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Forecasting Irregularly Spaced UHF Financial Data: 
Realized Volatility vs UHF-GARCH Models  

 
 
 

 
Abstract: 
A very promising literature has been recently devoted to the modeling of ultra-high-frequency (UHF) data. 
Our first aim is to develop an empirical application of Autoregressive Conditional Duration GARCH 
models and the realized volatility to forecast future volatilities on irregularly spaced data. We also compare 
the out sample performances of ACD GARCH models with the realized volatility method. We propose a 
procedure to take into account the time deformation and show how to use these models for computing daily 
VaR. 
 
Résumé : 
Dans cet article, nous comparons les prévisions de variance obtenues à partir de modèles à très haute 
fréquence. Nous analysons la performance des modèles ACD-GARCH, ACD-GARCH augmenté et celui 
de la variance réalisée. Pour ce faire, nous prenons en compte le phénomène de la déformation temporelle, 
un problème souvent négligé, et nous agrégeons les résultats de façon uniforme d’un modèle à l’autre. Nos 
résultats montrent que la technique de la variance réalisée tend à surpasser les autres modèles d’analyse à 
très haute fréquence. Cette étude peut se révéler utile pour le calcul de la VaR sur un horizon très 
rapproché. 
 
 
 
Keywords: Realized volatility, Ultra High Frequency GARCH, time deformation, financial markets, Daily 
VaR. 
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1. Introduction1 

 

The very recent implementation of electronic order-matching systems on financial 

markets has entailed increasing numbers and frequencies of trades. While data on prices 

and volumes were registered daily two decades ago, transactions (and especially those 

due to electronic systems) are now recorded instantaneously with an accuracy of a 

fraction of one second. The growing interest devoted to intra-daily models in the financial 

literature is a direct consequence of the availability of higher frequency measurements. 

This phenomenon stylized by increasing frequencies of observations is at the origin of the 

concept of ultra-high frequency. In this context, the development of econometric methods 

for the analysis of ultra-high frequency data seems to be promising. But the other side of 

the coin is the problem induced by the irregularity at which the observations arrive. For 

example, when we estimate a simple GARCH process on the S&P500, we usually use the 

returns observed every day or every week. In this case, the interval between each 

observation is fixed: one day or one week. But when analyzing intra-day observations, 

the information arrives sometimes in clusters and at different time intervals. This problem 

is called time deformation because time is not the same as calendar time. The fact that the 

arrival of information is irregularly spaced is a salient feature of ultra-high frequency 

data. Aggregates of these data up to fixed intervals of time entail an important loss of 

information. To avoid this loss, Engle and Russell (1998) and Engle (2000) have recently 

developed methods that are directly tailored to irregular spacing of the data. The basic 

model is the autoregressive conditional duration (ACD) model which is a type of 

                                                 
1This paper is based on previous research done by Racicot (2003). 
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dependent Poisson process. The ACD model applied to IBM transactions arrival times by 

Engle (2000) in GARCH framework has produced ultra-high frequency measures of 

volatility. The results observed by Engle (2000) are promising and indicate that this 

theoretical specification seems to be accurate to estimate models for ultra-high frequency 

data or transaction data. The ACD GARCH and extended ACD GARCH volatility 

models proposed by Engle (2000) warrant indeed very large gains in forecast error 

accuracy from a theoretical perspective. Considering this result, it would be very 

interesting to apply these models to ultra-high frequency data.  

 

 Therefore we propose two main contributions. Our first aim in this paper is to 

develop an empirical application of ACD GARCH models in forecasting future 

volatilities. Then we propose another contribution in comparing the performance of ACD 

GARCH models to a new and simple way of modeling financial market volatility using 

high-frequency data recently developed by Bollerslev and Wright (2001):  the integrated 

volatility or recently called, the realized volatility (Dacarogna et al. (2001), Barndorff-

Nielsen et Shephard (2002a), Andersen et al. (2003)). According to Bollerslev and 

Wright (2001), volatility dynamics may be modeled by fitting a long autoregressive (AR) 

representation to ultra-high frequency data. The main interrogation in their approach is 

that they ignore the fact that data arrive at irregular intervals. Thus, we have to make an 

adjustment to take into account these fundamental features of ultra-high frequency data. 

