
High Moment Partial Sum Processes of Residuals in
ARMA Models and their Applications

Hao Yu∗

Abstract

In this paper we study high moment partial sum processes based on residuals of
a stationary ARMA model with or without a unknown mean parameter. We show
that they can be approximated in probability by the analogous processes which are
obtained from the independent and identically distributed (iid) errors of the ARMA
model. However, if a unknown mean parameter is used, there will be an additional
term that depends on model parameters and a mean estimator. But, when properly
normalized, this additional term will be cancelled out. Thus they converge weakly
to the same Gaussian processes as if the residuals were iid. Applications to change-
point problems and goodness-of-fit are considered, in particular CUSUM statistics
for testing ARMA model structure changes and the Jarque-Bera omnibus statistic
for testing normality of the unobservable error distribution of an ARMA model.

Keywords: ARMA, residuals, high moment partial sum process, weak convergence, CUSUM,
omnibus, skewness, kurtosis,

√
n consistency.

1 Introduction and results

Statistics or stochastic processes constructed from residuals of stationary autoregressive

moving-average ARMA(p, q) models have been studied extensively in literature. For ex-

amples, Boldin and Arie (1982), Boldin (1990), Koul (1991), Kreiss (1991), Bai (1994),

and Yu (2003) study the weak convergence of (sequential) empirical processes. Yu (2003)

shows that the standard Kolmogorov-Smirnov goodness-of-fit test based on residuals of

stationary ARMA models with unknown mean parameter is not applicable. Kulpeger
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(1985) and Bai (1993) investigate the partial sum process of residuals in autoregressive

AP(p) models and ARMA(p, q) models respectively. On the other hand, the so-called Jar-

que and Bera (1980,1987) test for the normality of the error distribution has been popular

among economists. It is an omnibus test based on the standardized sample skewness and

sample kurtosis of residuals which has been known among statisticians since the work of

Bowman and Shenton (1975). So far the asymptotic validity of the Jarque and Bera test

has been proved for AR models only (see Lütkepohl (1993)).

Recently Kulperger and Yu (2003) construct and study high moment partial sum

processes based on residuals of GARCH models. They show that partial sum processes

and Jarque and Bera test statistics are two special cases of high moment partial sum

processes. In addition, CUSUM statistics can be constructed to test various GARCH

model structure changes such as variance change in errors. Another important feature

is that, when properly normalized, high moment partial sum processes will cancel out

terms that are related to model parameters. Thus any statistics constructed from high

moment partial sum processes of residuals will behave as if residuals were iid errors. In

this paper we study high moment partial sum processes based on residuals of a stationary

ARMA model with or without a unknown mean parameter. Applications to change-

point problems and goodness-of-fit are considered, in particular CUSUM statistics for

testing ARMA model structure changes and the Jarque-Bera omnibus statistic for testing

normality of the unobservable error distribution of an ARMA model.

An ARMA(p, q) time series model with a unknown mean parameter is defined as

Yt = µ+ φ1(Yt−1 − µ) + · · ·+ φp(Yt−p − µ) + εt + θ1εt−1 + · · ·+ θqεt−q, (1.1)

where the errors {εt} are i.i.d. with zero mean and a unknown distribution function

(d.f.) F on the real line R, and µ, φ1, . . . , φp and θ1, . . . , θq are unknown parameters. Let

Xt = Yt− µ. Then {Xt} will be the usual ARMA(p, q) process with zero mean, i.e., if we

set µ = 0, the {Yt} will be the same as {Xt}.

Let Φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p and Θ(z) = 1 + θ1z + · · ·+ θqz
q. According to
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Brockwell and Davis (1991), if

(A1) Φ(z) and Θ(z) do not have common roots

(A2) All roots of Φ(z) and Θ(z) lie outside the unit circle of the complex plane,

then {Yt} (and {Xt}) is strictly stationary and invertible. In particular, the invertibility

implies that

Θ(1) = 1 + θ1 + · · ·+ θq 6= 0. (1.2)

Given n + p observations {Yt,−p + 1 ≤ t ≤ n}, the residuals are calculated by the

recursion formula

ε̂t = X̂t − φ̂1X̂t−1 − · · · − φ̂pX̂t−p − θ̂1ε̂t−1 − · · · − θ̂q ε̂t−q, 1 ≤ t ≤ n, (1.3)

where X̂t = Yt − µ̂, and µ̂, φ̂ = (φ̂1, . . . , φ̂p) and θ̂ = (θ̂1, . . . , θ̂q) are the estimators for

µ, φ = (φ1, . . . , φp) and θ = (θ1, . . . , θq), respectively. The initial values of ε̂−q+1, . . . , ε̂0

are set to zero if q > 0. In case we consider an ARMA(p, q) model without the mean

parameter (µ ≡ 0), then the above construction of residuals is still valid except that

X̂t = Xt = Yt.

The kth (k = 1, 2, 3, 4, . . .) order high moment partial sum process of residuals is

defined as

Ŝ(k)
n (x) =

[nx]∑
t=1

ε̂kt , 0 ≤ x ≤ 1, (1.4)

where, for any real number a, [a] denotes the largest integer ≤ a. Its counterpart based

on iid errors is defined as

S(k)
n (x) =

[nx]∑
t=1

εkt , 0 ≤ x ≤ 1. (1.5)

In order to present our first result, in addition to the conditions (A1) and (A2) on

{Yt}, we need the following assumptions which are similar to those given by Bai (1993):

(A3) {εt} are i.i.d. with zero mean, finite variance and d.f. F .
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(A4)
√
n(µ̂ − µ) = OP (1),

√
n(φ̂i − φi) = OP (1), i = 1, . . . , p, and

√
n(θ̂j − θj) =

OP (1), j = 1, . . . , q.

