0 = 0, λ2,N

p2 = 2DN2

(
cos

p2π

L2N
− 1

)
(p2 �= 0),

φ1,N
0 (x1) =

√
2c

1− e−2cL1
, φ2,N

0 (x2) =
√
1
L2

,

φ1,N
p1 (x1) =

L1N−1∑
k1=0

√
4c

(1− e−
2c
N )L1N

sin
(
p1πk1

L1N
+ αNp1

)
e

ck1
N 1k1(x1),

φ2,N
p2 (x2) =

L2N−1∑
k2=0

−
√
1− cos p2π

L2N

L2
sin

p2πk2

L2N
+

sin p2π
L2N√

L2

(
1− cos p2π

L2N

) cos p2πk2

L2N

 1k2(x2),

where c = V1
2D , αNp1 ∈ (−π

2 , 0) is given by

αNp1 = tan
−1

(
− e−

c
N cos p1π

L1N

1− e−
c
N cos p1π

L1N

tan
p1π

L1N

)
,
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and 1k1(x1), 1k2(x2) are the indicator functions on [k1
N , k1+1

N ), [k2
N , k2+1

N ) respectively.

Remark 2.3. Substituting cos(x) ≈ 1 − x2

2 for small |x| and e
c
N + e−

c
N − 2 ≈ c2

N2 for large N
into the formulae for λNp , we find that λ

N
p ≈ λp for large N and p1

N , p2N small. Applications of Taylor’s
theorem yield 11

12 |λp| ≤ |λNp | ≤ |λp| for N > π, which will be used in proving Lemma 3.6 and Theorem
3.1. Moreover, one finds that limN→∞ λNp = λp.

Let TN(t) = exp(AN t). Then, φNp are eigenfunctions of TN(t) with eigenvalues exp{λNp t}. Now we
describe the stochastic particle systems. Let l = l(N) be a function such that l(N)→∞ as N →∞. l
can loosely be thought of as the “mass” or the “amount of concentration” of one particle. We let nk(t)
denote the number of particles in cell k at time t for k = (k1, k2) ∈ {1, . . . , L1N} × {1, . . . , L2N} and
also, to account for our Neumann boundary conditions, we set

n0,k2(t) = n1,k2(t), nL1N+1,k2(t) = nL1N,k2(t), k2 = 1, . . . , L2N,

nk1,0(t) = nk1,1(t), nk1,L2N+1(t) = nk1,L2N (t), k1 = 1, . . . , L1N.

Then, {nk(t)} is modeled as a Markov chain with transition rates defined below. First,

nk → nk ± 1 at rate lR±(nkl−1) for k ∈ {1, . . . , L1N} × {1, . . . , L2N},

where nk → nk +1 if R(nkl−1) > 0 and nk → nk − 1 if R(nkl−1) < 0, R+ = R∨ 0 and R− = −(R∧ 0).
Next, we recall c = V1

2D and define the following drift–diffusion mechanism:

(nk, nk+e1 )→ (nk − 1, nk+e1 + 1) at rate (DN2e−
c
N nk+e1 −DN2e

c
N nk)−

(nk, nk+e1)→ (nk + 1, nk+e1 − 1) at rate (DN2e−
c
N nk+e1 −DN2e

c
N nk)+

for all k = (k1, k2) with k1 ∈ {0, 1, . . . , L1N}, k2 ∈ {0, 1, . . . , L2N + 1},

(nk, nk+e2 )→ (nk − 1, nk+e2 + 1) at rate (DN2nk+e2 −DN2nk)−

(nk, nk+e2)→ (nk + 1, nk+e2 − 1) at rate (DN2nk+e2 −DN2nk)+

for all k = (k1, k2) with k1 ∈ {0, 1, . . . , L1N + 1}, k2 ∈ {0, 1, . . . , L2N}.

We shall write δ1,N (nk) = DN2e−
c
N nk+e1 −DN2e

c
N nk and δ2,N (nk) = DN2nk+e2 −DN2nk.

Remark 2.4. Suppose R(x) = b(x)−d(x) =
∑m

i=0 cix
i be a polynomial for x ∈ R, with cm < 0 and

b(x), d(x) being polynomials of degree ≤ m with nonnegative coefficients satisfying d(0) = 0. Then, the
previous works apply to the case V ≡ 0, r = 0 and the usual diffusion mechanism as used in Arnold
and Theodosopulu (1980), Kotelenez (1986, 1988) and Blount (1991, 1994, 1996) would be

nk → nk + 1 at rate lb(nkl−1)

nk → nk − 1 at rate ld(nkl−1)

(nk, nk±ei )→ (nk − 1, nk±ei + 1) at rate DN2nk, i = 1, 2

for all k in the ranges indicated above. In our new scheme we slow these rates down significantly by
comparing the number of particles in adjacent cells and birth to death rates. This makes computation
far more efficient and simplifies implementation.
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Finally, we incorporate the Poisson sources into the approximations. Let

KN
i

.=
{
k :

[
k1 − 1
N

,
k1

N

)
×
[
k2 − 1
N

,
k2

N

)
⊂ B(κi, ε)

}
, i = 1, 2, ..., r.

Then, we add source contamination according to

{nk}k∈KN
i
→

{
nk +

⌊
lθi(k)A

j
i (ω) + 0.5

⌋}
k∈KN

i

at time τ ji , i = 1, 2, ..., r, j ∈ Z+.

Now, we use the aforementioned transition rates to construct our model in the probabilistic setting.
However, rather than immersing ourselves immediately in the mathematics of model building we note
that the same random numbers would be supplied by the computer for the Markov chain approximation
regardless of the values of l and N . Naturally, more numbers would be utilized for large l, N , but the
most salient point is that any realistic modelling scheme should exhibit a dependence between models
with different values of l, N . We provide one such scheme and note that different schemes will yield
different implementation algorithms and different precise rate of convergence results such as central
limit theorems and laws of the iterated logarithm. We let {Nk}∞k=0 be an increasing sequence in N

such that Nk → ∞ as k → ∞. For any N ∈ {Nk}∞k=0, there exists a unique n ∈ N such that
2n−1 < N ≤ 2n. We recall that the Aj

i , τ
j
i are defined on (Ω,F ,P), note that the Poisson processes in

our Markov chain mechanism should be independent of {Aj
i , τ

j
i }, and let (Ω,F ,P) be another probability

space. Assume that
{
(XR

+,j, X
R
−,j , X

1
+,j, X

1
−,j, X

2
+,j , X

2
−,j)

}(L1,L2)

j=(j1,j2)=(1,1)
are 6L1L2 independent

standard Poisson processes, and
{(

ξR,l,j+,m , ξR,l,j−,m , ξ1,l,j
+,m, ξ1,l,j

−,m, ξ2,l,j
+,m, ξ2,l,j

−,m
)
,(

ζR,l,j+,m , ζR,l,j−,m , ζ1,l,j
+,m, ζ1,l,j

−,m, ζ2,l,j
+,m, ζ2,l,j

−,m
)
, l = 1, 2, . . . , n; m = 1, 2, . . .

}(L1,L2)

j=(j1,j2)=(1,1)
are independent

Bernoulli trials with p = 1
2 on (Ω,F ,P), which could be constructed by a singly indexed collection of

independent Bernoulli trials
{(

ξR,j+,m, ξR,j−,m, ξ1,j
+,m, ξ1,j

−,m, ξ2,j
+,m, ξ2,j

−,m
)
,(

ζR,j+,m, ζR,j−,m, ζ1,j
+,m, ζ1,j

−,m, ζ2,j
+,m, ζ2,j

−,m
)
, m = 1, 2, . . .

}(L1,L2)

j=(j1,j2)=(1,1)
by making an assignment like

ξR,l,j+,m = ξR,j+,ln+m and so on. From the two probability spaces (Ω,F ,P) and (Ω,F ,P), we define the
product space

(Ω0,F0,P0) = (Ω× Ω,F ⊗ F ,P× P).

