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Abstract
This paper proposes an adaptive version for the Metropolis adjusted Langevin algorithm
with a truncated drift (T-MALA). The scale parameter and the covariance matrix of the
proposal kernel of the algorithm are simultaneously and recursively updated in order to reach
the optimal acceptance rate of 0.574 (see Roberts and Rosenthal (2001)) and to estimate
and use the correlation structure of the target distribution. We develop some convergence
results for the algorithm. A simulation example is presented.
Key words: Markov Chain Monte Carlo, Stochastic approximation algorithms, Metropolis
Adjusted Langevin algorithm, geometric rate of convergence.
MSC Numbers: 65C05, 65C40, 60J27, 60J35

1 Introduction
Markov Chain Monte Carlo (MCMC) is a well-established probabilistic tool to sample from prob-
ability measures known only up to a normalizing constant. A MCMC algorithm is designed by
specifying a transition kernel with a prede�ned invariant probability measure. Such transition ker-
nel typically depends on various parameters to be provided by the user. This is a strength of the
method as it allows the user to possibly run the best algorithm for its problem by providing the
appropriate parameter value. But �nding the best value of the parameters for a given target dis-
tribution is a di�cult analytical problem. This problem needs to be solve in a satisfactory way for
MCMC to become routinely used by non-experts. Adaptive MCMC is a possible solution. The idea
is to solve both problems (the sampling problem and the optimal parameter value �nding problem)
simultaneously by updating the transition kernel in the course of the simulation given the sample
generated so far. Recently an approach based on stochastic approximation and recursive estimation
has been developed and applied to the Independent Metropolis algorithm and to the Random Walk
Metropolis (RWM) algorithm (Haario et al. (2001), Andrieu and Moulines (2003), Atchade and
Rosenthal (2003)). In Haario et al. (2001) and Andrieu and Moulines (2003) the covariance matrix
of the RWM algorithm is sequentially updated to �nd the correlation structure of the target dis-
tribution. In Atchade and Rosenthal (2003) the covariance matrix is �xed and the scale parameter
of the RWM algorithm is sequentially updated to �nd the one that gives the optimal acceptance
rate. The main objective of this paper is to extend this methodology to the Metropolis adjusted
Langevin algorithm with a truncated drift (denoted T-MALA in the sequel). We update both the
covariance matrix and the scale parameter simultaneously. It is worth noting that the algorithm and
the results developed in the paper actually apply to any random walk Metropolis type algorithm
with bounded drift; so they also apply to the RWM algorithm.

The adaptive T-MALA is proposed and analyzed in Section 2. A simulation example is presented
in Section 3 to illustrate the algorithm. The proof are postponed to Section 4.
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2 Adapting the T-MALA
Let X be an open subset of Rd, the d-dimensional Euclidean space (equipped with its Borel subsets
Bd) and π a positive and continuously di�erentiable density (with respect to Lebesgue measure on
X ). For δ > 0, De�ne the drift function of the algorithm by D(x) = δ

max(δ,|∇ log π(x)|)∇ log π(x),
where ∇ is the gradient operator. For a positive de�nite matrix Λ and a scale parameter σ > 0,
let qσ,Λ(x, y) be the density (with respect to Lebesgue measure on X ) of N

(
x + σ2

2
D(x), σ2Λ

)
the

Gaussian distribution with mean x+ σ2

2
D(x) and covariance matrix σ2Λ. The Truncated Metropolis

Adjusted Langevin Algorithm (T-MALA) with proposal density Qσ,Λ(x, dy) = qσ,Λ(x, y)dy has been
introduced in Roberts and Tweedie (1996). This algorithm generates a Markov chain (Xn) with
invariant distribution π as follows. Given Xn, a new proposal Yn+1 ∼ N

(
Xn + σ2

2
D(Xn), σ2Λ

)

is made. We then either �accept� the proposed value and set Xn+1 = Yn+1 with probability
ασ,Λ(Xn, Yn+1), or we �reject� it and set Xn+1 = Xn with probability 1 − ασ,Λ(Xn, Yn+1), where
ασ,Λ(x, y) = min

(
1,

π(y)qσ,Λ(y,x)

π(x)qσ,Λ(x,y)

)
. Let Pσ,Λ be the transition kernel of the Markov chain generated

by such algorithm. We have:

Pσ,Λ(x,A) =

∫

A

ασ,Λ(x, y)qσ,Λ(x, y)dy + rσ,Λ(x)1A(x), (2.1)

where
rσ,Λ(x) =

∫
(1− ασ,Λ(x, y)) qσ,Λ(x, y)dy. (2.2)

As its name indicates, the T-MALA is a truncated drift version of the Metropolis Adjusted Langevin
algorithm (MALA) whose drift function is D(x) = ∇ log π(x). The MALA has better mixing
properties than the RandomWalk Metropolis algorithm, but its rate of convergence is often unstable
due to the unbounded drift (see Roberts and Tweedie (1996)). Here we show (see Proposition 2.1)
that the T-MALA has similar geometric convergence property as the Random Walk Metropolis
algorithm.

2.1 An adaptive version of the T-MALA
The choice of the scaling parameters (σ, Λ) has a large e�ect on the mixing time of the T-MALA.
It is believed that the strategy that works best is to take Λ = Σπ the covariance matrix of the
distribution π and to choose σ so as to achieve a prescribed global acceptance rate in stationarity,
(approximately 0.574 for Langevin type algorithms). Many theoretical works have been done that
support this strategy (see e.g. Roberts and Rosenthal (2001), Breyer et al. (2004)). Clearly those
optimal values are not known in general. Often in practice, tedious pilot simulations are necessary to
�rst estimate those parameters. We propose an adaptive T-MALA that generates an inhomogeneous
Markov chain (Xn, Λn, σn) where no pilot simulation and parameter tuning is necessary.

