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Abstract

In this paper, we use the Markov chain censoring technique to study infinite state

Markov chains whose transition matrices possess block-repeating entries. We demon-

strate that a number of important probabilistic measures are invariant under censoring.

Informally speaking, these measures involve first passage times or expected numbers

of visits to certain levels where other levels are taboo; they are closely related to the

so-called fundamental matrix of the Markov chain which is also studied here. Factor-

ization theorems for the characteristic equation of the blocks of the transition matrix

are obtained. Necessary and sufficient conditions are derived for such a Markov chain

to be positive recurrent, null recurrent, or transient based either on spectral analysis,

or on a property of the fundamental matrix. Explicit expressions are obtained for key

probabilistic measures, including the stationary probability vector and the fundamen-

tal matrix, which could be potentially used to develop various recursive algorithms for

computing these measures.

Keywords: block-Toeplitz transition matrices, factorization of characteristic func-

tions, spectral analysis, fundamental matrix, conditions of recurrence and transience.
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1 I ntr oduction

Infinite state Markov chains with block-structured transition matrices constitute a very rich

class of stochastic processes, finding applications in many areas, including telecommunica-

tions, inventory modelling, and queueing systems, for example. Markov chains of GI/M/1

and M/G/1 type are two important special cases which are now very well understood (for

example, Neuts, 1980, 1989). The significance of the rate matrix R for the GI/M/1 type

case and the matrix G of the fundamental period for the M/G/1 type case has been well

documented, and applications of the associated matrix-analytic method are ubiquitous in

the literature.

Extending matrix-analytic methods to more general block-structured Markov chains has

been taken as a challenge by several researchers. Gail, Hantler and Taylor (1997) studied

non-skip-free GI/M/1 and M/G/1 type Markov chains, obtaining a very useful factorization

and exhibiting the special structure of the R and G matrices for these cases. Grassmann

and Heyman (1990, 1993) studied general block-structured transition matrices with the aid

of two sequences of matrices which generalize the R and G matrices. We refer to these two

sequences as the R and G-measures, respectively.

In this paper, we wish to primarily focus on transition matrices having a block-Toeplitz

or block-repeating structure. Using the concept of the censored Markov chain which we

review in Section 2, we propose to elucidate the properties of the Markov chains generated

by such transition matrices. Specifically, let {Zt = (Xt, Yt); t = 0, 1, 2, . . .} be the Markov

chain, whose transition matrix P possesses a block structure of the form

P =




D0 D1 D2 D3 · · · · · ·

D
−1 C0 C1 C2 · · · · · ·

D
−2 C

−1 C0 C1 · · · · · ·

D
−3 C

−2 C
−1 C0 · · · · · ·

...
...

...
...

...
...



, (1)

where all Ci for i = 0,±1,±2, . . . are matrices of size m×m, D0 is a matrix of size m0×m0

and the sizes of all Di for i = ±1,±2, . . . are determined accordingly.

We are motivated to look at transition matrices having the block-repeating form (1)

since they constitute a large class, finding numerous applications. In addition, they are a

natural generalization of both M/G/1 and GI/M/1 type Markov chains, offering a unifying

approach to the study of these very important special cases. In particular, the R and G-

measures of Grassmann and Heyman play a crucial role here. We will show that these

measures are as important in the study of Markov chains with block-repeating structure

as the R and G matrices are in the study of GI/M/1 and M/G/1 type Markov chains.

Two other sequences of matrices, carrying probabilistic interpretations and referred to as

A and B-measures, are also very useful in the block-repeating context as shown in Zhao, Li

and Braun (1998). One appealing and useful property of all four sets of measures is their

invariance under censoring; this will be elaborated in Section 3.
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In Section 4, we will demonstrate that the above measures also have a bearing on the

study of a particular matrix, called the fundamental matrix, upon which the censoring

technique hinges. Some basic characterization results of the Markov chain based on the

fundamental matrix will be provided.

