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Abstract

We analyze the effects of market microstructure noise on the Fourier estimator

of multivariate volatilities. We prove that the estimator is consistent in the case of

asynchronous data and robust in the presence of microstructure noise. This result

is obtained through an analytical computation of the bias and the mean squared

error of the Fourier estimator and confirmed by Monte Carlo experiments.

JEL: C14, C32, G1

Keywords: nonparametric covariance estimation, Fourier analysis, high frequency

data, non-synchronicity, microstructure.

1 Introduction

Computation of the covariance of financial asset returns plays a central role for many

issues in finance. Recent papers have shown the potential of using high frequency data for

the computation of covariances, see [Andersen and al., 2003, Bollerslev and Zhang, 2003,

Fleming et al., 2003]. Nevertheless, when sampling high frequency returns, two difficul-

ties arise. The first one refers to the so called Epps effect (see [Epps, 1979]): the non-

synchronicity of the arrival times of trades across markets leads to a bias towards zero

in correlations among stocks as the sampling frequency increases. The second one is the

distortion from efficient prices due to the market microstructure contamination.

Motivated by the consequences of the effect of asynchronous trading, a number of

alternative covariance estimators have been proposed in the literature; nevertheless most

of them rely upon the quadratic covariation formula, a classical result essentially due to

Wiener. Following the study in [Martens, 2004] the different approaches to estimate co-

variances can be split in two groups. The first group uses interpolation of data, in order

to obtain synchronous returns which are necessary to construct the realized covariance-

quadratic variation estimator; for instance [Scholes and Williams, 1977] modify the stan-

dard covariance estimator by adding the first lead and lag of the sample auto-covariance,

[Dimson, 1979, Cohen et al., 1983] generalize this estimator to include k leads and lags;
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[Zhang, 2006] provides an analytical study of the realized covariance estimator in a general

framework which includes asynchronous trading. The second group utilizes all transaction

data, [Harris et al., 1995, De Jong and Nijman, 1997, Brandt and Diebold, 2006]. Among

the latter [De Jong and Nijman, 1997, Hayashi and Yoshida, 2005] propose an alternative

to the realized covariance estimator which uses all data and does not rely on any syn-

chronization methods. We refer to this estimator as the All-overlapping (returns) estima-

tor, as suggested by [Corsi and Audrino, 2007]. The All-overlapping estimator is unbiased

and consistent under the assumption that the observations are uncontaminated by noise.

[Sheppard, 2005] introduces the concept of scrambling to describe the link between the

price generating process and the sampling process.

The impact of microstructure noise has been studied extensively in the context of uni-

variate volatility measurement, see [Aı̈t-Sahalia and al., 2005a, Hansen and Lunde, 2006,

Bandi and Russel, 2006, Barndorff-Nielsen and al., 2005, Zhang and al., 2005]. For the mul-

tivariate case [Bandi and Russel, 2005b] provide an analytical study of realized covari-

ance in the presence of noise, but they do not address the non-synchronicity issue.

[Voev and Lunde, 2007] study the properties of the All-overlapping estimator in the pres-

ence of noise. They prove that the realized covariation and the All-overlapping estimator

are not biased by i.i.d noise. Nevertheless both realized covariation and the All-overlapping

estimator are inconsistent under i.i.d noise, because the mean squared error (MSE) di-

verges as the number of observations increases; then they propose a bias correction for

the All-overlapping estimator, which is still inconsistent, anyway. The authors compare

through Monte Carlo simulation different realized covariance type estimators, specifically

realized covariance, realized covariance plus one lead and lag, the estimator proposed by

[Bandi and Russel, 2005b], the All-overlapping and the bias corrected All-overlapping es-

timator. The conclusion is that the last one is the winner in all the asynchronous trading

scenarios contaminated by microstructure noise. Also [Griffin and Oomen, 2006] inves-

tigate the properties and the efficiency of three covariance estimators, namely realized

covariance, realized covariance plus lead- and lag-adjustments, and All-overlapping co-

variance estimator, when the price observations are subject to non-synchronicity and

contaminated by (i.i.d) microstructure noise and Poisson arrival times. They find that

the ordering of covariance estimators in terms of efficiency depends crucially on the level

of microstructure noise, in particular for high level of noise the All-overlapping estimator

can be less efficient than the standard realized covariance estimator.
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In this paper we consider the multivariate volatility estimation methodology proposed

in [Malliavin and Mancino, 2002], which does not rely on any data synchronization meth-

ods but employs all data at disposal. We refer to this estimator as the Fourier estimator.