Fix 0 < ε1 < A1 < ∞ and ε2 > 0. Write Θσ = [ε1, A1] equipped with the Euclidean norm
of R. Let ΘΓ be the convex set of all semipositive de�nite matrices Γ with |Γ| ≤ A1, where
|Γ| := tr1/2(ΓΓ′) =

{∑
ij |γij|2

}1/2

is the Frobenius norm. This norm is derived from the scalar
product A · B := tr(AB′). We introduction three projection functions p1, p2, p3 to contain the
algorithm. p1(σ) = σ if σ ∈ Θσ, p1(σ) = ε1 if σ < ε1 and p1(σ) = A1 if σ > A1. For a semide�nite
positive matrix Σ, de�ne p2(Σ) = Σ if |Σ| ≤ A1 and p2(Σ) = A1

|Σ|Σ if |Σ| > A1. For x ∈ Rd, p3(x) = x

if |x| ≤ A1 and p3(x) = A1

|x|x if |x| > A1. The pi are orthogonal projections and satisfy:

|σ′ − p1(σ)| ≤ |σ′ − σ| , σ′ ∈ Θσ, σ ∈ R, (2.3)
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|Γ′ − p2(Γ)| ≤ |Γ′ − Γ| , Γ′ ∈ ΘΓ, Γ semide�nite positive, (2.4)
and

|µ′ − p3(µ)| ≤ |µ′ − µ| , |µ′| ≤ A1, µ ∈ Rd. (2.5)
Let (γn) a sequence of positive numbers and τ̄ the optimal acceptance rate; (here τ̄ = 0.574).

Algorithm 2.1. [Adaptive T-MALA]

1. Start the algorithm at some point x0 ∈ X , with µ0 ∈ Rd, σ0 > 0, Γ0 semide�nite positive
matrix.

2. Suppose that at time n ≥ 0, we have Xn ∈ X , µn, σn and Γn. Set Λn = Γn + ε2Id.

2.1 Generate Yn+1 ∼ N
(
Xn + σ2

n

2
R(Xn), σ2

nΛn

)
and generate U ∼ U(0, 1).

2.2 If U ≤ ασn,Λn(Xn, Yn+1), then set Xn+1 = Yn+1. Otherwise, set Xn+1 = Xn.
2.3 Set

σn+1 = p1 (σn + γn (ασn,Λn(Xn, Yn+1)− τ̄)) . (2.6)
µn+1 = p3 (µn + γn (Xn+1 − µn)) , (2.7)

Γn+1 = p2 (Γn + γn ((Xn+1 − µn)(Xn+1 − µn)′ − Γn)) . (2.8)

Remark 2.1. 1. At each step of the algorithm, a valid T-MALA in used. A small diagonal
matrix is added to the current estimate of Σπ. This improves the numerical stability of
the algorithm (particularly if Σπ is not positive de�nite) and is also crucial in proving the
ergodicity of the algorithm.

2. The parameter (µn, σn, Γn) is sequentially updated with a stochastic approximation algorithm
with re-projection on a �xed compact set. Stochastic approximations are well-known random
iterative algorithms of the form θn+1 = θn + γn(h(θn)+ εn+1) initiated by Robbins and Monro
(1951) and used to �nd solutions of equations of the form h(θ) = 0 when the function h is
unknown and/or hard to compute; see Kushner and Yin (2003) and the references therein.
This type of algorithms has been introduced in MCMC by Haario et al. (2001) in a restricted
setting and by Andrieu and Robert (2002). By adapting simultaneously σ and Λ, the algorithm
proposed here is sensibly better than (see the simulations below) the RandomWalk Metropolis
type algorithms proposed in Andrieu and Moulines (2003) and Atchade and Rosenthal (2003).

2.2 Ergodicity of the algorithm
We make the following assumptions.
Assumption A1: Assume that π is positive with continuous �rst derivative such that

lim
|x|→∞

n(x) · ∇ log π(x) = −∞,

and
lim sup
|x|→∞

n(x) ·m(x) < 0,

where ∇ is the gradient operator, n(x) = x
|x| and m(x) = ∇π(x)

|∇π(x)| .
Assumption A2:
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(i) |µπ| ≤ A1 and |Σπ| ≤ A1, where µπ =
∫

xπ(dx) and Σπ =
∫

xx′π(dx)− µπµ′π.

(ii) There exists σopt ∈ Θσ such that τ(σopt) = τ̄ and (σ − σopt)(τ(σ) − τ̄) < 0 whenever σ 6= σopt,
where the acceptance rate in stationarity function τ is de�ned as

τ(σ) =

∫
π(dx)

∫
ασ,Λπ(x, y)qσ,Λπ(x, y)dy,

where Λπ = Σπ + ε2Id.

Assumption A3: γn = O (
n−λ

)
, 1/2 < λ ≤ 1.

Remark 2.2. 1. (A1) has been introduced in Jarner and Hansen (2000) to analyze the conver-
gence rate of the RWM algorithm. Many densities of the form e−p(x) or h(x)−p(x), where p is
polynomial are known to satisfy (A1). See Jarner and Hansen (2000) for more details.

2. It is always possible to choose A1 such (A2)(i) hold, at least in theory. (A2)(ii) is di�cult to
check and actually may not hold. But we believe that σn may still converge to a solution of
τ(σ) = τ̄ even if τ is not decreasing and τ(σ) = τ̄ has many solutions. In any case, it is worth
noting that the ergodicity of the algorithm does not rely on (A2)(ii).

3. We recommend γn = c0
n
for some constant c0.

Theorem 2.1. Let (Xn) be the stochastic process generated by algorithm 2.1 on some probability
space (Ω,F ,P). De�ne V (x) = cπ1/2(x), where c is any constant such that V ≥ 1.