The stage will then be set to provide, in Section 5, a factorization of the characteristic

function of (1) into a product of characteristic functions for the R and G-measures. This

is the content of Theorem 14. For matrices of GI/M/1 type and M/G/1 type, we will

demonstrate that the factorization obtained by Gail, Hantler and Taylor (1997) is equiv-

alent to the factorization obtained here. Characterization results for Markov chains with

block-repeating transition matrices will also be provided in terms of properties of the four

probabilistic measures as well as the generalized traffic intensity. The factorization theorem

can also be used to compute the R and G-measures. Other key probabilistic measures, such

as the fundamental matrix and the stationary probability vector, can then be efficiently

determined.

Spectral analysis of the R and G matrices has been shown to be very useful in dealing

with the GI/M/1 and M/G/1 paradigms (for example, Gail, Hantler and Taylor, 1996,

1997). We will show, in Section 6, and using the factorization obtained in the preceding

section, that spectral analysis of the R and G-measures is also a key to characterize the

Markov chains with block-repeating structure. In particular, Theorem 23 gives a general

characterization.

We close this section with some notational and technical details. The transition matrix

P in (1) can be either stochastic or strictly substochastic. By a strictly substochastic matrix

we mean that every row sum of the transition matrix is less than or equal to one and there

exists at least one row sum which is strictly less than one. The only extra condition imposed

is irreducibility, though this condition may not be essential for all of the results presented

in this paper. Corresponding results for continuous time Markov chains can be obtained in

parallel.

2 Review of Censor ing and the R and G-M easur es

The censoring technique (for example, Kemeny, Snell and Knapp, 1976, Grassmann and

Heyman, 1990, Zhao and Liu, 1996, or Zhao, Li and Braun, 1998) has been used in the

literature in studying various aspects of Markov chains. It should be noted that stochastic

complementation (for example, Meyer, 1989) and censoring are synonymous.

Censoring can be applied to an arbitrary stochastic process. However, we find that it is

most effectively exploited in the context of Markov chains.

Consider a discrete-time irreducible Markov chain {Xn;n = 1, 2, . . .} with state space

S. Let E be a non-empty subset of S. Suppose that the successive visits of Xn to E take

place at time epochs 0 < n1 < n2 < · · ·. Then the process {XE
t = Xnt

; t = 1, 2, . . .} is

defined as the censored process with censoring set E. Alternatively, the nth transition of

the censored process is the nth time for the Markov chain to visit a state in E. From this
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definition, it follows that sample paths of the censored process are the paths of the original

Markov chain whose transitions in the complementary set, Ec, have been deleted. Using

the strong Markov property, it can be proved that the censored process is also a Markov

chain, called the censored Markov chain. This new process has also been variously called

the restricted, watched or embedded Markov chain.

If P is the transition matrix of the original Markov chain {Xn;n = 1, 2, . . .}, we can

partition P according to subsets E and E
c:

P =
E

E
c

E E
c[

T U

V Q

]
. (2)

The censored transition matrix, PE , of the censored Markov chain is then given by

P
E

= T + UQ̂V (3)

with Q̂ =
∑
∞

k=0
Qk. The matrix Q̂ is called the fundamental matrix of Q.

Since our later results are intimately related to the behaviour of the term UQ̂V in (3),

we pause to carefully review some probabilistic interpretations. In the following, Ci,j stands

for the (i, j)th entry in a matrix C, and the process referred to is the original Markov chain.

1. (Q̂)i,j is the expected number of visits to state j ∈ Ec before entering E given that

the process started in state i ∈ Ec.

2. (UQ̂)i,j is the expected number of visits to state j ∈ Ec before returning to E given

that the process started in state i ∈ E.

3. (Q̂V )i,j is the probability that the process enters E and upon entering E the first

state visited is j ∈ E, given that the process started in state i ∈ Ec.

4. (UQ̂V )i,j is the probability that upon returning to E the first state visited is j ∈ E,

given that the process started in state i ∈ E.

