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Abstract: We introduce the idea that resampling from past observa-

tions in a Markov Chain Monte Carlo sampler can fasten convergence.

We prove that proper resampling from the past does not disturb the

limit distribution of the algorithm. We illustrate the method with two

examples. The first on a Bayesian analysis of stochastic volatility models

and the other on Bayesian phylogeny reconstruction.
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1. Introduction

Markov Chain Monte Carlo (MCMC) methods have become the standard

computational tool for bayesian inference. But the great flexibility of the

method comes with a price. Namely, it is very difficult to determine a priori

(before the simulation) or a posteriori whether a given MCMC sampler can

mix or has mixed in a given computing time. The challenge becomes that

of designing fast converging Monte Carlo algorithms. Contributions in this

field can have significant impact in other scientific disciplines where these

methods are used.
∗This work is funded in part by NSERC Canada.
†E-mail: yatchade@uottawa.ca
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In this paper, we propose a new and general approach to increase the

convergence rate of MCMC algorithms. The method is based on resampling.

Suppose that at time n, we want to sample Xn in a MCMC algorithm.

Instead of sampling Xn from P (Xn−1, ·) for some transition kernel P , we

propose to obtain Xn by resampling independently from {XB, . . . , Xn−1},

where B ≥ 0 is some burn-in period. This resampling from the past step

is then repeated during the simulation at some predetermined times a1 <

a2 < . . .. Basically, the idea is to look at {XB, . . . , Xn−1} as a sample from π.

Therefore resampling from the past allows the sampler to move more easily

and according to a distribution that is close to π. The resampling schedule

plays an important role. As long as we do not resample too much (typically,

we need (an) such that an/n → ∞ as n → ∞), we show that resampling

from the past does not disturb the limit distribution of the sampler.

Resampling from the past can perform poorly if the original sampler has a

very poor convergence rate. We extend the framework above by allowing re-

sampling from an auxiliary process {X(0)
n } that has a better convergence rate

towards its target distribution π(0). Resampling from an auxiliary process is

not new and is the idea behind the equi-energy sampler recently proposed

by [7]. But the equi-energy sampler has a number of complications that we

avoid here by using an importance-resampling. The idea is also apparent

in the “Metropolis with an adaptive proposal” of [3]. On the theoretical

side, we show in the case of importance-resampling, that resampling from an

auxiliary process does not disturb the limit distribution of the sampler.

We apply our methods to two examples from Bayesian data analysis. First,

we consider the Bayesian analysis of stochastic volatility models [6]. We

improve the efficiency of the basic Gibbs sampler for this problem by a factor

of fifty (50). In the second example, we look at Bayesian phylogenetic trees
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reconstruction. Our methods improve the efficiency of the MCMC sampler

of [8] by a factor of hundred (100).

The paper is organized as follows. In Section 2, we present the idea of

resampling from the past. Resampling from an auxiliary process is discussed

in Section 3. All the theoretical proofs are postponed to Section 5 and the

simulation examples are presented in Section 4.

2. Resampling from the past

Let {Xn} be a Markov chain with state space (X ,B), transition kernel P

and invariant distribution π started at X0 = x. If the chain is ergodic then

Lx(Xn), the distribution of Xn, will converge to π as n → ∞. But it is

well known that for MCMC algorithms, the convergence of Lx(Xn) to π can

be too slow for the sampler to be useful. We propose the following idea to

accelerate the convergence of Markov chains. Suppose that after a burn-in

period B, we have the sample {XB, XB+1, . . . , Xn−1} at time n. Instead of

sampling Xn ∼ P (Xn−1, ·) as we normally do, we obtain Xn by resampling

independently and with equal weight from {XB, XB+1, . . . , Xn−1}. The re-

sampling step is then repeated at some predetermined times a1 < a2 < . . ..

Intuitively, if P mixes reasonably well, {XB, XB+1, . . . , Xn−1} can be seen

as a sample points from π and resampling will operate as an i.i.d. sampling

from π.

Consider the following toy example. We want to use the Random Walk

Metropolis (RWM) algorithm with proposal density q(x, y) = N (y−x; 0, σ2)

with σ = 0.1 to sample from the standard normal density N (x; 0, 1); where

N (x;µ, σ2) denotes the density of the normal distribution N(µ, σ2) with

mean µ and variance σ2. We compare the plain RWM with a RWM with
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resampling. Each sampler is run for 25, 000 iterations. Graph 1 (a) shows

the last 5, 000 sample points and Graph (b), the autocorrelation function

from the last 20, 000 points in the plain RWM sampler. For the RWM with

resampling, we resample at times B+dkαe (see the justification below), with

B = 5, 000 and α = 1.3. Graph 1 (c) and (d) show the corresponding results

for the RWM with resampling. As we can see, there is a significant gain in

efficiency.