(i) Assume (A1), (A3) and (A2)(i). There exists a �nite constant K such that

‖Lx0(Xn)(·)− π(·)‖V 1/2 ≤ Kn−λ log(n)V (x0), n ≥ 2 (2.9)

where Lx0(Xn) is the distribution of Xn given that X0 = x0 and for a signed measure µ,
‖µ‖V 1/2 := sup|f |≤V 1/2 |µ(f)|, µ(f) :=

∫
f(x)µ(dx).

Also, for any measurable function f : X −→ R with |f | ≤ V 1/2,

1

n

n−1∑
i=0

f(Xi) −→ π(f) P− a.s. (2.10)

(ii) Assume (A1)-(A3). Then Λn −→ Λπ = Σπ + ε2Id and σn −→ σopt as n →∞, P a.s.

Proof. (i) Take G(x, σ, Λ) = f(x) and apply Lemma 4.5 and Lemma 4.8.

(ii) is proved in Theorem 4.1.

As part of the proof of Theorem 2.1 we will see that the transition kernel of the (nonadaptive)
T-MALA has a geometric rate of convergence and is a smooth function of its parameters. These
results are interesting on their own and are stated here.

For 0 < b1 < b2 < ∞, let C = C(b1, b2) be the set of all couples (σ, Λ) where σ ∈ [b1, b2] and Λ is
a positive de�nite matrix such that |Λ| ≤ b2 and such that the smallest eigenvalue of Λ is greater
or equal to b1. For (σ, Λ) ∈ R × Rd2 , de�ne the norm |(σ, Λ)| :=

(|σ|2 + |Λ|2)1/2. C is convex and
compact.
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Proposition 2.1. Assume (A1). For 0 < α < 1 write Vα(x) = cπ−α(x) where c is such that Vα ≥ 1.
Then there exist ρ < 1, R < ∞ such that:

sup
(σ,Λ)∈C

∣∣P n
σ,Λ(x, ·)− π(·)

∣∣ ≤ RρnVα(x), n ≥ 0, x ∈ X . (2.11)

Proof. See Section 4.

We can also prove that Pσ,Λf(x) is a smooth function of (σ, Λ).

Proposition 2.2. Under (A1), there is a constant K1 < ∞ such that for (σ1, Λ1), (σ2, Λ2) ∈ C:

sup
|f |≤V 1/2

|Pσ2,Λ2f(x)− Pσ1,Λ1f(x)| ≤ K1V
1/2(x) |(σ2 − σ1, Λ2 − Λ1)| , (2.12)

where V (x) = cπ−1/2(x) with c chosen such that V (x) ≥ 1.

Proof. See Section 4.

3 Simulation Example
We take π to be the 3-dimensional normal distribution with mean 0 and covariance matrix

Σπ =




0.9575 2.4384 −0.3741
2.4384 7.0338 −1.0638
−0.3741 −1.0638 0.2632


 .

We compare 4 strategies to sample from π using the T-MALA. All the simulations are run for
n = 100, 000 iterations started from X0 = (5, 5, 5) and the drift is bounded by δ = 1, 000. We
compare four di�erent strategies.

1. A fully adaptive version of the T-MALA as presented in Algorithm 2.1. We use γn = 10
n
.

ε1 = 10−4, A1 = 105, ε2 = 0.01. We start using the estimated covariance matrix only after
5, 000 iterations.

2. A nonadaptive T-MALA with the optimal values of the parameters σopt and Σπ. σopt = 0.6395
(estimated from the adaptive chain).

3. A nonadaptive chain manually tuned. We take the proposal covariance matrix to be I3 and
estimate the value of σ that gives an acceptance rate of 0.574. We �nd σ = 0.49. Many
trial-and-errors were required. We call this Strategy 1.

4. Finally we also try a nonadaptive chain where the covariance matrix has been manually tuned
�rst and given the estimate of Σπ obtained, σ was tuned to reach the 0.574 acceptance rate.
Even more trial-and-errors were required. We call this Strategy 2.

We only look at the �rst component of the chains. Graph 1 displays the correlation functions
of the output of the 4 strategies. We see that the adaptive chain is almost optimal and clearly
outperforms the two strategies where the parameters are manually tuned. We also show the scale
parameter σn and the acceptance rate of the adaptive chain.
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Graph 1: Autocorrelation functions of the four strategies implemented, and scale parameter and
acceptance rate of the adaptive chain.

4 Proofs of the results
We prove Proposition 2.1 in Section 4.1 and Proposition 2.2 in Section 4.2. The main theorem
(Theorem 2.1) is proved in Section 4.3.

4.1 Proof of Proposition 2.1
Essentially, the idea of the proof is the same as the proof of the geometric ergodicity of the RWM
algorithm developed by Jarner and Hansen (2000). There are some additional technicalities due to
the drift of the algorithm. But the fact that the drift is bounded is crucial.

Proof of Proposition 2.1. In Lemma 4.1 below we show that there are ε > 0, a Ball C, a nontrivial
probability measure ν such that:

inf
(σ,Λ)∈C

Pσ,Λ(x,A) ≥ εν(A), A ∈ B, x ∈ C,

and in Lemma 4.2 below we show that we can �nd λ < 1, b < ∞ such that

sup
(σ,Λ)∈C

Pσ,ΛVα(x) ≤ λVα(x) + b1C(x), x ∈ X ,

where C is as above and Vα(x) = cπ−α(x), 0 < α < 1 and c is such that Vα(x) ≥ 1.
The theorem then follows from the fact that geometric bound for Markov chain can be obtained

from these two inequalities based solely on the constants ε > 0, C, ν, λ < 1, b < ∞ and Vα. See
e.g. Meyn and Tweedie (1994).
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Lemma 4.1. There is ε > 0, a Ball C, a nontrivial probability measure ν such that:
inf(σ,Λ)∈C Pσ,Λ(x,A) ≥ εν(A), A ∈ B x ∈ C.