The estimator’s construction exploits a general identity, obtained in [Malliavin and Mancino, 2005],

which relates the Fourier transform of the co-volatility function with the Fourier trans-

form of the log-returns. The peculiarity of Fourier estimator is that it uses all the available

observations and avoids any synchronization of the original data, because it is based on

the integration of the time series of returns rather than on its differentiation. Therefore

from the practitioner’s point of view it is easy to implement as it does not rely on any

choice of synchronization methods or sampling schemes.

We proceed in two directions: we first analyze the efficiency of Fourier estimator in

comparison with realized covariance, realized covariance plus lead- and lag-adjustments,

and All-overlapping covariance estimator, when the price observations are uniquely sub-

ject to non-synchronicity. This emphasizes the impact of the non-synchronicity. Secondly

we compare them in the presence of i.i.d. microstructure noise. In both cases, we derive

analytical expressions for the bias and the MSE of the Fourier estimator, which can be

applied to real data. We obtain that the Fourier estimator is asymptotically unbiased and

consistent under asynchronous observations, in the absence of microstructure noise, under

the condition that ρ(n)N → 0, where N is the number of frequencies to be included in the

estimator and ρ(n) is the mesh of the data partition. In the presence of i.i.d. microstruc-

ture noise the computation of the bias shows that the Fourier covariance estimator is

unaffected by i.i.d. noise in terms of bias, as it happens for the realized covariance estima-

tor. Therefore even in the presence of i.i.d. noise contamination the Fourier estimator is

asymptotically unbiased under the same condition ρ(n)N → 0. More interestingly and in

contrast with the behavior of the realized covariance and the All-overlapping estimator,

the MSE of Fourier estimator does not diverge as the number of observations increases,

under the same condition ρ(n)N → 0. This result is due to the following property of the

Fourier estimator: the high-frequency noise is ignored by the Fourier estimator by cutting

the highest frequencies. Finally we consider a dependent noise setting. The computation

of the bias of the Fourier estimator shows that even in this case the Fourier estimator

is asymptotically unbiased. In summary our analysis shows that Fourier estimator of co-

variance is robust to all the different scenarios considered without requiring any ad hoc

adjustment.
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Our theoretical results are confirmed by a simulation study. By reproducing the reg-

ular non-synchronous trading scenario of [Voev and Lunde, 2007], we evaluate the impact

of different noise and sampling specifications in order to validate our theoretical analysis.

We show that the analytical expressions for the MSE of the Fourier estimator provided

in the paper can be effectively used to build optimal MSE-based estimators under regular

non-synchronous trading. Secondly, under more general trading scenarios, the performance

of the Fourier estimator of the integrated covariance is compared with the behavior of the

realized covariance, the realized covariance plus leads and lags and the All-overlapping

estimator.

The paper is organized as follows. In Section 2 we resume the multivariate Fourier es-

timation methodology developed in [Malliavin and Mancino, 2005]. In Section 3 we prove

the consistency result for the Fourier estimator under general asynchronous observations.

Section 4 analyzes the bias of the Fourier estimator under asynchronous observations

and microstructure noise. In Section 5 we analytically compute the MSE for the Fourier

covariance estimator in the presence of i.i.d. microstructure noise and asynchronous obser-

vations. The analysis is extended to dependent noise specification in Section 6. In Section

7, we test our theoretical findings by means of Monte Carlo simulations. The technical

proofs are contained in the Appendix.

2 Fourier estimation method

A Fourier analysis based method to estimate multivariate volatility has been proposed

in [Malliavin and Mancino, 2002] to overcome the difficulties arising by applying the

quadratic covariation theorem to the true returns data, due to the non-synchronicity

of observed prices for different assets. In fact the quadratic covariation formula is not well

suited to provide a good estimate of cross-volatilities, because it requires synchronous

observations, while in reality they are not available.