Intuitively, resampling helps to the extend that P mixes rapidly. Differ-

ently put, the slower P converges to π, the longer we should wait between

two resampling. What should be the resampling schedule (ak)? Obviously,

we should not resample all the time. We find that the choice ak = b1 + b2k
α,

α > 1 is a valid choice and works well in practice for b2 = 1, and α ≈ 1.3.

The choice ak = b1 + b2k is also theoretically valid as long as b2, the time

between two resampling, is large enough.
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Graph 1: Comparing a plain RWM and a RWM with resampling in

sampling from the standard norma distribution N(0, 1).

2.1. Theoretical discussion

What can we prove about this algorithm? We can prove that despite the

resampling, the limit distribution of the algorithm is π under certain con-

ditions on P and on the resampling schedule (ak). We recall the algorithm.

The resampling schedule 0 < a1 < a2 < · · · < an < ∞ is given and is

nonrandom. Fix B the burn-in period. We start the sampler at some arbi-

trary point X0 = x. At time n ≥ 1, given {X0, . . . , Xn−1}, if n > B and

n = ak for some k ≥ 1 then Xn ∼ 1
n−B

∑n−1
j=B δXj (·). Otherwise sample
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Xn ∼ P (Xn−1, ·). We denote Pr the underlying probablity measure and E

its expectation operator. Here are some standard notations that we use be-

low. If P1 and P2 are two transition kernels on X , the product P1P2 denotes

the transition kernel P1P2(x,A) :=
∫
P1(x, dy)P2(y,A). Recursively, we can

define Pn
1 by P 1

1 = P1 and Pn
1 = Pn−1

1 P1. A transition kernel P1 defines

a linear operator (also denoted P1) on the space of R-valued functions on

(X ,B) into itself, by P1f(x) :=
∫
P1(x, dy)f(y). If µ is a signed measure on

(X ,B), we denote µ(f) :=
∫
µ(dx)f(x) and we will also write µ to denote

the linear functional on the space of R-valued functions on (X ,B) thus in-

duced. Finally, we define µP1(A) :=
∫
µ(dx)P1(x,A). Let V : X → [1,∞)

be given. For f : X → R, we define its V -norm |f |V := supx∈X
|f(x)|
V (x) and

we introduce the space LV := {f : X → R : |f |V < ∞}. For a signed

measure µ on (X ,B) we define its V -norm ‖µ‖V := supf∈LV , |f |V ≤1 |µ(f)|.

Similarly, for a linear operator T from the space of R-valued functions on

X into itself, we define |||T |||V := supf∈LV , |f |V ≤1 |Tf |V . If |||T |||V < ∞, then

T defines a bounded linear operator from the Banach space (LV , |·|V ) into

itself.

We assume that the transition kernel P in the algorithm is geometrically

ergodic in the sense that:

Assumption (A): P is irreducible, aperiodic and there exists ρ ∈ (0, 1), a

measurable function V : X −→ [1,∞) such that

|||Pn − π|||V = O (ρn) , (2.1)

This assumption implies that π(V ) <∞ and that supn P
nV α(x) <∞ for

any x ∈ X , α ∈ [0, 1]. We refer the reader to [9] for more on geometrically

ergodic Markov chains. This is a convenient assumption that is known to
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hold for many MCMC sampler.

Define c := 1
1−ρ and δn := −a1 log(ρ) +

∑n
k=2 log(ak)− log(c+ ak−1).

Theorem 2.1. Assume (A). Then there exists a constant C ∈ (0,∞) such

that for ak ≤ n < ak+1:∣∣∣∣∣∣∣∣∣L(n) − π
∣∣∣∣∣∣∣∣∣

V
≤ Cρn−k exp [−δk] , (2.2)

where the transition kernel L(n) is defined by L(n)(x,A) := Pr [Xn ∈ A|X0 = x].

In particular if δn →∞ as n→∞, the algorithm has limit distribution π.

Proof. See Section (5).

Resampling from the past can sensibly reduce the autocorrelation in the

output of a MCMC algorithm. But when the sampler has a very slow mixing

time, it might be better to resample from an auxiliary process that has a

better mixing time.