Theorem 1.1 We assume that the assumptions (A1) to (A4) hold. Then E|ε0|k <∞ for

an integer k ≥ 1 implies that

sup
0≤x≤1

∣∣∣∣∣ 1√
n

(
Ŝ(k)

n (x)− S(k)
n (x)

)
+
kµk−1[nx]

n

1−
∑p

i=1 φi

1 +
∑q

j=1 θj

√
n(µ̂− µ)

∣∣∣∣∣ = oP (1) (1.6)

and

sup
0≤x≤1

∣∣∣∣∣ 1√
n

(
Ŝ

(k)
n (x)

γ̂k
(n)

− S
(k)
n (x)

γk
(n)

)
+
kµk−1[nx]

µ
k/2
2 n

1−
∑p

i=1 φi

1 +
∑q

j=1 θj

√
n(µ̂− µ)

∣∣∣∣∣ = oP (1), (1.7)

where µk−1 = Eεk−1
0 , γ̂2

(n) = Ŝ
(2)
n (1)/n and γ2

(n) = S
(2)
n (1)/n.

Remark 1.1 We note that if (A1), (A2), and (A3) are assumed, then the conditional

least square estimators for µ, φ1, . . . , φp, and θ1, . . . , θq satisfy (A4).

Remark 1.2 Obviously, with k = 1 and a unknown mean parameter µ introduced and

estimated, Theorem 1.1 differs from Theorem 1 of Bai (1993) where there is no an extra

term in (1.6) that is related to model parameters and the estimator µ̂. Since µ1 = 0 by

(A3), for γ̂2
(n) and γ2

(n) defined in Theorem 1.1, (1.6) implies

√
n
∣∣γ̂2

(n) − γ2
(n)

∣∣ = oP (1). (1.8)

Hence γ̂2
(n) is an estimator of the variance µ2, i.e., γ̂2

(n) → µ2 in probability under the

minimum condition µ2 < ∞. Similarly, if µk−1 = 0 for some even number k ≥ 4, the

extra terms in (1.6) and (1.7) disappear. Notice that the standard deviation scale γ̂(n) in

(1.6) does not help to cancel the extra term out.

To get similar results of Theorem 1.1 without a unknown mean parameter, we need

to modify the assumption (A4) as

(A4’) µ ≡ 0,
√
n(φ̂i − φi) = OP (1), i = 1, . . . , p, and

√
n(θ̂j − θj) = OP (1), j = 1, . . . , q.
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Theorem 1.2 We assume that the assumptions (A1) to (A3) and (A4’) hold. Then

E|ε0|k <∞ for an integer k ≥ 1 implies that

sup
0≤x≤1

1√
n

∣∣∣Ŝ(k)
n (x)− S(k)

n (x)
∣∣∣ = oP (1)

and

sup
0≤x≤1

1√
n

∣∣∣∣∣ Ŝ(k)
n (x)

γ̂k
(n)

− S
(k)
n (x)

γk
(n)

∣∣∣∣∣ = oP (1).

Theorem 1.2 extends Theorem 1 of Bai (1993) to high moment partial sum processes.

As expected, there is no an extra term since there is no a mean parameter. By Theo-

rems 1.1 and 1.2, we immediately obtain the following result after using CUSUM normal-

ization.

Theorem 1.3 If (A1) to (A3) and (A4) or (A4’) hold, then E|ε0|k < ∞ for an integer

k ≥ 1 implies that

sup
0≤x≤1

1√
n

∣∣∣∣(Ŝ(k)
n (x)− [nx]

n
Ŝ(k)

n (1)

)
−
(
S(k)

n (x)− [nx]

n
S(k)

n (1)

)∣∣∣∣ = oP (1).

Theorem 1.3 implies that the CUSUM normalized high moment partial sum process

{(Ŝ(k)
n (x)− xŜ(k)

n (1))/
√
n, 0 ≤ x ≤ 1} has the same Gaussian limit as that of {(S(k)

n (x)−

xS
(k)
n (1))/

√
n, 0 ≤ x ≤ 1} and the extra term in (1.6) cancels.

Let ν2
k = E(εk0 − µk)

2 < ∞. Then the invariance principle for partial sums of iid

sequence {εkt } (cf. Billingsley (1999)) implies that{
S

(k)
n (x)− [nx]S

(k)
n (1)/n

νk

√
n

, 0 ≤ x ≤ 1

}
converges weakly in the Skorokhod spaceD[0, 1] to a Brownian bridge {B(x), 0 ≤ x ≤ 1}.

Hence the following result follows from Theorem 1.3.

Corollary 1.1 If (A1) to (A3) and (A4) or (A4’) hold, then E|ε0|2k < ∞ for some

integer k ≥ 1 implies {
Ŝ

(k)
n (x)− [nx]Ŝ

(k)
n (1)/n

νk

√
n

, 0 ≤ x ≤ 1

}
converges weakly in the Skorokhod space D[0, 1] to a Brownian bridge {B(x), 0 ≤ x ≤ 1}.
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Remark 1.3 To use Corollary 1.1 for CUSUM tests of structure change of stationary

ARMA models, one needs to estimate νk. The details are left to the next section.

