
Uniform asymptotics for robust location estimates
when the scale is unknown

Matias Salibian-Barrera - Carleton University
Ruben H. Zamar - University of British Columbia

June 10, 2002

Abstract

Most asymptotic results for robust estimates rely on regularity conditions that are difficult to
verify and that real data sets rarely satisfy. Moreover, these results apply to fixed distribution
functions. In the robustness context the distribution of the data remains largely unspecified and
hence results that hold uniformly over a set of possible distribution functions are of theoretical and
practical interest. In this paper we study the problem of obtaining verifiable and realistic conditions
that suffice to obtain uniform consistency and uniform asymptotic normality for location robust
estimates when the scale of the errors is unknown. We study M-location estimates calculated with
an S-scale and we obtain uniform asymptotic results over contamination neighbourhoods. There
is a trade-off between the size of these neighbourhoods and the breakdown point of the scale
estimate. We also show how to calculate the maximum size of the contamination neighbourhoods
where these uniform results hold.

1 Introduction

Many robust point estimates have been proposed in the last 35 years. Unfortunately, robust
inference has not received the same amount of attention in the literature. Since the finite sample
distributions of robust estimates are unknown, robust inference typically relies on the asymptotic
distributions of these estimates. To construct a satisfactory asymptotic inference theory based on
robust estimates we need estimates that:

W.1 are translation and scale-equivariant;

W.2 have high breakdown point and high efficiency when the data are not contaminated;

W.3 are computable with an algorithm that is known to converge under weak regularity conditions;

W.4 have an asymptotic theory that requires verifiable and realistic regularity assumptions, and

W.5 have asymptotic properties that hold uniformly over a relatively large set of distribution
functions with known size.

There are many asymptotic results available in the literature. However these results are not
completely satisfactory and difficult to apply. Typical regularity conditions include: (i) the as-
sumption of symmetry of the distribution of the errors (see for example Bickel, 1975; Maronna and
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Yohai, 1981; Huber, 1981; Simpson et. al, 1992; Simpson and Yohai, 1998); (ii) the knowledge of
the scale of the errors (Huber, 1964; Markatou and Hettmansperger, 1990) or (iii) some conditions
that involve the expected value of the estimating equations under the unknown distribution of the
data (Huber, 1981). It is clear that (i), (ii) and (iii) violate W.4 above.

Since according to the robustness model one does not know the actual distribution of the data
one needs asymptotic results that hold uniformly over some set of plausible distributions. Lacking
such uniformity makes it impossible, for example, to determine the sample size needed for an
acceptable normal approximation for a given data set.

The first reference in the robustness literature to asymptotic distribution results that hold
uniformly on a certain set of distribution functions is Huber (1981, pg. 51). See also Fraiman
et al. (2001). Huber shows that when the scale of the errors is known the M-location estimates
are asymptotically normal and the approximation is uniform on the set of symmetric distributions
that have all their mass concentrated on the points where the estimating equation is differentiable.
Huber results apply to estimates that do not satisfy W.1 and the resulting asymptotic results
violate W.4 and W.5 above.

Hampel (1971) showed that under certain regularity conditions, M-location estimates have
uniform asymptotic properties on Prokhorov neighbourhoods. Unfortunately his results apply to
non-scale-equivariant estimates and they only guarantee the existence of a neighbourhood with
unknown size. In other words, this class of estimates does not satisfy W.1 and the asymptotic
results violate W.5.

More recently Davies (1998) constructed M-location estimates with simultaneous scale esti-
mates (Huber’s Proposal 2) that are locally asymptotically normal. Davies’s results are “locally
uniform”, that is, for each distribution function there exists a neighbourhood of distributions where
the convergence holds uniformly. Unfortunately, the size of these neighbourhoods is unknown, and
consequently these results fail W.5. It is also known that simultaneous location-scale estimates do
not satisfy W.2 and W.3. Failure to satisfy W.3 (illustrated in Example 1 below) is particularly
troubling.

Example 1 To illustrate the difficulty in calculating simultaneous location and scale estimates,
consider the following sample of 10 numbers: 0.67, -0.73, -0.30, 0.55, 0.62, -0.99, 0.45, 10.22,
9.94, and 10.02. There are 3 outliers. We tried to calculate simultaneous location-scale estimates
that solve

1
n

n∑

i=1

ψ

(
xi − µ̂n

σ̂n

)
= 0 , (1)

1
n

n∑

i=1

[
χ

(
xi − µ̂n

σ̂n

)
− 1

2

]
= 0 , (2)

whith ψc (u) = min (c, max (−c, u)) and χd (u) = (u/d)2 for |u| ≤ d and χd (u) = 1 otherwise.
We used c = 1.345 and d = 1.04 which corresponds to a scale estimate with 50% breakdown point
and a location estimate with 95% efficiency if the errors are normally distributed. We considered
two algorithms to solve the above system of equations: the usual Newton-Raphson iterations with
initial values µ0 = median (x1, . . . , x10) and σ0 = mad (x1, . . . , x10), and the following scheme:

S.1 Let µ0 = median (x1, . . . , x10), σ0 = mad (x1, . . . , x10), and i = 0;

S.2 solve (1) for µ̂n with σ̂n = σi; let µi+1 = µ̂n;
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S.3 solve (2) for σ̂n with µ̂n = µi+1 as calculated above; let σi+1 = σ̂n;

S.4 i = i + 1 and repeat from step S.2.

It is easy to see that the Newton-Raphson iterations fail to converge because the matrix of first
derivatives becomes non-singular after 7 iterations. The above algorithm however converges to
µ̂n = 3.05 and σ̂n = 5.53. But these results are not reliable as can be seen from the following
simple exercise. Replace the last 3 observations x8, x9 and x10 by x8 +30 = 40.22, x9 +30 = 39.94
and x10 + 30 = 40.02. The new limit values are µ̂n = 12.05 and σ̂n = 21.63 which indicate that
these “robust” estimates are very sensitive to the outliers in the data. In other words, simultaneous
location-scale estimates have serious computational problems and consequently we will concentrate
on M-estimates calculated with an auxiliary scale. The MM-location estimates proposed below in
this paper give µ̂n = 0.76 and σ̂n = 1.22 for both data sets in this example.

A referee cited the work by Clarke (2000) where it is shown that certain M-location estimates
are continuous over full Prokhorov neighbourhoods of the parametric model. It follows that these
estimates have uniform asymptotic behaviour over these Prokhorov neighbourhoods. Unfortu-
nately, the class of estimates considered are not scale-equivariant (i.e. they fail W.1), and as in
Hampel (1971), only the existence of a neighbourhood of unknown size is shown (i.e. they also
fail W.5).

Our results apply to location M-estimates calculated using an S-scale (see Rousseeuw and
Yohai, 1984). In this paper we show that these estimates satisfy all the desired properties listed
above. In particular, these estimates are scale-equivariant (W.1), have simultaneous high break-
down point and high efficiency at the central model (W.2) and can be easily calculated (W.3).
Moreover, we show that under realistic and verifiable regularity conditions (W.4) we obtain uni-
form asymptotic results (consistency and asymptotic distribution) that hold over a contamination
neighbourhood of known size (W.5). We find that the size of these sets depends on the break-
down of the S-scale estimates (the higher the breakdown point the smaller the set of distribution
functions where uniformity holds, see Table 1).

Note that the regularity conditions we need in our results depend on two separate aspects of
the inference procedure: the parametric model assumed to hold for the “good” data points, and
the estimating equations used to calculate the robust estimate. These conditions are verifiable
because they do not depend on the unknown distribution of the data. We shall show that a well-
known class of estimating equations (namely, scale-equivariant M-estimates calculated with an
S-scale) satisfy all our conditions (W.1 to W.5). Moreover, our assumptions do not interfere with
the robustness properties of the resulting estimates that can attain simultaneous high breakdown
point and high efficiency at the central model.

The rest of the paper is organized as follows. Section 2 contains the definitions of the estimates
we consider. Section 3 shows that under mild regularity conditions these estimates are uniformly
consistent on contamination neighbourhoods. Section 4 gives additional assumptions under which
the above estimates are uniformly asymptotically normal on contamination neighbourhoods. Sec-
tion 5 contains some concluding remarks and Section 6 contains sketches of the proofs of our main
results.
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2 MM-location estimates

Consider the following location-scale model: let x1, . . . , xn be n observations on the real line
satisfying

xi = µ + σ εi i = 1, . . . n, (3)

where εi, i = 1, . . . n are independent and identically distributed (i.i.d.) observations with variance
equal to 1. The interest is in estimating µ and the scale σ is considered a nuisance parameter.