Proof. For a > 0, let ga be the density of the d-dimensional normal distribution with zero mean and
covariance matrix aId. Because the drift of the algorithm is bounded by δ and (σ, Λ) ∈ C, we can
�nd ε1 > 0 and k1 > 0 such that inf(σ,Λ)∈C qσ,Λ(x, y) ≥ k1gε1(y − x). Take R > 0 and C = B(0, R).
De�ne τ = min(σ,Λ)∈C miny−x,x∈C

π(y)qσ,Λ(y,x)

π(x)qσ,Λ(x,y)
. τ > 0. Write ε = τk1 and ν(A) =

∫
A∩C gε1 (z)dz∫

C gε1 (z)dz
. We

have inf(σ,Λ)∈C PΛ(x,A) ≥ εν(A)1C(x) as needed.

Lemma 4.2. Assume (A1) and let α and Vα as in Proposition 2.1. There exist λ < 1, b < ∞ such
that sup(σ,Λ)∈C Pσ,ΛVα(x) ≤ λVα(x) + b1C(x), x ∈ X , where C can be chosen as in Lemma 4.1.

Proof. We only need to show that:

sup
x∈X

sup
(σ,Λ)∈C

Pσ,ΛVα(x)

Vα(x)
< ∞, (4.1)

and
lim sup
|x|→∞

sup
(σ,Λ)∈C

Pσ,ΛVα(x)

Vα(x)
< 1. (4.2)

See Jarner and Hansen (2000) Lemma 3.5.
For x ∈ X , note Aσ,Λ(x) = {y :

π(y)qσ,Λ(y,x)

π(x)qσ,Λ(x,y)
≥ 1} and Rσ,Λ(x) = Aσ,Λ(x)c the complement of

Aσ,Λ(x). Because the drift of the algorithm is bounded and (σ, Λ) ∈ C, we can �nd 0 < ε1 < ε2 < ∞,
0 < k1 < k2 < ∞ such that:

k1gε1(y − x) ≤ qσ,Λ(x, y) ≤ k2gε2(y − x), (4.3)

where for a positive number a, ga is the density of the d-dimensional normal distribution with mean
0 and covariance matrix aId. We have:

Pσ,ΛVα(x)

Vα(x)
=

∫

Aσ,Λ(x)

qσ,Λ(x, y)
Vα(y)

Vα(x)
dy +

∫

Rσ,Λ(x)

π(y)qσ,Λ(y, x)Vα(y)

π(x)qσ,Λ(x, y)Vα(x)
qσ,Λ(x, y)dy

+

∫

Rσ,Λ(x)

(
1− π(y)qσ,Λ(y, x)

π(x)qσ,Λ(x, y)

)
qσ,Λ(x, y)dy

≤ Qσ,Λ (x,Rσ,Λ(x)) +

∫

Aσ,Λ(x)

π−α(y)

π−α(x)
qσ,Λ(x, y)dy

+

∫

Rσ,Λ(x)

(
π1−α(y)qσ,Λ(y, x)

π1−α(x)qσ,Λ(x, y)

)
qσ,Λ(x, y)dy.

On Aσ,Λ(x),
π−α(y)

π−α(x)
qσ,Λ(x, y) ≤ qα

σ,Λ(y, x)q1−α
σ,Λ (x, y) ≤ k2

2gε2(y − x), (4.4)

and on Rσ,Λ(x),

π1−α(y)qσ,Λ(y, x)

π1−α(x)qσ,Λ(x, y)
qσ,Λ(x, y) ≤ q1−α

σ,Λ (y, x)qα
σ,Λ(x, y) ≤ k2

2gε2(y − x). (4.5)

Hence (4.1) is satis�ed.



8 Y. F. Atchadé

Let ε > 0. we can �nd R < ∞ such that:
∫

B(x,R)

gε2(y − x)dy ≥ 1− ε. (4.6)

De�ne Cπ(x) = {y : π(y) = π(x)} and for u > 0, Cπ(x)(u) =
{
y + sn(y) : y ∈ Cπ(x), −u ≤ s ≤ u

}
.

Because π super-exponential, we can �nd r1 such that for |x| ≥ r1, any point y ∈ X can be written
y = x1 + sn(x1) for s ∈ R and x1 ∈ Cπ(x).

From (4.3) and the proof of Theorem 4.1 of Jarner and Hansen (2000), it follows that we can
�nd u > 0 and r2 > r1 such that for |x| ≥ r2,

∫

Cπ(x)(u)∩B(x,R)

gε2(y − x)dy ≤ ε. (4.7)

Now, for S ∈ {Aσ,Λ(x), Rσ,Λ(x)} and u as in (4.7), write
S = (S ∩B(x,R)c)

⋃ (
S ∩B(x,R) ∩ Cπ(x)(u)

) ⋃ (
S ∩B(x, R) ∩ Cπ(x)(u)c

)
. For |x| ≥ r2, it follows

from (4.4), (4.6) and (4.7) that:
∫

Aσ,Λ(x)∩B(x,R)c

qσ,Λ(x, y)
π−α(y)

π−α(x)
dy +

∫

Aσ,Λ(x)∩B(x,R)∩Cπ(x)(u)

qσ,Λ(x, y)
π−α(y)

π−α(x)
dy ≤ 2k2

2ε, (4.8)

and from (4.5), (4.6) and (4.7) we have:

∫

Rσ,Λ(x)∩B(x,R)c

(
π1−α(y)qσ,Λ(y, x)
π1−α(x)qσ,Λ(x, y)

)
qσ,Λ(x, y)dy +

∫

Rσ,Λ(x)∩B(x,R)∩Cπ(x)(u)

(
π1−α(y)qσ,Λ(y, x)
π1−α(x)qσ,Λ(x, y)

)
qσ,Λ(x, y)dy

≤ 2k2
2ε. (4.9)

For r > 0 and a > 0, write dr(a) = sup|x|≥r
π(x+an(x))

π(x)
. That π is super-exponential implies that

dr(a) → 0 as r →∞. From this we can show that r3 < ∞ exists such that for |x| ≥ r3 + R:
∫

Aσ,Λ(x)∩B(x,R)∩Cπ(δ)c

qσ,Λ(x, y)
π−α(y)

π−α(x)
dy ≤ dr3(δ). (4.10)

and ∫

Rσ,Λ(x)∩B(x,R)∩Cπ(x)(δ)
c

(
π1−α(y)qσ,Λ(y, x)

π1−α(x)qσ,Λ(x, y)

)
qσ,Λ(x, y)dy ≤ k2dr3(u). (4.11)

The bounds (4.8), (4.9), (4.10), (4.11) implies that:

lim sup
|x|→∞

sup
(σ,Λ)∈C

Pσ,ΛVα(x)

Vα(x)
= lim sup

|x|→∞
sup

(σ,Λ)∈C
Q (x,Rσ,Λ(x))

= 1− lim inf
|x|→∞

inf
(σ,Λ)∈C

Qσ,Λ (x,Aσ,Λ(x)) . (4.12)

For R > 0, we can �nd c0 > 0 such that infy∈B(x,R) inf(σ,Λ)∈C
qσ,Λ(y,x)

qσ,Λ(x,y)
≥ c0.Take u > 0. Because

π is super-exponential, π(x − un(x)) ≥ π(x)
c0

for any x such that |x| is su�ciently large. Thus,
for |x| su�ciently large and u < R, x1 = x − un(x) ∈ Aσ,Λ(x). For ε > 0 arbitrary small de�ne
W (x) = {x1 − aζ, 0 < a < R − u, ζ ∈ Sd−1, |ζ − n(x1)| < ε/2}, where Sd−1 is the unit-sphere
in Rd. We show that for |x| su�ciently large, W (x) ⊂ Aσ,Λ(x) for all (σ, Λ) ∈ C. therefore
Qσ,Λ(x,Aσ,Λ(x)) ≥ k2

∫
W (x)

qε1(y − x)dy = c > 0. This together with (4.12) shows (4.2) and the
Proposition will be proved.
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Assumption (A1) implies that for |x| su�ciently large, m(x) · n(x) < −ε. Also for |x| suf-
�ciently large, |n(y)− n(x)| < ε/2 for any y ∈ W (x). For any y ∈ W (x), m(y) · ζ = m(y) ·
(ζ − n(x1) + n(x1)− n(y) + n(y)) < ε/2 + ε/2− ε = 0, for |x| su�ciently large. For y = x1 − aζ ∈
W (x), consider the function f(t) = π(x1 − tζ). f(0) = π(x1), f(a) = π(y) and f is di�erentiable.
Therefore there is τ ∈ (0, a) such that f(a) − f(0) = −aτζ · ∇π(x1 − τζ) > 0 as seen above.
Therefore π(y) > π(x1) which implies that y ∈ Aσ,Λ(x) for |x| su�ciently large.

4.2 Proof of Proposition 2.2
Proof. We only sketch the proof leaving the details to the reader. The idea is to show that for any
x ∈ X , there exists a �nite constant K such that sup(σ,Λ)∈C

∥∥∥ ∂
∂(σ,Λ)

Pσ,Λf(x)
∥∥∥ ≤ KV 1/2(x), where∥∥∥ ∂

∂(σ,Λ)
Pσ,Λf(x)

∥∥∥ is the norm of the di�erential of Pσ,Λf(x) (x �xed) seen as a linear functional on
R× Rd2 . Since C is convex, the result follows from mean value theorem.

Write rσ,Λ(x, y) =
π(y)qσ,Λ(y,x)

π(x)qσ,Λ(x,y)
and ασ,Λ(x, y) = min (1, rσ,Λ(x, y)), so that

Pσ,Λf(x) =

∫
min (1, rσ,Λ(x, y)) f(y)qσ,Λ(x, y)dy + f(x)

∫
(1− ασ,Λ(x, y)) qσ,Λ(x, y)dy.

It is not hard to show that for (h,H) ∈ R×Rd2 , the derivative of qσ,Λ(x, y) with respect to (σ, Λ) eval-
uated at (h,H) can be written: ∂

∂(σ,Λ)
qσ,Λ(x, y)(h,H) = qσ,Λ(x, y) (B1(x, y, σ, Λ, h) + B2(x, y, σ, Λ, H)),

where the functions B1, B2 satisfy: |B1(x, y, σ, Λ, h)| + |B2(x, y, σ, Λ, H)| ≤ K2 |y − x|2 |(h,H)| for
some �nite constant K2. And a straightforward calculus gives for any (h, H) with |(h,H)| ≤ 1:

∣∣∣∣
∂

∂(σ, Λ)
[(ασ,Λ(x, y)qσ,Λ(x, y)) f(y)] (h,H)

∣∣∣∣ =

∣∣∣∣
π(y)

π(x)
1{rσ,Λ(x,y)≤1}

∂

∂(σ, Λ)
[qσ,Λ(y, x)f(y)] (h,H)

+ 1{rσ,Λ(x,y)>1}
∂

∂(σ, Λ)
[qσ,Λ(y, x)f(y)] (h,H)

∣∣∣∣
≤ K2 |y − x|2 V 1/2(x)qε2(x, y), (4.13)

for some �nite constant ε2 > 0 where qε2 is the density of the d-dimensional normal distri-
bution with mean 0 and covariance ε2Id. Similarly,

∣∣∣ ∂
∂(σ,Λ)

[(1− ασ,Λ(x, y))qσ,Λ(x, y)] (h,H)
∣∣∣ ≤

K2 |y − x|2 qε2(x, y).
Thus Pσ,Λf(x) is di�erentiable under the integral and:

∣∣∣∣
∂

∂(σ, Λ)
Pσ,Λf(x)(h,H)

∣∣∣∣ ≤ K2V
1/2(x)

∫
|y − x|2 qε2(x, y)dy, (4.14)

and we are done.