The non-synchronicity trading problem has been studied for quite a long time in

empirical finance, e.g. [Lo and MacKinlay, 1990]. The bias (Epps effect) caused by non-

synchronicity and random sampling for the cross-correlations estimation has been recently

highlighted in [Hayashi and Yoshida, 2005, Zhang, 2006]. The Fourier methodology is im-

mune from these difficulties due to its own definition since, being based on the integration

of “all” data, it does not need any adjustment to fit to asynchronous observations.
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We briefly recall the methodology. Assume that p(t) = (p1(t), . . . , pn(t)) are Brownian

semi-martingales satisfying Itô stochastic differential equations

dpj(t) =
d∑

i=1

σj
i (t) dW i + bj(t) dt, j = 1, . . . , n, (1)

where W = (W 1, . . . , W d) are independent Brownian motions, and σ∗∗ and b∗ are adapted

random processes satisfying hypothesis (H):

(H) E[

∫ 2π

0

(bi(t))2dt] < ∞, E[

∫ 2π

0

(σj
i (t))

4dt] < ∞ i = 1, . . . , d, j = 1, . . . , n.

¿From the representation (1) define the volatility matrix, which in our hypothesis

depends upon time:

Σjk(t) =
d∑

i=1

σj
i (t)σ

k
i (t). (2)

The Fourier method reconstructs Σ∗,∗(t) on a fixed time window (which can be always

reduced to [0, 2π] by a change of the origin and rescaling) using the Fourier transform of

dp∗(t). The main result in [Malliavin and Mancino, 2005] relates the Fourier transform of

Σ∗,∗(t) to the Fourier transforms of the log-returns dp∗(t). More precisely the procedure

is the following: compute the Fourier transform of dpj for j = 1, . . . , n, defined for any

integer k by

F(dpj)(k) :=
1

2π

∫

]0,2π[

e−iktdpj(t) (3)

and consider the Fourier transform of the cross-volatility function defined for any integer

k by

F(Σij)(k) :=
1

2π

∫ 2π

0

e−ikt Σij(t)dt.

Then (see [Malliavin and Mancino, 2005]) the following convergence in probability holds

for any integer k

F(Σij)(k) = lim
N→∞

2π

2N + 1

N∑
s=−N

F(dpi)(s)F(dpj)(k − s).

As a particular case, by choosing k = 0, we can compute the integrated covariance

given the log-returns of stocks. More precisely it results:

Theorem 2.1 Under the hypothesis (H) the following convergence in probability holds

for any i, j = 1, 2

∫

]0,2π[

Σij(t) dt = lim
N→∞

(2π)2

2N + 1

N∑
s=−N

F(dpi)(s)F(dpj)(−s). (4)
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3 Consistency of Fourier covariance estimator under

asynchronous observations

For notational simplicity we consider two assets whose log-prices (p1, p2) satisfy the semi-

martingale model (1). We are interested in estimating the integrated covariance defined

by: ∫ 2π

0

Σ12(t)dt =

∫ 2π

0

2∑
i=1

σ1
i (t)σ

2
i (t)dt.

In this section we analyze a setting, where we account for asynchronous observations,

but we do not include microstructure effects, which will be discussed in the following

sections.

First we recall the definition of some covariance estimators proposed in the recent

literature. Suppose that the processes are observed at a discrete unevenly spaced grid

{0 ≤ tl1 ≤ tl2 ≤ · · · ≤ tlnl
≤ 2π} for any l = 1, 2. The following estimators are based on the

choice of a synchronization procedure, such as interpolation or imputation, which yields

the observations times {0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ 2π} for both assets.

The quadratic covariation-realized covariance estimator is defined by

RC1,2 :=
n−1∑
i=1

δi(p
1)δi(p

2),

where δi(p
∗) = p∗(τi+1) − p∗(τi). The realized covariance estimator is not consistent un-

der asynchronous trading. The bias due to the synchronization procedure is analyzed in

[Hayashi and Yoshida, 2005, Zhang, 2006].

The following modifications of realized covariance have been proposed: the realized

covariance plus leads and lags estimator

RCLL1,2 :=
∑

i

L∑

h=−l

δi+h(p
1)δi(p

2), (5)

and the realized covariance kernels estimator

RCLLW1,2 :=
∑

i

L∑

h=−l

w(h)δi+h(p
1)δi(p

2), (6)

where w(h) is a kernel, see [Griffin and Oomen, 2006].

The estimators (5) and (6) have good properties under microstructure noise contami-

nations of the prices, but they are still not consistent for asynchronous observations. This
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is due to the fact that all the realized covariance type estimators need a data synchro-

nization procedure.