We will consider scale-equivariant M-location estimates µ̂n defined as the solution of an esti-
mating equation of the form

1
n

n∑

i=1

ψ ((xi − µ̂n)/ σ̂n) = 0 ; (4)

where σ̂n is an S-scale estimate of the residuals (Rousseeuw and Yohai, 1984) and ψ : R→ R is a
non-decreasing, odd and continuously differentiable real function. An example of such a function
is given by

ψc (u) = sign (u)




|u/ c| if |u| ≤ 0.8 c
p4 (|u| /c) if 0.8 c < |u| ≤ c
p4 (1) if |u| > c

, (5)

where c > 0 is a user-chosed tuning constant, and p4 (u) = 38.4− 175u + 300 u2− 225u3 + 62.5u4

(see Fraiman et al. (2001), and also Bednarski and Zontek (1996), for other choices of smooth
functions ψ). Following Yohai (1987) we will call these M-location estimates obtained with an
S-scale MM-location estimates.

The S-scale estimates σ̂n we use in (4) are defined as follows. Let ρ : R → R+ be a bounded,
continuous and even function satisfying ρ (0) = 0 and let b ∈ (0, 1). The S-scale σ̂n is defined by

σ̂n = inf
t∈R

sn (t) , (6)

where, for each t ∈ R, sn (t) is the solution of

1
n

n∑

i=1

ρ ((xi − t)/ sn (t)) = b. (7)

Naturally associated with this family are the S-location estimates µ̃n given by

µ̃n = arg inf
t∈R

sn (t) . (8)

Beaton and Tukey (1974) proposed a family of functions ρd given by

ρd (u) =
{

3 (u/ d)2 − 3 (u/ d)4 + (u/ d)6 if |u| ≤ d ,
1 if |u| > d ,

(9)

where the tuning constant d is positive. The above family of functions ρd satisfies all the regularity
conditions we need to obtain uniform asymptotic properties, and at the same time it yields scale
estimates σ̂n with good robustness properties.

Remark 1 – ψ 6= ρ0 – Note that the estimating function ψ in (4) need not be equal to ρ′ in (7).
Moreover, we will recommend using ψ = ψc in (5) and ρ = ρd in (9).
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Remark 2 – High efficiency and breakdown point – The robust location estimates µ̂n defined
by (4) with σ̂n as in (6) are scale equivariant and can have simultaneously high breakdown and
high efficiency at the central model. For example, the choice d = 1.548 for ρd in (9), b = 0.5 in
(7), and c = 1.525 for ψc in (5) yields a location estimate µ̂n with 50% breakdown point and 95%
efficiency when the errors have a normal distribution.

The asymptotic properties (consistency and asymptotic normality) of M-location estimates
given by (4) are well-known when the distribution of the errors is symmetric (Huber, 1964, 1967,
1981; Boos and Serfling, 1980; Clarke, 1983, 1984). The next two sections establish these properties
under more realistic conditions.

3 Uniform consistency

The objective of this section is to determine verifiable conditions under which the scale equivariant
M-location estimates µ̂n given by (4) are uniformly consistent on the contamination “neighbour-
hood”

Hε (F0) =
{

F ∈ D : F (x) = (1− ε) F0 ((x− µ0)/σ0) + ε H (x)
}

, (10)

where D denotes the set of all distribution functions, F0 is a fixed symmetric distribution, µ0 and
σ0 are the unknown location and scale parameters, ε ∈ (0, 1/2), and H is an arbitrary distribution
function. Since in what follows the central distribution F0 is fixed, we write Hε to denote the set
(10) above.

Under certain regularity conditions (see references above) the M-location estimates µ̂n and the
S- estimates σ̂n and µ̃n are consistent to the functionals µ (F ), σ (F ) and µ̃ (F ) defined by the
following equations. For each t ∈ R, let σ (F, t) satisfy

EF [ ρ ( (X − t) / σ (F, t) ) ] = b. (11)

The asymptotic value of σ̂n is given by

σ (F ) = inf
t∈R

σ (F, t) . (12)

Similarly, for the S-location estimate µ̃n we have

µ̃ (F ) = arg inf
t∈R

σ (F, t) . (13)

Finally for the M-location estimate µ̂n the corresponding equation is

EF [ ψ ( (X − µ (F )) / σ (F ) ) ] = 0 . (14)

Definition 1 – Uniform consistency – We say that the sequence of estimates τ̂n is uniformly
consistent to the functional τ (F ) over the contamination neighbourhood Hε if for all δ > 0

lim
m→∞ sup

F∈Hε

PF

[
sup
n≥m

|τ̂n − τ (F )| > δ

]
= 0 ,

where τ (F ) is the a.s. limit of τ̂n for an i.i.d. sequence of observations with distribution function
F . We will denote this type of convergence by τ̂n

ε−→ τ .
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Our main result in this section states that if the scale estimate σ̂n in (4) satisfies σ̂n
ε−→ σ and

if ψ is continuously differentiable then µ̂n
ε−→ µ.

Theorem 1 - Uniform consistency of the M-location estimate with general scale: Let
x1, . . . , xn be i.i.d. observations following the location model (3). Let ψ satisfy

P.1 |ψ (u)| ≤ 1 for all u ∈ R, and ψ (−u) = −ψ (u) for u ≥ 0;
P.2 ψ is non-decreasing and limu→∞ ψ (u) > 0;
P.3 ψ is continuously differentiable.

Suppose that σ̂n in (4) has asymptotic breakdown point ε∗. Let 0 ≤ ε < ε∗ be such that σ̂n
ε−→ σ,

then if µ̂n satisfies (4) we have µ̂n
ε−→ µ.

A sketch of the proof of Theorem 1 is given in the Appendix. A detailed proof can be found in
Anonymous (2002).

Remark 3 – Uniform consistency of S-scale estimates – When σ̂n is an S-scale estimate,
Martin and Zamar (1993) showed that if F0 (the central distribution function in Hε) has an even
and unimodal density, and if the function ρ is even, bounded, continous and non-decreasing in
[0,∞) then σ̂n has asymptotic breakdown point 1/2. They also showed that if in addition F0 has
a positive density on the real line, then for all 0 < ε < 1/2 we have

σ̂n
ε−→ σ . (15)

Theorem 1 and Remark 3 imply that M-location estimates µ̂n given by (4) with ψ = ψc in the
family (5) and scale σ̂n given by (6) with ρ = ρd in Tukey’s family (9) have high breakdown point,
high efficiency and are uniformly consistent over Hε for all 0 < ε < 1/2. In other words, these
estimates satisfy W.1, W.2 and W.3 in Section 1. Moreover, their uniform consistency satisfies
W.4 since we only need regularity conditions on the central distribution of the contamination
neighbourhood. Finally, this uniform consistency is valid over contamination neighbourhoods Hε

for any 0 ≤ ε < 1/2 (W.5).

4 Uniform asymptotic distribution

In this section we show that under certain regularity conditions the MM-location estimates µ̂n

converge weakly to a normal distribution uniformly over the contamination neighbourhood Hε.
These results are constructive and allow us to determine the size of the neighbourhood Hε where
uniform asymptotic normality holds. The required regularity conditions will be mainly imposed
on our estimating equations (4) and (6) and we will show that ψ = ψc in (5) and ρ = ρd in (9)
satisfy these conditions. Hence, our results show that the scale equivariant MM-location estimates
have simultaneously high breakdown point, high efficiency at the central model and are uniformly
asymptotically normal on a contamination neighbourhood of known size (see Remark 2 on page
5).

Asymptotic results for asymmetric distributions are not easy to obtain. There are some results
in the robustness literature dealing with this problem (Carroll, 1978, 1979; Carroll and Welsh, 1988;
Rocke and Downs, 1981). They show that when F is asymmetric the asymptotic distribution of
the location estimate depends on that of the scale and that the asymptotic variance calculated
with the assumption of symmetry is not correct. Salibian-Barrera (2000) showed that in general
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the asymptotic distribution of location M-estimates for arbitrary distribution functions when the
scale is estimated with an S-scale depends on the behaviour of the S-scale and the corresponding
S-location estimate as well. Hence, to obtain uniform asymptotics for these MM-location estimates
we need uniform consistency of the S-scale and S-location estimates.