Now, we construct the Poisson processes that will be used to build our model. For convenience, we let
ξ̄R,l,j+,m = 1−ξR,l,j+,m etc. Then, we will think of ξR,l,j+,m as a 1 in the lth position and ξ̄R,l,j+,m as a zero. Thus, we
have one to one correspondence using the binary expansion of cell k− (1, 1) (1 ≤ k1 ≤ N, 1 ≤ k2 ≤ N),
for example

k1 − 1↔ (0, 1, · · · , 1, 1)↔ ξ̄R,n+,mξR,n−1
+,m · · · ξR,2+,mξR,1+,m

k2 − 1↔ (1, 0, · · · , 0, 1)↔ ζR,n+,mζ̄R,n−1
+,m · · · ζ̄R,2+,mζR,1+,m

and we define the standard Poisson processes

XR,j,N
+,k (t) =

XR
+,j(4

nt)∑
m=1

ξ̄R,n,j+,m ξR,n−1,j
+,m · · · ξR,2,j+,m ξR,1,j+,m ζR,n,j+,m ζ̄R,n−1,j

+,m · · · ζ̄R,2,j+,m ζR,1,j+,m

XR,j,N
−,k (t) =

XR
−,j(4nt)∑
m=1

ξ̄R,n,j−,m ξR,n−1,j
−,m · · · ξR,2,j−,m ξR,1,j−,m ζR,n,j−,m ζ̄R,n−1,j

−,m · · · ζ̄R,2,j−,m ζR,1,j−,m
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and so on. Then, the collection {XR,j,N
+,k , XR,j,N

−,k , . . . , X2,j,N
−,k , k1, k2 = 1, 2, . . . , N,

j1 = 1, . . . , L1, j2 = 1, 2, . . . , L2} are independent Poisson processes for fixed N . Next, to simplify nota-
tion, we write Xk,$

+,N (t) for X
$,j,N
+,i , Xk,$

−,N(t) for X
$,j,N
−,i , where : = R, 1, 2 and k = (k1, k2) := ((i1−1)L1+

j1, (i2− 1)L2+ j2) ∈ {(1, 1), · · · , (L1N,L2N)}, i1, i2 = 1, . . . , N, j = (j1, j2) ∈ {(1, 1), . . . , (L1, L2)}. In
the sequel, �r� denotes the greatest integer not more than a real number r. We let

(2.2) nNk (0) =

⌊
l

(∫
Ik

ρ(x)dx
)−1 ∫

Ik

u(0, x)ρ(x)dx

⌋
.

Then, following Ethier and Kurtz (1986) pp. 326-8, we let

(2.3)

nNk (t) = nNk (0) +Xk,R
+,N

(
l

∫ t

0

R+(nNk (s)l
−1)ds

)
−Xk,R

−,N

(
l

∫ t

0

R−(nNk (s)l
−1)ds

)
+

2∑
i=1

[
Xk,i

+,N

(∫ t

0

δ+
i,N (n

N
k (s))ds

)
−Xk,i

−,N

(∫ t

0

δ−i,N (n
N
k (s))ds

)]
−

2∑
i=1

[
Xk−ei,i

+,N

(∫ t

0

δ+
i,N (n

N
k−ei

(s))ds
)
−Xk−ei,i

−,N

(∫ t

0

δ−i,N (n
N
k−ei

(s))ds
)]

+
r∑
i=1

∞∑
j=1

⌊
lθi(k)A

j
i + 0.5

⌋
1t≥τ j

i
1k∈KN

i
.

Equation (2.3) provides a very explicit and powerful construction of our Markov chain approximations
to equation (1.3). Equation (2.3) can be implemented directly on a computer. However, to exploit the
mathematical richness of our representation, we avail ourselves of the following lemma. In preparation
for the statement of this lemma, we define Ω̃ =

∏∞
m=0 Ω̃m, where Ω̃m = DRL1Nm×L2Nm∪{
}[0,∞) and

R
L1Nm×L2Nm∪{�} is the one-point compactification of RL1Nm×L2Nm (see page 165 of Ethier and Kurtz

(1986)). Set F̃ = ⊗∞
m=0B(Ω̃m), which is the σ-algebra generated by open sets under Skorohod J1 topol-

ogy and countable products. For each ω ∈ Ω, we let {GN,ωt }t≥0 be the smallest right continuous filtration

such that XN (t) .=
{
Xk,R
σ,N

(
l
∫ t
0 Rσ(nNk (s)l

−1)ds
)
, Xk,i

σ,N

(∫ t
0 δσi,N (n

N
k (s))ds

)
, σ = +,−, i = 1, 2

}(L1N,L2N)

k=(1,1)

is adapted to {GN,ωt } ⊂ F .

Lemma 2.5. (1) nN(t) = {nNk (t)}(L1N,L2N)
k=(1,1) is well defined up to (possible) explosion time τ∞ =

inf{t : nN (t−) = �}; and for each ω ∈ Ω there exists a unique probability measure P̃
ω on (Ω̃, F̃) such

that

(2.4)
P̄(ω̄ ∈ Ω̄ : nNm1 (ω̄, ω) ∈ A1, . . . n

Nmj (ω̄, ω) ∈ Aj)

= P̃
ω(ω̃ ∈ Ω̃ : ω̃m1 ∈ A1, . . . , ω̃mj ∈ Aj)

for all Ai ∈ B(D
R

L1Nmi
×L2Nmi ∪{
}[0,∞)), i = 1, . . . , j; j = 1, 2, . . . . Moreover, we have that for each

B ∈ F̃ , ω → P̃
ω(B) is (Ω,F)-measurable, and ω → ∫

Ω̃
f(ω, ω̃)P̃ω(dω̃) is F-measurable for each bounded

measurable function f .
(2) We have τ∞ =∞ and for t ≥ 0

(2.5)
nNk (t) = nNk (0) +

∫ t

0

ANnN (k, s)ds+ l

∫ t

0

R(nNk (s)l
−1)ds

+ΘNk (t) + ZN
k,R,+(t) + ZN

k,R,−(t) +
2∑
i=1

[
ZN
k,i(t)− ZN

k−ei,i(t)
]
,
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where nN(k, s) .= nNk (s),

ΘNk (t) =
r∑
i=1

∞∑
j=1

�lθi(k)Aj
i + 0.5�1t≥τ j

i
1k∈KN

i
,

and

ZN
k,R,+(t) = Xk,R

+,N

(
l

∫ t

0

R+(nNk (s)l
−1)ds

)
− l

∫ t

0

R+(nNk (s)l
−1)ds,

ZN
k,R,−(t) = −Xk,R

−,N

(
l

∫ t

0

R−(nNk (s)l
−1)ds

)
+ l

∫ t

0

R−(nNk (s)l
−1)ds,

ZN
k,i(t) = Xk,i

+,N

(∫ t

0

δ+
i,N (n

N
k (s))ds

)
−Xk,i

−,N

(∫ t

0

δ−i,N (n
N
k (s))ds

)
−
∫ t

0

δi,N (nNk (s))ds, i = 1, 2

are L2- martingales with respect to {GN,ωt } under probability measure P̃
ω.

The proof of Lemma 2.5 is sketched in the Appendix A. Note that P̃
ω is the probability measure for

the quenched results. However, to use the quenched results within the annealed ones we need to know
that ω → P̃

ω(B) is measurable for each B ∈ F̃ . We can write

P0(dω0) = P̃
ω(dω̃)P(dω), ω0 = (ω, ω̃).

To get the density in each cell, we divide nNk (t) by l and consequently the description of the stochastic
particle model can be given by

(2.6) ul,N(t, x) =
L1N∑
k1=1

L2N∑
k2=1

nNk (t)
l

1k(x),

where 1k(·) denotes the indicator function on Ik. Now, we set

Zl,N
R+ (t)

.=
(L1N,L2N)∑
k=(1,1)

l−1ZN
k,R,+(t)1k, Zl,N

R− (t)
.=

(L1N,L2N)∑
k=(1,1)

l−1ZN
k,R,−(t)1k,

Zl,N
R (t) = Zl,N

R+ (t) + Z l,N
R− (t), Zl,N

D (t) .=
(L1N,L2N)∑
k=(1,1)

2∑
i=1

l−1
(
ZN
k,i(t)− ZN

k−ei,i(t)
)
1k,

and

Θl,N(t, ·) =
r∑
i=1

Ni(t)∑
j=1

∑
k∈KN

i

l−1
⌊
lθi(k)A

j
i (ω) + 0.5

⌋
1k(·).

Then, from (2.5), it follows that

(2.7)
ul,N (t) = ul,N (0) +

∫ t

0

ANul,N(s)ds+
∫ t

0

R(ul,N (s))ds

+Zl,N
R+ (t) + Z l,N

R− (t) + Z l,N
D (t) + Θl,N(t).
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By variation of constants and (2.7), it follows that ul,N (t) = ul,N (t, ω0) satisfies

(2.8)

ul,N (t) = TN(t)ul,N (0) +
∫ t

0

TN(t− s)R(ul,N (s))ds

+
∫ t

0

TN(t− s)dZ l,N
R+ (s) +

∫ t

0

TN(t− s)dZ l,N
R− (s)

+
∫ t

0

TN(t− s)dZ l,N
D (s) +

∫ t

0

TN(t− s)dΘl,N (s).

In this section, we have constructed the Markov chain via stochastic particle model. In the next
section, we shall prove the laws of large numbers for ul,N .

3. Laws of large numbers. For f : E → R, let ‖f‖∞ = supx∈E |f(x)|. We need the following

Hypothesis . For each fixed ω ∈ Ω and q as defined in (1.2), we suppose that
(i) ‖Ẽω(ul,N (0))2q‖∞ ≤ C(ω) <∞.
(ii) (N, l(N)) is any sequence satisfying l(N)→∞ as N →∞.

(iii) ‖ul,N (0)− u0‖ → 0 in probability P̃
ω.

(iv) ‖ul,N(0)‖∞ ≤ C(N, l, ω) <∞.
(v) ‖u0‖∞ ≤ c0 <∞.