4.3 Proof of Theorem 2.1
Showing the convergence of the stochastic approximation processes (point (ii) of the theorem) is
slightly harder than showing that the algorithm is ergodic (point (i) of the Theorem). The ergodicity
of the algorithm is proved as in Atchade and Rosenthal (2003) through Lemma 4.5 and Lemma
4.8. Essentially, we need the uniform (in (σ, Λ)) rate of convergence as shown in Proposition 2.1
and the fact that the adaptation is diminishing (Proposition 2.2 and Lemma 4.4). The adapting
process (µn, σn, Λn) need not converge. To prove the convergence of the stochastic approximation
algorithm, we use an improved version of the Robbins-Siegmund Theorem (Lemma 4.7).
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Unless otherwise stated, (Xn) refers to the random process generated by Algorithm 2.1 on
(Ω,F ,P). Let b1 = min(ε1, ε2) and b2 = A1 + ε2. Let Θ = C(b1, b2) be the set of all couples
(σ, Λ) where σ ∈ [b1, b2] and Λ is a positive de�nite matrix such that |Λ| ≤ b2 and the smallest
eigenvalue of Λ is greater or equal to b1. For n ≥ 1, θn = (σn, Λn) ∈ Θ and the minorization and
drift conditions established in Lemma 4.1 and Lemma 4.2 are readily available and the constants
involved are independent from n. A repetitive application of this uniform drift condition yields the
following simple Lemma.

Lemma 4.3. Assume (A1). For any α ∈ (0, 1] there is a constant R1 = R1(α) < ∞ such that for
n ≥ 0, j ≥ 0

E (V α(Xn+j)|Fn) ≤ R1V
α(Xn). (4.15)

The next lemma will allow us to control the variations in the stochastic approximation algo-
rithms.

Lemma 4.4. Assume (A1). There exists R2 < ∞ such that for n ≥ 0:

|µn+1 − µn|+ |Γn+1 − Γn|+ |σn+1 − σn| ≤ R2γnV 1/2(Xn+1). (4.16)

Proof. Follows from (2.3)-(2.5), the fact that µn, Γn, σn are bounded and the fact that |x|+ |x|2 ≤
V 1/2(x).

The following lemma is adapted from Atchade and Rosenthal (2003). Let G : X ×Θ −→ R be
a measurable function, where Θ = C(b1, b2). Assume that there exist constants K2, K3 < ∞ such
that:

sup
θ∈Θ

|G(x, θ)| ≤ K2V
1/2(x), x ∈ X , (4.17)

|G(x, θ1)−G(x, θ2)| ≤ K3V
1/2(x) |θ1 − θ2| , θ1, θ2 ∈ Θ, x ∈ X . (4.18)

De�ne g(θ) :=
∫

G(x, θ)π(dx).

Lemma 4.5. Assume (A1). Let G and g as de�ned above. Then there exist constants C1 < ∞
0 < ρ < 1 (that depend on G only through K2 and K3) such that for n ≥ 0, k ≥ 0,

|E (G(Xn+k, θn+k)− g(θn+k)|Fn)| ≤ C1

(
ρk + γnk

)
V (Xn), P− a.s. (4.19)

Proof. De�ne fn(x) = G(x, θn)− g(θn). Then
G(Xn+k, θn+k)− g(θn+k) = fn(Xn+k) + G(Xn+k, θn+k)−G(Xn+k, θn) + g(θn)− g(θn+k).

From (4.18) it follows that |g(θ2)− g(θ1)| ≤ K3π(V 1/2) |θ2 − θ1|. Thus:
|G(Xn+k, θn+k)−G(Xn+k, θn)|+ |g(θn)− g(θn+k)| ≤ R3V

1/2(Xn+k) |θn+k − θn| , (4.20)

for some �nite constant R3.Therefore:

|E (G(Xn+k, θn+k)− g(θn+k)|Fn)| ≤ |E (fn(Xn+k)|Fn)|+ R3E
(
V 1/2(Xn+k) |θn+k − θn| |Fn

)
. (4.21)

An argument similar to the one used in Atchade and Rosenthal (2003) (Lemma 3.1) can be used
here to show that

|E (fn(Xn+k)|Fn)| ≤ R2ρ
kV 1/2(Xn) + R4

k−1∑

j=1

ρk−1−jE
(
V 1/2(Xn+j) |θn+j − θn| |Fn

)
. (4.22)
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Back to (4.21), (4.22) gives:

|E (G(Xn+k, θn+k)− g(θn+k)|Fn)| ≤ R2ρ
kV 1/2(Xn) + R5

k∑

j=1

ρk−jE
(
V 1/2(Xn+j) |θn+j − θn| |Fn

)

≤ C1

(
ρk + γnk

)
V (Xn), (4.23)

using Lemma 4.4 and Lemma 4.3 for some �nite constant C1.