In view of this intrinsic limitation of the realized covariance type estimators [Malliavin and Mancino, 2002]

proposed an alternative estimation method based on Fourier analysis, which relies on the

formula (4). Denote by {t1i , i = 1, . . . , n1} and {t2j , j = 1, . . . , n2} the trading times for the

asset 1 and 2 respectively. For simplicity suppose that both assets trade at t11 = t21 = 0 and

t1n1
= t2n2

= 2π. Let ρ(n1) := max1≤i≤n1−1 |t1i − t1i+1| and ρ(n2) := max1≤j≤n2−1 |t2j − t2j+1|
and ρ(n) := ρ(n1) ∨ ρ(n2). We will denote I1

i = [t1i , t
1
i+1[ and J2

j = [t2j , t
2
j+1[. The Fourier

estimator of the integrated covariance
∫ 2π

0
Σ12(t)dt is

Σ12
N,n1,n2

:=
(2π)2

2N + 1

∑

|s|≤N

F(dp1
n1

)(s)F(dp2
n2

)(−s), (7)

where

F(dp1
n1

)(s) :=
1

2π

n1−1∑
i=1

exp(−ist1i )δI1
i
(p1), F(dp2

n2
)(s) :=

1

2π

n2−1∑
j=1

exp(−ist2j)δJ2
j
(p2)

and δI1
i
(p1) := p1(t1i+1) − p1(t1i ), δI2

j
(p2) := p2(t2j+1) − p2(t2j). The Fourier covariance esti-

mator is consistent under asynchronous observations as it does not require any synchro-

nization procedure. This result is stated by the following

Theorem 3.1 Let Σ12
N,n1,n2

be defined in (7). If ρ(n)N → 0, the following convergence in

probability holds:

lim
n1,n2,N→∞

Σ12
N,n1,n2

=

∫ 2π

0

Σ12(t)dt. (8)

The proof is a particular case of Theorem 3.4 in [Malliavin and Mancino, 2005].

Now we compute the Fourier estimator bias for a fixed number of data observations

and for a fixed number of Fourier coefficients N .

Proposition 3.2 The bias of the Fourier estimator is given by

E[Σ12
N,n1,n2

−
∫ 2π

0

Σ12(t)dt] =

n1−1∑
i=1

n2−1∑
j=1

(
DN(t1i − t2j)− 1

)
E[

∫

I1
i ∩J2

j

Σ12(t)dt], (9)

where DN(t) denotes the rescaled Dirichlet kernel defined by

DN(t) :=
1

2N + 1

∑

|s|≤N

eist =
1

2N + 1

sin[(N + 1
2
)t]

sin t
2

. (10)

Therefore the Fourier estimator is asymptotically unbiased under the condition ρ(n)N → 0

as n,N →∞.
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Recently [Hayashi and Yoshida, 2005] have faced the non-synchronicity problem, propos-

ing an estimator which is consistent under asynchronous observations of the prices. The

Hayashi-Yoshida estimator is

AO12
n1,n2

:=
∑
i,j

δI1
i
(p1)δJ2

j
(p2)I(I1

i ∩J2
j 6=∅), (11)

where I(P ) = 1 if proposition P is true and I(P ) = 0 if proposition P is false. We will refer

to estimator (11) as the All-overlapping (AO) estimator. The AO estimator is unbiased

in the absence of noise. In [Griffin and Oomen, 2006, Voev and Lunde, 2007]) the AO-

estimator is found out to be not efficient in the presence of microstructure noise.

We remark that the Fourier estimator can be written as

Σ12
N,n1,n2

=
∑
i,j

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)I(I1

i ∩J2
j 6=∅) (12)

+
∑
i,j

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)I(I1

i ∩J2
j =∅).

The first addend in (12) generalizes the All-overlapping estimator, the second one pro-

vides a lead-lag adjustment which takes into account cross dependence of non-overlapping

returns. A peculiarity of the Fourier estimator is the weight DN , the Dirichlet kernel

which depends on the number of frequencies N , besides on the delay between two trad-

ing. Note that the Fourier estimator is not of the realized kernels type (6) (see also

[Mancino and Sanfelici, 2008] in an univariate context for a discussion on this issue).

4 Bias of Fourier covariance estimator under micro-

structure noise

In this section we analyze the behavior of the Fourier estimator of the integrated covariance

under asynchronous observations and microstructure noise.