We note that ul,N (0) defined by (2.2) and (2.6) satisfies (i), (iii) and (iv) in Hypothesis. However,
we do not necessarily assume that ul,N (0) is given in this way and any ul,N (0) satisfying Hypothesis
will be fine. Through Hypothesis (ii) our dependence on (l, N) is reduced to dependence only on N and
we will write uN for ul(N),N . Now we have the following quenched law of large numbers:

Theorem 3.1. Under Hypothesis, there exists a pathwise unique solution u to (1.3) and

(3.1) sup
t≤T

‖uN(t, ω, ·)− u(t, ω)‖ → 0 in probability P̃
ω as N →∞.

When Ni(t) and Aj
i are considered to be random variable (i.e. ω is no longer fixed), the Markov

chain ul,N evolves in this random medium. We can show that there exists a unique DH [0, T ]-valued
mild solution to (1.3) by reducing our local Lipschitz condition to a global one (through temporary
modification of R), using Picard’s successive approximation, and stopping (see Appendix B for the
proof). Consequently, (ω̄, ω) → supt≤T ‖uN(t, ω̄, ω) − u(t, ω)‖ is jointly measurable. As a corollary of
Theorem 3.1, we have the following annealed law of large numbers.

Corollary 3.2. Under Hypothesis, there exists a unique mild solution u to (1.3) and

sup
t≤T

‖uN(t)− u(t)‖ → 0

in probability P0 as N →∞.

Proof. Applying the quenched result in Theorem 3.1. we have

Ẽ
ωf(sup

t≤T
‖uN(t, ω)− u(t, ω)‖)→ f(0),

for any bounded, continuous function f . Now, by dominated convergence theorem, we obtain

E0f(sup
t≤T

‖uN(t)− u(t)‖)→ f(0).
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This implies that supt≤T ‖uN(t)− u(t)‖ → 0 in distribution or equivalently in probability P0. �

Before proving Theorem 3.1, we prepare some preliminary lemmas. For convenience, we introduce
the projective mapping PN : H → HN

(3.2) f̃N = PNf =
∑
k

(
∫
Ik

ρ(x)dx)−1

∫
Ik

f(x)ρ(x)dx · 1k(·)

and set ρN+ (·) = e−
c
N ρN (·), ρN− (·) = e

c
N ρN (·), where ρN (·) =

∑
kN

2
∫
Ik

ρ(x)dx1k(·). The following
lemma is used in Lemma 3.4 and Lemma 3.5.

Lemma 3.3. Suppose ‖uN(0)‖∞ ≤ C(N, l, ω) <∞ and f ∈ H, then

Ẽ
ω[< ZN

R+(t), f >2] =
1

N2l
Ẽ
ω

∫ t

0

< R+(uN (s)), f̃N
2 · ρN > ds,

Ẽ
ω [< ZN

R (t), f >2] =
1

N2l
Ẽ
ω

∫ t

0

< |R|(uN (s)), f̃N
2 · ρN > ds

and

Ẽ
ω[< ZN

D (t), f >2] ≤ 1
N2l

Ẽ
ω

∫ t

0

4∑
i=1

αi(f, uN(s))ds,

where for f ∈ H,

α1(f, uN (s)) = < N2(e−
2c
N − 1)2e 2c

N f̃N
2
ρN+ , DuN(s) >

+2 < N(e−
2c
N − 1)(∇+

Nx1
f̃N )f̃NρN+ , DuN (s) >

+ < e−
2c
N (∇+

Nx1
f̃N )2 · ρN+ (·), DuN (s) >,

α2(f, uN (s)) = < N2(e
2c
N − 1)2e− 2c

N f̃N
2
ρN− , DuN (s) >

+2 < N(e
2c
N − 1)(∇−

Nx1
f̃N )f̃NρN− , DuN (s) >

+ < e
2c
N (∇−

Nx1
f̃N )2 · ρN− (·), DuN (s) >,

α3(f, uN (s)) =< (∇+
Nx2

f̃N )2ρN (·), DuN (s) >

and
α4(f, uN (s)) =< (∇−

Nx2
f̃N )2ρN (·), DuN (s) > .

Proof. Inasmuch as the proofs of the three parts follows the same steps, we just show the first part.
Now, by the independence we have that the quadratic covariation [Xk1,R

+,N , Xk2,R
+,N ] = 0 for k1 �= k2 .=

(k2
1 , k

2
2). Moreover, s→ nNki(s) is cádlág and hence (cf. Billingsley (1968) p.110) almost surely bounded

on [0, T ], so
∫ T
0 R+(nNki(s)l−1)ds < ∞ almost surely. Therefore, by two applications of Theorem II.22

in Protter (1990), we find that

(3.3)

[
Xk1,R

+,N

(
l

∫ t

0

R+(nNk1(s)l−1)ds ∧ ·
)
, Xk2,R

+,N

(
l

∫ t

0

R+(nNk2(s)l−1)ds ∧ ·
)]

v

=
[
Xk1,R

+,N , Xk2,R
+,N

]
(l
∫ t
0 R

+(nN
k1 (s)l−1)ds)∧(l

∫ t
0 R

+(nN
k2 (s)l−1)ds)∧v

= 0,
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and by the Kunita-Watanabe inequality

(3.4)

∣∣∣∣[Xk1,R
+,N

(
l

∫ t

0

R+(nNk1(s)l−1)ds ∧ ·
)
, Xk2,R

+,N

(
l

∫ t

0

R+(nNk2(s)l−1)ds ∧ ·
)]

v

∣∣∣∣
≤

([
Xk1,R

+,N

]
l
∫

t
0 R

+(nN
k1 (s)l−1)ds

) 1
2

·
([

Xk2,R
+,N

]
l
∫

t
0 R

+(nN
k2 (s)l−1)ds

) 1
2

,

which is P̃
ω-integrable by Cauchy-Schwarz inequality and Lemma 2.5. Hence, letting v →∞, and using

(3.3), (3.4) and dominated convergence, we have that

Ẽ
ω
([

ZN
k1,R,+, Z

N
k2,R,+

]
t

)
= 0, ∀k1 �= k2, t ≥ 0.

Therefore, by the bilinear property of quadratic variation and the fact that < ZN
R+(t), f > is a L2-

martingale, one has that

(3.5)

Ẽ
ω
(
< ZN

R+(t), f >2
)

= Ẽ
ω

{[∑
k

l−1ZN
k,R,+ < 1k, f >

]
t

}

=
∑
k

l−2 < 1k, f >2
Ẽ
ω[ZN

k,R,+]t.

We let τk(t) = l
∫ t
0
R+(nNk (s)l

−1)ds. By Lemma 2.5, we know that τk(t) is nondecreasing in t and
{Xk,R

+,N(τk(t))} is a pure-jump {GN,ωt }-semimartingale with jump size 1. It follows that

(3.6) Ẽ
ω[ZN

k,R,+]t = Ẽ
ω
[
Xk,R

+,N (τk(·))
]
t
= Ẽ

ω
{
Xk,R

+,N(τk(t))
}
= Ẽ

ω

{
l

∫ t

0

R+(nNk (s)l
−1)ds

}
.

Now, by (3.5) and (3.6), we have

Ẽ
ω[< ZN

R+(t), f >2] =
∑
k

l−2 < 1k, f >2
Ẽ
ω

{
l

∫ t

0

R+(nNk (s)l
−1)ds

}

=
1

N2l
Ẽ
ω

∫ t

0

< R+(uN (s)), f̃N
2 · ρN > ds. �

For convenience, we put

(3.7) YR+(t) =
∫ t

0

TN(t− s)dZN
R+(s), YR(t) =

∫ t

0

TN(t− s)dZN
R (s)

and

(3.8) YD(t) =
∫ t

0

TN(t− s)dZN
D (s), Y (t) = Y N(t) = YR(t) + YD(t).

If J ∈ {D,R}, then by variation of constants we have

YJ (t) =
∫ t

0

ANYJ (s)ds+ ZN
J (t).

We let YJ,p, ZJ,p denote < YJ , φ
N
p >, < ZJ , φ

N
p > and use (3.7)-(3.8) to conclude that ANYJ (s), φNp ∈

HN , so it follows trivially that

<

∫ t

0

ANYJ (s)ds, φNp >=
∫ t

0

< ANYJ (s), φNp > ds.
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Indeed, we have by Lemma 2.2, the previous equation and Itô’s formula, respectively,

(3.9) YJ,p(t) =
∫ t

0

λNp YJ,p(s)ds+ ZJ,p(t),

(3.10) Y 2
J,p(t) = 2λ

N
p

∫ t

0

Y 2
J,p(s)ds+ 2

∫ t

0

YJ,p(s−)dZJ,p(s) +
∑
s≤t
(δZJ,p(s))2.

Using (3.9), (3.10) and Lemma 3.3 with f = φNp ; stopping (3.10) to reduce the local martingale;
and utilizing monotone convergence, Fatou’s lemma and Gronwall’s inequality with an interchange of
integration, one gets the following lemma.

Lemma 3.4. Assume that ‖uN(0)‖∞ ≤ C(N, l, ω) <∞. Then:
(a) Ẽ

ω < YD(t), φNp >2≤ (N2l)−1
Ẽ
ω
∫ t
0

∑4
i=1 αi(φ

N
p , uN (s)) · exp{2λNp (t− s)}ds.