 

 The plan of the rest of the paper is as follows. Section 2 is devoted to the 

presentation of the models and their necessary adjustments. We also show how to use 
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volatility forecasts to compute daily VaR. Section 3 contains a discussion of the ultra-

high frequency data and the adjustment procedures employed. Section 4 details the 

volatility calculations and volatility forecasts, followed by a comparison of the results and 

a short discussion. Section 5 concludes with some suggestions for future research. 

 

2. Ultra-high-frequency variance models  

 

2.1 UHF GARCH(1,1) model 

Ultra-high frequency GARCH(1,1) model allows taking into account the irregular 

character of market transactions even if the current durations of these transactions are not 

explicitly considered as additional sources of information. In this sense, it is the simplest 

model of conditional variance defined at ultra-high-frequency. This model may be written 

as follows:  

2
1

2
1

2
−− ++= iii βσαεωσ                                                                                                      (1) 

with 2
iσ , the conditional variance and iε , the innovation.  

 

2.2 The ACD-GARCH model 

 

The autoregressive conditional duration (ACD) model was firstly developed by Engle and 

Russel (1998). Later, Jasiak (1999), Gouriéroux et al. (1999), Gouriéroux and Jasiak 

(2001), and Engle (2000) refined and applied the model in a similar context.  
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The basic formulation of the ACD is specified in terms of the conditional density of the 

durations. The duration is the interval between two arrival times denoted by 1−−= iii ttx . 

The expectation of the ith duration is given by the following function: 

( ) ( ) iiii xxxxxE θψθ ≡= −− ;,...,,..., 1111        (2) 

under the assumption that  

iii ex θ=          (3) 

where { }ie ~ i.i.d., and ψ is a set of parameters to be estimated. By definition, the 

conditional expectation of the duration depends on past durations. 

A more general formulation of the model, called the ACD(p, q), may be given by the 

following specification: 

∑ ∑
= =

−− ++=
p

j

q

j
jijjiiI xw

0 0

θβαθ        (4) 

where p and q are the orders of the lags. This specification may be used to study the 

marks associated with the arrival times so that hypothesis from the market microstructure 

theories may be tested. 

 

 Engle (2000) proposed a non-linear generalization of this model to define a 

measure of price volatility using transaction data and to analyse how the arrival time 

influences this volatility.  Assuming that ri is the return from transaction i-1 to i, the 

conditional variance per transaction is defined as  

( ) iiii hxrV =−1           (5) 

where xi is defined as previously. The conditional variance is dependent on current and 

past returns and durations. As mentioned by Engle (2000), volatility is always measured 
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over a fixed interval and is frequently reported in annualized terms. Therefore, the 

conditional volatility per unit of time is the most interesting measure to be evaluated. It is 

given by:  

2
1 ii

i

i
i x

x
r

V σ=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−         (6) 

These two variances imply:  

2
iii xh σ=          (7) 

In this case, the forecasted conditional transaction variance may be defined as:  

( ) ( )2
11 iiiii xEhE σ−− =          (8) 

The simple GARCH(1, 1) of Bollerslev (1986) may be extended to compute 2
iσ  with the 

following specification: 

12
1

2
1

2 −
−− +++= iiii xew γβσασ         (9) 

where xi
-1 is the reciprocal of duration. This model is called ACD-GARCH. In this 

specification durations are directly introduced into the conditional variance. It should be 

noted that the standard GARCH(1,1) wihtout ajustment for duration, while it is certainly 

not the best model for UHF data, is also used in the UHF literature for computing 

volatility forecasts. For example, daily VaR using this model are very simple to obtain. 

