
Dipartimento di Economia
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Università degli Studi di Parma
Via Kennedy, 6
43100 PARMA

An improved two-step regularization scheme

for spot volatility estimation

Shigeyoshi Ogawa
Dept. Mathematics, Ritsumeikan University, Japan

ogawa-s@se.ritsumei.ac.jp

Simona Sanfelici
Dept. Economics, University of Parma, Italy

simona.sanfelici@unipr.it

WP 02/2008

Serie: Matematica

Dicembre 2008

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7188503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

We are concerned with the problem of parameter estimation in Finance, namely
the estimation of the spot volatility in the presence of the so-called microstructure
noise. In [16] a scheme based on the technique of multi-step regularization was
presented. It was shown that this scheme can work in a real-time manner. However,
the main drawback of this scheme is that it needs a lot of observation data. The aim
of the present paper is to introduce an improvement of the scheme such that the
modified estimator can work more efficiently and with a data set of smaller size. The
technical aspects of implementation of the scheme and its performance on simulated
data are analyzed. The proposed scheme is tested against other estimators, namely
a realized volatility type estimator, the Fourier estimator and two kernel estimators.

JEL: G10, C14, C22.
Keywords: Spot volatility; Nonparametric estimation; Multi-step regularization; Mi-
crostructure.

1 Introduction

Let p(t), (0 ≤ t ≤ T ) be a stochastic process representing the evolution in time of the
log-price of an asset, which in the theory of finance is supposed to be a real or an Rd

valued Itô process generated by the following mechanism;

dp(t) = a(t, ω)dt + b(t, ω)dW (t), t ∈ [0, T ] (1)

where W (t, ω), (t ≥ 0, ω ∈ Ω) is the Brownian motion process defined on a probability
space (Ω,F , P ) and a(·), b(·) are measurable functions, adapted to the natural filtration
{Ft, t ≥ 0} with Ft = σ{Ws; 0 ≤ s ≤ t} ∨ σ{p(0)}. Here we suppose that the random
variable p(0) is independent of the W (·). For simplicity we suppose that the following
conditions hold

A := sup
t

√
E[|a(t)|2] < ∞ and B := sup

t∈[0,T ]

E[b4(t)] < ∞. (2)

This is a standard model for the price process but the coefficients a(·), b(·) are not known
in real situation. We add one more hypothesis on the regularity of these coefficients as
follows

Hypothesis (H) The functions a(t, ω), b(t, ω) are Hölder continuous in t ∈ T of order
α ∈ (0, 1), in L2(Ω) sense; namely, for some constants LA, LB the following inequalities
hold

E[|b(t)− b(s)|2] ≤ L2
B|t− s|2α, E[|a(t)− a(s)|2] ≤ L2

A|t− s|2α, ∀t, s ≥ 0.

We are to study the problem of estimating the value b2(t, ω0) at any t, called the spot
volatility in the theory of Finance, starting from a finite set of observations {X(tk, ω0)}
of a single trajectory ω0 ∈ Ω.
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The recent availability of high frequency financial data has motivated a growing lit-
erature in the field of nonparametric estimation of volatility, see e.g [2], [19] for reviews.
In particular, the so-called Realized Volatility measure has received considerable atten-
tion and is widely used in the empirical Finance literature. More general and alternative
approaches to volatility estimation are pursued in [7, 3, 11, 8, 12].

However, when high frequency data are used, market microstructure effects may spoil
volatility estimates at a very large extent. Indeed, the efficiency of all the methodologies
proposed for accurately estimating the volatility builds on the observability of the true
price process, while observed asset prices are contaminated by market microstructure ef-
fects, such as price discreteness, separate trading prices for buyers and sellers and other
contaminations; as a consequence observed asset prices diverge from their efficient values.
The study of the implications of market microstructure noise on volatility measurement
has largely focused on the so-called integrated (e.g. daily) volatility and several methods
have been proposed to correct the realized volatility estimator for the effect of market mi-
crostructure noise, in order to obtain unbiased estimators of the true integrated volatility
[20, 1, 4, 5, 21, 6, 9, 14].

A very common way to model microstructure effects is assuming that the true value
of the process p(t) can not be observed but with an additive noise Z(t), namely what we
can observe is the values of the following contaminated process

X(t) = p(t) + Z(t). (3)

The noise Z(t) is supposed to be of very high frequency as featured in the following
condition (Z) and is called the microstructure noise.

Hypothesis (Z) Z has the following properties.

(a) E[Z] = 0, supt E[Z2
t ] = C2

z < ∞ (Cz = unknown positive constant)

(b) For an arbitrary point set {tk ∈ [0, T ], 1 ≤ k ≤ n} of arbitrary size n, the random
variables {Z(tk)} are independent.

A common assumption in the literature supposes that the noise process Z is inde-
pendent of the price process p(t). Nevertheless, we remark that in our discussion we do
not need this assumption.

In this context, we are concerned with the problem of estimating the spot volatility
value b2(tk) at any prefixed time {tk} ∈ [0, T ]. Our aim is to design an estimator that can
work in a real-time manner, namely an estimator that can estimate the spot volatility
at each time almost immediately on receiving the observed data around that time. A
preliminary form for such an estimator was proposed in [16] and was called real-time
estimator. Given the observed log-price process X(t), a first regularization is performed
to obtain a smoothed process X̄(t) which is then used to recover spot volatility. The author
showed that already in its preliminary form the estimator works very fast in computation
time with sufficient precision. The basic idea of this scheme is in the adoption of multi-step
regularizations which make use of non-overlapping windows of data and by this reason it
requires numerous observations around each point tk where the estimation is computed.
This yields an unmotivated limitation on the number of estimation points when only a
finite sample of data is available. In this paper we propose a modification of this scheme
which allows to use overlapping blocks of data for the regularization. This feature makes
the scheme much simpler to implement since it allows to use the same observed data
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repeatedly to estimate volatility at different estimation times, thus reducing the size of
necessary observation data.