Before we give the next result, we need to redefine the high moment partial processes

of (1.4) and (1.5). The kth order high moment centered partial sum process of residuals

is defined as

T̂ (k)
n (x) =

[nx]∑
t=1

(
ε̂t − ¯̂ε

)k
, 0 ≤ x ≤ 1, (1.9)

where ¯̂ε is the sample mean of residuals. Its counterpart based on iid errors is defined as

T (k)
n (x) =

[nx]∑
t=1

(εt − ε̄)k , 0 ≤ x ≤ 1, (1.10)

where ε̄ is the sample mean of errors.

Theorem 1.4 If (A1) to (A3) and (A4) or (A4’) hold, then E|ε0|k < ∞ for an integer

k ≥ 1 implies that

sup
0≤x≤1

1√
n

∣∣∣T̂ (k)
n (x)− T (k)

n (x)
∣∣∣ = oP (1) (1.11)

and

sup
0≤x≤1

1√
n

∣∣∣∣∣ T̂ (k)
n (x)

σ̂k
(n)

− T
(k)
n (x)

σk
(n)

∣∣∣∣∣ = oP (1), (1.12)

where σ̂2
(n) = T̂

(2)
n (1)/n and σ2

(n) = T
(2)
n (1)/n.

Remark 1.4 Obviously, σ̂2
(n) is the usual sample variance estimator. In fact, Theorem 1.4

implies that σ̂2
(n) → µ2 in probability under the minimum condition µ2 < ∞. Although

the estimator γ̂2
(n) in Theorem 1.1 does not use sample mean centering, both γ̂2

(n) and σ̂2
(n)

estimate the variance µ2. In addition, by (1.8) and Theorems 1.2 and 1.4, they have the

same limiting distribution regardless whether there is a mean parameter or not.

Remark 1.5 By comparing Theorem 1.4 with Theorem 1.1, one can notice that, by

merely sample mean centering, the extra terms in Theorem 1.1 cancel in Theorem 1.4.

This is quite in contrary to the result obtained by Kuperger and Yu (2003) for GARCH
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models where σ̂(n) and σ(n) must be used in order to cancel a term that is related to GARCH

parameters.

Theorem 1.4 implies that {(T̂ (k)
n (x) − nxµk)/

√
n, 0 ≤ x ≤ 1} has the same Gaus-

sian limit as that of {(T (k)
n (x) − nxµk)/

√
n, 0 ≤ x ≤ 1}. So does {(T̂ (k)

n (x)/σk
(n) −

nxλk)/
√
n, 0 ≤ x ≤ 1}, where λk = µk/µ

k/2
2 . However, except for the cases k = 1, 2, those

Gaussian limits depend on the moments of the error distribution and cannot be identified

to specific processes such as Brownian motions or Brownian bridges. The details can be

found in Kulperger and Yu (2003). Here we just give the following two corollaries that

will be used to construct a CUSUM statistic and the Jarque-Bera test statistic given in

the next section.

Corollary 1.2 Assume that (A1) to (A3) and (A4) or (A4’) hold. Then Eε40 < ∞

implies that {
1√

(λ4 − 1)n

(
T̂

(2)
n (x)

σ̂2
(n)

− nx

)
, 0 ≤ x ≤ 1

}
converges weakly in the Skorokhod space D[0, 1] to a Brownian bridge {B(x), 0 ≤ x ≤ 1}.

Corollary 1.3 Assume that (A1) to (A3) and (A4) or (A4’) hold. Assume also that

k ≥ 1 is a odd number and µ3 = µk = µk+2 = µ2k+1 = 0. Then E|ε0|2(k+1) < ∞ implies

that {
1√
n

(
T̂

(k)
n (x)

σ̂k
(n)

− nxλk,
T̂

(k+1)
n (y)

σ̂k+1
(n)

− nyλk+1

)
, 0 ≤ x, y ≤ 1

}
converges weakly in the Skorokhod space D2[0, 1] to a two dimensional Gaussian process

{
(
B(k)(x), B(k+1)(y)

)
0 ≤ x, y ≤ 1}, where {B(k)(x), 0 ≤ x ≤ 1} and {B(k+1)(y), 0 ≤

y ≤ 1} are two independent zero mean Gaussian processes defined by

EB(i)(x)B(i)(y) = (λ2i − λ2
i )(x ∧ y) + iλi−1(iλi−1 + iλiλ3 − 2λi+1)xy

+iλi ((1− i/4)λi + iλiλ4/4− λi+2)xy, i = k, k + 1, (1.13)

for any 0 ≤ x, y ≤ 1 and x ∧ y = min(x, y).

7



Applications for change-point problems and goodness-of-fit tests are given in the next

section, alone with a discussion of using the residuals to construct a kernel density esti-

mation of the error distribution. All proofs are presented in Section 3.

2 Applications

Intuitively, the adequacy or inadequacy of the fitted model is reflected through model

residuals. It includes if model parameters are properly chosen and if parameters change

over time. One of the motivations to construct high moment partial sum processes of

residuals is to capture as much information as possible of model parameters through

different moments of residuals. On the other hand, identifying the distribution of the

error distribution and to know if it has a constant variance are two important aspects

of model diagnostic checking. Although normality is not necessary for many statistical

procedures, its tests are useful for such tests as serial correlation in model residuals and

for autoregressive conditional heteroscedasticity (ARCH). In this section we discuss two

applications of high moment partial sum processes. One is to construct statistics for

testing the presence of change-point in ARMA models, including if the variance of error

terms changes over time. The other is to construct the popular Jarque-Bera test for

the normality of the error distribution. In addition, the uniform consistency of a kernel

density estimator constructed from the residuals is discussed.