S-scale estimates are uniformly consistent under relatively weak regularity conditions (see Mar-
tin and Zamar (1993) and Remark 3 on page 6).

Uniform consistency of S-location estimates requires more assumptions. For a given 0 ≤ ε < 1/2
and an estimating function ρ in (7) let s+ and s− satisfy

0 < s− ≤ inf
F∈Hε

σ (F ) < sup
F∈Hε

σ (F ) ≤ s+ < ∞ . (16)

To simplify the notation we will omit the dependence of s+ and s− on ε. Assume that there exists
t∗ ∈ R such that

inf
s−≤s≤s+

[
EF0ρ

(
X − t

s

)
−EF0ρ

(
X

s

)]
>

ε

1− ε
, ∀ |t| ≥ t∗ , (17)

and

inf
−t∗≤t≤t∗
s−≤s≤s+

EF0ρ
′′
(

X − t

s

)
>

ε

1− ε
sup

x

[
ρ′′ (x)

]−
, (18)

where s+ and s− are given in (16).
Condition (18) can be slightly relaxed (see Lemma 7 in Section 6). Assumptions (17) and (18)

above do not depend on F (only on F0, the central distribution of the neighbourhood Hε) but are
tedious to verify and will typically require numerical computations. Note that for a particular ρ
these conditions impose an upper bound ε = ε (ρ) on the size of the contamination neighbourhood
Hε. When ρ = ρd belongs to Tukey’s family (9) and the centre of the contamination neighbourhood
is the standard normal distribution Φ we found that there is a trade-off between the breakdown
point of the scale estimate and the upper bound ε (ρd): the larger the breakdown point the smaller
the upper bound ε (ρd). Table 1 lists the values of ε (ρd) for contamination neighbourhoods of
the standard normal distribution and estimating equations that yield estimates with breakdown
points between 0.10 and 0.50.

The following theorem states than under these conditions S-location estimates are uniformly
consistent. This result will be necessary to obtain uniform asymptotic distribution of the M-
location estimate calculated with an S-scale as in (4).

Theorem 2 - Uniform consistency of the S-location estimate: Suppose that the non-
constant function ρ satisfies the following assumptions:

R.1 ρ (−u) = ρ (u), u ≥ 0, and supu∈R ρ (u) = 1;
R.2 ρ (u) is non-decreasing in u ≥ 0;
R.3 |ρ′ (u)| ≤ K < ∞, ∀u ∈ R;
R.4 there exists 0 < c < ∞ such that ρ (u) = 1, ∀ |u| ≥ c.

Let b ∈ (0, 1), µ̃n as in (8) and µ̃ (F ) as in (13). Let s+ and s− be as in (16) and suppose that
0 < ε is such that (17) and (18) hold. Then

lim
m→∞ sup

F∈Hε

PF

(
sup
n≥m

|µ̃n − µ (F )| > δ
)

= 0 . (19)
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BP d ε (d)

0.50 1.548 0.11
0.45 1.756 0.14
0.40 1.988 0.17
0.35 2.252 0.20
0.30 2.561 0.24
0.25 2.937 0.25

Table 1: Maximum size ε (d) of contamination neighbourhoods around the standard normal distribution
where uniform consistency of the S-location estimate holds for different breakdown points (BP). The
column labeled d contains the tuning constant that yields the respective BP.

A sketch of the proof of Theorem 2 is given in the Appendix. A detailed proof can be found in
Anonymous (2002).

We can now state our main result: when the M-location, S-scale and S-location estimates are
uniformly consistent, the M-location estimate has an uniformly asymptotically normal distribution.

Theorem 3 Let µ̂n satisfy (4) with a function ψ that satisfies assumptions P.1 and P.2 in The-
orem 1 and

P.4 ψ is twice continuously differentiable; and
P.5 there exists d > 0 such that |ψ (u)| = 1 for all |u| ≥ d.

Assume that the S-scale estimate σ̂n in (4) is given by (6) with a function ρ that satisfies R.1 to
R.4 in Theorem 2, and

R.5 ρ is twice continuously differentiable.

Suppose that ε is such that (17) and (18) hold and that the centre F0 of the contamination neigh-
bourhood Hε has a positive, even and unimodal density. Then

lim
n→∞ sup

F∈Hε

sup
x∈R

∣∣∣∣PF

{√
n

(µ̂n − µ)√
V

< x

}
− Φ(x)

∣∣∣∣ = 0 ,

where

V = V (µ, σ, F ) = σ (F )2 H (F )2 EF

{[
ψ

(
X − µ (F )

σ (F )

)
− J (F )

×
(

ρ

(
X − µ̃ (F )

σ (F )

)
− b

)]2
}

, (20)

H (F ) = 1/EF

{
ψ′ ((X − µ (F )) /σ (F ))

}
,

and

J (F ) =
EF {ψ′ ((X − µ (F )) /σ (F )) (X − µ (F )) /σ (F )}
EF {ρ′ ((X − µ̃ (F )) /σ (F )) (X − µ̃ (F )) /σ (F )} .

A sketch of the proof of Theorem 3 is given in the Appendix. A detailed proof can be found in
Anonymous (2002).
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Remark 4 – Regularity conditions – The assumptions on F0 (the centre of the contamination
neighbourhood) are needed to show that the S-scale estimate σ̂n is uniformly consistent (σ̂n

ε−→ σ).
By Theorem 1 we also have that the MM-location estimates are uniformly consistent as well (µ̂n

ε−→
µ). The assumptions on the estimating equation ρ of the S-scale σ̂n and conditions (17) and (18)
are needed to obtain uniform consistency of the S-location estimate (µ̃n

ε−→ µ̃). See Theorem 2.

Using Table 1 we find, for example, that scale-equivariant MM-location estimates calculated
with ψ = ψ1.525 in (5) and an S-scale with ρ = ρ1.548 in (9) have simultaneously breakdown point
1/2, are 95% efficiency when the errors are normally distributed, and are uniformly asymptotically
normal on a contamination neighbourhood of size at least ε = 0.11. If, on the other hand, we use
ρ = ρ2.937 in (9) we obtain estimates with the same efficiency, lower breakdown point (25%) and
that are uniformly asymptotically normal on a contamination neighbourhood of size ε = 0.25.

5 Conclusion

We have examined the available asymptotic results for robust location estimates and highlighted
their limitations: they apply to estimates that are not scale-equivariant, or to robust estimates that
have numerical and theoretical problems; they rely on assumptions which are unrealistic and/or
difficult to verify; they are not known to be uniform on a reasonably large set of possible distri-
butions. We identified three key features of robust estimates: translation and scale-equivariance,
high breakdown point and efficiency, and a reliable algorithm to compute them. We also indi-
cated two important properties their asymptotic theory should satisfy: be valid under verifiable
and realistic regularity assumptions, and hold uniformly over a relatively large set of distribution
functions with known size. All the previously available asymptotic results for robust location es-
timates either violate at least one of the above properties, or they apply to estimates that are not
scale-equivariant or that have serious computational limitations (see Example 1).

We propose to use scale-equivariant M-location estimates calculated with a smooth function
ψ in the family (5) and with an S-scale estimate calculated with a function ρ in Tukey’s class
(9). These MM-location estimates have simultaneously high breakdown point and high efficiency
at the central model. Moreover, we showed that under realistic and verifiable conditions they are
uniformly consistent and uniformly asymptotically normal. We also showed how to compute the
size of the contamination neighbourhood (10) where these uniform results hold. For contamina-
tion neighbourhoods centred at the standard normal distribution we found that these values of
ε range from 11% (for estimates with 50% breakdown point) to 25% (for 25% breakdown point
estimates). Hence, in most practical situations where the contamination is below 10% (Hampel,
1986) these estimates have good robustness properties and their uniform asymptotic properties
allow for reliable statistical inference based on their asymptotic distribution.