We conclude this section with an important comment on our real-time scheme. The
literature on nonparametric estimation of volatility is nowadays well established. A re-
cently proposed method called kernel estimator ([11])

σ̂2(t) = lim
h→0

NT∑
i=1

1

h
K

(
ti−1 − t

h

)
[X(ti)−X(ti−1)]

2

is believed to cover a wide class of estimators for the spot volatility. However, this is not
the case for our estimator, as it can be seen by the following arguments. First we should
notice that the essential idea of our estimator is that we apply the regularization procedure
twice at two different stages, while the kernel type estimator given above is performed
on the data process X(t) and not on the smoothed one X̄(t). Therefore, looking at the
definition of the real-time estimator

G(M)−1

L

L∑

l=1

(∆k+l−1X̄)2

∆
,

we can say that our scheme is a kernel-type estimator over a regularized set of data and this
is of crucial importance to deal with microstructure effects. In particular, microstructure
noise is smoothed out by the inclusion in our estimator of a weighted sum of products
of lagged intra-day returns. Moreover, the specified kernel was found by an optimization
argument and allowed us to construct an easily implementable estimator having a very
simple form and working in a real-time manner. Finally we notice that, generally speaking,
the validity of the kernel method is assured by some kind of continuity of the function to
be estimated. Our theoretical analysis make this point much clear, since we clearly specify
the conditions under which our scheme provides good estimates of b2(t). More precisely,
this is assured by the hypothesis that b(t) is Hölder continuous in L2(Ω)-sense.

The remaining part of the paper is structured as follows. Section 2 briefly describes the
first version of the real-time estimator and states its error estimate. Section 3 is divided
in three subsections which introduce notations, present the new form of the real-time
estimator and prove the new bias estimate. In Section 4, we discuss the implementation
of the proposed estimator and of other well known spot volatility estimators and test their
performance on simulated data. Section 5 concludes.

2 Old scheme based on multi-step regularization

In this paragraph we briefly resume the old scheme based on the idea of multi-step reg-
ularization. We will denote by {tk, 0 ≤ k ≤ N} the set of N points in [0, T ] such that
tk = k∆, ∆ = T/N . At each point tk we want to estimate the value of the spot volatility
b2(tk, ω). To smear out the influence of the noise Z we need a regularization procedure
and for that purpose we introduce around each estimation point tk a set of finer partition
points {tik}, −M ≤ i ≤ M given by

tik := tk +
i

2M
∆. (4)
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To a data process Y (= X, p, and Z) the regularization procedure is applied in the following
manner to obtain the regularized process Ȳ (t)

Ȳ (tk) :=
1

2M + 1

M∑
i=−M

Y (tik), where Y = X, p, Z. (5)

Remark 2.1 We may also think about regularizations of different forms as follows

Ȳ (−)(tk) :=
1

M

0∑
i=−M+1

Y (tik)

or

Ȳ (+)(tk) :=
1

M

M−1∑
i=0

Y (tik).

The former variant Ȳ (−)(tk) is important since the estimator of this form uses only trades
available up to time tk, hence it is adapted to the observed process. But for the sake of
simplicity we will mainly discuss the regularization given in the definition (5) above.

Thus, after the first regularization procedure we have

X̄(tk) = p̄(tk) + Z̄(tk) 1 ≤ k ≤ N − 1. (6)

The aim of the procedure is to calm down the influence from the noise process as we
see in the following

E[Z̄(tk)] = 0, V ar(Z̄(tk)) =
1

(2M + 1)2

∑

|i|≤M

V ar(Z(tik)) ≤
C2

z

2M + 1
.

Due to the fact that the noise process Z(t) exhibits a very high frequency movement
compared to the signal process p(t), the simple scheme introduced in [17] and based on the
coupling of two techniques of quadratic variation and a further regularization procedure
is expected to apply to the data process X̄ given in (6). This consideration is the basis
for the construction of the estimator b̂2(tk) defined in [16] as

Definition 2.2 (Estimator)

b̂2(tk) =
G(M)−1

2L + 1

2L∑

l=0

(∆k+l−LX̄)2

∆
(7)

where

G(M) =
1

(2M + 1)2

2M∑
i,j

(
1− |i− j|

2M

)
=

8M2 + 6M + 1

3(2M + 1)2

and ∆kX̄ = X̄(tk)− X̄(tk−1).

Remark 2.3 The estimator which is adapted to the observed process should be given in
the following form

b̂2(tk) =
G(M)−1

2L + 1

2L∑
i=0

(∆k+i−2LX̄(−))2

∆
. (8)
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As for the efficiency of this estimator (7) we have the following result

Theorem 2.4 ([16]) For some positive constants C1, C2, C3, C4, independent of the pa-
rameters L,M, N the following estimate holds at every point tk = k∆

E
[
|b̂2(tk)− b2(tk)|

]
≤ C1

(
L

N

)α

+ C2
1

Nα∧1/2
+ C3

√
N

M
+ C4

1√
L

.

By checking the proof given in [16] we see the validity of the inequality with appro-
priately chosen constants as follows

C1 = 2B1/4L
1/2
B T α

C2 = 3Cδ = 6{
√

B1/2(
L2

B

2α+1
+ 4C2

z ) + 1}

C3 = 3(
√

CpCz + Cz) ≥ 3A2

T
(
√

B + 1/2)

C4 = 2
√

3B.

(9)

where Cp is a constant such that E[(∆kp̄)2/∆] ≤ Cp.

Already in this preliminary form the estimator works very fast in computation time
with sufficient precision. However, the first regularization makes use of non-overlapping
windows of data and by this reason it requires numerous observations around each point
tk where the estimation is computed. In the next section, we propose a modification of this
scheme which allows to use overlapping blocks of data for the regularization. This feature
makes the scheme much simpler to implement since it allows to use the same observed
data repeatedly to estimate volatility at different estimation times.