(b) Ẽ
ω < YR(t), φNp >2= (N2l)−1

Ẽ
ω
∫ t
0 < |R|(uN(s)), (φNp )2ρN > exp{2λNp (t− s)}ds.

(c) < YD(t), φNp >2≤ A(φNp )(t), where A(φNp )(t)
.= 2

∫ t
0
YD,p(s−)dZD,p(s) +

∑
s≤t(δZD,p(s))

2 is a
submartingale satisfying

Ẽ
ωA(φNp )(t) ≤ (N2l)−1

Ẽ
ω

∫ t

0

4∑
i=1

αi(φNp , uN(s))ds.

(d) < YR(t), φNp >2≤ B(φNp )(t), where B(φNp )(t) is a submartingale satisfying

Ẽ
ωB(φNp )(t) = (N

2l)−1
Ẽ
ω

∫ t

0

< |R|(uN (s)), (φNp )2ρN > ds.

Next, we need to estimate the moments of uN(t). Motivated by Lemma 3.2 of Kotelenez (1988), we
have the following lemma.

Lemma 3.5. For each fixed ω ∈ Ω and 2β ≥ 1,
sup
s≤t

‖Ẽω(uN (s))2β‖∞ ≤ C(t, l, ‖Ẽω(uN (0))2β‖∞, ω) <∞,

where C is decreasing in l.

Proof. Setting ξk = (
√

σN (k))−11k(·) with σN (k) =
∫
Ik

ρ(x)dx, from (2.8) and the fact∫ t
0
TN(t− s)dZN

R−(s)−
∫ t
0
TN(t− s)R−(uN (s))ds ≤ 0, we obtain that

(3.11)

uN (t, x) ≤ < TN(t)uN (0), ξk >
1√

σN (k)

+ <

∫ t

0

TN(t− s)R+(uN(s))ds, ξk >
1√

σN (k)

+ <

∫ t

0

TN(t− s)dZN
R+(s), ξk >

1√
σN (k)

+ <

∫ t

0

TN(t− s)dZN
D (s), ξk >

1√
σN (k)

+ <

∫ t

0

TN(t− s)dΘN(ω, s), (σN (k))−11k >
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for x ∈ Ik. Therefore, for 2β ≥ 1 and x ∈ Ik, one has that

(3.12)

(uN (t, x))2β ≤ 52β−1

{∣∣∣< TN(t)uN (0), ξk > (σN (k))−
1
2

∣∣∣2β
+

∣∣∣∣∣<
∫ t

0

TN(t− s)R+(uN (s))ds, ξk >
1√

σN (k)

∣∣∣∣∣
2β

+| < YR+(t), ξk > |2β(σN (k))−β + | < YD(t), ξk > |2β(σN (k))−β

+| <
∫ t

0

TN(t− s)dΘN (ω, s), (σN (k))−11k > |2β
}
.

Using Tonelli’s theorem, Hölder inequality, the linear growth of R+(·), and Minkowski’s integral in-
equality, we find that

(3.13)

Ẽ
ω

∣∣∣∣∣<
∫ t

0

TN(t− s)R+(uN (s))ds, ξk >
1√

σN (k)

∣∣∣∣∣
2β

≤ t2β−1

∫ t

0

Ẽ
ω
∣∣∣< R+(uN (s)), TN (t− s)ξk > (σN (k))−

1
2

∣∣∣2β ds
≤ t2β−1

∫ t

0

{∫
E

(
Ẽ
ω
∣∣∣R+(uN (s, x)) · TN(t− s)ξk(x)(σN (k))−

1
2

∣∣∣2β) 1
2β

ρ(x)dx

}2β

ds

≤ Ct2β−1

∫ t

0

{∫
E

(
Ẽ
ω |1 + uN(s, x)|2β

) 1
2β ·

(
TN(t− s)ξk(x)(σN (k))−

1
2

)
ρ(x)dx

}2β

ds

≤ Ct2β−1

∫ t

0

(1 + sup
v≤s

‖Ẽω(uN(v))2β‖∞) ·
(
< TN(t− s)1, ξk > (σN (k))−

1
2

)2β

ds

≤ Ct2β + Ct2β−1

∫ t

0

sup
v≤s

‖Ẽω(uN (v))2β‖∞ds.

Similarly, we can show that

(3.14) Ẽ
ω
∣∣∣< TN(t)uN (0), ξk > (σN (k))−

1
2

∣∣∣2β ≤ ‖Ẽω(uN (0))2β‖∞.

Now, following the arguments in the proof of Lemma 3.2 in Kotelenez (1988), for fixed t > 0 and
J ∈ {D,R+}, we define L2-martingales by

LJ(s, k) =


<

∫ s

0

TN(t− v)dZN
J (v), ξk > (σN (k))−

1
2 , s ≤ t

LJ(t, k), s > t.

Then, by Lemma 3.3, the predictable quadratic variations of LR+(s, k) and LD(s, k) are given by

(3.15) % LR+(·, k)&s=
1

lN2σN (k)

∫ s

0

< R+(uN (v)), (TN (t− v)ξk)2ρN > dv

and

(3.16) % LD(·, k)&s≤ 1
lN2σN (k)

∫ s

0

4∑
i=1

αi(TN (t− v)ξk, uN(v))dv.
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Note that by (2.3), the maximal jump size of LJ(s, k) is 1
l . Then, by Burkholder’s inequality, we have

(3.17)

Ẽ
ω |LJ(t, k)|2β ≤ CẼ

ω [LJ(·, k)]βt
≤ CẼ

ω
[% LJ(·, k)&t +l−2

]β
≤ CẼ

ω
[
% LJ(·, k)&β

t

]
+ Cl−2β .

By (3.15) and (3.13), we find that

(3.18)

Ẽ
ω
[
% LR+(·, k)&β

t

]
≤ Cl−βẼ

ω

∣∣∣∣∫ t

0

< TN(t− s)R+(uN (s)), ξk > (σN (k))−
1
2 ds

∣∣∣∣β
≤ Cl−β

(
1 + t2β + t2β−1

∫ t

0

sup
v≤s

‖Ẽω(uN (v))2β‖∞ds

)
.

Setting ΓN (f) = D[e−
c
N (∇+

Nx1
f)2 + e

c
N (∇−

Nx1
f)2 + (∇+

Nx2
f)2 + (∇−

Nx2
f)2] for f ∈ HN

bc , one finds that

4∑
i=1

αi(f, uN (s)) ≤ C < uN(s), f2 > +C < uN(s),ΓN (f) > .

Therefore, by (3.16), it follows that

(3.19)

Ẽ
ω
[
% LD(·, k)&β

t

]
≤ Cl−βẼ

ω

(∫ t

0

< uN (s), (TN (t− s)ξk)2 > ds

)β
+Cl−βẼ

ω

(∫ t

0

< uN(s),ΓN (TN(t− s)ξk) > ds

)β
.

Obviously, the first term on the right hand side of (3.19) is dominated by the same bound in (3.18) (up to
some constant). For the second term on the right hand side of (3.19), by two applications of Minkowski’s
inequality, and noting that < ΓN(f), 1 >=< −2ANf, f >, f ∈ HN

bc , and
d<TN (t−s)f,TN (t−s)f>

ds =
< −2ANTN(t− s)f, TN(t− s)f >, f ∈ HN , we find that for β ≥ 1{

Ẽ
ω

(∫ t

0

< uN (s),ΓN (TN (t− s)ξk) > ds

)β} 1
β

≤
∫ t

0

[
Ẽ
ω
(
< uN (s),ΓN (TN (t− s)ξk) >β

)] 1
β

ds

≤
∫ t

0

[∫
E

(
Ẽ
ω|uN (s, x)|β · |ΓN (TN (t− s)ξk)(x)|β

) 1
β

ρ(x)dx
]
ds

≤
{
sup
s≤t

‖Ẽω(uN (s))β‖∞
} 1

β

·
∫ t

0

< ΓN (TN(t− s)ξk), 1 > ds

≤
{
sup
s≤t

‖Ẽω(uN (s))2β‖∞
} 1

2β

·
∫ t

0

< −2ANTN(2(t− s))ξk, ξk > ds

≤
{
sup
s≤t

‖Ẽω(uN (s))2β‖∞
} 1

2β

,
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i.e.

(3.20) Ẽ
ω

(∫ t

0

< uN (s),ΓN (TN(t− s)ξk) > ds

)β
≤
{
sup
s≤t

‖Ẽω(uN (s))2β‖∞
} 1

2

.

Combining (3.15)-(3.20), we obtain that

(3.21)

Ẽ
ω[| < YR+(t), ξk > |2β(σN (k))−β + | < YD(t), ξk > |2β(σN (k))−β ]

≤ C

(
l−β

[
supv≤t ‖Ẽω(uN (v))2β‖∞

] 1
2
+ l−2β

)
+Cl−β

(
1 + t2β + t2β−1

∫ t

0

sup
v≤s

‖Ẽω(uN(v))2β‖∞ds

)
.