3. Resampling from an auxiliary process

As above, π(dx) ∝ h(x)λ(dx) is the probability measure of interest on

the measure space (X ,B, λ). We introduce another probability measure

π(0)(dx) ∝ h(0)(x)λ(dx) on (X ,B, λ). Let {X(0)
n } be a Markov chain with

invariant distribution π(0) and transition kernel P (0). Let k : X × X →

[0,∞) be a measurable function and T a transition kernel on (X ,B). De-

fine the transition kernel Q(x, dy) =
∫

π(0)(dz)k(x,z)T (z,dy)∫
π(0)(dz)k(x,z)

. Following [11],

let S ⊆ X × X be such that the probability measures π(dx)Q(x, dy) and

π(dy)Q(y, dx) are mutually absolutely continuous on S and mutually singu-

lar on X \ S.
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We assume that {X(0)
n } converges (reasonably quickly) to π(0). Let P be a

transition kernel with invariant distribution π and θ ∈ [0, 1]. The algorithm

works as follows. Given (X(0)
0 , . . . , X

(0)
n , X0, . . . , Xn):

• with probability θ, we sample Xn+1 from P (Xn, ·);

• with probability 1−θ, we propose Y from Rn(Xn, ·) where Rn(x,A) =∑n

l=0
k(x,X

(0)
l

)T (X
(0)
l

,A)∑n

l=0
k(x,X

(0)
l

)
. In other words, we resample Y1 from {X(0)

0 , . . . , X
(0)
n }

with weights k(Xn, X
(0)
l ) and propose Y ∼ T (Y1, ·).

Then we either “accept” Y and setXn+1 = Y with probability α(Xn, Y ),

or “reject” Y and set Xn+1 = Xn with probability 1−α(Xn, Y ), where

α(x, y) =

 min
[
1, π(dy)Q(y,dx)

π(dx)Q(x,dy)

]
if (x, y) ∈ S

0 otherwise.
(3.1)

For n large enough, a sample from Rn(x, ·) can be seen as a sample from

Q(x, dy) which explain the acceptance probability (3.1). But the algorithm is

not feasible as such because the ratio in (3.1) cannot be computed in general.

The natural choice which simplifies Q is to choose a transition kernel T that

is invariant under π and k(x, y) = ω(y) = h(y)/h(0)(y). With this choice, we

get α(x, y) ≡ 1 on S. We call this scheme importance-sampling resampling. It

is not necessary to choose a complicated transition kernel for T . Throughout,

we choose T to be the identity transition kernel, T (x,A) = 1A(x) in which

case S = {(x, y) : 0 < h(x)k(x, y) <∞}.

Another choice for which the acceptance ratio α(x, y) simplifies is T (x,A) =

1A(x) and k(x, y) = 1{D(x)}(y) where (Di) is a given partition of X and

D(x) = Di if x ∈ Di. This corresponds to the set-up of the equi-energy

sampler of [7]. With this choice of k, the acceptance probability becomes

α(x, y) = min
(
1, ω(y)

ω(x)

)
(and 0 if ω(x) = 0 or ω(x) = ∞). The drawback

with this choice is that we have to define the partition (Di) in the first
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place and an inadequate partition can result in a high rejection rate for the

resampling step.

Algorithm 3.1. MCMC with Importance-Resampling from an auxiliary

process

At some time n ≥ 1, given
(
X

(0)
0 , . . . , X

(0)
n , X0, . . . , Xn

)
:

(i) With probability θ, sample Xn+1 from P (Xn, ·). Otherwise with proba-

bility 1− θ sample Xn+1 from∑n
i=0 ω(X(0)

i )δ
X

(0)
i

(·)∑n
i=0 ω(X(0)

i )
.

(ii) Sample X(0)
n+1 from P (0)(X(0)

n , ·).

3.1. Theoretical discussion

We look more closely to {Xn} when the importance-resampling scheme is

used. [1] have shown that the limit distribution of the equi-energy sampler

is indeed π under a number of conditions. We can study the process {Xn}

along the same line. The assumption we impose are less stronger than in [1].

We continue with the notations in Section 2.1. Essentially we will assume

that P (0) is geometrically ergodic and that the weight function satisfies

|ω|V α <∞, for some α ∈ [0, 1/4). Typically ω is bounded.

Assumption (A0): P (0) is irreducible and aperiodic and there exists ρ0 ∈

(0, 1) such that ∣∣∣∣∣∣∣∣∣P (0)n − π(0)
∣∣∣∣∣∣∣∣∣

V
= O (ρn

0 ) , (3.2)
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where V is as in (A).

Theorem 3.1. Assume that P satisfies (A), P (0) satisfies (A0) and |ω|V α <

∞ for some α ∈ [0, 1/4). Then for any measurable function f : X → R such

that |f |V α <∞,

E [f(Xn)|X0 = x] −→ π(f), as n→∞ (3.3)

and
1
n

n−1∑
i=0

(f(Xi)− π(f)) a.s.−→ 0, as n→∞. (3.4)

Proof. See Section 5.