2.1 Change-point Problem

The change-point problem related to ARMA models can be formulated to test the hypoth-

esis (null) of no ARMA parameters change over time versus the hypothesis (alternative)

that parameters change at unknown time. MacNeill (1978) proposes a test statistic for

linear regression models. His test has been applied to AR models by Kulperger (1985)

and ARMA models without a mean parameter by Bai (1993). However, Theorem 1.1

shows that, once a unknown mean parameter is introduced, the test statistic is not valid
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since the limiting process is no longer to be a Brownian motion. Based on Remark 1.2

one can still use the squared residuals to construct the test statistic. But one needs to

verify if it performs as required. We will not pursue along this line in this paper. Rather

we will propose in the following the standard CUSUM test introduced by Brown, Durbin

and Evans (1975). It was one of the first tests on structural change with unknown break

point.

Firstly, a change-point problem for ARMA models is to test the mean change. We

can formulate it in the following hypothesis tests. The null hypothesis is “no-change in

the mean”

H0 : µ = constant, t = 1, 2, . . . , n

against the “one change in the mean” alternative

Ha :

{
µ = µ′, t = 1, . . . , [nx∗]
µ = µ′′, t = [nx∗] + 1, . . . , n,

where µ′ 6= µ′′ and 0 < x∗ < 1. To test the above hypothesis, we use the standard CUSUM

tests constructed from residuals as

CUSUM (1) = max
1≤i<n

∣∣∣∑i
t=1 ε̂t − i¯̂ε

∣∣∣
σ̂(n)

√
n

.

By a straight calculation, it is easy to verify that

CUSUM (1) = sup
0≤x≤1

∣∣∣Ŝ(1)
n (x)− [nx]Ŝ

(1)
n (1)/n

∣∣∣
σ̂(n)

√
n

+ oP (1)

provided that Eε20 <∞. Therefore, by Corollary 1.1 and Remark 1.4, under H0,

CUSUM (1) D−→ sup
0≤x≤1

|B(x)|,

where {B(x), 0 ≤ x ≤ 1} is a Brownian bridge. Hence we can reject the H0 in favor of

Ha if CUSUM (1) is large.

Remark 2.1 The statistic CUSUM (1) involves the estimation of
√
µ2 with σ̂(n) being

used. Based on Remark 1.4, one can use γ̂(n) as well. Probably a pooled estimator of
√
µ2

should be used in CUSUM (1) which may result in better power.
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To test the error variance change of an ARMA model, we use the null hypothesis for

“no-change in the error variance”

H ′
0 : µ2 = constant, t = 1, 2, . . . , n

against the “one change in the error variance” alternative

H ′
a :

{
µ2 = µ′2, t = 1, . . . , [nx∗]
µ2 = µ′′2, t = [nx∗] + 1, . . . , n,

where µ′2 6= µ′′2 and 0 < x∗ < 1. In the following we propose two CUSUM statistics. The

first one is defined as

CUSUM
(2)
1 = max

1≤i<n

∣∣∣∑i
t=1 ε̂

2
t − i

∑n
t=1 ε̂

2
t/n
∣∣∣

ν̂2

√
n

,

where

ν̂2
2 =

1

n

n∑
t=1

((
ε̂t − ¯̂ε

)2 − σ̂2
(n)

)2

is an estimator of ν2 = E(ε20 − µ2)
2 = µ2

2(λ4 − 1). The second one is defined as

CUSUM
(2)
2 = max

1≤i<n

∣∣∣∑i
t=1

(
ε̂t − ¯̂ε

)2 − i
∑n

t=1

(
ε̂t − ¯̂ε

)2
/n
∣∣∣

ν̂2

√
n

,

that is, CUSUM
(2)
2 is centered about the sample mean ¯̂ε in contrast to no centering

CUSUM
(2)
1 . Again, by straight calculations, it is easy to show that

CUSUM
(2)
1 = sup

0≤x≤1

∣∣∣Ŝ(2)
n (x)− [nx]Ŝ

(2)
n (1)/n

∣∣∣
ν̂2

√
n

+ oP (1)

and

CUSUM
(2)
2 = sup

0≤x≤1

∣∣∣∣∣ σ̂
2
(n)

ν̂2

√
n

(
T̂

(2)
n (x)

σ̂2
(n)

− nx

)∣∣∣∣∣+ oP (1),

provided that Eε40 <∞. Therefore, by Corollaries 1.1 and 1.2, under H ′
0,

CUSUM
(2)
i

D−→ sup
0≤u≤1

|B(x)|, i = 1, 2,

where {B(x), 0 ≤ x ≤ 1} is a Brownian bridge. Hence we can reject the H ′
0 in favor of

H ′
a if CUSUM

(2)
i (i = 1, 2) is large.
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2.2 Jarque-Bera normality test

Omnibus statistics based on sample skewness and kurtosis have been used to test normal-

ity. Bowman and Shenton (1975) and Gasser (1975) give details of this method. Later

Jarque and Bera (1980,1987) populate it among economists. It is related to the sample

skewness partial sum process and the sample kurtosis process defined in (1.9) for k = 3

and k = 4. They correspond to

ρ̂n(x) =
T̂

(3)
n (x)/n

σ̂3
(n)

, 0 ≤ x ≤ 1

and

κ̂n(x) =
T̂

(4)
n (x)/n

σ̂4
(n)

, 0 ≤ x ≤ 1,

respectively. By Corollary 1.3,

n

σ2
ρ

(ρ̂n(1)− λ3)
2 +

n

σ2
κ

(κ̂n(1)− λ4)
2 D−→ χ2(2), (2.14)

where, by (1.13),

σ2
ρ = E(B(3)(1))2 = (λ6 − λ2

3) + 3(3 + 3λ2
3 − 2λ4) + 3λ3(λ3/4 + 3λ3λ4/4− λ5)

and

σ2
κ = E(B(4)(1))2 = (λ8 − λ2

4) + 4λ3(4λ3 + 4λ3λ4 − 2λ5) + 4λ4(λ
2
4 − λ6).