6 Proofs

Proof of Theorem 1: For any t ∈ R and F ∈ Hε let

µψ (t, F ) = EF ψ

(
X − t

σ (F )

)
,

and fix an arbitrary ε̃ > 0.
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Let σ = σ (F ) and µ = µ (F ). To simplify the notation let ψ (X, t, s) = ψ ((X − t)/ s). For
each t it is easy to see that Yi (t) = ψ (Xi, t, σ̂n) and Y (F, t) = EF ψ (X, t, σ) have the same
properties as those in Lemma 6. Let ψn (t) = 1

n

∑n
i=1 Yi (t) and µψ (t, F ) = EF (ψ (X, t, σ)). For

each τ > 0 and t ∈ R, the same technique used in the proof of Lemma 6 shows that

lim
m→∞ sup

F∈Hε

PF

(
sup
n≥m

∣∣ψn (t)− µψ (t, F )
∣∣ > τ

)
= 0 . (21)

For each m ∈ N, t ∈ R, F ∈ Hε and τ > 0 let

Am (F, t, τ) =
{

sup
n≥m

∣∣∣∣ψn (t)− µψ (t, F )
∣∣∣∣ > τ

}
;

then (21) can be written as

lim
m→∞ sup

F∈Hε

PF

(
Am (F, t, τ)

)
= 0 . (22)

Now note that µψ (µ (F ) , F ) = 0 and that µψ (t, F ) is a non-increasing function in t. We also have
{

µ̂n < µ− ε̃

}
⊆

{
1
n

n∑

i=1

ψ (xi,µ− ε̃/2, σ̂n) ≤ 0

}

⊆
{∣∣∣∣ψn (µ− ε̃/2)− µψ (µ− ε̃/2, F )

∣∣∣∣ > µψ (µ− ε̃/2, F )

}

⊆
{∣∣∣∣ψn (µ− ε̃/2)− µψ (µ− ε̃/2, F )

∣∣∣∣ > a (ε̃)

}
= An (F, ε̃) ,

where a (ε̃) is given by
a (ε̃) = inf

F∈Hε

µψ

(
µ (F )− ε̃/2, F

)
.

Similarly
{

µ̂n > µ + ε̃

}
⊆

{
1
n

n∑

i=1

ψ (xi, µ + ε̃/2, σ̂n) ≥ 0

}

⊆
{∣∣∣∣ψn (µ + ε̃/2)− µψ (µ + ε̃/2, F )

∣∣∣∣ > −µψ (µ + ε̃/2, F )

}

⊆
{∣∣∣∣ψn (µ− ε̃/2)− µψ (µ− ε̃/2, F )

∣∣∣∣ > b (ε̃)

}
= Bn (F, ε̃) ,

where b (ε̃) equals
b (ε̃) = inf

F∈Hε

−µψ

(
µ (F ) + ε̃/2, F

)
.

We now show that
a (ε̃) = inf

F∈Hε

µψ

(
µ (F )− ε̃/2, F

)
> 0 , (23)

and that
b (ε̃) = inf

F∈Hε

−µψ

(
µ (F ) + ε̃/2, F

)
> 0 . (24)
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Equations (23) and (24) can be expressed as: the family of functions µψ (t, F ) has “uniform
minimum slope” at µ (F ). Bounding ∂µψ/ ∂t

∣∣
�

uniformly over F ∈ Hε will be enough for these
conditions to hold. Let λF (δ) be

λF (δ) = EF ψ

(
X − µ (F ) + δ

σ (F )

)
,

then a (ε̃) = infF∈Hε λF (ε̃). Note that λF (0) = 0; hence

λF (ε̃) = ε̃ λ′F (ε̃F ) ,

where ε̃F ∈ (0, ε̃). By assumption there exist s− and s+ such that

0 < s− ≤ inf
F∈Hε

σ (F ) < sup
F∈Hε

σ (F ) ≤ s+ < ∞ .

Then

λ′F (ε̃F ) = EF ψ′
(

X − µ (F ) + ε̃F

σ (F )

)
1

σ (F )

≥ 1
s+

(1− εHε) EF0ψ
′
(

X − µ (F ) + ε̃F

σ (F )

)
,

where εHε is the proportion of contamination in Hε. It is easy to see that the last term in the
above equation is a decreasing function of ε̃F . Hence ε̃F ≤ ε̃ implies

λF (ε̃) = ε̃ λ′F (ε̃F ) ≥ ε̃

s+
(1− εHε)EF0ψ

′
(

X − µ (F ) + ε̃

σ (F )

)
.

The Dominated Convergence Theorem shows that the above expression is continuous as a function
of µ and σ. It is also positive and hence a sufficient condition to obtain a positive lower bound
is that µ (F ) and σ (F ) be bounded for any F ∈ Hε. A similar argument can be applied to show
that equation (24) holds.

It follows that
{∣∣µ̂n − µ

∣∣ > ε̃
} ⊆ An (F, ε̃)

⋃
Bn (F, ε̃). Hence,

∞⋃
n=m

{∣∣µ̂n − µ
∣∣ > ε̃

} ⊆
∞⋃

n=m

An (F, ε̃)
⋃ ∞⋃

n=m

Bn (F, ε̃) .

Immediately

Mm (F, ε̃) =
{

sup
n≥m

∣∣µ̂n − µ
∣∣ > ε̃

}

⊆
{

sup
n≥m

∣∣ψn (µ− ε̃/2)− µψ (µ− ε̃/2, F )
∣∣ > µψ (µ− ε̃/2, F )

}

⋃ {
sup
n≥m

∣∣ψn (µ + ε̃/2)− µψ (µ + ε̃/2, F )
∣∣ > −µψ (µ + ε̃/2, F )

}

⊆ Am (F, µ− ε̃/2, a (ε̃))
⋃

Am (F, µ + ε̃/2, b (ε̃)) .

We have

PF [Mm (F, ε̃)] ≤ PF [Am (F, µ− ε̃/2, a (ε̃))] + PF [Am (F, µ + ε̃/2, b (ε̃))] ,
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and then

sup
F∈Hε

PF [Mm (F, ε̃)] ≤ sup
F∈Hε

PF [Am (F, µ− ε̃/2, a (ε̃))] + sup
F∈Hε

PF [Am (F, µ + ε̃/2, b (ε̃))] ,

so that

lim
m→∞ sup

F∈Hε

PF [Mm (F, ε̃)] ≤ lim
m→∞ sup

F∈Hε

PF [Am (F, µ− ε̃/2, a (ε̃))]

+ lim
m→∞ sup

F∈Hε

PF [Am (F, µ + ε̃/2, b (ε̃))] = 0 ,

and the proof is complete. ¥

Proof of Theorem 2: We need to introduce the following notation. Let ρ (x, t, s) = ρ ((x− t)/ s).
Denote the set of positive real numbers (0,∞) by R+. For each t ∈ R and s ∈ R+ let

γ (F, t, s) = EF ρ (X, t, s) , (25)

γn (t, s) = γ (Fn, t, s) =
1
n

n∑

i=1

ρ (xi, t, s) , (26)

where Fn denotes the empirical distribution function of the random sample x1, . . . , xn. As in the
proof of Lemma 8, equation (17) above implies that

γ (F, 0, σ (F )) < γ (F, t,σ (F )) , ∀ |t| ≥ t∗ .

Also, because of (18), there exists η independent of F such that

inf
−t∗≤t≤t∗
s−≤s≤s+

γ′′ (F, t, s) ≥ η > 0 , ∀F ∈ Hε,

where η does not depend on F ∈ Hε. Hence the family of functions γ (F, t,σ (F )) with F ∈ Hε has
a unique minimum in the fixed interval (−t∗, t∗). For each F ∈ Hε denote this unique minimum
by µ̃ (F ). Now fix an arbitrary neighbourhood Bδ (µ̃ (F )) of µ̃ (F ). Let ε̃ (δ, F ) satisfy

inf
t/∈Bδ(�̃(F ))

γ
(
F, t,σ (F )

) ≥ γ
(
F, µ̃ (F ) ,σ (F )

)
+ ε̃ (δ, F ) . (27)

By Lemma 5 we have that
ε̃ = ε̃ (δ) = inf

F∈Hε

ε̃ (δ, F ) > 0 . (28)

Choose an arbitrary δ̃ > 0 and let I2 and m0 = m0 (δ̃) be as in Lemma 8, i.e.