4. simulation examples

We illustrate the methods developed above with two examples from bayesian

modelling. In the first example, we consider the Bayesian analysis of stochas-

tic volatility models ([6]) and in the second example, we look at Bayesian

phylogenetic trees reconstruction ([8]).

4.1. Bayesian analysis of stochastic volatility models

We consider the Bayesian analysis of the basic stochastic volatility model:

yt = eht/2εt, t = 0, . . . , T (4.1)

ht+1 = µ+ φ(ht − µ) + σut, t = 0, . . . , T − 1, (4.2)

where (εt) and (ut) are two uncorrelated sequences of i.i.d. standard nor-

mal random variables. We assume that h0 ∼ N
(
µ, σ2

1−φ2

)
and |φ| < 1 to

assure the stationarity of the process (ht). We observe (yt) but not (ht), the
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so-called volatility process. The objective is to estimate θ = (σ, φ, β) where

β = eµ/2. This model and its generalizations have attracted attention in the

financial econometrics literature as a better way to model financial markets

series. A bayesian approach to analyze this model has been proposed by a

number of authors (see e.g. [6] and the references therein). The difficulty is

that the volatility process (ht) is not observed making the likelihood of θ

analytically intractable. The natural solution is to see (ht) as a parameter

and to design a Gibbs sampler on the posterior distribution π(θ, h0, . . . , hT ),

of the parameter θ and the volatility process (h0, . . . , hT ). But, due to the

high autocorrelation in the volatility process, this sampler mixes very slowly.

This mixing problem has motivated some authors to propose more sophis-

ticated reparametrization of the model for better MCMC convergence. We

show here that by resampling from the past in the Gibbs sampler, we can

match the performances of the sophisticated solution proposed in [6].

We use the same prior distribution for θ as in [6] and essentially the

same Gibbs sampler to sample from π(θ, h0, . . . , hT ) except when sampling

from the conditional π(ht|θ, h−t). To sample from this conditional, we use

an Independent Metropolis sampler instead of the Accept-Reject method

adopted in [6]. The proposal distribution of our Independent Metropolis

sampler is the same as the dominating distribution in the Accept-Reject

sampler of [6]. We refer the reader to [6] for the details.

Following [6] and [10], we use model (4.1) to analyze the Sterling dataset,

which gives the daily observations of weekday close exchange rates for the

UK Sterling/US Dollar exchange rate from 1/10/81 to 28/6/85. The total

number of observations is T = 946. We first center the series with the formula

yt = 100
[
(log(rt)− log(rt−1))− 1

n

∑n
j=1(log(rj)− log(rj−1))

]
, where (rt) is

the observed exchange rates. We then model (yt) with the model (4.1).
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We compare the plain Gibbs sampler with the 2 strategies discussed above:

a Gibbs sampler with resampling from the past and a Gibbs sampler with

resampling from an auxiliary process. To assure that the three sampler have

about the same computational cost (storage requirement aside), we set the

auxiliary process to be another copy of the plain Gibbs sampler with the

same target distribution. The three samplers are run for N = 250, 000 itera-

tions. For each sampler and for each of the variables σ, φ, β, we give a plot of

the last 5, 000 sample points together with the histogram and the autocor-

relation function from the last 100, 000 points. When resampling from the

past, the resampling schedule used is B + dkeα, B = 125, 000 and α = 1.25.

For the third sampler with resampling from an auxiliary process, each of the

two chains is run for 125, 000 iterations. The results of the variable σ (resp.

φ and β) are given in in Graph 2 (resp. Graph 3 and Graph 4). On each

graphics, the first column gives the result of the plain Gibbs sampler, the

second column gives the results of the Gibbs sampler with resampling from

the past and the results of the third sampler are in the third column.

Clearly, resampling from the past significantly improve on the Gibbs sam-

pler. To quantify the gain, we compute, following [6] the inefficiency of each

sampler on each of the three variables. For a Markov chain with transition

kernel P and invariant distribution π, the inefficiency at f is:

I(f) = 1 + 2
∞∑

k=1

ρk(f), (4.3)

where ρk(f) = Covπ (f(Xk), f(X0)) /V arπ (f(X0)) = π
(
f̄P kf̄

)
/π
(
f̄2
)
.

Basically, it is the cost of using a dependent process to sample from π.