We introduce the functions e1(x) = x, e2(x) = (x−µπ)(x−µπ)′, A(x, σ, Λ) =
∫

ασ,Λ(x, y)qσ,Λ(x, y)dy,
and τ(σ, Λ) =

∫
A(x, σ, Λ)π(dx). For two matrices A and B recall that the scalar product of A and

B is A ·B = tr(AB′).
Lemma 4.6. Assume (A1) and (A3). Then a.s. we have:
(i) ∑

γ2
nV 1/2(Xn) < ∞.

(ii) ∑
γn(µn − µπ) · (Pσn,Λne1(Xn)− µπ) < ∞.

(iii) ∑
γn(Γn − Σπ) · (Pσn,Λne2(Xn)− Σπ) < ∞.

(iv) ∑
γn(Γn − Σπ) · ((µn − µπ)(Pσn,Λne1(Xn)− µπ))′ < ∞.

(v) ∑
γn(σn − σopt) · (A(Xn, σn, Λn)− τ(σn, Λn)) < ∞.

Proof. The idea is to choose the appropriate function and to apply Lemma 4.5 and Lemma 4.8 with
Fn = σ(X0, σ0, . . . , Xn, σn).
(i) Take G(x, θ) = V 1/2(x). Recall that θ = (σ, Λ). Lemma 4.5 implies that∣∣E(V 1/2(Xn+k)− π(V 1/2)|Fn)

∣∣ ≤ C1

(
ρk + γnk

)
V (Xn). Then Lemma 4.8 below implies that∑

γ2
n(V 1/2(Xn)− π(V 1/2)) < ∞ and since

∑
γ2

n < ∞,
∑

γ2
nV

1/2(Xn) < ∞.

(ii) Take G(x, θ) = Pθe1(x). Then
∫

G(x, θ)π(dx) = µπ, |G(x, θ)| ≤ KPθV
1/2(x) ≤ KV 1/2(x) for

some �nite constant K and from Proposition 2.2 we have
|Pθ2e1(x)− Pθ1e1(x)| ≤ K3 |θ2 − θ1|V 1/2(x). Therefore by writing

(µn+k − µπ) · (Pθn+k
e1(Xn+k)− µπ

)
= (µn+k − µn) · (Pθn+k

e1(Xn+k)− µπ

)

+(µn − µπ) · (Pθn+k
e1(Xn+k)− µπ

)
,

and applying Lemma 4.5 we get:
∣∣E (

(µn+k − µπ) · (Pθn+k
e1(Xn+k)− µπ

) |Fn

)∣∣ ≤ K1kγnV
1/2(Xn) + C1(ρ

n + kγn)V (Xn)

≤ C2(ρ
n + kγn)V (Xn).

Lemma 4.8 then implies
∑

γn(µn−µπ)·(Pθne1(Xn)− µπ) converge to a �nite random variable.

(iii) Similar to (ii) with G(x, θ) = e2(x).

(iv) Similar arguments as in (ii) and (iii).

(v) Take G(x, θ) = A(x, θ) = A(x, σ, Λ). As one can see by applying the mean value theorem from
Equation (4.13) in the proof of Proposition 2.2, A(x, ·) is Liptschitz. For n ≥ 0, k ≥ 0:
(σn+k − σopt) · (A(Xn+k, σn+k, Λn+k)− τ(σn+k, Λn+k)) ≤ kγn

+(σn − σopt) · (A(Xn+k, σn+k, Λn+k)− τ(σn+k, Λn+k)) .

Then Lemma 4.5 gives: |E ((σn+k − σopt) · (A(Xn+k, σn+k, Λn+k)− τ(σn+k, Λn+k)) |Fn)| ≤ kγn

+C1

(
ρk + γnk

)
V (Xn) and applying Lemma 4.8 once more yields (v).
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We are now ready to prove the convergence of the stochastic approximation processes.
Theorem 4.1. Assume (A1)-(A3). Then:
(i) µn −→ µπ a.s., as n →∞.

(ii) Γn → Σπ a.s. as n →∞.

(iii) σn → σopt a.s. as n →∞.
Proof. (i) For n ≥ 0, de�ne Fn = σ(X0, σ0, . . . , Xn, σn). We have:

|µn+1 − µπ|2 = |p3 (µn + γn(Xn+1 − µn))− µπ|2
≤ |µn − µπ + γn(Xn+1 − µn)|2
≤ |µn − µπ|2 − 2γn |µn − µπ|2 + Kγ2

nV 1/2(Xn+1) + 2γn(µn − µπ) · (Xn+1 − µπ),

K constant. Therefore writing Un = Vn = |µn − µπ|2 and Wn = KR1γ
2
nV 1/2(Xn) + 2γn(µn −

µπ) · (Pσn,Λne1(Xn)− µπ) we get:
E (Un+1|Fn) ≤ Un − 2Vn + Wn. (4.24)

From Lemma 4.6,
∑

Wn < ∞ a.s. and we can apply Lemma 4.7 to obtain that
∑

Vn < ∞
which implies that µn → µπ.

(ii) Similarly, we have:
|Γn+1 − Σπ|2 ≤ |Γn − Σπ|2 − 2γn |Γn − Σπ|2 + Kγ2

nV 1/2(Xn+1)

+2γn(Γn − Σπ) · ((Xn+1 − µπ)(Xn+1 − µπ)′ − Σπ)

+2γn(Γn − Σπ) · ((Xn+1 − µπ)(µπ − µn)′)

+2γn(Γn − Σπ) · ((µn − µπ)(Xn+1 − µn)′) .

Write Un = Vn = |Γn − Σπ|2 and
Wn = R1γ

2
nV

1/2(Xn) + 2γn(Γn − Σπ) · (Pσn,Λne2(Xn)− Σπ)

+2γn(Γn − Σπ) · ((Pσn,Λne1(Xn)− µπ)(µπ − µn)′)

+2γn(Γn − Σπ) · ((µn − µπ)(Pσn,Λne1(Xn)− µπ))′ .