PF

[
µ̃n ∈ I2 , ∀n ≥ m

]
> 1− δ̃ , ∀m ≥ m0 . (29)

Note that I2 above does not depend on F ∈ Hε. For each t ∈ I2 ∩ Bδ (µ̃ (F ))c let B (t) be a
neighbourhood of t small enough so that we have

EF

[
inf

t′∈B(t)
ρ

(
X, t′, σ (F )

)] ≥ γ (F, µ̃, σ (F )) + ε̃ .
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By Lemma 3 we can choose the size of these B (t)s independently of t. Hence, their size does
not depend on F . Consider a finite coverage B (t1) , . . . , B (tr) of I2 ∩Bδ (µ̃ (F ))c. Note that this
coverage depends on F ∈ Hε. For each of these centres tk let

Yi (tk) = inf
t′∈B(tk)

ρ
(
Xi, t

′, σ̂n

)

and

Y (F, tk) = EF

[
inf

t′∈B(tk)
ρ

(
X, t′, σ (F )

)] 6= EF

[
Yi (tk)

]
.

Consider the events

Am (F, tk) =
{

sup
n≥m

∣∣Y n (tk)− Y (F, tk)
∣∣ ≤ ε̃

}
, m ∈ N .

By Lemma 6 we have that there exists m1 (δ̃) independent from tk (i.e. independent from F ) such
that

PF

(
Am (F, tk)

)
> 1− δ̃, ∀m ≥ m1 (δ̃) , ∀F ∈ Hε , ∀ tk ∈ I2 .

Now note that

Am (F, tk) ⊆
{

1
n

n∑

i=1

inf
t∈B(tk)

ρ (xi, t, σ̂n) ≥ γ
(
F, µ̃ (F ) ,σ (F )

)
+ 2ε̃, ∀n ≥ m

}

⊆
{

inf
t∈B(tk)

1
n

n∑

i=1

ρ (xi, t, σ̂n) ≥ γ
(
F, µ̃ (F ) ,σ (F )

)
+ 2ε̃, ∀n ≥ m

}
= Cm (F, tk) .

Let

Dm (F ) =

{
1
n

n∑

i=1

ρ
(
xi, µ̃ (F ) , σ (F )

) ≤ γ
(
F, µ̃ (F ) , σ (F )

)
+ ε̃ , ∀n ≥ m

}
.

Bernstein’s Lemma (Inequality) also shows that there exists m2 = m2 (δ̃) (independent from F )
such that for m ≥ m2 we have

PF

(
Dm (F )

)
> 1− δ̃ , ∀F ∈ Hε .

Take m3 = max (m0,m1,m2). Note that m3 does not depend on F ∈ Hε. We have

PF

[
Cm (F ) ∩Dm (F )

]
≥ 1− 2δ̃ , ∀m ≥ m3 , ∀F ∈ Hε .

We also have

Cm (F ) ∩Dm (F ) ⊆
[

µ̃m ∈ Bδ

(
µ̃ (F )

)
, ∀m ≥ m2

]
.

Hence, for each δ̃ > 0 there exists m3 (δ̃) such that

PF

[
µ̃m ∈ Bδ

(
µ̃ (F )

)
, ∀m ≥ m3

]
≥ 1− 2δ̃, ∀F ∈ Hε ,
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that is, for each neighbourhood Bδ

(
µ̃ (F )

)
we have

lim
m→∞ inf

F∈Hε

PF

[
µ̃n ∈ Bδ

(
µ̃ (F )

)
, ∀n ≥ m

]
= 1 ,

or equivalently,
lim

m→∞ sup
F∈Hε

PF

[
sup
n≥m

|µ̃n − µ̃ (F )| > δ
]

= 0 .

¥

To prove Theorem 3 we need uniform versions of the usual “little o in probability” and “big O
in probability” definitions. We will also give a formal definition of uniform asymptotic normality.

Definition 2 - Uniform big O in probability: Let an, n ≥ 1, be a sequence of real numbers
and let Xn, n ≥ 1, be a sequence of random variables. We say that Xn = UOP (an) over the set
of distribution functions Hε if

lim
k→∞

sup
F∈Hε

lim
n→∞PF

[ ∣∣∣∣
Xn

an

∣∣∣∣ > k

]
= 0.

Definition 3 - Uniform small o in probability: Let an, n ≥ 1, be a sequence of real numbers
and let Xn, n ≥ 1, be a sequence of random variables. We say that Xn = UoP (an) over the set of
distribution functions Hε if ∀ δ > 0

lim
n→∞ sup

F∈Hε

PF

[ ∣∣∣∣
Xn

an

∣∣∣∣ > δ

]
= 0.

Definition 4 - Uniformly asymptotically normal: We say that a sequence Xn, n ∈ N is
uniformly asymptotically normal (UAN) over the set of distribution functions Hε if

sup
F∈Hε

sup
x∈R

∣∣∣PF (Xn ≤ x)− Φ (x)
∣∣∣ = o (1) . (30)

With the above definitions we can show that these “uniform little o”, “uniform big O” and
“uniform asymptotic distribution” behave similarly to their “non-uniform” counterparts. This is
made more precise in the following remark.

Remark 5 - Properties of UOp (1), Uop (1) and UAN - In what follows an, bn and Xn, n ∈ N
denote sequences of random variables. It is easy to see that the following properties hold. Proofs
of these results can be found in Salibian-Barrera (2000, Chapter 2).

Property 1 - if an = UOP (1) and bn = UoP (1), then an × bn = UoP (1);
Property 2 - if an = UOP (1) and there exists b 6= 0 with bn − b = UoP (1), then

an/ bn = an/ b + UoP (1);
Property 3 - if an = UoP (1) and Xn is UAN then Xn + an is UAN.

Proof of Theorem 3: To simplify the notation, in what follows let µ = µ (F ), µ̃ = µ̃ (F ) and
σ = σ (F ). The idea of the proof is to show that

√
n (µ̂n − µ) can be represented as a linear term

plus a uniformly small remainder. We use the Berry Esseen Theorem to show that the linear part
is UAN (see Definition 4) and Property 3 above to show that the sum of these terms is also UAN.
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First note that by Theorem 2 and 4 we have σ̂n − σ = UoP (1), µ̃n − µ̃ = UoP (1) and
µ̂n − µ = UoP (1). We now show that

√
n

(µ̂n − µ)√
V

=
√

n
Wn√

V
+ UoP (1) . (31)

where

Wi =
(
ψ ((xi − µ)/σ)− d (ρ ((xi − µ̃)/σ)− b)

)/
e , (32)

d =
EF {ψ′ ((X − µ) /σ) (X − µ) /σ}
EF {ρ′ ((X − µ̃) /σ) (X − µ̃) /σ}

e = EF

{
ψ′ ((X − µ) /σ)

}
.

To simplify the notation let µ = µ (F ), σ = σ (F ), µ̃ = µ̃ (F ) and

ui = (xi − µ)/ σ.

A second order Taylor expansion of (4) around the limit values (µ, σ) yields
{

1
n

n∑

i=1

ψ′ (ui)

}
1
σ

√
n (µ̂n − µ) =

1√
n

n∑

i=1

ψ (ui)−
√

n
(σ̂n − σ)

σ

1
n

n∑

i=1

ψ′ (ui)ui (33)

+
1
2

1
σ2

√
n (µ̂n − µ)2

1
n

n∑

i=1

ψ′′ (ũi) (34)

+
1
2

1
σ2

√
n (σ̂n − σ)2

1
n

n∑

i=1

[
ψ′′ (ũi) ũ2

i (35)

+ 2ψ′ (ũi) ũi

]
(36)

+
1
n

1
σ2

n∑

i=1

[
ψ′′ (ũi) ũi + ψ′ (ũi)

]
(σ̂n − σ) (µ̂n − µ) (37)

where ũi = (xi − µ̃)/ σ̃ and (µ̃, σ̃) lies between (µ̂n, σ̂n) and (µ, σ). Let

Bn =
1
2

1
σ

(µ̂n − µ)
1
n

n∑

i=1

ψ′′ (ũi) , (38)

Cn =
1
2

1
σ

(σ̂n − σ)
1
n

n∑

i=1

[
ψ′′ (ũi) ũ2

i + 2ψ′ (ũi) ũi

]
, (39)

and

Dn =
1
n

1
σ2

n∑

i=1

[
ψ′′ (ũi) ũi + ψ′ (ũi)