We now set up the required notation in order to define the R and G-measures. We begin

with an arbitrary block-partitioned transition matrix, stochastic or strictly substochastic:

P =




P0,0 P0,1 P0,2 · · · · · ·

P1,0 P1,1 P1,2 · · · · · ·

P2,0 P2,1 P2,2 · · · · · ·

...
...

...
...

...


 , (4)

where Pi,i, for i = 0, 1, . . ., is a matrix of size mi ×mi. Here, the state space S has been

partitioned as

S =

∞⋃
i=0

Li (5)
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with

Li = {(i, 1), (i, 2), . . . , (i,mi)}. (6)

For the state (i, r), i is called the level variable and r the stage or phase variable. We also

use the notation

L≤i =

i⋃
k=0

Lk, (7)

for the set of all states in levels up to i, and L≥i denotes the complement of L≤(i−1). We

also note that, in what follows, if E = L≤n, then the censored transition matrix, PE, will

be denoted by P [≤n]. If E = L0, then PE is denoted by P [0].

For 0 ≤ i ≤ j, Ri,j is an mi×mj matrix whose (r, s)th entry is the expected number of

visits to state (j, s) before hitting any state in L≤(j−1), given that the process starts in state

(i, r). For i > j ≥ 0, Gi,j is an mi ×mj matrix whose (r, s)th entry is the probability of

hitting state (j, s) when the process enters L≤(i−1) for the first time, given that the process

starts in state (i, r). It should be emphasized that the R-measure is defined for i = j, but

the G-measure is not.

Using the probabilistic interpretations 2. and 3. above, we can establish useful relations

between the R and G measures and the fundamental matrix Q̂. To accomplish this, we

re-partition the matrix P according to L≤(n−1), Ln and L≥(n+1):

P =



T U0 U1

V0 Q0 U2

V1 V2 Q1


 . (8)

Let

Q =

[
Q0 U2

V2 Q1

]
,

let Q̂ be partitioned accordingly:

Q̂ =

[
H1,1 H1,2

H2,1 H2,2

]
,

and let R<n = (R0,n, R1,n, . . . , Rn−1,n)
t, where the superscript t stands for the transpose of

the matrix. From the second probabilistic interpretation above, it is clear that

R<n = (U0, U1)

(
H1,1

H2,1

)
, (9)

and using an obvious extension,

Rn,n = (Q0, U2)

(
H1,1

H2,1

)
. (10)
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Similarly, if we let G<n = (Gn,0, Gn,1, . . . , Gn,n−1), then the third probabilistic interpreta-

tion can be applied to obtain

G<n = (H1,1,H1,2)

(
V0

V1

)
. (11)

In the block-repeating case (1), the matrices Ri,j and Gi,j only depend on the value of

|i− j| except for R0,j and Gi,0 (for example, Grassmann and Heyman, 1990 or Zhao, Li and

Braun, 1998). We then define

Rk = Ri,j , for k = 0, 1, . . . , with k = j − i and j ≥ i > 0 (12)

and

Gk = Gi,j, for k = 1, 2, . . . , with k = i− j and i > j > 0. (13)

All Ri and Gi have a common size m×m.

3 I nvar iance of M easur es Under Censor ing

As mentioned in the Introduction, the censoring technique will be used to attain a unified

treatment of transition matrices with block-repeating entries. In this section, we provide

some properties of censoring that move us toward this goal. We prove that both the R and

G-measures are invariant under censoring. This invariance property plays an important role

in derivations dealing with matrices with block-repeating property.

We also show that two other sequences of matrices, the A and B-measures, are invariant

under censoring. These measures have probabilistic significance; for example, the stationary

probability vector π for a positive recurrent Markov chain or the generalized stationary

vector for a null recurrent Markov chain is essentially equivalent to the A-measure. The

section concludes with a result on the invariance of the fundamental matrix under censoring.

We begin by collecting a number of useful basic properties of the censored Markov chain.