We get:
E (Un+1|Fn) ≤ Un − 2Vn + Wn. (4.25)

It is easily seen from Lemma 4.6 that
∑

Wn < ∞ and (ii) follows from Lemma 4.7.

(iii) We have:
|σn+1 − σopt|2 ≤ |σn − σopt|2 + 2γn(σn − σopt)(τ(σn, Λn)− τ̄)

+γ2
n + 2γn(σn − σopt) (ασn,Λ(Xn, Yn+1)− τ(σn, Λn)) .

Therefore:
E(Un+1|Fn) ≤ Un − 2γnVn + Wn, (4.26)

where Un = |σn − σopt|2, Vn = −(σn − σopt)(τ(σn, Λn)− τ̄)
and Wn = γ2

n + 2γn(σn − σopt) (A(Xn, σn, Λn)− τ(σn, Λn)). From Lemma 4.6,
∑

γn(σn −
σopt) (A(σn, Λn, Xn)− τ(σn, Λn)) < ∞ and since Λn → Σπ + εId, it follows from point (ii) of
(A2) that Vn ≥ 0 for n su�ciently large. From Lemma 4.7 we conclude that σn converges to
a �nite random variable and

∑
γnVn is �nite a.s. which implies (iii) since if σn converges to a

limit that is not σopt,
∑

γnVn = ∞ because of (A2)(ii) and (A3), leading to a contradiction.
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4.4 Some useful technical lemmas
Lemma 4.7 (Robbins-Siegmund Theorem). Let (Un)n≥0, (Vn)n≥0 and (Wn)n≥0 be three random
processes de�ned on some probability space (Ω,F ,P) and adapted with respect to a �ltration (Fn)
such that:

(i) Un ≥ 0,
∑

Wn < ∞ and for P-almost any every ω ∈ Ω there exists n0(ω) such that Vn(ω) ≥ 0,
n ≥ n0(ω),

(ii) E (Un+1|Fn) ≤ Un − Vn + Wn.

Then Un and
∑

Vn converge almost surely to �nite random variables.

Proof. Let Yn = Un−
∑n−1

i=0 (Wi−Vi), n ≥ 1. Then (Yn) is a supermartingale. For a positive integer
N > 0 de�ne SN = {ω :

∑n
i=0(Vi − Wi) < N, n ≥ 0}. Then on SN , (Yn) is a supermartingale

bounded from below (by −N) therefore converges a.s. to a �nite random variable. We have∑n−1
i=0 Vi = Yn − Un +

∑n−1
i=0 Wi ≤ Yn +

∑n−1
i=0 Wi. Since

∑
Wn < ∞ and Vn is nonegative for n

su�ciently large,
∑

Vn < ∞ on SN and Un also converges on SN to a �nite random variable.
Let ω ∈ Ω be such that

∑
Wn(ω) < ∞ and Vn(ω) ≥ 0 for n ≥ n0(ω).

∑n
i=0(Wi(ω) − Vi(ω)) ≤

supn

∑n
i=0 Wi(ω)+

∑n0(ω)
i=0 |Vi(ω)| < ∞. Then taking N > supn

∑n
i=0 Wi(ω)+

∑n0(ω)
i=0 |Vi(ω)|, we get

ω ∈ SN . In conclusion Ω = ∪SN and we are done.

Lemma 4.8. Let (Xn)n≥0 be a random sequence on some probability space (Ω,F ,P) adapted with
respect to a nondecreasing �ltration (Fn). Assume that there exist constants K1, K2 < ∞, 0 < ρ < 1,
a sequence of positive numbers γn = O (

n−λ
)
, λ ∈ (1

2
, 1] and an adapted positive random sequence

Vn such that |E (Xn+k|Fn)| ≤ K1(ρ
n + kγn)Vn, supn E(V 2

n ) < ∞ and E(Vn+k|Fn) ≤ K2Vn.
Then there exists a constant K < ∞ (that depends only on K1, K2, ρ and (γn)) such that

|E (Xn+k|Fn)| ≤ Kγk log(k)Vn, P− a.s. (4.27)

1

n

n∑

k=1

Xk → 0, a.s., as n →∞, (4.28)

and ∑
γnXn converges a.s. to a �nite random variable. (4.29)

Proof. Since (Fn) is nondecreasing, for n, k ≥ 0, 0 ≤ j ≤ k:

|E (Xn+k|Fn)| = |E [E (Xn+k|Fn+j) |Fn]|
≤ K1

(
ρk−j + (k − j)γn+j

)
E(Vn+j|Fn)

≤ K1K2

(
ρk−j + (k − j)γn+j

)
Vn.

Therefore, |E (Xn+k|Fn)| ≤ min0≤j≤k K1K2

(
ρk−j + (k − j)γn+j

)
Vn ≤ K3γk log kVn.

De�ne Yn = Xn − E(Xn) and Fn = {∅, Ω} if n < 0. Then it is easily seen that (Yn,Fn) is
a mixingale with mixingales sequences cn ≡ const. and ρn = γn log(2 + n). We apply Corollary
2.1 of Davidson and de Jong (1997) to obtain that 1

n

∑n
i=1 Yi → 0 a.s. But since |E(Xn)| ≤

K3γn log(2 + n)E(V0) → 0 as n →∞, (i) follows.
Similarly, (γnYn,Fn) is a mixingale with mixingale sequence cn ∝ γn and ρn = γn log(2 + n).

From Theorem 2.7 of Hall and Heyde (1980), we have
∑

γnYn converges a.s. to a �nite random
variable. (ii) follows since

∑
γnE(Xn) is a convergent series.
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