One simply have estimate the model using standard econometric package like EViews 

and then to compute a one step-a-head forecast. The VaR2 number is then given by : 

1amount65.1 +××= iVaR σ . Section 4.2 shows how it is simple to obtain forecast from 

GARCH(1,1), this might explain the popularity of the model. 

 
                                                 
2 For more details on VaR computations using GARCH models, see Tsay (2005). 
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 To give another financial illustration to this econometric model we can use the 

results obtained by Easley and O’Hara (1992). According to the market microstructure 

model of Easley and O’Hara (1992), a fraction of the investors is informed and knows if 

there are news concerning their assets. When it is time for them to do transactions, they 

will buy if the news are favourable, sell on bad news and will not trade if no news. In this 

model, long intervals (xi) will be interpreted as no news. This implies that we expect a 

positive value for γ  in our extended ACD GARCH model. Long durations indicate 

indeed that there are no news and consequently a lower volatility3.    

 

2.3 The extended ACD-GARCH 

Engle (2000) suggests promising extensions and proposes a richer formulation allowing 

both observed and expected durations to enter the model. He also introduces a long run 

volatility variable defined by the following equation:  

1
4132

1
1

2
1

2
110

2 −
−

−
−− ++++++= ii

i

i
iiii

x
xe θγξγ

θ
γγβσαασ    (10) 

where iξ  is the long run volatility, iθ  is the conditional duration and might be defined by 

the parsimonious ACD(1,1) model. Engle (2000) proposes to compute the long run 

volatility by a Exponential Weighted Moving Average (EWMA) model on xr /2 as  

( )
1

2
1

1 1
−

−
− −+=

i

i
ii x

r
λλξξ         (11) 

In this extended model for computing volatility using high frequency data, the influences 

of durations on volatility have been incorporated in three parameters. They measure the 

                                                 
3 We can note that long durations cannot induce the conditional variance to be negative with this 
formulation. 
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effect of surprise in duration, the reciprocal duration and the expected reciprocal 

duration4 respectively. As in any other GARCH models, forecasting volatility can be 

found simply by computing the conditional expectation and is given by: 

( ) ( ) 1
4132

1
11

2
1

2
110

2
1

−
−

−
−−−− ++++++= iiiiiiii xEeE θγξγγγβσαασ   (12) 

This calculation led by Engle (2000) reveals us that parameter 2γ  is not persistent. 

However, parameters 41 andγγ  indicate a long run influence on future volatilities because 

of the persistence5 of durations.  

 

2.4 A more parsimonious approach: realized volatility 

 

While Engle (2000) approach for modeling and computing volatility using high-

frequency data seems promising on the theoretical side of the coin, this approach is 

complicated by the fact that there is a lot of data manipulations that must be done before 

having an estimate of volatility.  

 

 The concept of realized volatility has been firstly developed by Andersen and 

Bollerslev (1998) and later applied for computing daily volatility forecasts of exchange 

rates and S&P 500 Index-Futures, respectively, by Bollerslev and Wright (2001) and 

Martens (2002) using the appellation integrated volatility. The relation between realized 

volatility and integrated volatility is well explained in Barndorff-Nielsen et Shephard 

(2002a, 2002b) and Meddahi (2002, 2003). Simply put, the realized volatility is measured 

                                                 
4 The expected reciprocal duration is the expected rate of arrivals of transactions.   
5 As mentioned by Engle (2000) these models might be estimated by QMLE (quasi-maximum likelihood 
estimator) without specifying the density of the disturbances and using Bollerslev-Wooldridge (1992) 
robust standard errors.  
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by the squared value of intra-daily returns. This measure is also considered to be a more 

accurate measure of ex-post volatility. As Anderson et al. (2001) point out, assuming that 

the returns follow a special semi-martingale process, “the quadratic variation of this 

process constitutes a natural measure of ex-post realized volatility”. It also corresponds 

directly to the theoretical definition of volatility used in diffusion and stochastic volatility 

models6. Taking into account time deformation, we can give a mathematical definition of 

realized volatility as follows:  