Consider the following model for the observed log-returns

p̃i(t) := pi(t) + ηi(t) for i = 1, 2, (13)

where

dpi(t) =
2∑

k=1

σi
k(t)dW k(t) (14)

and hypothesis (H) holds. Moreover the following assumptions hold:
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(M1). p := (p1, p2) and η := (η1, η2) are independent processes, moreover η(t) and

η(s) are independent for s 6= t and E[η(t)] = 0 for any t.

(M2). E[ηi(t)ηj(t)] = ωij < ∞ for any t, i, j = 1, 2.

We fix the following notation

δI1
i
(p̃1) := p̃1(t1i+1)− p̃1(t1i ) δJ2

j
(p̃2) := p̃2(t2j+1)− p̃2(t2j), (15)

ε1
I1
i

:= η1(t1i+1)− η1(t1i ) ε2
J2

j
:= η2(t2j+1)− η2(t2j). (16)

¿From (7) the Fourier estimator of the covariance between asset 1 and 2 is given by

Σ̂12
N,n1,n2

=
1

2N + 1

∑

|s|≤N

∑
i,j

eist1i δI1
i
(p̃1)e−ist2j δJ2

j
(p̃2). (17)

Observe that (17) is equal to

∑
ij

DN(t1i − t2j)
(
δI1

i
(p1)δJ2

j
(p2) + ε1

I1
i
ε2

J2
j

+ δI1
i
(p1)ε2

J2
j

+ ε1
I1
i
δJ2

j
(p2)

)
.

In the sequel we consider the case of regular asynchronous trading analyzed in

[Voev and Lunde, 2007]. The asset 1 trades at regular points: Π1 = {t1i : i = 1, . . . , n1

and t1i+1 − t1i = 2π
n1−1

}. Also asset 2 trades at regular points: Π2 = {t2j : j = 1, . . . , n2 and

t2j+1 − t2j = 4π
n1−1

}, where n2 = n1/2, but no trade of asset 1 occurs at the same time of a

trade of asset 2. Specifically, the link between the trading times of the two assets is the

following: t2j = t12(j−1)+1 + π
n1−1

for j = 1, . . . , n2. Moreover, suppose t11 = 0 and t1n1
= 2π.

For simplicity denote n := n1 and assume n is even. We will denote by Σ̂12
N,n the Fourier

estimator in this setting.

The following theorem provides the bias of the Fourier covariance estimator under

i.i.d. microstructure noise, neglecting minor end-effects.

Theorem 4.1 Under the asynchronous trading model above specified and if the i.i.d mi-

crostructure noise satisfies (M1)-(M2), the bias of the Fourier covariance estimator is

E[Σ̂12
N,n −

∫ 2π

0

Σ12(t)dt] =

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

(DN(t1i − t2j)− 1)E[

∫ t1i+1

t1i

Σ12(t)dt]. (18)

Therefore the Fourier covariance estimator is asymptotically unbiased in the presence of

i.i.d. microstructure noise, under the condition ρ(n)N → 0 as n, N →∞.
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A comparison between (9) and (18) shows that when the noise satisfies the i.i.d as-

sumption the bias of the Fourier estimator is not affected by the presence of microstructure

noise. Therefore the Fourier estimator remains asymptotically unbiased in the presence

of i.i.d microstructure. Note that the univariate Fourier estimator has the same property

under microstructure noise, see [Mancino and Sanfelici, 2008]. On the other hand, we can

observe that for the realized covariation and realized covariation with leads and lags the

situation is different from the corresponding univariate estimator: in fact in the univariate

case the i.i.d noise renders the realized volatility biased, while the realized covariation is

not biased by i.i.d noise under synchronous trading. The AO estimator is not biased by

i.i.d noise, nevertheless both realized covariation and the AO estimator are inconsistent

under i.i.d noise, because the MSE diverges as the number of observations increases (as it

is proved in [Voev and Lunde, 2007]). In view of these considerations our next step will

be the computation of the Fourier estimator’s MSE in the presence of i.i.d. microstructure

noise.

5 MSE of Fourier estimator under microstructure

noise and asynchronous trading

The first result of this section contains the computation of the Fourier estimator’s MSE in

the asynchronous setting considered in Theorem 4.1, without including the microstructure

component.