To estimate I(f), we use, following [6]:

Î(f) = 1 +
2B
B − 1

B∑
i=1

K

(
i

B

)
ρ̂i(f), (4.4)
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σ φ β
Plain Gibbs 448.12 211.55 1.54
Gibbs with resampling 10.96 4.92 0.97
Gibbs with Aux. Proc. 12.24 9.91 1.39

Table 1
Inefficiencies of the samplers for the Sterling dataset.

where ρ̂i(f) is the usual estimate of the autocorrelation at lag i for f and K

the so-called Parzen kernel. We use B = 5, 000. The result is given in Table

1.

By resampling from the past or from an auxiliary process, we obtain a

sampler that outperforms [10] and is as efficient as the offset mixture method

of [6].

4.2. Bayesian phylogeny reconstruction

Since Darwin’s theory of evolution, methods to reconstruct the evolution-

ary relationships between different species have become important. We are

concerned here with the statistical inference of phylogenetic trees based on

molecular sequences. Recently, more realistic models have been considered

in this field owing to the MCMC machinery. We show here that MCMC sam-

plers for phylogeny reconstruction can be improved upon with resampling

from the past.

The statistical model is not standard, so we summarize it first. For more

details on phylogenetic trees, we refer the reader to [4]. Suppose we have n

aligned deoxyribonucleic acid (DNA) sequences (y1, . . . , yn) each of length

m, where sequence i is from organism i. That is, yi = (yi(1), . . . , yi(m))

where yi(j) can be one of the four nucleotide basis A (Adenine), G (Gua-

nine), C (Cytosine) or T (Thymine). Based on these sequences, we would
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like to infere the phylogenetic tree or evolutionary relationships between

these organisms. To be precise, we recall that a binary tree τ for n species

is a connected graph (V,E) with vertex set V and edges E, with no cycle,

such that V = {ρ} ∪ I ∪ T , where ρ (the root) has degre 2; any v ∈ I has

degre 3 and any v ∈ T has degre 1. I has n− 2 elements called the internal

nodes and T (the leaves or the tips) represent the n species. A phylogenetic

tree for n species is a couple ψ = (τ, b), where τ is a binary tree for the n

species and b ∈ (0,∞)|E|, where |E| = 2n − 1 is the cardinality of E. For

e ∈ E, be represents the length of edge e, the so-called branch length. We

restrict our attention to phylogenetic trees with “contemporary tips”, where

the sum of the branch length be on the directed path from the root to any

tip is constant (equal to 1 hereafter). Such phylogenetic trees are said to be

with a “molecular clock” as the be can now be interpreted as time. Let Ψ be

the set of all phylogenetic trees for n species. For i ∈ V \ {ρ}, denote p(i)

the parent of i, that is the vertex p(i) such that (p(i), i) ∈ E.

The model of phylogenetic reconstruction we are interested in assumes

that there are some missing DNA sequences (yj){j∈{ρ}∪I} such that the

joint conditional distribution of (yj)V given the phylogenetic tree ψ writes:

f((yi){i∈V }|ψ) = f(yρ)
∏

i∈V \{ρ}
f
(
yi|yp(i), ψ

)
. (4.5)

In addition we make the simplifying assumption that each site evolves

independently:

f(yρ) =
m∏

j=1

f(yρ(j)), and (4.6)

f
(
yi|yp(i), ψ

)
=

m∏
j=1

f
(
yi(j)|yp(i)(j), b(p(i),i)

)
. (4.7)

And finally, we assume that there exist (πl)l∈{A,G,C,T}, πl ≥ 0,
∑
πl =
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1, parameters θ, κ ∈ (0,∞) and a 4 × 4 Markov process generator Q =

Q(θ, κ, πA, πG, πC , πT ) such that:

f(yρ(j) = l) = πl, l ∈ {A,G,C, T} and (4.8)

f
(
yi(j) = m|yp(i)(j) = l, b(p(i),i) = b

)
= exp(bQ)lm, l,m ∈ {A,G,C, T}.(4.9)

The matrixQ specifies the model of DNA evolution. We use the F84 model

as in [8]. The parameters of the statistical model are then (ψ, θ, κ, πA, πG, πC , πT ).

To simplify the sampler, we fix πA, πG, πC , πT to their empirical values in

the data. We assume that ψ has a uniform prior distribution on Ψ and

we assume that θ and κ each has a uniform prior on (0,M), M = 200.

Let π (ψ, θ, κ|(y)i∈T ) be the posterior distribution of the model. Clearly,

π (ψ, θ, κ|(y)i∈T ) ∝ f ((y)i∈T |ψ, θ, κ) and this likelihood is obtained by inte-

grating out the missing variables (yi)i∈{ρ}∪I from (4.5). A fast computation

of this likelihood is available with the pruning method of Felsenstein [4].