Next, the contraction property of TNt yields

(3.22)

∣∣∣∣< ∫ t

0

TN(t− s)dΘN (ω, s), (σN (k))−11k >

∣∣∣∣
=

r∑
i=1

Ni(t,ω)∑
j=1

< TN(t− τ ji (ω))
∑
k∈KN

i

l−1�lθi(k)Aj
i (ω) + 0.5�1k, (σN (k))−11k >

≤
r∑
i=1

Ni(t,ω)∑
j=1

(‖θi‖∞Aj
i (ω) + l−1) .= c(t, l, ω).

Combining (3.12)-(3.14), (3.21) and (3.22), we find that

sup
s≤t

‖Ẽω(uN (s))2β‖∞

≤ 52β−1

{
‖Ẽω(uN (0))2β‖∞ + Ct2β + Ct2β−1(1 + l−β)

∫ t

0

sup
v≤s

‖Ẽω(uN (v))2β‖∞ds

+Cl−β(sup
s≤t

‖Ẽω(uN (s))2β‖∞) 1
2 + Cl−2β + Cl−β(1 + t2β) + c(t, l, ω)

}
Therefore, by Gronwall’s inequality and Cl−βa

1
2 ≤ a

2 + C2l−2β, we conclude that

sup
s≤t

‖Ẽω(uN (s))2β‖∞ ≤ C(t, l, ‖Ẽω(uN (0))2β‖∞, ω),

where C(·) is obviously decreasing in l and measurable in ω. �

Next, we employ the technique of Blount (1991, 1994) to derive some crucial estimates. Let M =
(logN)2 and consider 0 ≤ n ≤ √

2N/M . For a index p ∈ {0, 1, 2, . . . , L1N − 1} ⊗ {0, 1, . . . , L2N − 1},
let |p| = (p2

1 + p2
2)

1/2 and let Bn = {p : nM ≤ |p| ≤ (n+ 1)M}. For n ≥ 1, maxp∈Bn |p|/minp∈Bn |p| ≤
(n+ 1)/n ≤ 2. Thus by Remark 2.3, there exists C > 0 such that

maxp∈Bn λNp
minp∈Bn λNp

≤ C

for n,N ≥ 1. If |Bn| denotes the cardinality of Bn, then |Bn| ≤ βn, where βn = CM2(n + 1). Thus
βn/N

2 ≤ C(logN)2/N → 0 as N →∞ and
∑[

√
2N/M ]

n=1 βn ≤ CN2.
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Lemma 3.6. (i) Let τb be an {GN,ωt } stopping time such that supt≤T ‖uN(t∧ τb−)‖ ≤ b <∞. Then
there exist l0, N0, a > 0 such that for n ≥ 1, l ≥ l0, N ≥ N0, and d ∈ (0, 1)

P̃
ω

sup
t≤T

 ∑
p∈Bn

< YD(t ∧ τb), φNp >2

 ≥ d2βn/N
2

 ≤ c(T )N2β1/2
n (ad2l/b)−β

1/2
n .

(ii) supt≤T ‖YD(t ∧ τb)‖ → 0 in probability P̃
ω as N →∞ for any b > 0, where τb is as in (i).

(iii) Assume that supN ‖Ẽω(uN (0))q‖∞ <∞. Then supt≤T ‖YR(t)‖ → 0 in probability P̃
ω as N →∞.

(iv) supt≤T ‖Y N (t)‖ → 0 in probability P̃
ω as N →∞.

(v) Assume that supN ‖Ẽω(uN (0))2q‖∞ < ∞. Then the distributions of
{∫ ·

0 T
N(· − s)R(uN(s))ds

}
on

CH [0, T ] are relatively compact.

Proof. The proof of (i) is almost the same with that of Lemma 3.21 (b) of Blount (1991). The
only difference is the covariance structure of ZN

D (t) as determined in Lemma 3.3, but all the estimates
in the proof of Lemma 3.21 of Blount (1991) are still valid by changing some notation and constants.
We omit the details here. The proofs of (ii)-(v) are similar to those of Lemma 3.5, Lemma 3.6, Lemma
4.1 and Lemma 3.7 in Blount (1994). We refer to Blount (1994) for details. Here we only point out
that for the proof of (iv), although we no longer assume that R(x) < 0 for large x, we can use (3.11),
the linear growth of R+ and Gronwall’s inequality to prove that

(3.23)
sup
N

Ẽ
ω‖uN(t ∧ σ)‖

≤ C(T ) sup
N

Ẽ
ω

(
‖uN(0)‖+ sup

t≤T
‖
∫ t

0

TN(t− s)dΘN(s, ω)‖+ a+ 1
)
,

where σ = inf{t : ‖YD(t)‖ ≥ a > 0}. The first two terms in (3.23) are bounded by Hypothesis (i) and
Lemma 3.7 (to follow), so (3.23) and Markov’s inequality is enough to complete the argument of Blount
(1994) to establish (iv) here. �

Lemma 3.7. For each fixed ω ∈ Ω,

sup
t≤T

∥∥∥∥∫ t

0

TN(t− s)dΘN (ω, s)−
∫ t

0

T (t− s)dΘ(ω, s)
∥∥∥∥→ 0 as N →∞.

Proof. Basic calculation yields

(3.24)

∥∥∥∥∫ t

0

TN(t− s)dΘN (ω, s)−
∫ t

0

T (t− s)dΘ(ω, s)
∥∥∥∥

≤
r∑
i=1

Ni(t,ω)∑
j=1

l−1‖1B(κi,ε)‖

+
r∑
i=1

Ni(t,ω)∑
j=1

Aj
i (ω)‖TN(t− τ ji (ω))θ

N
i − T (t− τ ji (ω))θi‖,

where
θNi (·) =

∑
k∈KN

i

θi(k)1k(·), i = 1, 2, . . . , r.
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By using the projection mapping PN defined in (3.2) and the contraction of TN(t), we find that

(3.25)

‖TN(t− τ ji (ω))θ
N
i − T (t− τ ji (ω))θi‖

= ‖TN(t− τ ji (ω))θ
N
i − TN(t− τ ji (ω))P

Nθi‖

+‖TN(t− τ ji (ω))P
Nθi − T (t− τ ji (ω))θi‖

≤ ‖θNi − PNθi‖+ ‖TN(t− τ ji (ω))P
Nθi − T (t− τ ji (ω))θi‖ := ΦN1 +ΦN2 (t)

For ΦN1 , it is easy to see that

(3.26) ΦN1 ≤ ‖θNi − θi‖+ ‖PNθi − θi‖,

which tends to zero as N → ∞. On the other hand, by Taylor’s theorem, it is easily seen that
ANPNf → Af strongly in H for f ∈ D0(A) (the dense subset of H defined in Section 1). Thus, by
the Trotter-Kato theorem, we find that ΦN2 (t)→ 0 uniformly in [0, T ]. Therefore, we have proved that

(3.27) lim
N→∞

sup
t≤T

‖TN(t− τ ji (ω))θ
N
i − T (t− τ ji (ω))θi‖ = 0.

Now (3.24) completes the proof. �

In the sequel, we always consider the Skorohod metric d on DH [0, T ] so that (DH [0, T ], d) is a complete
separable metric space (cf. Ethier and Kurtz (1986), pp. 116-118). For convenience, we let

vN (t) = TN(t)uN (0) +
∫ t

0

TN(t− s)R(uN (s))ds+ Y N (t),

and γN (t) =
∫ t
0 TN(t− s)dΘN (s). Then, uN(t) = vN (t) + γN(t).

Lemma 3.8. (i)For each fixed ω , the distributions of {(uN , vN )} are relatively compact in (DH [0, T ], d)2.
(ii) If {(uNm , vNm)} ⊂ {(uN , vN )} and (uNm , vNm) → (ϕ, v) in distribution on (DH [0, T ], d)2 as
Nm →∞, and (ϕ, v) is defined on some probability space (Ω∗,F∗,P∗), then for 1 ≤ β ≤ 2q

(3.28) sup
t≤T

E
∗ < ϕβ(t, ω), 1 >≤ C(T, ω) <∞.