∑
=

=
N

n
nmI r

n
m

1

2
,

2 1)(σ         (13) 

where  2
,nmr  is the nth squared return on day m. Because the returns are not observed at a 

constant interval, the numbers of observations N will vary from day to day. Compared to 

the UHF-GARCH model, we can easily observe the simplicity of the calculations 

required for obtaining an estimate of the volatility. As in the GARCH framework, it is 

possible to obtain a forecast of the integrated volatility. The method might be described 

as follows. The forecasts are based on a long memory autoregressive model where the lag 

p of the autoregressive process must approach infinity. The coefficients obtained from 

this autoregression are then used to construct a forecast function that takes the following 

form: 

( )∑
=

−+−+=
N

n
mNnmNI v

n
m

1
)1()1(

2 ˆˆ1)(ˆ µσ       (14) 

where  

∑
∞

=
−+ =

1
1 ˆˆ

j
jtjtt vv α         (15) 

                                                 
6 See Barndorff-Neilson and Shephard (2001), and Hull and White (1987) for an example of such uses. 
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∑ ∑
−

=

∞

=
−+−++ +=

1

1

ˆˆˆ
k

j kj
jktjtjktjtkt vvv αα       (16) 

and where the coefficients αj might be estimated in the time domain by a long order 

autoregression7, µ̂)log( 2 −= tt rv  and, where )log( ofmean  sample  theisˆ 2
trµ .  It should 

be noted that these coefficients might be estimated in a frequency domain using a 

Wiener-Kolmogorov filter. The results from using these techniques appear to be similar 

(Bollerslev and Wright, 2001). So in the following application, we use the long order 

autoregression on the log-squared returns8 which we assume to be a martingale 

difference. More precisely,  

( )( ) tt erL =− µα )log( 2  where ( ) ...1 3
3

2
21 −−−−= LLLL αααα , et ∼ WN(0,σ2) and the 

lagged polynomial is assumed to converge. So to implement the forecasting formula 

represented by equation (14), we simply have to fit a long order autoregression to the log-

squared returns and use this estimated equation to compute our forecasts. This point is 

made clearer in the following section. Because the log-squared returns may yield large 

negative numbers for returns close to zero, we have applied the following transformation:  

22

2
22* )log(

sr
ssrr

t
tt τ

ττ
+

−+=                                                                                   (17) 

where s2 is the sample variance of rt and τ is chosen to be equal to 0,02 as in Fuller (1996) 

and Breidt and Carriquiry (1996). 

 

 

                                                 
7 More precisely, we make the assumption that the time series of volatilities may be represented by an 
appropriate proxy such as the log-squared returns which has an autoregressive representation.   
8 As alternative hypothesis, we might specify that the squared or absolute returns has an autoregressive 
representation (see Bollerslev and Wright, 2001).  
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3. Data and measurements 

 

We have to remind that our first aim is to compare Engle’s UHF-GARCH model (2000) 

with the realized volatility, which is also called the integrated volatility concept by 

Bollerslev and Wright (2001). Therefore, we use the sample of observations used by 

Engle (2000). The irregularly spaced ultra-high frequency data are the transaction quotes 

for IBM stocks. The data were abstracted from the Trades, Orders Reports, and Quotes 

(TORQ) data set constructed by Joel Hasbrouck and NYSE. Two types of random 

variables compose the transaction data: the time of transactions and the marks at this 

time9. In our application, we define a point process as the time at which a transaction 

occurred. The marks are volumes of shares, prices, bid and ask prices of the traded 

contract at the transaction time. Our data set includes around 60000 transactions made on 

the NYSE from November 1, 1990 through January 31, 1991. Only the trades occurring 

between 9:30 AM and 4:00 PM are used for calculations10. Following Engle (2000), we 

delete transactions on Thanksgiving Friday and the day before Christmas and New Years, 

as well as all transactions without a reported set of quotes. According to Engle (2000), 

this procedure leaves 52146 unique transaction times. We consider only the unique times 

and remove all zero durations. As justified by Engle (2000): “This is consistent with 