3 The new scheme

By Theorem 2.4, we see that an appropriate tuning of the parameters L,M, N can assure
a good behavior of our estimator. However, we also notice as a weak point of our estimator
that it needs a lot of data to compute the estimation. For the computation of estimates at
all N points {tk} we need 2MN observation data, or MN for the case of causal estimator
(8). Looking at the error terms that appear on the right hand side of the estimation
inequality given in Theorem 2.4, we know that the three parameters L,M, N should be
chosen in the following way

1 << L << N << M.

Thus the total number of data 2MN should become very large, compared to the number
of estimation points N . Hence we have great interest in finding some technique such that
the total number of observation points can be smaller and not depending on N and on
the bandwidth M according to the relations above. This can be done by allowing, in the
first regularization procedure, the multiple use of the data in overlapping intervals. We
are going to explain this idea and how the new scheme would work. In what follows we
still suppose that the assumptions (H) and (Z) hold.
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3.1 Point sets and parameters

For the convenience of expressing the formula of the estimator we need to introduce one
more parameter, NT standing for the total number of the observed data, while N stands
for the total number of estimating points which we denote by {t′k}. According to this
change in the system of parameters, we will resume their meaning in the following

• NT : we will denote by {tk, 0 ≤ k ≤ NT} the set of points where the process X(t) is
observed. For simplicity we suppose that the points tk are equally spaced; therefore
tk = k T

NT
= k∆, with the convention ∆ = T

NT
.

• D and N : the estimation of the value b2(t) is computed only at the points {t′k} ⊂
{tk}, where t′k = tkD for some D ∈ N and k = 1, 2, . . . , N . Clearly, ND = NT .

• M : at each t′k the first regularization X̄(t′k) is formed by taking M data at points
{tkD−i+1, 1 ≤ i ≤ M}, that is the first regularization is computed by the causal
form.

• ρ : the ratio between two parameters M,D is denoted by the symbol ρ =
M

D
.

• L: the number of points {t′k+l, 1 ≤ l ≤ L} used for the second regularization at
time t′k (see Section 3.3).

3.2 A new scheme for estimation

We introduce the first regularization procedure in the following way

X̄(t′k) =
1

M

M∑
i=1

X(tkD−i+1), 1 ≤ k ≤ N, (10)

where N = NT /D.
The regularization of other processes p(t), Z(t) at t = t′k = tkD is defined in the same

way. Thus we have
X̄(t′k) = p̄(t′k) + Z̄(t′k).

When M = D the procedure is just the same as the old one. Hence we are interested in
this article only in the case D < M .

Notice that E[(Z̄)2] =
Cz

M
by hypothesis (Z). Now taking the increment over [t′(k−1), t

′
k]

of each member in the relation above, we have

∆′
kX̄ = ∆′

kp̄ + ∆′
kZ̄

where,
∆′

kȲ = Ȳ (t′k)− Ȳ (t′k−1) = Ȳ (tkD)− Ȳ (t(k−1)D), (Y = X, p, Z).

Given this, we are to present the new scheme of our estimator in the following

Definition 3.1 For each t′k (1 ≤ k ≤ N) we set

b̂2(t′k) =
G−1(M)

L

L∑

l=1

(∆′
k+lX̄)2

∆′ , (11)

where, ∆′ = T/N = D∆ and G(M) =
3MD −D2 + 1

3M2
.
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We remark that the new normalizing constant G(M) is derived from the following equality

G(M) =
1

DM2

D∑
ij=1

{M − |i− j|}. (12)

As for the precision level of this estimator, we have the following result

Theorem 3.2 Under the condition that D < M , the following error estimate holds

E|b2(t′k)− b̂2(t′k)| ≤
C1max{ρ, |L− ρ|} α

√
M

NT

+ C2
1

3ρ
√

ρ

√
1

L
+ C3

3

3ρ2 − 1
(

D

NT

)α∧1/2 + C4

√
NT

M2
,

where the C1, C2, C3, C4 are positive constants independent of all control parameters NT , N,D, M
and L.

3.3 Proof of Theorem 3.2

For the verification of Theorem we need some lemmas. First notice that t′k = tkD and that
the increment over the interval [t′k−1, t

′
k] of the regularized processes Ȳ (= X̄, p̄, Z̄) can be

expressed in the following way

∆′
kȲ : = Ȳ (t′k)− Ȳ (t′k−1) =

1

M

M∑
i=1

{Y (tkD−i+1)− Y (tkD−D−i+1)}

=
1

M

D∑
i=1

{Y (tkD−i+1)− Y (tkD−i+1−M)}.
(13)

Thus by Hypothesis (Z) we have

E[(∆′
kZ̄)2] =

2DCz

M2
.

From equation (13) we see ∆′
kp̄ =

1

M

D∑
i=1

∆M
k,ip, where

∆M
k,ip := p(tkD−i+1)− p(tkD−i+1−M) =

∫ tkD−i+1

tkD−i+1−M

{a(s)ds + b(s)dWs}. (14)

Set

εk,i =

∫ tkD−i+1

tkD−i+1−M

[{a(s)− a(tkd−i+1−M)}ds + {b(s)− b(tkD−i+1−M)}dWs],

then we see from equation (14) that

∆M
k,ip̄ = a(tkD−i+1−M)M∆ + b(tkD−i+1−M)∆M

k,iW + εk,i (15)

where ∆M
k,iW = W (tkD−i+1)−W (tkD−i+1−M) is a random variable following the normal

law N(0,M∆). Moreover following the same argument given in the previous article ([16])
we readily obtain the following estimate
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Lemma 3.3 We have

E[|εk,i|2] ≤ (M∆)2α+1

2α + 1
{M∆L2

A + L2
B},

which yields the following estimate when M∆ < 1

E[|εk,i|2] ≤ L2
A + L2

B

2α + 1
(
M

D
)2α+1(∆′)2α+1.