Proof. (i) follows from Lemma 3.6 (iv,v), Lemma 3.7, (2.8) and the fact that
supt≤T ‖TN(t)uN (0) − T (t)u0‖ → 0 in probability P̃

ω by Trotter-Kato Theorem and a subsequence
argument.
(ii) We first consider vN (t) and notice sup0≤t≤T ‖vNm(t)−vNm(t−)‖ = sup0≤t≤T ‖Y Nm(t)−Y Nm(t−)‖ →
0 in probability asm→∞ by Lemma 3.6(iv). Therefore, by Theorem 3.10.2 of Ethier and Kurtz (1986),
we find that v ∈ CH [0, T ]. Next, by Theorem 5.1 of Billingsley (1968) and Skorohod representation,
there exist {v̂Nm(t)}, v̂(t) on some probability space (Ω̂, F̂ , P̂) such that v̂Nm(t) = vNm(t), v̂(t) = v(t)
in distribution, and v̂Nm(t) → v̂(t) in H a.s. for each t ∈ [0, T ]. Let γ(t) =

∫ t
0 T (t − s)dΘ(s). By

Lemma 3.7, γNm is deterministic when ω is fixed and γNm(t) → γ(t) in H . Therefore, we have
ûNm(t) = v̂Nm(t) + γNm(t) → ϕ̂(t) = v̂(t) + γ(t) in H almost surely. However, this implies that there
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exists a subsequence {Nj} ⊂ {Nm} such that (ûNj(t, x))β → (ϕ̂(t, x))βa.e. x ∈ E almost surely. Then,
we can use Fatou’s lemma, Tonelli’s theorem and Lemma 3.5 to conclude that

E
∗
∫
E

ϕβ(t, x)ρ(x)dx = Ê

∫
E

ϕ̂β(t, x)ρ(x)dx

= Ê

∫
E

lim inf
j→∞

(ûNj (t, x))βρ(x)dx

≤ lim inf
j→∞

∫
E

Ê(ûNj (t, x))βρ(x)dx

≤ L1L2 sup
m
sup
t≤T

‖Ẽω(uNm(t))β‖∞ ≤ C(T, ω). �

Finally we are in a position to prove our Theorem 3.1:

Proof of Theorem 3.1. We use the notation directly above Lemma 3.8 and find from the proof of
Lemma 3.8 that v ∈ CH [0, T ]. Then, we can use Skorohod representation followed by Lemma 3.10.1 in
Ethier and Kurtz (1986) to find DH [0, T ]-valued random elements {v̂Nm}, v̂ on some probability space
(Ω̂, F̂ , P̂) such that v̂Nm = vNm , v̂ = v in distribution and

(3.29) sup
t≤T

‖v̂Nm(t)− v̂(t)‖−→0 a.s. P̂ as m→∞.

Then, it follows by Lemma 19 of Dawson and Kouritzin (1997) that there are DH [0, T ]-valued processes
{v̆Nm ,m = 1, 2, · · · }, v̆ and {Y̆ Nm ,m = 1, 2, · · · } on some probability space (Ω̆, F̆ , P̆) such that

(3.30) L (v̆, v̆N1 , v̆N2 , · · · ) = L (v̂, v̂N1 , v̂N2 , · · · ) on ∏
m∈N0

B(DH [0, T ])

(3.31) L
(
v̆Nm

Y̆ Nm

)
= L

(
vNm

Y Nm

)
for all m = 1, 2, · · ·

Here, L(X) denotes the law of random variable X on a complete separable metric space S. We define
a measurable mapping GN : DH [0, T ]×DH [0, T ]→ DH [0, T ] by

GN (φ, ψ)(t) = PNφ(t) − TN(t)(PNφ(0) + γN (0))−
∫ t

0

TN(t− s)R(PNφ(s) + γN(s))ds − PNψ(t).

Thus, from P̃
ω
(
GNm(v

Nm , Y Nm) = 0
)
= 1 and (3.31), it follows that

GNm(v̆
Nm , Y̆ Nm) = v̆Nm−TNm(v̆Nm(0)+γNm(0))−

∫ t

0

TNm(t−s)R(v̆Nm(s)+γNm(s))ds−Y̆ Nm(t) = 0 a.s.P̆.

Then, ŭNm = v̆Nm + γNm satisfies

(3.32) ŭNm(t) = TNm(t)ŭNm(0) +
∫ t

0

TNm(t− s)R(ŭNm(s))ds + Y̆ Nm(t) + γNm(t) a.s.P̆.

Using Lemma 3.6 (iv), (3.29), (3.30) and (3.31), we find a subsequence {Nj} ⊂ {Nm} such that

(3.33) sup
t≤T

‖v̆Nj (t)− v̆(t)‖−→0 a.s. P̆ as j →∞
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and

(3.34) sup
t≤T

‖Y̆ Nj (t)‖ → 0 a.s. P̆ as j →∞.

Recalling supt≤T ‖γNj(t)− γ(t)‖ → 0 surely from Lemma 3.7, one finds

(3.35) sup
t≤T

‖ŭNj(t)− ϕ̆(t)‖ → 0 a.s. P̆ as j →∞,

where ϕ̆(t) .= v̆(t) + γ(t). Now, we identify ϕ̆. By (3.32), we have with ϕ̆(0) = u0,

(3.36)
ϕ̆(t) = T (t)ϕ̆(0) +

∫ t

0

T (t− s)R(ϕ̆(s))ds+
∫ t

0

T (t− s)dΘ(ω, s)

+ε̆1
Nj
(t) + ε̆2

Nj
(t) + ε̆3

Nj
(t),

where

ε̆1
Nj
(t) = ϕ̆(t)−

∫ t

0

T (t− s)dΘ(ω, s)− (ŭNj(t)−
∫ t

0

TNj(t− s)dΘNj (ω, s)),

ε̆2
Nj
(t) = (TNj(t)ŭNj (0)− T (t)ϕ̆(0)) + Y̆ Nj(t),

and

ε̆3
Nj
(t) =

∫ t

0

TNj(t− s)R(ŭNj(s))ds−
∫ t

0

T (t− s)R(ϕ̆(s))ds.

By (3.35) and Lemma 3.7, it follows that

(3.37) sup
t≤T

‖ε̆1
Nj
(t)‖ → 0 a.s. P̆ as j →∞.

By Trotter-Kato theorem and (3.34), we have

(3.38) sup
t≤T

‖ε̆2
Nj
(t)‖ → 0 a.s. P̆ as j →∞.

We let

ğNj (t) =
∫ t

0

TNj(t− s)R(ŭNj(s))ds, ğ(t) =
∫ t

0

T (t− s)R(ϕ̆(s))ds

and consider

ε̆3
Nj
(t) =

∑
|p|≤n

[< ğNj(t), φNj
p > φNj

p − < ğ(t), φp > φp]

+
∑
|p|>n

< ğNj(t), φNj
p > φNj

p

−
∑
|p|>n

< ğ(t), φp > φp.

By applying Cauchy-Schwarz inequality and Remark 2.3, we have for |p| �= 0

‖ < ğNj (t), φNj
p > φ

Nj
p ‖2

=
∣∣∣∣∫ t

0

exp(λNj
p (t− s)) < R(ŭNj(s)), φNj

p > ds

∣∣∣∣2
≤

∫ t

0

exp(2λNj
p (t− s))ds ·

∫ t

0

< R(ŭNj (s)), φNj
p >2 ds

≤ C

|p|2
∫ t

0

< R(ŭNj(s)), φNj
p >2 ds.
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Thus, ∑
|p|>n

| < ğNj (t), φNj
p > |2

≤ C

n2

∫ t

0

∑
p

< R(ŭNj(s)), φNj
p >2 ds

≤ C

n2

∫ t

0

< 1, R2(ŭNj (s)) > ds.

Therefore, by Hypothesis (i), (1.2) and Lemma 3.5, it follows that for some constant C(T, ω) <∞

(3.39) Ĕ

sup
t≤T

∥∥∥∥∥∥
∑
|p|>n

< ğNj (t), φNj
p > φNj

p

∥∥∥∥∥∥
2
 ≤ C(T, ω)

n2
.

Similarly, by Lemma 3.8 (ii), we find that

(3.40) Ĕ

sup
t≤T

∥∥∥∥∥∥
∑
|p|>n

< ğ(t), φp > φp

∥∥∥∥∥∥
2
 ≤ C(T, ω)

n2
.

It is easy to see that

< ğNj (t), φNj
p > φ

Nj
p − < ğ(t), φp > φp

=
∫ t

0

exp(λNj
p (t− s)) < R(ŭNj(s)), φNj

p > dsφNj
p

−
∫ t

0

exp(λp(t− s)) < R(ϕ̆(s)), φp > dsφp

=
∫ t

0

exp(λNj
p (t− s)) < R(ŭNj(s)), φNj

p > ds(φNj
p − φp)

+
∫ t

0

exp(λNj
p (t− s)) < R(ŭNj (s)), φNj

p − φp > dsφp

+
∫ t

0

exp(λNj
p (t− s)) < R(ŭNj (s))−R(ϕ̆(s)), φp > dsφp

+
∫ t

0

(exp(λNj
p (t− s))− exp(λp(t− s))) < R(ϕ̆(s)), φp > dsφp

:=
4∑
i=1

Γ̆Nj

i (t).

Note that for fixed p,
|λNj
p − λp|+ ‖φNj

p − φp‖∞ → 0 as j →∞
and

sup
j,p

(‖φNj
p ‖∞ + ‖φp‖∞

)
<∞.

Therefore, by Lemma 3.5 and Lemma 3.8 (ii), it follows that

Ĕ

[
sup
t≤T

‖Γ̆Nj

i (t)‖∞
]
→ 0 as j →∞, i = 1, 2, 4.