Lemma 1 Let P be the transition matrix of a Markov chain, which is possibly strictly

substochastic, and let E be a subset of the state space. Then,

i) P is irreducible if and only if P
E

is irreducible for all E.

ii) P is recurrent if and only if P
E

is recurrent for all E.

iii) P is transient if and only if PE is transient for all E.

iv) if P is irreducible, then P is recurrent if and only if P
E

is recurrent for some E.

v) if P is irreducible, then P is transient if and only if P
E

is transient for some E.

vi) for E1 ⊆ E2, P
E1 =

(
P
E2

)E1
.
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This lemma can be proved easily using the sample path structure of the censored Markov

chain, and we omit the details. It is also possible to provide proofs of the invariance prop-

erties given later using sample path arguments. However, we prefer to use the expression

for the fundamental matrix in partitioned form given in the next lemma (Lemma 2), since

it leads to proofs which tie in with the probabilistic interpretations developed earlier. This

lemma is also very useful in developing recursive expressions for the R and G-measures; such

expressions have potential to be developed into computational schemes for these measures.

Lemma 2 Let Q be a transition matrix with state space S and all states transient. Let E

be any non-empty subset of S and let Q be partitioned according to E and its complement

Ec
:

Q =

[
Q0 U

V Q1

]
.

Then, the fundamental matrix Q̂ =
∑
∞

i=0Q
i
is given by

Q̂ =

[
(I −Q0 − UQ̂1V )

−1
(I −Q0 − UQ̂1V )

−1UQ̂1

Q̂1V (I −Q0 − UQ̂1V )
−1 Q̂1 + Q̂1V (I −Q0 − UQ̂1V )

−1UQ̂1

]
. (14)

where I is an identity matrix and (I−X)
−1

=
∑
∞

i=0X
i
is the minimal non-negative inverse

of I −X if the inverse is not unique.

Proof: Let Q̂ be partitioned according to E and Ec
as

Q̂ =

[
H1,1 H1,2

H2,1 H2,2

]
.

Q̂ is the minimal non-negative solution for X of the matrix equation (I −Q)X = I (Propo-

sition 5-11 of Kemeny, Snell and Knapp, 1976); or

(I −Q0)X1,1 − UX2,1 = I, (15)

−V X1,1 + (I −Q1)X2,1 = 0, (16)

(I −Q0)X1,2 − UX2,2 = 0, (17)

−V X1,2 + (I −Q1)X2,2 = I, (18)

when X is partitioned according to E and Ec into

X =

[
X1,1 X1,2

X2,1 X2,2

]
.

Equation (16) is equivalent to (I − Q1)X2,1 = V X1,1. It follows from Proposition 5-11 of

Kemeny, Snell and Knapp (1976) that

X2,1 = (I −Q1)
−1
V X1,1 (19)

7



is the minimal non-negative solution of (16) for a fixed X1,1, where (I −Q1)
−1 =

∑
∞

i=0Q
i
1

is the minimal non-negative inverse of I − Q1. Therefore, H2,1 = (I −Q1)
−1
V X1,1 if X1,1

is the minimal non-negative solution of (15). Using (19) in (15), we have (I − Q0)X1,1 −

U(I −Q1)
−1
V X1,1 = I or {I − [Q0 + U(I −Q1)

−1
V ]}X1,1 = I. This implies that

H1,1 = [I −Q0 − U(I −Q1)
−1
V ]
−1

and hence

H2,1 = (I −Q1)
−1
V [I −Q0 − U(I −Q1)

−1
V ]
−1
.

We can similarly prove that

H1,2 = [I −Q0 − U(I −Q1)
−1
V ]
−1
U(I −Q1)

−1

and

H2,2 = (I −Q1)
−1
{I + V [I −Q0 − U(I −Q1)

−1
V ]
−1
U(I −Q1)

−1
}.

For convenience, we put a symmetric expression for Q̂ in the following corollary.