]
(σ̂n − σ) . (40)

From (33) to (40) we have

1
σ

√
n (µ̂n − µ)

(
1
n

n∑

i=1

ψ′ (ui)−Bn −Dn

)

=
1√
n

n∑

i=1

ψ (ui)− 1
σ

√
n (σ̂n − σ)

(
1
n

n∑

i=1

ψ′ (ui)ui − Cn

)
. (41)
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From (41) and Lemmas 9 and 1 we have

1
σ

√
n (µ̂n − µ)

(
1
n

n∑

i=1

ψ′ (ui) + UoP (1)

)

=
1√
n

n∑

i=1

ψ (ui)− 1
σ

√
n (σ̂n − σ)

(
1
n

n∑

i=1

ψ′ (ui) ui + UoP (1)

)
. (42)

It is easy to see that if the function ρ is continuously differentiable, the pair (µ̃n, σ̂n) in (6) and
(8) satisfies the following system of equations

1
n

n∑

i=1

ρ ((xi − µ̃n)/ σ̂n) = b (43)

1
n

n∑

i=1

ρ′ ((xi − µ̃n)/ σ̂n) = 0, (44)

where ρ′ denotes the derivative of ρ.
From equation (43) we get

1
σ

√
n (σ̂n − σ)

[
1
n

n∑

i=1

ρ′ (vi) vi −B′
n −D′

n

]

=
1√
n

n∑

i=1

ρ (vi)− b− 1
σ

√
n (µ̃n − µ̃)

(
1
n

n∑

i=1

ρ′ (vi)− C ′
n

)
, (45)

where, as before, B′
n = oP (1), C ′

n = UoP (1) and D′
n = UoP (1). Note that

1
n

n∑

i=1

ρ′ (vi) = UoP (1) ,

and hence
1
n

n∑

i=1

ρ′ (vi)− C ′
n = UoP (1) . (46)

From (44) we have

1
σ

√
n (µ̃n − µ̃)

(
1
n

n∑

i=1

ρ′′ (vi)

)
=

1√
n

n∑

i=1

ρ′ (vi)− 1
σ

√
n (σ̂n − σ)

(
1
n

n∑

i=1

ρ′′ (vi) vi

)

= UOP (1)− 1
σ

√
n (σ̂n − σ) + UOP (1) . (47)

From (45) and (46) we have

1
σ

√
n (σ̂n − σ)

[
1
n

n∑

i=1

ρ′ (vi) vi + UoP (1)

]
=

1√
n

n∑

i=1

ρ (vi)− b− 1
σ

√
n (µ̃n − µ̃)× UoP (1) .
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Similarly, from equation (47) we have

1
σ

√
n (µ̃n − µ̃)

(
1
n

n∑

i=1

ρ′′ (vi)

)
= UOP (1)− 1

σ

√
n (σ̂n − σ) + UOP (1) .

From the last two equations we obtain

1
σ

√
n (σ̂n − σ)

[
a + UoP (1)

]
=

1√
n

n∑

i=1

ρ
(
(vi)− b

)
+ UoP (1) , (48)

where a = EF {ρ′ ((X − µ̃) /σ) (X − µ̃) /σ}. From (42) and (48) we have

1
σ

√
n (µ̂n − µ)

[
c + UoP (1)

]

=
1√
n

n∑

i=1

ψ (ui)−
[1
a

1√
n

n∑

i=1

(
ρ (vi)− b

)
+ UoP (1)

][
d + UoP (1)

]
,

where c = EF {ψ′ ((X − µ) /σ)}, and d = EF {ψ′ ((X − µ) /σ) (X − µ) /σ}. Hence,

1
σ

√
n (µ̂n − µ)

[
c + UoP (1)

]
=

1√
n

n∑

i=1

ψ (ui)− d

a

1√
n

n∑

i=1

(
ρ (vi)− b

)
+ UoP (1) .

From the last equation and Property 2 we obtain (31). Note that |Wi| are bounded (see (32)),
and hence their moments are bounded uniformly for F ∈ Hε. Let f : R3 → R be any non-negative
real function such that

EF0 [f (X, t, s)] =
∫

f (X, t, s) dF0 (X) > 0

for any t ∈ R and s > 0, where F0 denotes the central distribution of the contamination neigh-
bourhood Hε. It is easy to see that if EF0 [f (X, t, s)] is a continuous function of (t, s) and Kt and
Ks are compact sets in the real line such that Ks ⊂ (0,∞) then we have

inf
F∈Hε, t∈Kt, s∈Ks

EF [f (X, t, s)] > 0 .

In particular, if σ (F ) denotes a scale estimate that satisfies (16) and µ (F ) is an M-location
estimate then

inf
F∈Hε

VarF [ψc ((X − µ (F ))/σ (F ))] = inf
F∈Hε

EF [ψc ((X − µ (F ))/σ (F ))]2 > 0 . (49)

We see that the variance of Wi is bounded away from zero uniformly on F ∈ Hε. The Berry Esseen
Theorem yields

sup
F∈Hε

sup
x∈R

∣∣∣∣PF

{√
nWn√

V
< x

}
− Φ(x)

∣∣∣∣ = o (1) .

Hence we have √
n

(µ̂n − µ)√
V

= Vn + UoP (1) ,

where Vn is UAN. Property 3 above completes the proof. ¥
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Lemma 1 Let ρ : R −→ R+ be a continuous real function that satisfies R.4. Let t ∈ T and s ∈ S,
where T and S are bounded real intervals, with inf {s ∈ S} > 0. Then the function

f (u, t, s) = ρ

(
u− t

s

)
, u ∈ R, t ∈ T , s ∈ S,

is continuous in s and t uniformly in u. In other words, for any ε > 0, there exist δt > 0 and
δs > 0 such that

|s1 − s2| < δs, |t1 − t2| < δt ⇒ |f (u, t1, s1)− f (u, t2, s2)| < ε, ∀u ∈ R.

Proof: See Salibian-Barrera (2000).

Lemma 2 Let ρ : R → R+ satisfy R.3 and R.4. Let Ks ⊂ (0,∞) be an arbitrary closed set. If
the central distribution of Hε has a bounded density function φ, then γ (F, t, s) is continuous in
s ∈ Ks, uniformly in t ∈ R and F ∈ Hε.

Proof: See Salibian-Barrera (2000).

Lemma 3 Let ρ : R → R+ be continuous and satisfy R.1 and R.4. Then for any neighbourhood
B (t0) we have

EF

[
inf

t′∈B(t0)
ρ

(
X, t′, σ

)] −−−−−−−→
B(t0)↘{t0}

EF

[
ρ (X, t0, σ)

]
,

uniformly in F ∈ Hε as B (t0) shrinks to {t0}. That is, for every ε̃ > 0 and t0 ∈ R there exists
δ = δ (ε̃, t0) such that

∣∣∣∣∣EF

[
inf

t′∈Bδ(t0)
ρ

(
X, t′,σ (F )

)]− EF

[
ρ (X, t0,σ (F ))

]∣∣∣∣∣ < ε̃, ∀F ∈ Hε ,

where the ball Bδ (t0) has diameter δ. Moreover, let K ⊂ R be an arbitrary compact set. Then δ =
δ (ε̃,K) above can be chosen independently of t0. That is, for every ε̃ > 0 there exists δ = δ (ε̃,K)
such that ∣∣∣∣∣EF

[
inf

t′∈Bδ(t)
ρ

(
X, t′, σ (F )

)]− EF

[
ρ (X, t, σ (F ))

]∣∣∣∣∣ < ε̃, ∀F ∈ Hε , ∀ t ∈ K ,

where the ball Bδ (t) has diameter δ.

Proof: Fix ε > 0. By Lemma 1 there exists δ = δ (σ, t0) > 0 such that

|t− t0| < δ ⇒ |ρ (x, t, σ)− ρ (x, t0, σ)| < ε ∀x ∈ R .

Hence, ρ (x, t, σ) < ρ (x, t0, σ) + ε for all x ∈ R and all t in a sufficiently small neighbourhood
B (t0) of t0. Immediately we obtain

inf
t∈B(t0)

ρ (x, t, σ) ≤ ρ (x, t0, σ) + ε ∀x ∈ R .