To sample from this posterior distribution, we follow essentially [8]. We up-

date θ and κ together, given the phylogenetic tree φ, using a random walk

Metropolis move. Next, given θ, κ, we update the phylogenetic tree ψ with

the global move with a molecular clock of [8].

We compare this plain MCMC sampler with the samplers obtained with

the two methods discussed in this paper. For the simulations, we use the

primate dataset discussed in [12]. The dataset has n = 9 species and the

phylogeny reconstruction is based on aligned sequences of length m = 888.

The three samplers are simulated for N = 500, 000 iterations. For each sam-

pler and for each of the variables θ, κ, we give a plot of the last 5, 000 sample

points together with the histogram and the autocorrelation function from

the last 150, 000 iterations. When resampling from the past, the resampling

schedule used is B + dkeα, B = 100, 000 and α = 1.3. For the third sampler

imsart ver. 2006/03/07 file: eprop.tex date: May 16, 2006



Y. F. Atchadé/Resampling from the past 16

θ κ
Plain MCMC 1510.23 1271.87
MCMC with resampling 13.95 24.37
MCMC with Aux. Proc. 9.18 8.15

Table 2
Inefficiencies of the samplers for the primates dataset

with resampling from an auxiliary process, each of the two chains is run for

250, 000 iterations. The auxiliary process is a MCMC chain with stationary

distribution π(0) = π1/T , with T = 2. The results of the variable θ (resp. κ)

are given in in Graph 5 (resp. Graph 6). On each graphics, the first column

gives the result of the plain MCMC sampler, the second column gives the

results of the MCMC sampler with resampling from the past and the results

of the third sampler are in the third column. In accordance with [8], the

outputs of the three samplers overwhelmingly (with an estimated posterior

distribution over 0.95) select the phylogenetic tree topology plotted in figure

7 as the most probable for this primate dataset.

Here again, resampling from the past significantly improve on the plain

MCMC sampler. Table 2 gives the efficiency gains.

5. Proofs of Theorem 2.1 and 3.1

We start with Theorem 2.1. Without any loss of generality we assume that

B, the burn-in period is 0.

5.1. Proof of Theorem 2.1

The following lemma is a consequence of (A).
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Lemma 5.1. Assume (A). There exists a constant C1 ∈ (0,∞) such that

for any signed measure µ on (X ,B) such that µ(X ) = 0 and for any n ≥ 0,

‖µPn‖V ≤ C1ρ
n ‖µ‖V . (5.1)

Proof of Theorem 2.1. Fix n such that ak ≤ n < ak+1, k ≥ 2. For f ∈ LV

such that |f |V ≤ 1, define f̄ = f − π(f). We have:

E
(
f̄(Xn)|X0 = x

)
= E [E (f(Xn)|Xak

) |X0 = x]

= E
(
Pn−ak f̄(Xak

)|X0 = x
)

(5.2)

=
(
L(ak) − π

) [
Pn−ak f̄

]
(x), (5.3)

where L(ak)(x,A) = Pr (Xak
∈ A|X0 = x). Therefore, since∣∣∣∣∣∣∣∣∣L(n) − π

∣∣∣∣∣∣∣∣∣
V

= supx∈X
sup|f |V ≤1|E(f̄(Xn)|X0=x)|

V (x) , it follows from Lemma 5.1,

that: ∣∣∣∣∣∣∣∣∣L(n) − π
∣∣∣∣∣∣∣∣∣

V
≤ C1ρ

n−ak

∣∣∣∣∣∣∣∣∣L(ak) − π
∣∣∣∣∣∣∣∣∣

V
. (5.4)

Also, for f ∈ LV with |f |V ≤ 1, we have:

L(ak)f̄(x) = E

 1
ak

ak−1∑
j=0

f̄(Xj)|X0 = x


=

ak−1

ak
L(ak−1)f̄(x) +

1
ak

ak−1∑
j=ak−1

E
(
f̄(Xj)|X0 = x

)

=
ak−1

ak
L(ak−1)f̄(x) +

1
ak

ak−1∑
j=ak−1

(
L(ak−1) − π

)
P j−ak−1 f̄(x).(5.5)

Then proceding as above and using Lemma 5.1 again we get:

∣∣∣∣∣∣∣∣∣L(ak) − π
∣∣∣∣∣∣∣∣∣

V
≤ exp (−uk)

∣∣∣∣∣∣∣∣∣L(ak−1) − π
∣∣∣∣∣∣∣∣∣

V
, (5.6)

with uk = log(ak)− log(ak−1 + c), c = 1
1−ρ . If we define u1 = −a1 log(ρ) and

δk =
∑k

i=1 uk, we get
∣∣∣∣∣∣∣∣∣L(ak) − π

∣∣∣∣∣∣∣∣∣
V
≤ C2 exp(−δk) for some finite constant
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C2, which, together with (5.4) yields:

∣∣∣∣∣∣∣∣∣L(n) − π
∣∣∣∣∣∣∣∣∣

V
= O

(
ρn−ak exp(−δk)

)
, (5.7)

for ak ≤ n < ak+1, as wanted.