Corollary 3 The fundamental matrix Q̂ =
∑
∞

i=0
Qi can be also expressed by

Q̂ =

[
Q̂0 + Q̂0U(I −Q1 − V Q̂0U)

−1V Q̂0 Q̂0U(I −Q1 − V Q̂0U)
−1

(I −Q1 − V Q̂0U)
−1V Q̂0 (I −Q1 − V Q̂0U)

−1

]

. (20)

Remark 1 The matrix Q in the above lemma could be either stochastic or strictly sub-

stochastic. The expressions in (14) and (20) are well known if the size of the matrices

involved are all finite.

We are now ready to demonstrate that the R and G-measures are invariant under

censoring.

Theorem 4 For an arbitrary Markov chain whose transition matrix P is partitioned ac-

cording to levels as in (4), let Ri,j and Gi,j be the R and G-measures, respectively, defined

for the Markov chain P , and let R
[≤n]
i,j

and G
[≤n]
i,j

be the R and G-measures, respectively,

defined for the censored Markov chain with censoring set L≤n. For given 0 = i < j or

1 ≤ i ≤ j,

R
[≤n]
i,j

= Ri,j (21)

for all n ≥ j; and for given 0 ≤ j < i,

G
[≤n]
i,j

= Gi,j (22)

for all n ≥ i.
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Proof: We only prove the first result; the second can be proved similarly.

First, assume n = j, and let P be re-partitioned according to L≤(n−1), Ln and L≥(n+1)

as in (8), and define Q, Q̂, and R<n as in the displays subsequent to (8). Applying (9)

together with (14), it becomes clear that

R<n = (U0, U1)

(
(I −Q0 − UQ̂1V )−1

Q̂1V (I −Q0 − UQ̂1V )−1

)
,

and similarly, using (10) with (14), we have

Rn,n = (Q0, U2)

(
(I −Q0 − UQ̂1V )−1

Q̂1V (I −Q0 − UQ̂1V )−1

)
,

On the other hand, the censored matrix with censoring set L≤n is given by

P
[≤n] =

[
T + U1Q̂1V1 U0 + U1Q̂1V2

V0 + U2Q̂1V1 Q0 + U2Q̂1V2

]
.

Therefore,

R
[≤n]

<n = (U0 + U1Q̂1V2)(I −Q0 − U2Q̂1V2)
−1
,

where R
[≤n]

<n = (R
[≤n]

0,n , R
[≤n]

1,n , . . . , R
[≤n]

n−1,n)
t. Similarly,

R
[≤n]
n,n = (Q0 + U2Q̂1V2)(I −Q0 − U2Q̂1V2)

−1
.

Now, Ri,n = R
[≤n]

i,n
for all i ≤ n.

The above result, together with vi) of Lemma 1, implies that (21) is also valid for n > j.

In fact, if n > j, we censor the matrix P first using the censoring set L≤j and we know

Ri,j = R
[≤j]

i,j
. Next, censor the matrix P using the censoring set L≤n. It follows from vi)

of Lemma 1 that the censored matrix P
[≤j] can be obtained by censoring P

[≤n] using the

censoring set L≤j and therefore R
[≤n]

i,j
= R

[≤j]

i,j
, the fact just proved above (using P

[≤n] in

place of P ).

Remark 2 That the R and G-measures are invariant under censoring was observed by

Grassmann and Heyman (1990); they also provided a proof to a special case of the above

theorem.

As we mentioned earlier, one of the advantages of introducing the R and G-measures is

that they can be used to express other interesting measures.

For an arbitrary Markov chain defined by (4), we define the A and B-measures as follows.

For i ≥ 0 and j ≥ 0 with i �= j, define Ai,j to be a matrix of size mi ×mj whose (r, s)th

entry is the expected number of visits to state (j, s) before hitting any state in level i, given

that the process starts in state (i, r). For i ≥ 0 and j ≥ 0, define Bi,j to be a matrix of size

mi ×mj . When i �= j, the (r, s)th entry of Bi,j is the probability of visiting state (j, s) for
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the first time before hitting any state in level j, given that the process starts in state (i, r).