Similarly we have
inf

t∈B(t0)
ρ (x, t, σ) ≥ ρ (x, t0, σ)− ε , ∀x ∈ R .

Hence ∣∣∣ inf
t∈B(t0)

ρ (x, t, σ)− ρ (x, t0, σ)
∣∣∣ < ε ∀x ∈ R ,

if B (t0) is sufficiently small. ¥
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Lemma 4 Let ρ : R→ R+ be continuous and satisfy R.4. Then g (x, s) = inft′∈B(t0) ρ (x, t′, s) is
continuous in s uniformly in x ∈ R.

Proof: See Salibian-Barrera (2000).

Lemma 5 Let ρ : R → R+ satisfy (18). Let µ̃ (F ) be the global minimum of γ
(
F, t,σ (F )

)
, and

for every δ > 0 let ε̃ (δ, F ) be defined by the property

inf
t/∈Bδ(�̃(F ))

γ
(
F, t,σ (F )

) ≥ γ
(
F, µ̃ (F ) , σ (F )

)
+ ε̃ (δ, F ) .

Then
ε̃ (δ) = inf

F∈Hε

ε̃ (δ, F ) > 0 . (50)

Proof: Equation (18) implies that

inf
−t∗≤t≤t∗
s−≤s≤s+

γ′′ (F, t, s) ≥ η > 0, ∀F ∈ Hε,

where η does not depend on F . Hence for any t /∈ Bδ

(
µ̃ (F )

)
we have

γ
(
F, t,σ (F )

)− γ (F, µ̃ (F ) , σ (F )) =
1
2

γ′′ (F, t̄,σ (F )) (t− µ̃ (F ))2

≥ η (t− µ̃ (F ))2

> η δ2 > 0 ∀F ∈ Hε ,

where t̄ /∈ Bδ

(
µ̃ (F )

)
and η does not depend on F . ¥

Lemma 6 Let ρ : R→ R+ be continuous and satisfy R.4. Let t0 ∈ R be a fixed real number and
let B (t0) be an arbitrary neighbourhood of t0. Define

Yi (t0) = inf
t′∈B(t0)

ρ
(
Xi, t

′, σ̂n

)

and

Y (F, t0) = EF

[
inf

t′∈B(t0)
ρ (X, t0, σ (F ))

]
6= EF [Yi (t0)] .

Then for any δ > 0

lim
m→∞ sup

F∈Hε

PF

(
sup
n≥m

∣∣Y n (t0)− Y (F, t0)
∣∣ > δ

)
= 0 . (51)

Moreover, let K ⊂ R be an arbitrary bounded interval and assume that t0 ∈ K. For any ε̃ > 0 and
δ > 0 we can choose m0 = m0 (ε̃, δ,K) independently from t0 such that

sup
F∈Hε

PF

(
sup
n≥m

∣∣Y n (t0)− Y (F, t0)
∣∣ > δ

)
< ε̃ ∀m ≥ m0 ∀ t0 ∈ K .

lim
m→∞ sup

t0∈K
sup

F∈Hε

PF

(
sup
n≥m

∣∣Y n (t0)− Y (F, t0)
∣∣ > δ

)
= 0 .
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Proof: Let
Vi (F, t0) = inf

t′∈B(t0)
ρ

(
Xi, t

′,σ (F )
)
, i = 1, . . . , n.

Then Y (F, t0) = EF [Vi (t0)]. We have to show that for any δ > 0 and ε̃ > 0 there exists
m0 = m0 (δ, ε̃) independent from t0 ∈ K such that

PF

[
sup
n≥m

∣∣Y n (t0)− Y (F, t0)
∣∣ > δ

]
< ε̃ , ∀m ≥ m0 , ∀ t0 ∈ K .

We cannot use Bernstein’s Lemma (also known as Bernstein’s inequality) on Yi − Y (F ) because
these random variables do not have mean zero nor are they independent. We have

PF

[
sup
n≥m

∣∣Y n (t0)− Y (F, t0)
∣∣ > δ

]
≤ PF

[
sup
n≥m

∣∣V n (F, t0)− Y (F, t0)
∣∣ > δ/2

]
+

+ PF

[
sup
n≥m

∣∣Y n (t0)− V n (F, t0)
∣∣ > δ/2

]
. (52)

Also

PF

[
sup
n≥m

∣∣Y n (t0)− V n (F, t0)
∣∣ > δ/2

]
≤ PF

[
sup
n≥m

|σ̂n − σ (F )| > ε′
]

, (53)

for some ε′ = ε′ (δ) that depends on δ but does not depend on t0 or B (t0) (although it does depend
onK). To prove (53) note that Y n (t0) = 1/n

∑n
i=1 g (xi, t0, σ̂n) and V n (F, t0) = 1/n

∑n
i=1 g (xi, t0, σ (F ))

with g (x, t0, s) = inft′∈B(t0) ρ (x, t′, s). Note that g (x, t0, s) is continuous in s uniformly in x and
t0 ∈ K (see Lemma 4). Hence, for a given δ/2 there exists a positive ε′ = ε′ (δ) that does not
depend on t0 ∈ K such that |σ̂n − σ (F )| < ε′ implies

∣∣Y n (t0)− V n (F, t0)
∣∣ < δ/2 for all t0 ∈ K.

Hence, for each n we have
{∣∣Y n (t0)− V n (F, t0)

∣∣ > δ/2
}
⊂

{∣∣σ̂n − σ (F )
∣∣ > ε′

}
, ∀ t0 ∈ K ,

and then note that for any sequence of random variables {Xn}n∈N if a is a real number, we
have

{
supn≥m Xn > a

}
=

⋃
n≥m {Xn > a}. Together with (53) this bounds the second term in

(52). To control the first term, note that the sequence of random variables Wi (t0) = Vi (t0) −
E (Vi (t0)) = Vi (t0)−Y (F, t0) satisfies the assumptions of Bernstein’s Lemma with c = 2 supu ρ (u)
and sn = nσ2

w (t0), where σ2
w (t0) denotes the variance of Wi (t0). Hence for any δ > 0 we have

PF

( ∣∣V n (t0)− E (V (t0))
∣∣ > δ

)
= PF

( ∣∣Wn (t0)
∣∣ > δ

)

≤ 2 exp
( −n δ2

2 (σ2
w (t0) + c δ)

)
≤ 2 exp

( −n δ2

2 (k2 + c δ)

)

= 2
[
exp (−a (δ))

]n
, (54)

where σ2
w (t0) ≤ k2 < ∞ for all F ∈ Hε and for all t0 ∈ K. Note that a (δ) > 0 and it does not

depend on F nor on t0. Use (15) to find m0 large enough such that

sup
F∈Hε

PF

[
sup
n≥m

∣∣σ̂n − σ (F )
∣∣ > ε′

]
< ε̃/2 , ∀m ≥ m0 , (55)
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and use (54) together with the Borel-Cantelli Lemma and a standard argument to find m1 large
enough (independently from t0) such that

sup
F∈Hε

PF

[
sup
n≥m

∣∣V n (t0)− Y (F, t0)
∣∣ > δ/2

]
< ε̃/2 , ∀m ≥ m1 , ∀ t0 ∈ K . (56)

Equations (52), (55) and (56) show (51). ¥

If f : R→ R is a real function, let

f− (x) = max (0,−f (x)) .

Lemma 7 For each t ∈ R define the set

A (t) =
{

sH (t) : EHρ

(
X − t

sH (t)

)
= b, H ∈ Hε

}
,

let s− (t) = inf A (t) and s+ (t) = supA (t). Let t∗ be the solution of

inf
s−(t∗)≤s≤s+(t∗)

[
−EΦρ′

(
X − t∗

s

)]
=

ε

1− ε
sup

x
ρ′ (x) . (57)

Assume that for this choice of t∗ we have

inf
−t∗≤t≤t∗
s−≤s≤s+

EΦρ′′
(

X − t

s

)
>

ε

1− ε
sup

x
ρ′′ (x)− . (58)

Then γ (F, ·,σ) has its unique global minimum in the interval (−t∗, t∗) for any F ∈ Hε.