Proof Since ε is just the one-step error of the Euler-Maruyama scheme for the
discrete approximation of the SDE, taking the hypothesis (H) into account and following
a usual discussion in the theory of numerical solution to SDE, we get the conclusion (see
for example [18]). q.e.d.

By definition of the process X(t) we have

(∆′
kX̄)2 =

1

M2

D∑
i,j=1

∆M
k,iX∆M

k,jX

=
1

M2

D∑
j,j=1

∆M
k,ip∆M

k.jp + (∆′
kZ̄)2 + 2(∆′

kp̄)(∆′
kZ̄).

(16)

To evaluate the difference between (∆′
kX̄)2 and b(t′k)

2∆′ we first analyse the quantity
∆M

k,ip∆M
k,jp. From equation (15) we see

∆M
ki p∆M

kjp = {a(tkD−i+1−M)(M∆) + b(tkD−i+1−M)∆M
k,iW + εk,i}

×{a(tkD−j+1−M)(M∆) + b(tkD−j+1−M)∆M
k,jW + εk,j}, (1 ≤ i, j ≤ D).

Set
δij
k = ∆M

ki p∆M
kjp− b(tkD−i+1−M)b(tkD−j+1−M)∆M

k,iW∆M
k,jW, (17)

then by Lemma 3.3 we easily get the following estimate

Lemma 3.4 For any 1 ≤ i, j ≤ D and any 1 ≤ k ≤ N the following inequality holds

E|δij
M | = O((M∆)(α∧1/2)+1 = O((∆′)(α∧1/2)+1.

A simple calculus yields the following equality

∆M
ki W∆M

kjW = {M − |i− j|}∆ + θij
k (i ≥ j), (18)

where

θij
k = 2

∫ tkD−i+1

tkD−j+1−M

{W (s)−W (tkD−j+1−M)}dWs

+{W (tkD−j+1)−W (tkD−i+1)}{W (tkD−i+1)−W (tkD−j+1−M)}
+{W (tkD−i+1)−W (tkD−j+1−M)}{W (tkD−j+1−M)−W (tkD−i+1−M)}.

We notice that θij
k has following properties.

Lemma 3.5 For any 1 ≤ i, j, i′, j′ ≤ D and any k, l(k 6= l) it holds
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(a) E[θij
k ] = 0, E[θij

k θi′j′
l ] = 0

(b) E[(θij
k )2] = 2M(M − |i− j|)∆2 = 2 M

D2 (∆
′)2

(c) E[(θij
k )4] ≤ 3078(M∆)4.

Proof Properties (a),(b) being almost immediate by simple calculus, we will show
the property (c). We treat the case i ≥ j.
Set θij

k = Θ1 + Θ2 + Θ3, where

Θ1 = 2

∫ tkD−i+1

tkD−j+1−M

{W (s)−W (tkD−j+1−M)}dWs

Θ2 = {W (tkD−j+1)−W (tkD−i+1)}{W (tkD−i+1)−W (tkD−j+1−M)}
Θ3 = {W (tkD−i+1)−W (tkD−j+1−M)}{W (tkD−j+1−M)−W (tkD−i+1−M)}.

For each of these 3 terms we have the following estimates

• E[Θ4
1] = 96E{∫ tkD−i+1

tkD−j+1−M
(Ws −W (tkD−j+1−M))2ds}2

≤ 96(M − |i− j|)∆E{
∫ tkD−i+1

tkD−j+1−M

(Ws −W (tkD−j+1−M))4ds}
= 96{(M − |i− j|)∆}4

• E[Θ4
2] = 9(i− j)2(M − |i− j|)2∆4

• E[Θ4
3] = 9(i− j)2(M − |i− j|)2∆4

Substituting these estimates into the inequality

E[(θij
k )4] ≤ 27E[Θ4

1 + Θ4
2 + Θ4

3]

and noting that (i− j)2, (M − |i− j|)2 ≤ M2 we obtain the result (c). q.e.d.

Now we set
ηij

k := b(tkD−j+1−M)b(tkD−i+1−M)θij
k

and find the following estimate

Lemma 3.6 For any indexes 1 ≤ i, j, i′, j′ ≤ D we have the following equalities and
inequality

E[ηij
k ] = 0,

E[ηij
k ηi′j′

l ] = 0 for |k − l| ≥ M/D + 1

E[(ηij
k )2] ≤ 2B(M∆)2 = 2B(M

D
)2(∆′)2,

where B = supt E[b4(t)].

Proof The first two equalities being evident, we are going to show the last inequality.
Set

Hi := b(tkD−j+1−M)b(tkD−i+1−M)Θi (i = 1, 2, 3).

Since E(HiHj) = 0 i 6= j, we have E[(ηij
k )2] = E[H2

1 + H2
2 + H2

3 ]. For the terms H1, H2

we have
E[H2

1 ] = E[b2(tkD−j+1−M)b2(tkD−i+1−M)E{Θ2
1|FkD−i+1−M}]

≤ 2B[(M − |i− j|)∆]2,

E[H2
2 ] ≤ B|i− j|(M − |i− j|)∆2 ≤ B M

D
(∆′)2.

(19)
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The estimation of the term H3 is a little bit complicated. We begin by noting the following

E[H2
3 ] = E[{W (tkD−i+1)−W (tkD−j+1−M)}2]

×E[b2(tkD−j+1−M)b2(TkD−i+1−M){W (tkD−j+1−M)−W (tkD−i+1−M)}2]
= (M − |i− j|)∆
×E[b2(tkD−i+1−M)E[b2(tkD−j+1−M){W (tkD−j+1−M)−W (tkD−i+1−M)}2|FkD−i+1−M ]].