If the error distribution F is a normal distribution which is symmetric about 0, then

λ3 = 0, λ4 = 3, σ2
ρ = 6 and σ2

κ = 24. (2.14) becomes

JB =
n

6
ρ̂2

n(1) +
n

24
(κ̂n(1)− 3)2 D−→ χ2(2). (2.15)

Jarque and Bera (1987) prove that the omnibus test based on the JB statistic can be

interpreted as a Lagrange muliplier (LM) test within the Pearson family of dstributions.

They point out that it is asymptotically equivalent to the likelihood ratio test, implying

it has the same asymptotic power characteristics including maximum local asymptotic

power (Cox and Hinkley (1974)). Hence a test based on JB is asymptotically locally
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most powerful and (2.15) shows that JB is asymptotically distributed as χ2(2). The

hypothesis of normality is rejected for large sample size, if the computed value of JB is

greater than the appropriate critical value of a χ2(2).

2.3 Nonparametric density estimation

Assume that the error distribution F has a uniformly continuous density function f(x)

which is unknown. Let hn be a sequence of positive numbers and K(x) be a probabil-

ity density function (kernel). Then the kernel density estimation of f(x) based on the

residuals is defined as

f̂n(x) =
1

nhn

n∑
t=1

K

(
x− ε̂t
hn

)
, x ∈ R.

Its counterpart based on iid errors is defined as

fn(x) =
1

nhn

n∑
t=1

K

(
x− εt
hn

)
, x ∈ R.

Bai (1993) obtains the following uniform consistency for a stationary ARMA model with-

out a mean parameter

sup
x∈R

|f̂n(x)− f(x)| = oP (1)

under the assumptions

(i) hn > 0; hn → 0;
√
nh2

n →∞,

(ii) sup|x|>b |x|K(x) → 0 as b→∞,

(iii) K is Lipschitz, i.e., there exists a constant C such that

|K(x)−K(y)| ≤ C|x− y|, ∀ x, y ∈ R.

and (A1) to (A3) and (A4’).

From the proof of Theorem 1.1, it is easy to see that

1√
n

n∑
t=1

|ε̂t − εt| = OP (1)
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which implies

sup
x∈R

|f̂n(x)− fn(x)| = oP (1).

Thus we are able to extend Bai’s result to stationary ARMA models with a unknown

mean parameter. The detail is omitted.

3 Proofs

First we give two technique lemmas which will be used frequently in proofs. By (A2),

1/Θ(z) and 1/Φ(z) have power series expansions as

1

Θ(z)
=

∞∑
i=0

ψi(θ)zi

and
1

Φ(z)
=

∞∑
i=0

πi(φ)zi.

Lemma 3.1 If (A2) holds, the there are ε > 0, 0 < β < 1 and M > 0 such that

(i) |ψi(u)| ≤Mβi, 0 ≤ i <∞ for all |u− θ| ≤ ε,

(ii) |ψi(u1)−ψi(u2)| ≤M |u1−u2|iβi−1, 0 ≤ i <∞ for all |u1−θ| ≤ ε and |u2−θ| ≤ ε,

(iii) |πi(v)| ≤Mβi, 0 ≤ i <∞ for all |v − φ| ≤ ε,

where u = (u1, . . . , uq) ∈ Rq, v = (v1, . . . , vp) ∈ Rp, and we use |·| to denote the maximum

norm of vectors.

Proof: We refer to Bai (1993).

Lemma 3.2 Suppose that E|ε0|k+δ < ∞ for an integer k ≥ 1 and some δ > 0. Let

ζt = h(εt−1, εt−2, . . .) be Ft−1 adapted with Eζ2
0 <∞, where Ft = σ(εs : s ≤ t) is the sigma

field generated by the sequence {εt, εt−1, . . .}. Then

sup
0≤x≤1

∣∣∣∣∣∣ 1n
[nx]∑
t=1

εltζt −
µl[nx]

n
Eζ0

∣∣∣∣∣∣ = oP (1), 0 ≤ l ≤ k.

13



Proof : We refer to Lemma 3.6 of Kulperger and Yu (2003).

In the rest of this section, we will use the well known Cr inequality in many occasions

without mentioning it. It is of

|x1 + · · ·+ xm|r ≤ mr−1 (|x1|r + · · ·+ |xm|r)

for any integer m ≥ 2, r > 1, and xi ∈ R, i = 1, . . . ,m.

To simplify the proof of Theorem 1.1 and others as well, we need to define a few

notations. It follows from the definitions of ε̂t that

ε̂t − εt = −
p∑

i=1

(
φ̂i − φi

)
Xt−i −

q∑
i=1

(
θ̂i − θi

)
εt−i −

q∑
i=1

θ̂i (ε̂t−i − εt−i)

−

(
1−

p∑
i=1

φ̂i

)
(µ̂− µ).