                                                 
9 The information about bid and ask quote movements, the volume associated with the transactions, the 
transaction prices, and a time stamp measured in seconds after, reflecting the time at which the transaction 
occurred, are considered in the data set. 
10 We have to mention that two days have been deleted from the 63 trading days in the 3 month sample. As 
explained by Engle (2000) : “A halt in IBM trading of just over an hour and 15 minutes occurred on Friday, 
November 23. On  December 27th  there was a one and a half hour delay in the opening”. 
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interpreting a trade as a transfer of ownership from one ore more sellers to one or more 

buyers at a point in time”. 

 

 We may add that the average volume corresponding to each time stamp is 1861 

shares. Moreover, the minimum time between events is 1 second and the maximum 

duration is 561 seconds (or 9 minutes and 21 seconds). A simple description of the data 

used by Engle (2000) shows that the average duration between successive events for IBM 

is 28.38 seconds with a standard deviation of 38.41. 

 

 As mentioned by Engle and Russell (1998), we have to seasonally adjust the data 

to take out the time of day effect. An important literature has been devoted to this effect. 

It induces indeed a higher frequency of transactions near the opening and the closing of 

the market. The procedure we use is called by Engle and Russell a “diurnally” 

adjustment. Therefore, we define an adjusted duration given by the following equation: 

);(
~

1 βϕ −

=
i

i
i t

x
x  

 where xi = ti – ti-1 is the duration between trades and ϕ(.) is a piecewise linear spline 

function used to seasonally adjust the durations. Exhibit 1 gives an illustration of a linear 

spline. The knots are the points where the linear pieces of the splines join together. They 

appear at 9:30, 10:00, 11:00, 12:00, 1:00, 2:00, 3:00, 3:30, 4:00. 

[Please insert exhibit 1] 
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Specifically, the seasonal adjustment is done by regressing the durations on the time using a 

linear spline11 specification that takes the following form:   

ettttttttcx +++++++++= 8877665544332211 ββββββββ  

 

where ti-1 for  i=2,…,9 are vectors of time variables constructed from the knots. From this 

regression we obtain )ˆ;(ˆ 1 βϕ −= ii tx . The resulting variable ix~ , which is free of the typical 

time of day effect, represents fractions of durations below or above normal.  

 

4. Analysis and results 

 

4.1 Volatility calculations: a comparison12 

 

We have to notice that the two methods discussed to compute the daily volatility present 

important differences. Thus an adjustment is necessary before we can make a 

comparison. The UHF-GARCH specification gives volatility calculations per seconds 

while the integrated volatility gives a volatility estimate for a day. We have to transform 

the models to obtain comparable units. The UHF-GARCH calculation is transformed on a 

daily basis13. We introduce a new and obvious procedure which has not been explored in 

the literature. We proceed by analogy with the integrated volatility calculations. More 

precisely, we suggest that we average out the intra-day volatilities to define a daily 

volatility as: 

                                                 
11 Note that we used a linear spline. We might have used a kth-order spline which is a piecewise 
polynomial approximation, with polynomials of degree k differentiable k-1 times everywhere.  
12 The maximum likelihood estimator is used to estimate the parameters of all our UHF-GARCH models. 
13 We can mention that this transformation would be accurate to evaluate one-day options. 
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∑
=

=
N

i
id N 1

22 1 σσ   

where 2
iσ  is obtained by estimating high-frequency GARCH models. In table 1, we 

summarize the results observed for the four different methods used to compute the daily 

volatility:  integrated volatility, GARCH(1, 1), ACD GARCH and Extended ACD 

GARCH. We compute volatilities for five consecutive days using our intra-daily 

transactions on IBM stock for the first week of our sample14. A first glance at the results 

confirms immediately the accuracy of our proposition made to compare volatility 

calculations.  