(20)
On the other hand

E[b2(tkD−j+1−M){W (tkD−j+1−M)−W (tkD−i+1−M)}2|FkD−i+1−M ]
√

E[b4(tkD−j+1−M)|FkD−i+1−M ]E[{W (tkD−j+1−M)−W (tkD−i+1−M)}4|FkD−i+1−M ]

=
√

6|i− j|∆√
E[b4(tkD−j+1−M)|FkD−i+1−M ].

Combining this with (20), we obtain

E[H2
3 ] ≤

√
6B(M − |i− j|)|i− j|∆2. (21)

Hence by (19) and (21) we get the desired inequality

E[(ηij
k )2] ≤ B(M − |i− j|)∆2{2(M − |i− j|) + (

√
6 + 1)|i− j|}

≤ 2B(M2 − |i− j|2)∆2

≤ 2B(M∆)2 = 2B(
M

D
)2(∆′)2.

q.e.d.

Let us give a look on each component of our estimator. By definition of the estimator
and by equations (16)-(18), we have the following equality

b̂2(t′k) =
1

G(M)L

L∑

l=1

1

DM2

D∑
ij=1

b(t(k+l)D−i+1−M)b(t(k+l)D−j+1−M)(M − |i− j|)

+
1

G(M)M2

D∑
ij=1

1

L

L∑

l=1

ηij
k+l

∆′

+
1

G(M)L

L∑

l=1

{(∆′
k+lZ̄)2

∆′ + 2
(∆′

k+lZ̄)(∆′
k+lp̄)

∆′ }

+
1

G(M)L

L∑

l=1

1

M2

D∑
ij=1

δij
k+l

∆′ .

Knowing the definition (12) of G(M), from the above expression we obtain the following

11



estimate

E|b2(t′k)− b̂2(t′k)| ≤ 1

G(M)L

L∑

l=1

1

DM2

D∑
ij=1

(M − |i− j|)

×E[|b(t(k+l)D−i+1−M)b(t(k+l)D−j+1−M)− b2(tkD)|]

+
1

G(M)M2

D∑
ij=1

E[| 1
L

L∑

l=1

ηij
k+l

∆′ |]

+
1

G(M)L

L∑

l=1

1

M2

D∑
ij=1

E|δij
k+l|

∆′

+
1

G(M)L

L∑

l=1

{E|(∆
′
k+lZ̄)2

∆′ |+ 2E|∆
′
k+lp̄∆′

k+lZ̄

∆′ |},

we denote these 4 terms by the following symbols,

=: T1 + T2 + T3 + T4.

(22)

To evaluate the term T1 we notice that, when LD ≤ 2M , the quantity

E[|b(t(k+l)D−i+1−M)b(t(k+l)D−j+1−M)− b2(tkD)|]

can be evaluated in the following way

E[|b(t(k+l)D−i+1−M)b(t(k+l)D−j+1−M)− b2(tkD)|]
≤ {√BE|b(t(k+l)D−j+1−M)− b(tkD)|2}1/2

+{√BE|b(t(k+l)D−i+1−M)− b(tkD)|2}1/2

≤ 2B1/4LB(max
l,j

|M − lD + j − 1|∆)α = 2B1/4LB(
M

D
)α(∆′)α,

since we have max
l.j
{|lD − j + 1−M |} = max{LD −M, M − 1} ≤ M when LD ≤ 2M .

Thus

T1 ≤





2B1/4LB|L− M

D
|α(∆′)α for LD > 2M

2B1/4LB(
M

D
)α(∆′)α for LD ≤ 2M.

In other words we confirm the next

Lemma 3.7 Set C(L, M) = max{|L− M

D
|, |M − 1

D
|}, then we have

T1 ≤ 2B1/4LBC(L,M)α(∆′)α = C1 max{ρ, |L− ρ|} α

√
M

NT

),

where C1 = 2B1/4LB
α
√

T .

For the estimation of the term T2, we notice that

E

∣∣∣∣∣
1

L

L∑

l=1

ηij
k+l

∆′

∣∣∣∣∣ = O(

√
M

DL
).

12



In fact, by Lemma 3.6 we see that

E| 1
L

L∑

l=1

ηij
k+l

∆′ |2 =
1

L2

∑

|k−s|≤M/D+1

E|η
ij
k+lη

ij
s+l

(∆′)2
|

≤ 1

L2
2B(

M

D
)2

∑

|k−s|≤M/D+1

= 2B
M2

D2

1

L2
{L2 − (L− |M

D
− 1|)2}

≤ 2(2B + 1)
M3

D3

1

L
.

Hence

T2 ≤
√

2(2B + 1)

√
D

M

1

G(M)

1√
L

.

Moreover, from

G(M) =
(3ρ− 1)D2 + 1

3(ρD)2
≤ 1

3ρ
,

we obtain the following estimate

Lemma 3.8 T2 ≤ C2
1

3ρ
√

ρ
1√
L
, where C2 =

√
2(2B + 1).

For the terms T3, T4, it is not difficult to show the following results by using Lemma
3.4 and Lemma 3.3

Lemma 3.9 (1) T3 ≤ 3

3ρ2 − 1
(∆′)α∧1/2 = C3

3

3ρ2 − 1
(

D

NT

)α∧1/2, with C3 = α∧1/2
√

T

(2) T4 ≤ C4

√
NT

M2
, with C4 =

√
2C2

z

T
.

We conclude this section giving the proof of the main theorem.

Proof of Theorem 3.2 Substituting the results of Lemmas 3.7, 3.8 and 3.9 into the
inequality (22) we obtain the desired estimate. The forms of the constants C1, C2, C3 and
C4 are also clear from the corresponding lemmas. q.e.d.

4 Numerical aspects of the estimators

In this section we analyze the technical aspects of implementation of the real-time scheme
(11) and its performance as spot volatility estimator. The proposed scheme is tested
against other estimators, namely a realized volatility type estimator, the Fourier estimator
[12] and two kernel estimators [3, 7].