5.2. Proof of Theorem 3.1

Let {Xn} be the process generated by the importance-resampling scheme.

We prove Theorem 3.1 as a consequence of Theorems 3.1 and 3.2 of [2].

Denote Fn the σ-algebra generated by (X0, . . . , Xn). For x ∈ X and A ∈ B,

define Pn(x,A) = Pr (Xn ∈ A|Xn−1 = x) = Pr (Xn ∈ A|Fn−1, Xn−1 = x).

We have:

Pn(x,A) = θP (x,A) + (1− θ)µn(A), (5.8)

where µn(A) = E
[∑n−1

k=0
ω(X

(0)
k

)1A(X
(0)
k

)∑n−1

j=0
ω(X

(0)
j )

]
.

Define Mr = supn E
(
V r(X(0)

n )
)
, r ≥ 0. It follows from (A0) that Mr ≤

M1 <∞ for all r ∈ [0, 1]. For p ≥ 0, we write ωi = ω(X(0)
i ), sn =

∑n−1
k=0 ωk,

V α
i = V α(X(0)

i ) and µ(p)
n = E

[∑n−1

i=0
ωiV

α
i

sn

]p
. The next lemma is crutial.

Lemma 5.2. For p ∈ [1, 1
4α ], max0≤i≤n−1 E

[
ωiV

α
i

sn

]p
= O

(
1
np

)
and µ

(p)
n =

O(1) as n→∞.

Proof. By the Minkowski inequality, we only need to prove that

max0≤i≤n−1 E
[

ωiV
α
i

sn

]p
= O

(
1
np

)
.

Write c = λ(h) and c0 = λ(h(0)). For 0 ≤ i ≤ n− 1 and κ ∈ (0, c/c0), we

have:

E
[
ωiV

α
i

sn

]p
= E

[
ωiV

α
i

sn
1{sn≥n(c/c0−κ)}

]p
+ E

[
ωiV

α
i

sn
1{sn<n(c/c0−κ)}

]p
.
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E
[
ωiV

α
i

sn
1{sn≥n(c/c0−κ)}

]p
≤ 1
np(c/c0 − κ)p

E [ωiV
α
i ]p ≤ |ω|V α M1

np(c/c0 − κ)p
.

By the Cauchy-Schwarz inequality, we can bound the second term as

follows:

E
[
ωiV

α
i

sn
1{sn<n(c/c0−κ)}

]p
≤ E1/2

[
ωiV

α
i

sn

]2p
(

Pr

[
1
n

n−1∑
i=0

(
ωi −

c

c0

)
< −κ

])1/2

≤ E1/2
[
V 2pα

i

](
Pr

[
1
n

n−1∑
i=0

(
ωi −

c

c0

)
< −κ

])1/2

≤ M
1/2
1

n2pκ4p
E1/2

(
n−1∑
i=0

(
ωi −

c

c0

))4p

,

where for the last line, the Markov inequality was used. Now we use the

classical Poisson equation and martingale approximation technique. Since

ω ≤ V α, the Poisson equation ω−c/c0 = g−P (0)g has a solution g which sat-

isfies |g| ≤ V α. With this solution, for n > 1, we can rewrite
∑n−1

i=0 ωi−c/c0 =

Mn + Wn where Wn = g(X(0)
0 ) − P (0)g(X(0)

n−1), Mn =
∑n−1

i=1 g(X
(0)
i ) −

P (0)g(X(0)
i−1) and (Mn) is a martingale. Therefore with the Minkowski in-

equality, we get: E1/2
(∑n−1

i=0 (ωi − c/c0)
)4p

≤
[
E1/4p (Mn)4p + E1/4p (Wn)4p

]2p
.

Since |g|V α < ∞ and 4pα ≤ 1, it follows from Assumption (A0) that

supi,j E
(
g(X(0)

i )− P (0)g(X(0)
j )

)4p
<∞. Therefore

(
E1/4p (Wn)4p

)
is bounded.