[Please insert table 1] 

 

 We observe indeed that all the GARCH calculations follow quite closely the 

realized volatility methodology. This result is reassuring and confirms our first intuition. As 

explained in Bollerslev & Wright (2001) and as shown in table 2, the simple GARCH (i.e. 

GARCH(1, 1)) has the worst performance compared to the realized volatility for high-

frequency data. This observation is not surprising.  

[Please insert table 2] 

       

 The Extended ACD GARCH seems to have the best performance among the 

GARCH models in our comparison. However, this first glance at volatility calculations 

needs to be completed by a more detailed analysis. To have a better idea on the 

performance of these volatility models, we compute standard measures such as the R-

                                                 
14 The first week begins on a Thursday in November 1990. There are no particular reasons that explain why 
we have chosen this specific segment of time to make our calculations. It is simply for comparisons of 
calculations.  
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squared of the Mincer-Zarnowitz (1969) regression. Bollerslev and Wright (2001) and 

Martens (2002) underline the accuracy of this procedure to evaluate the performance of 

models of time-varying conditional heteroskedasticity.  They use ultra-high frequency data, 

but they make the assumption that the data arrive at constant intervals15, which is of course 

not the case in reality.  As acknowledged by Engle (2000) ultra-high frequency data arrive 

at irregular intervals. Considering these unsatisfactory approaches, we propose to use the 

concept of autoregressive conditional duration introduced by Engle and Russell (1998) and 

improved by Engle (2000).  

 

 In the next section we implement our approach. Then we present the forecasting 

performances of our four models. 

 

4.2 Volatility forecasts: a comparison 

 

Our aim is to make volatility forecasts based on our four models and then to compare their 

performances. As suggested by Bollerslev and Wright (2001), we use the Mincer-

Zarnowitz R-squared16. For each model we proceed as follows to compute forecasts. The 

                                                 
15 Bollerslev and Wright (2001) consider a data set with five-minute return series. For 24-hour markets, 
“there are 288 five-minute observations in a day”. An other application of this method may be found in 
Bollerslev and Zhang (2003). 
16 Other popular measures might be used such as the mean absolute error (MAE), the root mean squared 
error (RMSE), the heteroskedasticy adjusted mean absolute error (HMAE) or the heteroskedasticy adjusted 

root mean squared error (HRMSE). HMAE is defined as ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

T

tT 1 t

t

Forecast
Realized

11 and HRMSE = 

2

1 t

t

Forecast
Realized

11 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

T

tT
where the forecasted errors are adjusted for heteroskedasticity. See Andersen et 

al.(1999) and Martens (2002) for an application of the last two measures.  
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forecasts induced by the realized volatility17 are given by our equation (16). We know that 

an appropriate proxy for the time series of volatilities has an autoregressive representation. 

One can easily demonstrate that this specification may be approximated by a simple 

ARMA(1, 1)18. Our forecasts are based on the estimation of that process. 

 

 The computation of forecasts from a simple GARCH(1, 1), commonly used in 

finance, can be done by using the following formula19: 

n
t

n

nttE )(
1

)(1
1

2
0

1

12 βασα
βα
βα

σ ++
−−

+−
=+  

  n
t

n

)(
1

)(
1 1

2

1

10

1

0 βασ
βα

βαα
βα

α
++

−−
+

−
−−

=          (18) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−++
−−

=
βα

α
σβα

βα
α

1

02
1

1

0

1
)(

1 t
n . 

 

 We have to mention that equation (18) might be used for computing forecasts at any 

horizon simply by replacing n by a value of interest20.  