By repeated substitution and using the initial values ε̂0 = ε̂−1 = · · · = ε̂−q+1 = 0 we

obtain

ε̂t − εt = Yt(θ̂)−
p∑

i=1

(
φ̂i − φi

) t−1∑
j=0

ψj(θ̂)Xt−i−j −
q∑

i=1

(
θ̂i − θi

) t−1∑
j=0

ψj(θ̂)εt−i−j

−

(
1−

p∑
i=1

φ̂i

)
(µ̂− µ)

t−1∑
j=0

ψj(θ̂), (3.16)

where

Yt(θ̂) = −ψt(θ̂)ε0 −
{
ψt+1(θ̂) + ψt(θ̂)θ̂1

}
ε−1 − · · ·

−
{
ψt+q−1(θ̂) + ψt+q−2(θ̂)θ̂1 + · · ·+ ψt(θ̂)θ̂q−1

}
ε−q+1.

Let

ξt(u,v) =

p∑
i=1

vi

t−1∑
j=0

ψj

(
θ +

1√
n
u

)
Xt−i−j

+

q∑
i=1

ui

t−1∑
j=0

ψj

(
θ +

1√
n
u

)
εt−i−j

14



and

Zt(u,v, w) = −

(
1−

p∑
i=1

φi −
1√
n

p∑
i=1

vi

)
w

t−1∑
j=0

ψj

(
θ +

1√
n
u

)
,

where w ∈ R. Then by (3.16), we have

ε̂t = εt

(√
n(θ̂ − θ),

√
n(φ̂− φ),

√
n(µ̂− µ)

)
, (3.17)

where

εt(u,v, w) = εt + Yt

(
θ +

1√
n
u

)
− 1√

n
ξt(u,v) +

1√
n
Zt(u,v, w) (3.18)

= εt + Λt(u,v, w).

Notice that, in the case where there is no a mean parameter, one can drop the term

Zt(u,v, w)/
√
n in (3.18).

Proof of Theorem 1.1. First by (3.18) we have

[nx]∑
t=1

εkt (u,v, w) =

[nx]∑
t=1

εkt + k

[nx]∑
t=1

εk−1
t Λt(u,v, w) +

k∑
l=2

(
k
l

) [nx]∑
t=1

εk−l
t Λl

t(u,v, w).

In case that k = 1, there is no last term in the above expression. By (A4) for any δ > 0,

there exists b > 0 and n0 such that

P
(√

n|θ̂ − θ| > b
)
≤ δ, P

(√
n|φ̂− φ| > b

)
≤ δ, P

(√
n|µ̂− µ| > b

)
≤ δ

if n ≥ n0. Thus, by (3.17), we can prove (1.6) if we can show that

sup
0≤x≤1

sup
|u|≤b,|v|≤b,|w|≤b

∣∣∣∣∣∣ 1√
n

[nx]∑
t=1

εk−1
t Λt(u,v, w) +

µk−1[nx]

n

1−
∑p

i=1 φi

1 +
∑q

j=1 θj

w

∣∣∣∣∣∣ = oP (1) (3.19)

and

sup
|u|≤b,|v|≤b,|w|≤b

1√
n

n∑
t=1

|εt|k−l|Λt(u,v, w)|l = oP (1), l = 2, . . . , k. (3.20)

To simplify the proofs of (3.19) and (3.20), we break them down into Lemmas 3.3 to

3.7 which are given in the back of this section. Thus (3.19) follows easily from (3.18),

15



Lemmas 3.3, 3.5 and 3.6, while (3.18), Lemmas 3.3, 3.4 and 3.7 yield (3.20). This finishes

the proof of (1.6).

By (1.6), it is easy to prove (1.7) if we can show that

√
n
∣∣γ̂k

(n) − γk
(n)

∣∣ = oP (1)

which follows by the usual ∆ method and (1.8). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Along the line in proving Theorem 1.1, the proof of Theorem 1.2

should be trivial since there is no Zt(u,v, w) term in (3.18) and hence is omitted.

Proof of Theorem 1.4. By (3.18)

ε̄(u,v, w) =
1

n

n∑
t=1

εt(u,v, w) = ε̄t +
1

n

n∑
t=1

Λt(u,v, w) = ε̄t + Λ̄(u,v, w).

Hence

[nx]∑
t=1

(εt(u,v, w)− ε̄(u,v, w))k

=

[nx]∑
t=1

(εt − ε̄)k + k

[nx]∑
t=1

(εt − ε̄)k−1(Λt(u,v, w)− Λ̄(u,v, w))

+
k∑

l=2

(
k
l

) [nx]∑
t=1

(εt − ε̄)k−l(Λt(u,v, w)− Λ̄(u,v, w))l.

Thus we can prove (1.11) if we can show that

sup
0≤x≤1

sup
|u|≤b,|v|≤b,|w|≤b

∣∣∣∣∣∣ 1√
n

[nx]∑
t=1

(εt − ε̄)k−1
(
Λt(u,v, w)− Λ̄(u,v, w)

)∣∣∣∣∣∣ = oP (1) (3.21)

and

sup
|u|≤b,|v|≤b,|w|≤b

1√
n

n∑
t=1

|εt − ε̄|k−l|Λt(u,v, w)− Λ̄(u,v, w)|l = oP (1), l = 2, . . . , k. (3.22)

In the following, k used in Lemmas 3.2 to 3.7 is different from k used in proving (3.21)

and (3.22). It will be any integer between 1 and k of (3.21) and (3.22).
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We first prove (3.22) for the case k ≥ 2. Obviously (A3) and CLT imply that ε̄ =

OP (1/
√
n). Letting k = 1 and x = 1 in Lemmas 3.3, 3.5 and 3.6, we obtain

sup
|u|≤b,|v|≤b,|w|≤b

∣∣Λ̄(u,v, w)
∣∣ = OP

(
1√
n

)
.