Proof: We will now show that (57) and (58) are sufficient conditions to ensure that γ (F, ·, σ) has
its unique global minimum in the interval (−t∗, t∗) for any F ∈ Hε. The reasoning is as follows.
If t is a minimum of γ (F, ·, σ) then it solves the equation

(1− ε)EΦρ′d

(
X − t

s (t)

)
+ εEHρ′d

(
X − t

s (t)

)
= 0, (59)

where s (t) = σ. Hence, t solves

−EΦρ′d

(
X − t

s (t)

)
=

ε

(1− ε)
EHρ′d

(
X − t

s (t)

)
. (60)

For each ε ∈ (0, 1/2] the largest solution t of (60) is determined by solving

gε (t) = inf
s−(t)≤s≤s+(t)

[
−EΦρ′d

(
X − t

s

)]
= sup

H∈Hε

ε

(1− ε)
EHρ′d

(
X − t

s (t)

)
=

ε

1− ε
sup

x
ρ′d (x) ,

(61)
that is, equation (57). In Figure 1 we plot the function gε (t) for estimates with breakdown point
50% and 40% and different values of ε. We include the threshold t∗ obtained in (17). We see that
the largest solution of (57) (or 61) is larger than the mentioned threshold, and hence this solution
corresponds to a local minimum of γ (F, ·, σ). The smallest solution t∗ of (57) is then the largest
possible value of t satisfying (59) that corresponds to a global minimum. Equation (58) guarantees
that every function γ (F, ·,σ) is strictly convex in (−t∗, t∗). It follows that there only exists one
global minimum, and that it belongs to this interval. ¥
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Figure 1: Plots of gε (t) = infs−(t)≤s≤s+(t)

[−EΦρ′d
(

X−t
s

)]
for estimates with breakdown point 50 and

40%. The threshold t∗ is given by (17). The horizontal line is at ε/ (1− ε) supx ρ′d (x).
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Lemma 8 Let ρ : R → R+ satisfy (17) or (57). Then there exists a compact set I2 ⊂ R (in-
dependent from F ∈ Hε) such that for all δ > 0 there exists m0 (that only depends on δ, i.e.
m0 = m0 (δ) ) such that

PF

[
µ̃n ∈ I2 , ∀n ≥ m

]
> 1− δ , ∀m ≥ m0 , ∀F ∈ Hε . (62)

Proof: Let γ (F, t, s) = EF ρ (X, t, s). We will first show that either (17) or (57) imply that

γ (F, 0, σ (F )) < γ (F, t,σ (F )) ∀ |t| ≥ t∗ ∀F ∈ Hε . (63)

Note that
γ (F, t, s) = (1− ε) EΦρ (X, t, s) + εEHρ (X, t, s) ,

for some distribution function H. It follows that

γ (F, 0, σ (F )) ≤ (1− ε) EΦρ (X, 0, s) + ε . (64)

From (17) or (57) we have that

EΦρ (X, t, σ (F ))− ε

1− ε
> EΦρ (X, 0, σ (F )) , ∀ |t| ≥ t∗ . (65)

From (64) and (65) we have, for all |t| ≥ t∗

γ (F, 0, σ (F )) < (1− ε)
[
EΦρ (X, t,σ (F ))− ε

1− ε

]
+ ε

= (1− ε) EΦρ (X, t, σ (F ))
≤ (1− ε) EΦρ (X, t, σ (F )) + εEHρ (X, t, σ (F ))
= γ (F, t,σ (F )) ,

and that shows (63). Let I2 = [−t∗, t∗]. We will now show that for any δ > 0 there exists
m0 = m0 (δ) such that for all m ≥ m0

PF

(
µ̃n ∈ I2 , ∀n ≥ m

)
> 1− δ ,

where neither I2 nor m0 depend on F ∈ Hε. We will do it by showing that there exists n0

(independent from F ∈ Hε) such that with arbitrarily high probability we have

γn (0, σ̂n) < γn (t, σ̂n) , ∀ t /∈ I2 . (66)

It is easy to see that (66) implies that for all n ≥ n0 and with high probability we have µ̃n ∈ I2.
Note that the function

a (s, t) = EΦρ

(
X − t

s

)
− EΦρ

(
X

s

)

is non-decreasing in |t| for each fixed s. Hence, from (17) there exists δ̃ > 0 (independent from t)
such that

EΦρ (X, t, s)−EΦρ (X, 0, s) >
ε

1− ε
+ δ̃ , ∀ |t| ≥ t∗ , ∀ s− ≤ s ≤ s+ .
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Hence, for any t such that |t| ≥ t∗ we have

γ (F, t,σ) ≥ (1− ε) EΦρ (X, t, σ)

> (1− ε)
(

ε

1− ε
+ δ̃ + EΦρ (X, 0, σ)

)

= (1− ε) δ̃ + ε + EΦρ (X, 0, σ) .

We have
inf
t/∈I2

γ (F, t,σ) ≥ (1− ε) δ̃ + γ (F, 0, σ) , ∀F ∈ Hε . (67)

Let α (F ) = γ (F, 0, σ (F )) and η (F ) = inft/∈I2 γ (F, t,σ (F )). Then (67) implies that α̃ =
infF∈Hε [η (F )− α (F )] > 0. Choose 0 < ε̃ < α̃/ 2.

Note that by Chebychev’s inequality, for any τ > 0

PF

[
|γn (t, s)− γ (F, t, s)| > τ

]
≤ 1

n

1
τ

, ∀ t , ∀ s , ∀F ∈ Hε .

Hence, for a fixed δ > 0 there exists n0 = n0 (δ) (that does not depend on F ∈ Hε) such that for
all n ≥ n0, for all F ∈ Hε, and for all t and s we have

PF

[
|γn (t, s)− γ (F, t, s)| < ε̃/ 2

]
> 1− δ/ 2 . (68)

We also have that there exists τ = τ (ε̃) > 0 such that
∣∣γn (t, s1)− γ (F, t, s2)

∣∣ < ε̃/ 2 , ∀ t , if |s1 − s2| < τ . (69)

Because σ̂n converges to σ (F ) uniformly in F ∈ Hε we have that for each τ > 0 there exists
n1 = n1 (τ) (independent from F ) such that

PF

[
sup
m≥n

|σ̂m − σ (F )| > τ

]
< δ/ 2 , ∀n ≥ n1 . (70)

Equations (69) and (70) show that for n ≥ n1 = n1 (ε̃) we have

PF

[
|γn (t, σ̂n)− γ (F, t,σ (F ))| < ε̃/ 2

]
> 1− δ/ 2 , ∀ t . (71)

In particular with t = 0 in (71) we get

γn (0, σ̂n) < γ (F, 0, σ (F )) + ε̃/2 .

Similarly we have

γn (t, σ̂n) > γ (F, t,σ (F ))− ε̃/2
> inf

t/∈I2
γ (F, t,σ (F ))− ε̃/2 .

Hence

inf
t/∈I2

γn (t, σ̂n) > inf
t/∈I2

γ (F, t,σ (F ))− ε̃/2

> γ (F, 0, σ (F )) + α̃− ε̃/2
> γn (0, σ̂n)− ε̃/2 + α̃− ε̃/2
> γn (0, σ̂n) ,

and we see that (66) holds. ¥
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Lemma 9 Let D1, . . . , Dn be n i.i.d. random variables and let Dn = 1/ n
∑n

i=1 Di. Assume that
EF

[
D2

i

] ≤ c < ∞, for all F ∈ Hε. Then Dn = UOP (1) and Dn −EF (Di) = UoP (1).

Proof: Note that the assumption on the second moment of Di implies that EF |Di| ≤ 1 + c for
all F ∈ Hε. To simplify the notation, let d = 1 + c. Then we have

PF

[∣∣Dn

∣∣ > 2 d
] ≤ PF

[∣∣Dn − EF Di

∣∣ > d
] ≤ 1

d2

1
n

VarF (Di) ≤ 1
d2

1
n

EF D2
i .

Hence, limn PF

[∣∣Dn

∣∣ > 2 d
]

= 0 for all F ∈ Hε, where d does not depend on F . It follows that

lim
k→∞

sup
F∈Hε

lim
n→∞PF

[∣∣Dn

∣∣ > k
]

= 0 ,

that is, Dn = UOP (1). A similar argument shows that Dn −EF (Di) = UoP (1). ¥
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