For the sake of completeness, we briefly recall the spot volatility estimators employed
in the comparison. Given a discrete realization of the process Xt, namely given NT + 1
observations X(t0), X(t1), . . . , X(tNT

) in the interval [0, T ], we want to estimate the spot
volatility b2(t′k) at time t′k. The simplest estimator is given by

σ̂2
0(t

′
k) :=

(X(t′k)−X(t′k−1))
2

∆′ .

13



Unfortunately, this estimator is very noisy. A more robust estimator of the Realized Volatil-
ity type is

σ̂2
R(t′k) :=

1

m

m∑
j=1

(X(t′k−m/2+j)−X(t′k−m/2+j−1))
2

∆′ .

σ̂2
R is an average of m squared returns around tk. The larger m, the smoother the estimates.

In the presence of microstructure effects due to tick-by-tick quotes, data must be sampled
at a lower frequency in order to filter out the high frequency noise component.

A general class of nonparametric spot volatility filters is based on a kernel weighted
measure of the integrated volatility [11] and can be seen as a continuous-time weighted
moving average of the instantaneous volatility. Given a kernel K : R → R normalized
to

∫
RK(z)dz = 1 and a bandwidth h > 0, define Kh(z) := K(z/h)/h. Then, based on

standard results for kernel estimators, a natural spot volatility estimator is

σ̂2(t) = lim
h→0

N∑
i=1

Kh(t
′
i−1 − t)[X(t′i)−X(t′i−1)]

2.

This is Nadaraya-Watson type kernel estimator and it is simply the limit for shrinking
bandwidth sequences of a kernel weighted average of the squared increments of data or, in
other words, a kernel regression estimator in the time domain. By an appropriate choice
of the kernel, it can potentially deal with the presence of market microstructure effects.
This broad class of estimators includes as a special case the standard realized volatility
type estimators and the rolling window estimators proposed by [7, 3]. In [3] the k-day
spot volatility estimator is defined as a one-sided moving k-day average of one-day spot
volatility given by a rescaled sum of squared intraday returns. This estimator looks very
close to the one proposed in the present paper; however, our real-time scheme allows for
more freedom in the choice of the windows in the two regularization processes and by
introducing suitable weights allows to deal with the presence of market microstructure
effects. See also the discussion in Section 1 on this issue.

In particular, in our analysis we consider the following schemes from the class of
kernel estimators: the one-sided exponential filter

σ̂2
E(t′k) = (1− λ)

k∑
i=1

λi[X(t′k−i+1)−X(t′k−i)]
2,

where λ is a smoothing parameter, which can be set equal to 0.94 for daily data according
to J.P. Morgan standard; the one-sided rolling daily window volatility, defined as

σ̂2
W (t′k) =

nL∑
j=1

wj[X(t′k−j+1)−X(t′k−j)]
2,

where nL is the lag length of the rolling window and wj = exp(−αj). The parameter α
can be optimized to minimize the asymptotic measurement error variance as explained in
[7]. These two volatility measures are then normalized by the sampling interval in order
to obtain a measure of volatility per unit time.

The Fourier estimator of the spot volatility reconstructs the volatility in the frequency
domain and derives an estimator of it in terms of Fourier transforms [12]. To conform
notation to the existing literature, in the following we will denote the diffusion coefficient
by σ instead of b. Assume that the process pt is observed on a fixed time window, which

14



can be always reduced to [0, 2π] by change of origin and rescaling, and a and σ are adapted
random processes satisfying hypothesis

E[

∫ 2π

0

(a(t))2dt] < ∞, E[

∫ 2π

0

(σ(t))4dt] < ∞.

The Fourier method reconstructs σ2(t) on [0, 2π] using the Fourier transform of dp(t).
Define the Fourier coefficients of dp and σ2 as follows

a0(dp) =
1

2π

∫ 2π

0

dpt, a0(σ
2) =

1

2π

∫ 2π

0

σ2(t)dt,

ak(dp) =
1

π

∫ 2π

0

cos(kt)dpt, ak(σ
2) =

1

π

∫ 2π

0

cos(kt)σ2(t)dt,

bk(dp) =
1

π

∫ 2π

0

sin(kt)dpt, bk(σ
2) =

1

π

∫ 2π

0

sin(kt)σ2(t)dt.

In [12] it is shown that, given an integer n0 > 0, we have

a0(σ
2) = lim

NF→∞
π

NF + 1− n0

NF∑

k=n0

1

2
(a2

k(dp) + b2
k(dp)) (23)

aq(σ
2) = lim

NF→∞
π

NF + 1− n0

NF∑

k=n0

1

2
(ak(dp)ak+q(dp) + bk(dp)bk+q(dp)) (24)

bq(σ
2) = lim

NF→∞
π

NF + 1− n0

NF∑

k=n0

1

2
(ak(dp)bk+q(dp) + bk(dp)ak+q(dp)) (25)

almost surely. Then, σ2
t can be computed using its Fourier coefficients as

σ̂2(t) = lim
M→∞

M∑

k=0

[ak(σ
2) cos(kt) + bk(σ

2) sin(kt)] (26)

where convergence is in L2([0, 2π]) norm.
From this convergence result, a suitable estimator for the spot volatility can be derived

by truncating the expansion (26) and approximating the coefficients of dpt by means of

ak(dp) ∼= p(2π)− p(0)

π
− 1

π

NT−1∑
i=0

p(ti)[cos(kti+1)− cos(kti)]

bk(dp) ∼= − 1

π

NT−1∑
i=0

p(ti)[sin(kti+1)− sin(kti)].