 

 The computation of forecasts based on the ACD and extended ACD GARCH 

models seems much more complicated. We need indeed expected values of durations. This 

                                                 
17 For a recent application of this method to forecasting and a discussion of the problem of time 
aggregation, see Gosier, Madhavan, Serbin and Yang (2005). 
18 Bollerslev and Wright (2001) have used an AR (2050) to fit their ultra-high frequency data observed at 
fixed intervals. It is well known in the econometric literature that high order autoregressive models may be 
approximated by parsimonious ARMA models. For example see Mills (1990), Hamilton (1994) or Racicot 
and Théoret (2001). 
19 The index n represents the number of steps. 
20 When 11 =+ βα , the conditional expectation of volatility n periods ahead is instead 

0
22)( ασσ nE tntt +=+ .   
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problem may be solved easily. We know that xi is related to θi. So, we assume that the 

expectation of the durations may be represented by a simple ARMA(1, 1) process21. Then, 

we use the forecasted values of the durations induced to include them in the ACD GARCH 

and in the extended ACD GARCH models. The main disadvantage of this procedure is the 

increasing number of computations we have to perform to get a forecast22. For our purpose 

we use a simple ARMA(1, 1) specification. Thus the process is defined by the following 

equation: 

iiii xvx εβεα +++= −− 11        (19) 

 where iii x θε −≡  is a martingale difference (i.e. εi = xi – Ei-1( xi )). Forecasted values of xi 

can be obtained from (19) and then included in equation (12).  

Table 3, presented below, shows the results of the performance of the GARCH models 

compared with the realized volatility. 

 

[Please insert table 3] 

 

As we can see if we compare the RMSE, MAE or the R2 of the Mincer-Zarnowitz23 (1969) 

regression, the realized volatility method outperforms all the GARCH models. However, 

we have to moderate this result. It must be noted that none of the numbers presented in this 

                                                 
21 We observe that the expectation of the duration has the same type of representation as the conditional 
duration. As suggested by Engle and Russell (1998), we use an ARMA process. 
22 Another approach is to assume that the durations may be represented by log linear regression models. 
23To obtain the Mincer-Zarnowitz regressions we regress the ex post realized values of the variable under 
scrutiny on the forecasted values of this variable plus a constant term. For example, in our case, we forecast 
the IBM prices for different sample sizes: 700, 1400 and 2100, and then we run the regressions (i.e. 

tftt ycy εβ ++= ** ). The resulting R2 are shown in table 3.    
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table is significant. Nevertheless, for the realized volatility, the t statistics of Mincer-

Zarnowitz are near significance level24.  

 

 The poor performances of the four models are not so surprising and the results are 

consistent with previous studies devoted to forecasting models25. As mentioned by 

Andersen, Bollerslev and Lange (1999), the standard GARCH volatility models tend to 

perform very poorly when they are applied directly to UHF data. But it is deceiving that the 

ACD GARCH models do not perform better in comparison with the simple realized 

volatility method. In fact, it would be possible to conclude that the gains in forecast error 

accuracy from ACD GARCH and extended ACD GARCH models remain large from a 

pure theoretical perspective. 

 

 The simple way of modeling financial markets volatility using ultra-high frequency 

data introduced by Bollerslev and Wright (2001), the realized volatility, tends to perform 

better than the standard and autoregressive conditional duration GARCH models. However, 

improvements have to be made to take into account the fact that data arrive at irregular 

intervals. 

 

5. Conclusions 

 

In this paper we have proposed an application of the autoregressive conditional durations 

GARCH models  (ACD GARCH) recently developed by Engle and Russel (1998) and 

                                                 
24 More precisely, the t statistics are 1.75 (0.08), 1.82 (0.06), and 1.80 (0.07) for sample sizes of 700, 1400, 
and 2100 respectively. Their corresponding p-values are in brackets. 
25 See Mills (1999). 
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Engle (2000). We have used them to make volatility forecasts before comparing their 

performances with the recent concept of realized volatility introduced by Bollerslev and 

Wright (2001). To take into account the time deformation induced by the fact that ultra-

high frequency data arrive at irregular intervals, we have made some assumptions and 

proposed adjustments. 

 

 Our results show that the realized volatility seems to be better, in terms of RMSE, 

MAE, and Mincer-Zarnowitz (1969) criterions, than any of UHF-GARCH models. 