When i = j, the (r, s)th entry of Bi,j is the probability of returning to level j for the first

time by hitting state (j, s), given that the process starts in state (i, r). For the purpose of

this paper, it suffices to consider Ai,j for a fixed i and Bi,j for a fixed j only. Without loss

of generality, we consider only Aj = A0,j and Bi = Bi,0.

To begin to see why the A and B-measures are important, consider the following. In the

scalar case, the stationary probability vector π satisfies π = c(1, A1, A2, . . .), where c is a

normalization constant, when the chain is positive recurrent. In fact, for a recurrent chain,

(1, A1, A2, . . .) is the unique solution, up to multiplication by a constant, of the stationary

equations x = xP . In the block case, let the stationary probability vector be partitioned

according to levels: π = (π0, π1, π2, . . .). Then, π = π0(I, A1, A2, . . .), where π0 is the

unique solution, up to multiplication by a constant, of π0 = π0P
[0], where I is an identity

matrix and P [0] is the censored matrix to level 0. π0 can be viewed as the vector-valued

normalization constant. The B-measure is a dual of the A-measure.

The following recursive formulas for computing the A and B-measures in terms of the

R and G-measures were derived by Zhao, Li and Braun (1998) when all the block entries

have a common size. Their proof can be easily extended to the case of different block sizes.

Lemma 5 Matrices An and Rk,n satisfy

An =

{
R0,1, if n = 1,

R0,n +
∑n−1

k=1 AkRk,n, if n ≥ 2,
(23)

and matrices Bn and Gn,k satisfy

Bn =

{
G1,0, if n = 1,

Gn,0 +
∑n−1

k=1 Gn,kBk, if n ≥ 2.
(24)

As a consequence of Theorem 4 and the above lemma, the A and B-measures are invariant

under censoring, as stated in the following corollary.

Corollary 6 Let Aj and Bi be the respective A and B-measures for a Markov chain having

a transition matrix of the form (4), and let A
[≤n]
j

and B
[≤n]
i

be the A and B-measures,

respectively, defined for the censored Markov chain with censoring set L≤n. For given i and

j,

A
[≤n]
j

= Aj (25)

for all n ≥ j and

B
[≤n]
i

= Bi (26)

for all n ≥ i.

When the transition matrix P has the property of repeating blocks as in (1) the result

in Lemma 5 can be simplified as follows.
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Corollary 7 For the Markov chain whose transition matrix is given as in (1), matrices An

and Bn satisfy

An =

{
R0,1, if n = 1,

R0,n +
∑n−1

k=1 An−kRk, if n ≥ 2,
(27)

and

Bn =

{
G1,0, if n = 1,

Gn,0 +
∑n−1

k=1 GkBn−k, if n ≥ 2,
(28)

where Rk and Gk are defined as in (12) and (2).

It follows from the relations in (9), (10) and (11) that the fundamental matrix Q̂ contains

essential information about the R and G-measures, and therefore about the A and B-

measures. Thus, the fundamental matrix merits study in its own right; this we do in the

next section, but we first conclude this section by showing that the values in a fundamental

matrix are invariant under censoring.

Theorem 8 Let Q be a stochastic or strictly substochastic transition matrix with state

space S and all states transient, and let qi,j be the (i, j)th entry of the fundamental matrix

Q̂ =
∑
∞

k=0Q
k
. Let E be any subset of S containing states i and j, and let Q

E
be the

censored matrix with censoring set E. Then, the entry corresponding to states i and j of

the fundamental matrix Q̂E =
∑
∞

k=0(Q
E)k for the censored matrix Q

E
is equal to qi,j.

Proof: Partition Q according to E and the complement Ec of E:

Q =

[
Q0 U

V Q1

]
.

Then, Q
E = Q0 + UQ̂1V and Q̂E = (I − Q0 − UQ̂1V )−1, which is equal to the block

corresponding to E in the fundamental matrix Q̂ according to Lemma 2.
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