In implementing the Fourier estimator σ̂2
F on a finite sample, the limits in (23)-(25)

cannot be achieved, since the smallest wavelength that can be evaluated in order to avoid
aliasing effects is twice the smallest distance between two consecutive prices, which yields
NF ≤ NT /2 (Nyquist frequency). However, as shown both theoretically and empirically
in [14] in a study of the integrated volatility, the Fourier estimator can be made robust
to microstructure effects by considering a smaller number of Fourier coefficients in the
expansions.
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When actually implementing the estimator, we add a linear trend on the observed
process Xt such that we get X(2π) = X(0), which does not affect the volatility estimate.
Moreover, we set n0 = 1 and we filter progressively high modes by using the following
approximation of the volatility

σ̂2
F (t) =

M∑

k=0

ϕF (δk)[ak(σ
2) cos(kt) + bk(σ

2) sin(kt)],

where ϕF (x) = sin2 x/x2 is the modified Fejer kernel [13] and δ is a parameter adapted
to the scale which is expected to give an appropriate resolution of the volatility and to
filter out high frequency noise modes. It is advisable to take δ ≥ 1/M ; the larger δ, the
smoother and less detailed the estimated volatility. After choosing a suitable value of the
cutting frequency NF , it is convenient to use the maximum M that can be computed,
namely M = NF − n0, and then tune δ to filter high frequencies. Finally, we remark that
according to well-known diffraction phenomena of Fourier series near the boundary of the
time window this estimator performs badly at the boundaries.

We simulate discrete data from Heston continuous time stochastic volatility model
[10], with microstructure contaminations. From the simulated data, volatility estimates
can be compared to the value of the true volatility path. The infinitesimal variation of
the true log-price process and spot volatility is given by the following SDE’s

dp(t) = µ(t) dt + σ(t) dW1(t)
dσ2(t) = α(β − σ2(t))dt + νσ(t) dW2(t),

(27)

where W1, W2 are possibly correlated Brownian motions with < dW1, dW2 >t= ρdt and
α is the speed of reversion of the variance σ2 to its long term mean β. Moreover, we
assume that the logarithmic noises Z(tk) are i.i.d. Gaussian and independent from p; this
is typical of bid-ask bounce effects in the case of exchange rates and, to a lesser extent, in
the case of equities. Alternative, possibly discrete, distributions can be used to describe
microstructure noise. In [15], for instance, a bid-ask bounce effect is described by an
order-driven indicator discrete variable.

In order to avoid other data manipulations such as interpolation or imputation which
might affect the numerical results, we generate (through simple Euler-Maruyama dis-
cretization scheme) second-by-second evenly sampled true and observed returns and vari-
ance paths over a daily trading period of T = 6 hours, for a total of 21600 observations
per day. In the case of microstructure contaminations, observed returns must be sampled
at a lower frequency in order to have consistent realized volatility type estimates.

Figure 1 shows the true and estimated variance paths for 100 days of trading and
sampling frequency of 1 second in the presence of microstructure effects. The parameter
values are taken from the original paper [10]: α = 2.0, β = 0.01, ν = 0.1, µ = 0.0, ρ = 0.0,
p0 = log 100, σ0 = β; moreover, var(Zt) = 0.0142. The other parameters involved in the
real-time estimator design are NT = 2160000, N = 21600, D = 100, while M and L
are let to vary. In Panel A, we set L = [2

√
N ] = 294 and M = 50, 100, 200, 1500 in the

magenta, green, blue and yellow trajectories respectively. The corresponding Integrated
Squared Error E[

∫ T

0
(σ̂2

t − σ2
t )

2dt] between the generated and reconstructed trajectories
changes from 3.0428e-5 to 6.8862e-6 to 4.0706e-6 to 6.7678e-6. In Panel B, we set M =
200 and L = 100, 294, 500 in the magenta, blue and green trajectories respectively. The
corresponding Integrated Squared Error changes from 3.0946e-6 to 4.0706e-6 to 5.0613e-6.
We can notice that the parameter M has the greatest effect on the real-time estimator:
very small or very large values of M yield large peaks and oscillations in the estimated
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Figure 1: True and estimated variance paths obtained by the real-time scheme. Parameter
values: NT = 2160000, N = 21600, D = 100. Panel A: L = 294 and M = 50, 100, 200, 1500
in the magenta, green, blue and yellow trajectories respectively. Panel B: M = 200 and
L = 100, 294, 500 in the magenta, blue and green trajectories respectively.

volatility path, while a larger L value yields a slight smoothing and anticipating effect.
For this reason, M can be used as tuning parameter to design optimized estimators, as
explained below. Figure 2 shows the Integrated Squared Error as a function of M and L.
Its minimum is achieved at M = 250, L = 115 and is equal to 2.9782e-6.

Figure 3 shows the true and estimated variance paths for 100 days of trading and
sampling frequency of 1 second in the presence of microstructure effects. When microstruc-
ture effects are included in the model, the realized volatility type estimators are spoiled
unless we resort to lower frequency data sampling. Therefore, to compute σ̂2

R we sample
quotes each hour, while for the real-time scheme and the Fourier estimator we use all the
data. In the first panel, the parameters for each estimator are arbitrarily set to M = 100,
L = 294, m = 30, λ = 0.75, α = 0.665 and nL = 26, while in the second panel they are
chosen in such a way to optimize the different estimators. More precisely, the optimized
estimators are obtained by minimizing the Integrated Squared Error E[

∫ T

0
(σ̂2

t − σ2
t )

2dt]
between the generated and reconstructed trajectories with respect to M (and keeping
L arbitrarily fixed to the suboptimal value [2

√
N ]) for the real-time scheme, m for the

realized volatility estimator σ̂2
R, λ for the exponential filter and α for the rolling window.