Proposition 5.1 Under the specified asynchronous trading setting, it holds:

E[(
∑
i,j

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)−

∫ 2π

0

Σ12(t)dt)2] ≤ 1

4
ρ(n)2(N + 1)2E[(

∫ 2π

0

Σ12(t)dt)2]

+4
√

2πρ(n)
1
2 E[

∫ 2π

0

(Σ11(t))2dt]
1
2 E[

∫ 2π

0

(Σ22(t))2dt]
1
2

+2ρ(n)
1
2 E[

∫ 2π

0

(Σ11(t))2dt]
1
2 E[

∫ 2π

0

Σ22(t)dt] +
√

2πρ(n)
1
2 E[

∫ 2π

0

(Σ12(t))2dt]

+
16
√

2π√
2N + 1

E[

∫ 2π

0

(Σ11(t))2dt]
1
2 E[

∫ 2π

0

(Σ22(t))2dt]
1
2 .

Under the condition ρ(n)N → 0, the r.h.s of the inequality obtained in Proposition

5.1 converges to 0 as n,N →∞, thus confirming the result in Theorem 3.1.
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Theorem 5.2 Under the above specified asynchronous trading setting and noise satisfying

assumptions (M1)− (M2), if ρ(n)N → 0 as n,N →∞ then it holds:

E[(Σ̂12
N,n −

∫ 2π

0

Σ12(t)dt)2] = o(1) + 2ω22

n−1∑
i=1

D2
N(t1i − t2n

2
−1)E[

∫ t1i+1

t1i

Σ11(t)dt] (19)

+2ω11

n
2
−1∑

j=1

D2
N(t1n−1 − t2j)E[

∫ t2j+1

t2j

Σ22(t)dt] + 4 ω22ω11 D2
N(t1n−1 − t2n

2
−1),

where o(1) is a term which goes to zero in probability.

Remark 5.3 The o(1) term in (19) has been computed in Proposition 5.1. The other

terms arise from the corrections due to microstructure effects.

The previous results allow a comparison between the behavior of the AO estimator

and the Fourier estimator in the presence of microstructure noise and asynchronous ob-

servations. First consider the MSE of the AO estimator without microstructure terms

(MSEAO) and in the presence of noise effects (MSEAOm):

MSEAO = o(1),

MSEAOm = o(1)+

+2ω11

n
2
−1∑

j=1

E[

∫ t2j+1

t2j

Σ22(t)dt] + 2ω22

n−1∑
i=1

E[

∫ t1i+1

t1i

Σ11(t)dt] + 2(n− 1)ω11ω22.

MSEAO converges to zero because the estimator is consistent. As for MSEAOm, it in-

creases with n, i.e. the number of the most frequently traded asset, and therefore it

diverges for very high frequency observations, due to the term 2(n− 1)ω11ω22. Note that

the other two terms in the MSEAOm are constant for increasing n, because I1
i and J2

j are

partitions of [0, 2π]. This result is found in [Voev and Lunde, 2007].

Secondly consider the MSE of the Fourier estimator without microstructure terms

(MSEF ) and in the presence of noise effects (MSEFm):

MSEF = o(1),

MSEFm = o(1) + 2ω11

n
2
−1∑

j=1

D2
N(t1n−1 − t2j)E[

∫ t2j+1

t2j

Σ22(t)dt]

+2ω22

n−1∑
i=1

D2
N(t1i − t2n

2
−1)E[

∫ t1i+1

t1i

Σ11(t)dt] + 4ω11ω22D
2
N(t1n−1 − t2n

2
−1).
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MSEF converges to zero as the estimator is consistent, see Proposition 5.1. Consider

now the MSE of the Fourier estimator in the presence of microstructure noise. The con-

stant terms have similar behavior to the corresponding ones in MSEAOm, but the term

4ω22ω11D
2
N(t1n−1− t2n

2
−1) converges to the constant 4ω22ω11 as n, N increase at the proper

rate ρ(n)N → 0. In summary the Fourier estimator of multivariate volatility is consistent

under asynchronous observations and it is robust in the presence of i.i.d. microstructure

noise, i.e. the MSE does not diverge at the highest frequencies.

6 Robustness of Fourier covariance estimator under

dependent microstructure noise

In this section we suppose that the microstructure noise is correlated with the price

process and there is also a temporal dependence in the noise components. Precisely we

follow [Bandi and Russel, 2005b, Voev and Lunde, 2007] by considering a noise specifi-

cation which allows dependence for a limited amount of time. We investigate here the

behavior of the Fourier estimator in this respect.