Again, letting k = l ≥ 2 and x = 1 in Lemmas 3.3, 3.4 and 3.7, we have

sup
|u|≤b,|v|≤b,|w|≤b

n∑
t=1

|Λt(u,v, w)|l = OP (1), l = 2, . . . , k.

Putting all above, together with (3.20), proves (3.22).

By using the binominal formula and ε̄ = OP (1/
√
n), (3.21) is reduced to

sup
0≤x≤1

sup
|u|≤b,|v|≤b,|w|≤b

∣∣∣∣∣∣ 1√
n

[nx]∑
t=1

εlt
(
Λt(u,v, w)− Λ̄(u,v, w)

)∣∣∣∣∣∣ = oP (1), l = 0, . . . , k − 1,

which is true by Lemmas 3.3 and 3.5 under the assumption (A4′) and otherwise is further

reduced to

sup
0≤x≤1

sup
|u|≤b,|v|≤b,|w|≤b

∣∣∣∣∣∣ 1n
[nx]∑
t=1

εlt
(
Zt(u,v, w)− Z̄(u,v, w)

)∣∣∣∣∣∣ = oP (1), l = 0, . . . , k − 1,

where Z̄(u,v, w) =
∑n

t=1 Zt(u,v, w)/n. Finally, by Lemmas 3.2 and 3.6, the above is

reduced to

sup
|u|≤b,|v|≤b,|w|≤b

∣∣∣∣∣Z̄(u,v, w) +
1−

∑p
i=1 φi

1 +
∑q

j=1 θj

w

∣∣∣∣∣ = o(1).

By the definition of Zt(u,v, w) and (i) and (ii) of Lemma 3.1, the above expression can

be again reduced to ∣∣∣∣∣ 1n
n∑

t=1

t−1∑
j=0

ψj(θ)− 1

1 +
∑q

j=1 θj

∣∣∣∣∣ = o(1)

which follows easily by (i) of Lemma 3.1 and the fact that

∞∑
j=0

ψj (θ) =
1

Θ(1)
=

1

1 +
∑q

j=1 θj

. (3.23)

This completes the proof of (1.11).
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(1.11) implies that
√
n
∣∣σ̂2

(n) − σ2
(n)

∣∣ = oP (1).

Thus (1.12) follows easily by (1.11) and ∆ method. Now we finish the proof of Theo-

rem 1.4.

Lemma 3.3 If (A2) and (A3) hold, then E|ε0|k <∞ for an integer k ≥ 1 implies that

sup
|u|≤b

n∑
t=1

∣∣∣∣εk−l
t Y l

t

(
θ +

1√
n
u

)∣∣∣∣ = OP (1) for any fixed b > 0 and l = 1, . . . , k.

Proof: For the ε given in Lemma 3.1, when n is large enough, we have b/
√
n ≤ ε. Hence,

by Lemma 3.1, we obtain

sup
|u|≤b

∣∣∣∣Yt

(
θ +

1√
n
u

)∣∣∣∣ ≤ Mβt|ε0|+ {Mβt+1 +Mβt(|θ|+ ε)}|ε−1|+ · · ·

+{Mβt+q−1 +Mβt+q−2(|θ|+ ε) + · · ·+Mβt(|θ|+ ε)}|ε−q+1|

≤ M max(|θ|+ ε, 1)

1− β
βt(|ε0|+ · · ·+ |ε−q+1|).

Thus

sup
|u|≤b

n∑
t=1

∣∣∣∣εk−l
t Y l

t

(
θ +

1√
n
u

)∣∣∣∣ ≤ M l max((|θ|+ ε)l, 1)

(1− β)l

∞∑
t=1

|εt|k−lβtl(|ε0|+ · · ·+ |ε−q+1|)l

= OP (1)

since

E

(
∞∑

t=1

|εt|k−lβtl(|ε0|+ · · ·+ |ε−q+1|)l

)

= E|ε1|k−lE(|ε0|+ · · ·+ |ε−q+1|)l

∞∑
t=1

βtl <∞.

This proves Lemma 3.3.

Lemma 3.4 If (A2) and (A3) hold, then E|ε0|k <∞ for an integer k ≥ 2 implies that

sup
|u|≤b,|v|≤b

n∑
t=1

∣∣εk−l
t ξl

t(u,v)
∣∣ = OP (n) for any fixed b > 0 and l = 2, . . . , k.
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Proof: By Lemma 3.1

sup
|u|≤b,|v|≤b

n∑
t=1

∣∣εk−l
t ξl

t(u,v)
∣∣

≤ (2p)l−1bl
p∑

i=1

n∑
t=1

|εt|k−l sup
|u|≤b

∣∣∣∣∣
t−1∑
j=0

ψj

(
θ +

1√
n
u

)
Xt−i−j

∣∣∣∣∣
l

+(2q)l−1bl
q∑

i=1

n∑
t=1

|εt|k−l sup
|u|≤b

∣∣∣∣∣
t−1∑
j=0

ψj

(
θ +

1√
n
u

)
εt−i−j

∣∣∣∣∣
l

≤ (2p)l−1(bM)l

p∑
i=1

n∑
t=1

|εt|k−l

(
t−1∑
j=0

βj|Xt−i−j|

)l

+(2q)l−1(bM)l

q∑
i=1

n∑
t=1

|εt|k−l

(
t−1∑
j=0

βj|εt−i−j|

)l

.

Hence Lemma 3.4 follows if we can show that

max
2≤l≤k

max
1≤i≤p

sup
t≥1

E|εt|k−l

(
t−1∑
j=0

βj|Xt−i−j|

)l

<∞

and

max
2≤l≤k

max
1≤i≤q

sup
t≥1

E|εt|k−l

(
t−1∑
j=0

βj|εt−i−j|

)l

<∞.