The Fourier parameters are chosen arbitrarily as NF = 50 and δ = 2 in order to filter
out high frequency noise modes, i.e. they are not optimized. Moreover, this estimator has
been computed by reconstructing the Fourier expansion on each day separately, because
otherwise it would provide a too smooth trajectory but nevertheless capable of capturing
the peaks of the volatility path. The best volatility estimates are provided by the real-
time scheme and the Fourier estimator, with an Integrated Squared Error equal to 1.45e-5
and 2.70e-6 respectively. The (suboptimal) Fourier estimator provides a very good recon-
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Figure 2: Integrated Squared Error as a function of M and L. Parameter values: NT =
2160000, N = 21600, D = 100.

struction of the dynamics of the original process (27) as well, with a good representation
of both the abrupt changes and the more regular sections in the volatility path. On the
contrary, both the rolling window and the exponential filter are not much accurate.

One advantageous peculiarity of the real-time estimator consists in its ease of imple-
mentation and therefore in the fact that it works faster than others for a given accuracy
level, namely in its real-time property. This is an issue of the outmost importance from
a practitioner point of view. In order to better compare the computational speed of the
different estimators, we fix a suitable precision threshold (ε = 2.0e− 3) and tune the esti-
mator parameters in such a way that the Integrated Squared Error is below this level. The
considered parameters are again M for the real-time scheme, m for the realized volatility
estimator, λ for the exponential filter and α for the rolling window. The tuning is achieved
by letting the specific parameters of each method vary in a range of 100 values; of course,
the computational time may be influenced by how far the initial value of each parameter
is from the threshold value and therefore the total number of iterations K is displayed
for the reader’s convenience. The results are shown in Table 1 and refer to 100 days of
trading and a sampling frequency of 1 second. The CPU time refers to the computational
time in seconds needed to identify the estimators having the Integrated Squared Error
below ε. The corresponding Integrated Squared Error is displayed. Moreover, as a further
information, the minimum achievable Integrated Squared Error is listed in the 5th column
with the corresponding parameter value in the 6th one. The Fourier estimator has been
excluded from the comparison because it is not competitive from a computational cost
point of view. However, for the sake of completeness, the Integrated Squared Error achiev-
able by the Fourier estimator and the corresponding parameter values used δ and NF are
listed as well. It is evident that in the presence of microstructure effects the real-time esti-
mator b̂2 provides the highest accuracy at the expense of a slightly higher computational
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Figure 3: True and estimated variance paths. Red line: true spot volatility; green line:
real-time scheme; magenta line: Fourier estimator; dashed line: Realized Volatility type
estimators σ̂2

R; dotted line: rolling window; yellow line: exponential filter.

cost. We remark that, using daily data, the exponential filter and the rolling window do
not provide accurate volatility estimates.

Finally, in Table 2 we consider the situation where ρ = −0.35 in order to investigate
how robust our estimator is to leverage effects. We can see again that the real-time scheme
provides the most accurate estimate at the expenses of a slightly higher computational
cost. In particular, in order to avoid the end effects which would affect Fourier expansion
on each trading day, the Fourier estimator has been estimated on the whole 100 days
trading period, with NF = 200 and δ = 0.1. Finally, we remark that in all the simulations
related to Tables 1-2 the optimal value for the parameter M in the real-time estimator
is such that the windows of data involved in the first regularization overlap. In fact,
Mopt > D = 100. This is a further support of the need for the more general form (11) of

Method CPU time Int. Sq. Err. Param. K Min. Int. Sq. Err. Param.

b̂2 4.14e+0 1.41e-5 60 1 3.62e-6 400
σ̂2

R 0.00e+0 1.82e-5 20 1 1.57e-5 32
σ̂2

E 0.00e+0 1.35e-3 0.51 1 8.35e-4 0.87
σ̂2

W 1.60e–2 1.95e-3 0.63 13 1.33e-3 0.87
σ̂2

F - 2.70e-6 δ = 2.0 NF = 50 - -

Table 1: CPU time in seconds needed to identify estimators having Integrated Squared
Error below ε = 2e − 3. The other entries from left to right are: the corresponding
Integrated Squared Error and parameter value, the number of iterations performed, the
minimum achievable Integrated Squared Error and the corresponding parameter value.
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Method CPU time Int. Sq. Err. Param. K Min. Int. Sq. Err. Param.

b̂2 4.25e+0 1.40e-5 60 1 3.39e-6 290
σ̂2

R 0.00e+0 2.50e-5 20 1 1.70e-5 208
σ̂2

E 0.00e+0 1.23e-3 0.51 1 7.70e-4 0.94
σ̂2

W 3.10e-2 2.00e-3 0.96 46 1.56e-3 1.31
σ̂2

F - 4.32e-6 δ = 0.1 NF = 200 - -

Table 2: CPU time in seconds needed to identify estimators having Integrated Squared
Error below ε = 2e − 3. The other entries from left to right are: the corresponding
Integrated Squared Error and parameter value, the number of iterations performed, the
minimum achievable Integrated Squared Error and the corresponding parameter value.

the real-time estimator with respect to the orginal one (7).

5 Concluding Remarks

We have introduced a two-step regularization scheme for spot volatility estimation in the
presence of microstructure effects. The basic idea of this estimator was already contained
in [16], but the newly proposed modification of the scheme is much simpler to imple-
ment. In fact, in the original estimator the first regularization of the observed process
is performed on non-overlapping windows of data and by this reason it requires numer-
ous observations around each point tk where the estimation is computed. This yields an
unmotivated limitation on the number of estimation points when only a finite sample of
data is available. The modified scheme allows to use overlapping blocks of data for the
regularization. This feature allows to use the same observed data repeatedly to estimate
volatility at different estimation times, thus reducing the size of necessary observation
data. Our scheme can be seen as a kernel-type estimator over a regularized set of data
and the choice of suitable weights is of crucial importance to deal with microstructure
effects. In particular, microstructure noise is smoothed out by the inclusion in our esti-
mator of a weighted sum of products of lagged intra-day returns. The proposed scheme
is tested against other estimators, namely the realized volatility estimator, the Fourier
estimator and two kernel estimators, in several Monte Carlo experiments which show the
great efficiency and precision of the two-step estimator at low computational cost.
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