Using Burkholder’s inequality (see e.g. [5]), we have the bound:

E (Mn)4p ≤ K3E
(

n−1∑
i=1

(
g(X(0)

i )− P (0)g(X(0)
i−1)

)2
)2p

≤ K3

[
n−1∑
i=1

E1/2p
(
g(X(0)

i )− P (0)g(X(0)
i−1)

)4p
]2p

≤ K4n
2p,

for some finite constantsK3,K4. This implies that E1/2
(∑n−1

i=0 (ωi − c/c0)
)4p

=

O(np) which finishes the proof.
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Lemma 5.3. For all n ≥ 1, Pn has an invariant distribution πn, and for

all k ≥ 0, ∣∣∣∣∣∣∣∣∣P k
n − πn

∣∣∣∣∣∣∣∣∣
V α

≤ Cθkρk, (5.9)

where the constant C ∈ (0,∞) does not depend on n or k. Moreover

πn(f) −→ π(f), as n→∞, (5.10)

for any measurable function f , with |f |V α <∞.

Proof. One can directly check that the invariant distribution of Pn is πn

where:

πn(A) = (1− θ)µn

( ∞∑
i=0

θiP i(x,A)

)
. (5.11)

And by recurrence, we can check that for k ≥ 0 and g ∈ LV α :

P k
ng − πn(g) = θkP kḡ − (1− θ)µn

( ∞∑
i=k

θiP iḡ

)
. (5.12)

Therefore
∣∣∣∣∣∣∣∣∣P k

n − πn

∣∣∣∣∣∣∣∣∣
V α

≤ θkρk
(
1 + 1−θ

1−θρ supn µn(V α)
)

and according to

Lemma 5.2,

supn µn(V α) is finite.

For f ∈ LV α , we write ζ(f) = (1 − θ)
∑∞

i=0 θ
iP if ∈ LV α . We have

|πn(f)− π(f)| =
∣∣µn

(
ζ(f̄)

)∣∣, where f̄ = f − π(f). Note that π(ζ(f̄)) = 0.

We recall:

µn
(
f̄
)

= E

∑n−1
k=0 ω(X(0)

k )f̄(X(0)
k )∑n−1

j=0 ω(X(0)
j )

 . (5.13)

From the strong law of large numbers for {X(0)}, the expression under the

expectation in (5.13) converges a.s. to 0 as n→∞. On the other hand, for

p ∈ (1, 1/4α),

E

∣∣∣∣∣∣
∑n−1

k=0 ω(X(0)
k )f̄(X(0)

k )∑n−1
j=0 ω(X(0)

j )

∣∣∣∣∣∣
p

≤ µ(p)
n , (5.14)
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and (µ(p)
n ) is a bounded sequence. Therefore the sequence

(∑n−1

k=0
ω(X

(0)
k

)f̄(X
(0)
k

)∑n−1

j=0
ω(X

(0)
j )

)
is uniformly integrable and it follows that µn(f̄) → 0 as n→∞.

Lemma 5.4.

|||Pn − Pn−1|||V α + ‖πn − πn−1‖V α = O

(
1
n

)
. (5.15)

Proof. For n ≥ 1, we have: |||Pn − Pn−1|||V α+‖πn − πn−1‖V α ≤ 2(1−θ)E
[

ωn−1V α
n−1∑n−1

k=0
ωk

]
and the lemma follows from Lemma 5.2.

Proof of Theorem 3.1. Follows from Lemmas 5.3 and 5.4 and Theorems 3.1,

3.2 of [2].
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Graph 2: Outputs for σ. Sterling dataset. First column is the plain Gibbs,

second column is resampling from the past; last column: resampling from

an auxiliry Gibbs sampler.
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Graph 3: Outputs for φ. Sterling dataset. First column is the plain Gibbs,

second column is resampling from the past; last column: resampling from

an auxiliry Gibbs sampler.
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Graph 4: Outputs for β. Sterling dataset. First column is the plain Gibbs,

second column is resampling from the past; last column: resampling from

an auxiliary Gibbs sampler.
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Graph 5: Outputs for θ. Primates dataset. First column is the plain

MCMC, second column is resampling from the past; last column:

resampling from an auxiliary MCMC sampler.
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Graph 6: Outputs for κ. Primates dataset. First column is the plain

MCMC, second column is resampling from the past; last column:

resampling from an auxiliary MCMC sampler.
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Y. F. Atchadé/Resampling from the past 28

Tarsier            

Lemur              

Squirel Monkey     

Crab−eating Macaque

Human              

Chimpanzee         

Gorilla            

Orangutan          

Gibbon             

Graph 7: The most probable phylogenetic tree topology in the primates

dataset.
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