21



For Γ̆Nj

3 (t), we have by (1.2) and Cauchy-Schwarz inequality

sup
t≤T

‖Γ̆Nj

3 (t)‖∞

= sup
t≤T

∣∣∣∣∫ t

0

exp(λNj
p (t− s)) < R(ŭNj(s)) −R(ϕ̆(s)), φp > ds

∣∣∣∣ · ‖φp‖∞
≤

∫ T

0

| < R(ŭNj(s))−R(ϕ̆(s)), φp > |ds · ‖φp‖∞

≤ ‖φp‖2
∞

∫ T

0

< 1, |R(ŭNj(s))−R(ϕ̆(s))| > ds

≤ √
3K‖φp‖2

∞

∫ T

0

‖ŭNj(s)− ϕ̆(s)‖· < 1, 1 + (ŭNj(s))2(q−1) + ϕ̆2(q−1)(s) >
1
2 ds

≤ √
3K‖φp‖2∞

(∫ T

0

‖ŭNj(s)− ϕ̆(s)‖2ds

) 1
2

×
(∫ T

0

< 1, 1 + (ŭNj (s))2(q−1) + ϕ̆2(q−1)(s) > ds

) 1
2

,

which tends to zero in probability by (3.35), Lemma 3.5 and Lemma 3.8 (ii). Thus, we have

(3.41) sup
t≤T

‖ε̆3
Nj
‖ → 0

in probability P̆. Combining (3.37), (3.38) and (3.41), we obtain

sup
t≤T

‖ε̆1
Nj
(t) + ε̆2

Nj
(t) + ε̆3

Nj
(t)‖ → 0 in probability P̆ as j →∞.

It follows by (3.36) that

ϕ̆(t) = T (t)ϕ̆(0) +
∫ t

0

T (t− s)R(ϕ̆(s))ds+
∫ t

0

T (t− s)dΘ(ω, s), a.s. P̆.

Therefore, almost sure convergence of ŭNj to a pathwise solution of (1.3) follows from (3.35). We now
show that the solution is unique. Let u(t) be a pathwise mild solution of (1.3). Then, we have

u(t, x) = T (t)u(0, x) +
∫ t

0

T (t− s)R(u(s, x))ds +
∫ t

0

T (t− s)dΘ(s, x)

≤ T (t)u(0, x) +
∫ t

0

T (t− s)R+(u(s, x))ds +
∫ t

0

T (t− s)dΘ(s, x)

≤ ‖u(0)‖∞ + Ct+ C

∫ t

0

‖u(s)‖∞ds+
r∑
i=1

Ni(t,ω)∑
j=1

‖θi‖∞Aj
i (ω).

By Gronwall’s inequality, it follows that supt≤T ‖u(t)‖∞ ≤ c(T, ω) <∞. Now let u1, u2 be two solutions
of (1.3) such that u1(0) = u2(0) = u0. Then

(3.42) u1(t)− u2(t) =
∫ t

0

T (t− s)[R(u1(s))−R(u2(s))]ds.

By (1.2) and the above estimate, we find that there exists C(T, ω) <∞ such that

‖u1(t)− u2(t)‖ ≤ C(T, ω)
∫ t

0

‖u1(s)− u2(s)‖ds.
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By Gronwall’s inequality, it follows that u1(t) = u2(t) for any t ∈ [0, T ]. But T is arbitrary, so
u1(t) = u2(t) for any t > 0. Convergence in probability for uN then follows from (3.31), the fact
ϕ = ϕ̆ = u is deterministic, and the arbitrariness of the original {Nm}∞m=1. �

Appendix A

In this appendix, we give sketches of proofs for some lemmas stated in Section 2.

Proof of Lemma 2.2. (i) We have by basic calculations that

D

[
1
ρ
∇̃Nx1(ρ∇̃Nx1) + ∆Nx2

]
f(x)

= DN

{
1

ρ(x1)
∇̃Nx1ρ(x1)

[
f(x+

e1

2N
)− f(x− e1

2N
)
]}

+∆Nx2f(x)

= DN2 1
ρ(x1)

{
ρ(x1 +

1
2N

)
[
f(x+

e1

N
)− f(x)

]
− ρ(x1 − 1

2N
)
[
f(x)− f(x− e1

N
)
]}

+DN2
[
f(x+

e2

N
) + f(x− e2

N
)− 2f(x)

]
= D∆Nf(x) +DN2

(
e−

c
N − 1) [f(x+ e1

N
)− f(x)

]
+DN2

(
1− e

c
N

) [
f(x)− f(x− e1

N
)
]

= ANf(x).

It is easy to see that AN is self-adjoint on H . Another equivalent expression for AN in (2.1) can be
easily verified.
(ii) Basic calculations will give the desired results. We omit the details here. �

Finally, we give sketch of proof for Lemma 2.5.

Proof of Lemma 2.5. (1) We note that (ω, ω̄)→ {nk(ω, ω̄, t)}(L1N,L2N)
k=(1,1) is jointly measurable and

càdlàg in t. Hence, (ω, ω̄, t)→ {nk(ω, ω̄, t)}(L1N,L2N)
k=(1,1) is measurable. On (Ω̃, F̃) we introduce

(A.1)
P̃
ω(A0 ×A1 × · · · ×Aj ×

∏∞
m=j+1 Ω̃m)

= E

[
1nN0(ω̄,ω)∈A0

1nN1(ω̄,ω)∈A1
· · · 1nNj (ω̄,ω)∈Aj

]
,

where Ai ∈ B(DRL1Ni×L2Ni∪{
}[0,∞)) (i = 0, 1, 2, · · · , j). Clearly P̃
ω defined by (A.1) is a premeasure.

For B = A0 ×A1 × · · · ×Aj ×
∏∞
m=j+1 Ω̃m, we have that

ω → E

[
1nN0(ω̄,ω)∈A0

1nN1(ω̄,ω)∈A1
· · · 1nNj (ω̄,ω)∈Aj

]
is measurable by Fubini Theorem. This class {B} of cylinder sets form a semi-algebra. Then, the
algebra G generated by this semi-algebra is just the collection consisting of the finite unions of disjoint
sets from the semi-algebra. Hence ω → P̃

ω(B) is measurable for B ∈ G. Then, we note by (A.1) and
monotone convergence theorem that P̃

ω is σ-additive and use Theorem D of Halmos (1950) p.56 to
find for B ∈ σ(G),that there exists {Bn}∞n=1 ⊂ G satisfying P̃

ω(B) = limn→∞ P̃
ω(Bn) and consequently
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ω → P̃
ω(B) is measurable. Now, we show that ω → ∫

Ω̃
f(ω, ω̃)P̃ω(dω̃) is F -measurable for bounded

measurable function f . This follows immediately for f(ω, ω̃) =
∑n

i=1 1Ai(ω)1Ãi
(ω̃) and therefore, by

monotone class theorem, ω → ∫
Ω̃
1B(ω, ω̃)P̃ω(dω̃) is measurable for any B ∈ F ⊗ F̃ . Then, Theorem

4.3 of the Appendixes of Ethier and Kurtz (1986) gives us the final claim.
(2) From Ethier and Kurtz (1986), pp. 326-327, we know that ZN

k,R,+, Z
N
k,R,−, Z

N
k,1 and ZN

k,2 are
local martingales under P̃

ω with respect to {GN,ωt }. However, nN (t) could be � when t ≥ τ∞, where
τ∞ = inf{t : nN (t−) = �}. We shall show that τ∞ =∞, i.e. there is no explosion for our Markov chain
{nNk (t)}. Since cádlág local martingale with bounded jumps are locally square integrable martingale
and hence semimartingales, and the compensators are finite variation (up to the possible explosion time
τ∞), we find that the quadratic variation for t < τ∞[

ZN
k,R,+

]
t
= Xk,R

+,N

(∫ t

0

lR+(nNk (s)l
−1)ds

)
,
[
ZN
k,R,−

]
t
= Xk,R

−,N

(∫ t

0

lR−(nNk (s)l
−1)ds

)
,[

ZN
k,i

]
t
= Xk,i

+,N

(∫ t

0

δ+
i,N (n

N
k (s))ds

)
+Xk,i

−,N

(∫ t

0

δ−i,N (n
N
k (s))ds

)
, i = 1, 2;

and the predictable quadratic variation (i.e. Meyer processes)

% ZN
k,R,± &t =

∫ t

0

lR±(nNk (s)l
−1)ds, % ZN

k,i &t=
∫ t

0

|δi,N (nNk (s))|ds, i = 1, 2.

For simplicity, we denote by

nN (t) .=
∑
k

nNk (t)1k, ZN
R+

.=
∑
k

ZN
k,R,+(t)1k, ZN

R−(t)
.=
∑
k

ZN
k,R,−(t)1k,

and

ZN
D (t)

.=
∑
k

2∑
i=1

(ZN
k,i(t)− ZN

k−ei,i(t))1k, ΘN (t) .=
r∑
i=1

Ni(t,ω)∑
j=1

∑
k∈KN

i

�lθi(k)Aj
i (ω) + 0.5�1k.

Then from (2.5), we find that

(A.2)

< nN (t), 1 > = < nN (0), 1 > + <

∫ t

0

ANnN (s)ds, 1 > + < l

∫ t

0

R+(nN (s)l−1)ds, 1 >

+ < ZN
R+(t), 1 > + < ZN

D (t), 1 > + < ΘN(t), 1 >

− <

∫ t

0

lR−(nN (s)l−1)ds, 1 > + < ZN
R−(t), 1 >

≤ < nN (0), 1 > + < l

∫ t

0

R+(nN (s)l−1)ds, 1 >

+ < ZN
R+(t), 1 > + < ZN

D (t), 1 > + < ΘN(t), 1 > .