Although none of the tested models has well performed on the IBM stock data used for the 

empirical analysis, it is quite deceiving that the ACD GARCH has not performed better 

than the realized volatility. It is well known in the literature that when using GARCH 

models to forecast higher frequency data, they perform very poorly26. Nevertheless, the 

theoretical improvement developed by Engle to take into account time deformation seems 

to show poor performances when using to forecast volatilities. 

 

 As suggested in an other framework by Donaldson and Kamstra (1997), we think it 

would be very interesting to improve the forecasting power by adding an Artificial Neural 

Network component in the ACD GARCH model. Moreover, as in Engle (2000) we have 

used linear splines to adjust the data, using non-linear splines may improve the results. We 

leave all these issues for future research. 

 

 

                                                 
26 See Andersen et al. (1998) and (2001). 
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                                               Exhibit 1. 
                             Representation of the linear spline 
 
Duration 
 
 
                                                                                  
                                                                                        
                                                                    
 
 
 
                  
 

 

                   9:30                                               4:00              time 

 
Table 1 Volatility computations (in sample)* 

Day Realized 

volatility 

Simple 

GARCH 

ACD GARCH Extended ACD 
GARCH 

 

Number of 
observations 

Thurs. 3.18 3.68 3.69 3.24 688 
Friday 9.13 12.04 12.17 7.49 792 
Monday 2.59 3.23 3.04 3.15 671 
Tuesday 6.16 6.97 6.96 5.76 732 
Wednes. 3.58 3.62 3.62 3.27 649 

* The simple GARCH(1,1) model is estimated by using equation (1), the ACD GARCH, by using 
equation (9) and the extended ACD GARCH, by using equation (12). Realized volatility is given 
by equation (13).  
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      Table 2 

Average absolute percentage changes (in sample)* 

Day Simple GARCH ACD GARCH Extended ACD 
GARCH 

 
Thursday 15.72% 16.04% 1.89% 

Friday 31.87% 33.30% 17.96% 

Monday         24.71%             17.37% 21.62% 

Tuesday 13.15% 12.99% 6.49% 

Wednesday 1.12% 1.12% 8.66% 
Average  17.31% 16.16% 11.32% 

* Table 2 is simply a recast of table 1. As realized variance is the benchmark, we 
express the data of table 1 as percentage deviations from this benchmark. This table 
is used to compare the three GARCH models to the model of realized variance, 
which is the simplest to compute.  

 
 
 

Table 3 

Forecasts evaluation of GARCH models and realized volatility* 

Number of 

observations 

Simple GARCH ACD GARCH Extended ACD 

GARCH 

Realized Volatility

700 RMSE :  13.12 

MAE :    3.84 

R2 :         0.0002 

RMSE :  13.11 

MAE :    3.84 

R2 :         0.0001 

RMSE :  10.94 

MAE :    3.91 

R2 :         0.0006 

RMSE :  2.26 

MAE :    2.03 

R2 :         0.0044 

1400 RMSE :  14.83 

MAE :    4.35 

R2 :         0.0001 

RMSE :  14.83 

MAE :    4.35 

R2 :         0.0001 

RMSE :  12.47 

MAE :    4.34 

R2 :         0.0003 

RMSE :  2.23 

MAE :    1.99 

R2 :         0.0024 

2100 RMSE :  15.55 

MAE :    4.31 

R2 :         0.00008 

RMSE :  15.54 

MAE :    4.31 

R2 :         0.00008 

RMSE :  13.02 

MAE :    4.32 

R2 :          0.0002 

RMSE :  2.17 

MAE :    1.97 

R2 :         0.0015 

* The evaluation of forecasts is performed for forecasting samples of 700, 1400 and 2100 observations,  
which are supposed to represent the number of possible transactions in one day. These numbers are based 
on table 1. To compare these samples, we aggregate the observations of everyone by using the formula: 

∑
=

=
N

i
id N 1

22 1 σσ , with N the number of transactions in one “day” and where 2
iσ   is obtained by estimating 

the ACD GARCH models.  
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