We just need to verify the first one since the second one follows similarly. Since εt and

Xt−i−j are independent and E|εt|k−l ≡ E|ε0|k−l, we only need to show

max
1≤i≤p

sup
t≥1

E

(
t−1∑
j=0

βj|Xt−i−j|

)k

<∞.

From E|ε0|k <∞, we have E|X0|k <∞. On the other hand, it is easy to verify that for

any integers 0 ≤ j1, · · · , jk ≤ k, j1 + · · ·+ jk = k

E|Xt1|j1 · · · |Xtk |jk ≤ E|X0|k.

Thus by multinominal expansion, we obtain

E

(
t−1∑
j=0

βj|Xt−i−j|

)k

≤ E|X0|k
(

t−1∑
j=0

βj

)k

≤ E|X0|k

(1− β)k
<∞.

This proves Lemma 3.4
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Lemma 3.5 If (A2) and (A3) hold, then E|ε0|k <∞ for an integer k ≥ 1 implies that

sup
0≤x≤1

sup
|u|≤b,|v|≤b

1

n

∣∣∣∣∣∣
[nx]∑
t=1

εk−1
t ξt(u,v)

∣∣∣∣∣∣ = oP (1) for any fixed b > 0.

Proof: By the definition of ξt(u,v), to prove Lemma 3.5, it suffices to show that

sup
0≤x≤1

sup
|u|≤b

1

n

∣∣∣∣∣∣
[nx]∑
t=1

εk−1
t

t−1∑
j=0

ψj

(
θ +

1√
n
u

)
Xt−i−j

∣∣∣∣∣∣ = oP (1), i = 1, . . . , p (3.24)

and

sup
0≤x≤1

sup
|u|≤b

1

n

∣∣∣∣∣∣
[nx]∑
t=1

εk−1
t

t−1∑
j=0

ψj

(
θ +

1√
n
u

)
εt−i−j

∣∣∣∣∣∣ = oP (1), i = 1, . . . , q. (3.25)

By Lemma 3.1,

sup
0≤x≤1

sup
|u|≤b

1

n

∣∣∣∣∣∣
[nx]∑
t=1

εk−1
t

t−1∑
j=0

ψj

(
θ +

1√
n
u

)
Xt−i−j

∣∣∣∣∣∣
≤ sup

0≤x≤1

1

n

∣∣∣∣∣∣
[nx]∑
t=1

εk−1
t

∞∑
j=0

ψj (θ)Xt−i−j

∣∣∣∣∣∣+ 1

n

n∑
t=1

|εt|k−1

∞∑
j=t

|ψj (θ)Xt−i−j|

+
bM

n3/2

n∑
t=1

|εt|k−1

t−1∑
j=1

jβj−1|Xt−i−j|.

Since

E

(
∞∑

t=1

|εt|k−1

∞∑
j=t

|ψj (θ)Xt−i−j|

)
≤ E|ε0|k−1E|X0|

∞∑
t=1

∞∑
j=t

Mβj <∞

and

E

(
n∑

t=1

|εt|k−1

t−1∑
j=1

jβj−1|Xt−i−j|

)
= O(n),

to prove (3.24), it suffices to prove

sup
0≤x≤1

1

n

∣∣∣∣∣∣
[nx]∑
t=1

εk−1
t

∞∑
j=0

ψj (θ)Xt−i−j

∣∣∣∣∣∣ = oP (1), i = 1, . . . , p. (3.26)
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Adapting the common backshift operator B for ARMA models, we have by (1.1) and

(A2)

Φ(B)Xt−i = Θ(B)εt−i =⇒ 1

Θ(B)
Xt−i =

1

Φ(B)
εt−i,

which is
∞∑

j=0

ψj (θ)Xt−i−j =
∞∑

j=0

πj (φ) εt−i−j = ζt(εt−i, εt−i−1, . . .).

Now (3.26) follows from Lemmas 3.1 and 3.2. Similarly to (3.24) one can prove (3.25).

This finishes the proof of Lemma 3.5.

Lemma 3.6 If (A2) and (A3) hold, then E|ε0|k <∞ for an integer k ≥ 1 implies that

sup
0≤x≤1

sup
|u|≤b,|v|≤b,|w|≤b

∣∣∣∣∣∣ 1n
[nx]∑
t=1

εk−1
t Zt(u,v, w) +

µk−1[nx]

n

1−
∑p

i=1 φi

1 +
∑q

j=1 θj

w

∣∣∣∣∣∣ = oP (1)

for any fixed b > 0.

Proof: The proof is similar to that of Lemma 3.5. We skip some details. We only need

to show that

sup
0≤x≤1

∣∣∣∣∣∣ 1n
[nx]∑
t=1

εk−1
t

∞∑
j=0

ψj (θ)− µk−1[nx]

n

1

1 +
∑q

j=1 θj

∣∣∣∣∣∣ = oP (1)

which follows easily from Lemma 3.2 and (3.23). This completes the proof of Lemma 3.6.

Lemma 3.7 If (A2) and (A3) hold, then E|ε0|k <∞ for an integer k ≥ 2 implies that

sup
|u|≤b,|v|≤b,|w|≤b

n∑
t=1

|εt|k−l |Zt(u,v, w)|l = OP (n) for any fixed b > 0 and l = 2, . . . , k.

Proof: The proof is similar to that of Lemma 3.4 and hence is omitted.
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