We let {τm}∞m=1 be a reducing sequence for all Z
N
k,R,+, Z

N
k,R,−, Z

N
k,1 and ZN

k,2. Then, from (A.2) we find
that for p ≥ 1

sup
t≤T

< nN (t ∧ τm), 1 >p

≤ 5p−1

{
< nN (0), 1 >p +Lp1L

p
2l
p(T ∧ τm)p +K

(∫ T∧τm

0

< nN (s), 1 > ds

)p

+sup
t≤T

< ZN
R+(t ∧ τm), 1 >p +sup

t≤T
< ZN

D (t ∧ τm), 1 >p +sup
t≤T

< ΘN (t ∧ τm), 1 >p

}
.

24



Therefore,

(A.3)

Ẽ
ω

[
sup
t≤T

< nN (t ∧ τm), 1 >p

]
≤ 5p−1

{
Ẽ
ω < nN (0), 1 >p +Lp1L

p
2l
pT p + C(T )

∫ T

0

Ẽ
ω

[
sup
t≤s

< nN (t ∧ τm), 1 >p

]
ds

+Ẽ
ω

[
sup
t≤T

< ZN
R+(t ∧ τm), 1 >p

]
+ Ẽ

ω

[
sup
t≤T

< ZN
D (t ∧ τm), 1 >p

]
+Ẽ

ω

[
sup
t≤T

< ΘN(t ∧ τm), 1 >p

]}
.

Now, for p ∈ N, by Burkholder’s inequality we find that

(A.4)

Ẽ
ω

[
sup
t≤T

< ZN
R+(t ∧ τm), 1 >p

]
≤ CẼ

ω
[
< ZN

R+(· ∧ τm), 1 >
] p

2
T

≤ CẼ
ω
[
< ZN

R+(· ∧ τm), 1 >
]p
T
+ 1

= CẼ
ω

[∑
k

ZN
k,R,+(· ∧ τm)σN (k)

]p
T

+ 1

≤ CẼ
ω

(∑
k

[
ZN
k,R,+(· ∧ τm)

]
T
σN (k)

)p

+ 1

≤ CẼ
ω

[∑
k

Xk,R
+,N

(∫ T∧τm

0

lR+(nNk (s)l
−1)ds

)
σN (k)

]p
+ 1

≤ C(N)
∑
k

Ẽ
ω

[
Xk,R

+,N

(∫ T∧τm

0

lR+(nNk (s)l
−1)ds

)]p
σpN (k) + 1.

We set Skm,T =
∫ T∧τm

0
lR+(nNk (s)l

−1)ds. If p = 1, then Ẽ
ωXk,R

+,N(S
k
m,T ) = Ẽ

ω [Skm,T ], and otherwise, for
p > 1, we have that

Ẽ
ω
(
Xk,R

+,N(S
k
m,T )

)p
= Ẽ

ω

�Sk
m,T �∑
i=1

(Xk,R
+,N (i)−Xk,R

+,N(i− 1)) +Xk,R
+,N(S

k
m,T )−Xk,R

+,N (�Skm,T �)
p

≤ Ẽ
ω [(�Skm,T �+ 1)p−1 · (

�Sk
m,T �∑
i=1

((Xk,R
+,N (i)−Xk,R

+,N(i− 1))p

+(Xk,R
+,N(S

k
m,T )−Xk,R

+,N (�Skm,T �))p)]

= Ẽ
ω
[
(�Skm,T �+ 1)p−1 ·Xk,R

+,N(S
k
m,T )

]
≤

{
Ẽ
ω
[
(�Skm,T �+ 1)p

]} p−1
p ·

[
Ẽ
ω
(
Xk,R

+,N(S
k
m,T )

)p] 1
p

,

which yields that
Ẽ
ω
(
Xk,R

+,N (S
k
m,T )

)p
≤ Ẽ

ω
[
(�Skm,T �+ 1)p

]
.
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Therefore, from (A.4), we obtain that

(A.5)

Ẽ
ω

[
sup
t≤T

< ZN
R+(t ∧ τm), 1 >p

]
≤ C(N)

∑
k

Ẽ
ω

(∫ T∧τm

0

lR+(nNk (s)l
−1)ds+ 1

)p

σpN (k) + 1

≤ C(N,T )

(
Ẽ
ω

∫ T∧τm

0

∑
k

(nNk (s))
pσpN (k)ds+ 1

)

≤ C(N,T )

(
Ẽ
ω

∫ T∧τm

0

< nN (s), 1 >p ds+ 1

)

≤ C(N,T )

(∫ T

0

Ẽ
ω

[
sup
t≤s

< uN (t ∧ τm), 1 >p

]
ds+ 1

)
.

Similarly, we can show that

(A.6)
Ẽ
ω

[
sup
t≤T

< ZN
D (t ∧ τm), 1 >p

]
≤ C(N,T )

(∫ T

0

Ẽ
ω

[
sup
t≤s

< uN (t ∧ τm), 1 >p

]
ds+ 1

)
.

It is easy to see that

(A.7)

Ẽ
ω

[
sup
t≤T

< ΘN(t ∧ τm), 1 >p

]
≤

L1L2

r∑
i=1

Ni(T,ω)∑
j=1

(lAj
i (ω)‖θi‖∞ + 1)

p := c(T, l, ω).

Hence, from (A.3)-(A.7), we obtain that

Ẽ
ω

[
sup
t≤T

< nN (t ∧ τm), 1 >p

]
≤ C(N,T )

∫ T

0

Ẽ
ω

[
sup
t≤s

< nN (t ∧ τm), 1 >p

]
ds+ C(N,T, l, ω),

and by Gronwall’s inequality, one gets

(A.8) Ẽ
ω

[
sup
t≤T

< nN (t ∧ τm), 1 >p

]
≤ C(N,T, l, ω)eC(N,T )T , ∀m ∈ N.

By monotone convergence, it follows from (A.8) that

(A.9) Ẽ
ω

[
sup
t≤T

< nN (t), 1 >p

]
≤ C(N,T, l, ω)eC(N,T )T .

This implies that there is no explosion for nN (t), i.e. τ∞ = ∞. Now, we turn to the quadratic vari-
ation of ZN

k,R,+, Z
N
k,R,−, Z

N
k,1 and ZN

k,2. Set S
k
−,t = l

∫ t
0
R−(nNk (s)l

−1)ds. From (A.9), it follows that

Ẽ
ω
[
ZN
k,R,−

]
t
= Ẽ

ω(Sk−,t) < ∞, ∀t > 0. This implies that ZN
k,R,− is an L2- martingale. Similarly, we

can show that ZN
k,R,+, Z

N
k,1 and ZN

k,2 are L2-martingales. �
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Appendix B

If R is Lipschitz, then the existence and uniqueness follows from standard arguments. For the non-
Lipschitz case, we define for each n ∈ N

Rn(x) =


R(x) if |x| ≤ n

R
(
nx
|x|
)

otherwise

Then, Rn is Lipschitz. Let us consider the following SPDE

(B.1) dun(t, x) = [Aun(t, x) +Rn(un(t, x))]dt + dΘ(t, x), un(0) = u0.

For fixed n, one can easily use Picard’s successive approximation to show that there exists a unique
DH [0, T ]-valued mild solution to (B.1). Let τn = inf{t : ‖un(t)‖∞ ≥ n}. Then, {τn} is a non-decreasing
sequence of stopping times and un+1(t) = un(t), ∀t ≤ τn. Let τ = supn τn and u(t) = un(t), ∀t ≤ τn.
Then, u(t) is a unique solution to (1.3) up to time τ . We shall prove that τ =∞ a.s. Namely, we must
show that τ > T a.s. for any T > 0. If this is not true, then there exists some T > 0 such that P(Λ) > 0
with Λ = {ω ∈ Ω : τ(ω) ≤ T }. Then, it follows that for each n ∈ N, supt≤T ‖un(t, ω)‖∞ ≥ n, ∀ω ∈ Λ.
Therefore, we have

lim
n→∞ supt≤T

‖un(t, ω)‖∞ =∞, ∀ω ∈ Λ.

On the other hand, for any t > 0, we have

un(t, x) = T (t)u(0, x) +
∫ t

0

T (t− s)Rn(un(s, x))ds +
∫ t

0

T (t− s)dΘ(s, x)

≤ T (t)u(0, x) +
∫ t

0

T (t− s)R+
n (u

n(s, x))ds +
∫ t

0

T (t− s)dΘ(s, x)

≤ ‖u(0)‖∞ + Ct+ C

∫ t

0

‖un(s)‖∞ds+
r∑
i=1

Ni(t)∑
j=1

‖θi‖∞Aj
i .

By Gronwall’s inequality, we find

sup
n
sup
t≤T

‖un(t)‖∞ ≤ C(T, ω) <∞.

Thus, we have a contradiction. So, we must have τ =∞ a.s. �
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