The general noise specification satisfies the following assumption:

(MD1). ηi(t + s) and pj(t) are independent if s > θ0 for some finite θ0 ≥ 0 and for

any t > 0 and i, j = 1, 2;

(MD2). E[ηi(t)ηj(t + s)] = 0 if s > θ0 for some finite θ0 ≥ 0 and for any t > 0 and

i, j = 1, 2.

Consider the regular asynchronous trading setting introduced in section 4. Under

assumptions (MD1)-(MD2) it is possible to choose a positive integer b such that for

any t2j it holds:

|t2j − t12(j−1)−b+1| > θ0 and |t2j+1 − t12(j−1)+4+b| > θ0.

The following result holds.

Theorem 6.1 Under the asynchronous trading model specified in section 4 and the depen-

dent microstructure noise satisfying (MD1)-(MD2), the Fourier covariance estimator is

asymptotically unbiased, that is

lim
n,N→∞

E[Σ̂12
N,n −

∫ 2π

0

Σ12(t)dt] = 0 (20)

13



under the condition Nρ(n) → 0 as n,N →∞.

More precisely the proof of the theorem shows that under the specified dependent noise

E[Σ̂12
N,n −

∫ 2π

0

Σ12(t)dt] =

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

E[

∫ t1i+1

t1i

Σ12(t)dt](DN(t1i − t2j)− 1) + Nρ(n)C,

where the constant C depends on the noise variance ωii, on E[
∫ 2π

0
Σii(t)dt] for i = 1, 2

and on the integer b which is a measure of the dependence.

Concerning the MSE of the Fourier estimator in this dependent noise setting, the

simulation results in the next section indicate that the behavior in the presence of depen-

dent microstructure noise is very close to that in the presence of i.i.d. noise obtained in

Theorem 5.2. In summary we conclude that the Fourier estimator is robust even to the

presence of dependent microstructure noise.

7 Monte Carlo simulations

The aim of this section is twofold: by reproducing the regular non-synchronous trading

scenario of [Voev and Lunde, 2007], we evaluate the impact of different noise and sampling

specifications in order to validate our theoretical analysis. Secondly, under more general

trading scenarios, the performance of the Fourier estimator of the integrated covariance

is compared to the behavior of the realized covariance RC1,2, the realized covariance plus

leads and lags RCLL1,2 and the All-overlapping estimator AO1,2.

We simulate discrete data from the continuous time bivariate GARCH model [Hoshikawa and al., 2008]


 dp1(t)

dp2(t)


 =


 β1σ

2
1(t)

β2σ
2
4(t)


 dt +


 σ1(t) σ2(t)

σ3(t) σ4(t)





 dW5(t)

dW6(t)




dσ2
i (t) = (ωi − θiσ

2
i (t))dt + αiσ

2
i (t)dWi(t), i = 1, . . . , 4,

where {Wi(t)}6
i=1 are independent Wiener processes. Moreover, we assume that the loga-

rithmic noises η1(t), η2(t) are i.i.d. Gaussian, possibly contemporaneously correlated and

independent from p. We also consider the case of dependent noise, assuming for simplicity

ηj
i = α(pj(tji )− pj(tji−1)) + η̄j

i , for j = 1, 2 and η̄j
i i.i.d. Gaussian. [Voev and Lunde, 2007]

define the noise variance to be 90% of the total variance for 1 second returns, which

is in fact quite moderate. For instance, [Aı̈t-Sahalia and al., 2005a] report a study of

274 NYSE stocks in which the noise is twelve times this amount. Therefore, in our
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simulations we consider both the case of 90% noise variance and ten times such an

amount, which we call increased noise term. Finally, in order to compare our results

with the ones by [Griffin and Oomen, 2006], we further increase the level of noise in such

a way that the quantity they define as noise ratio is around 7. As already found by

[Griffin and Oomen, 2006], at this level, the All-overlapping estimator can be even less

efficient than the standard realized covariance estimator while the Fourier estimator al-

ways provides a valid alternative. When the noise correlation matrix is not diagonal, the

correlation is set to 0.5. ¿From the simulated data, integrated covariance estimates can

be compared to the value of the true variance quantities.

We generate (through simple Euler Monte Carlo discretization) high frequency evenly

sampled true and observed returns by simulating second-by-second return and variance

paths over a daily trading period of h = 6 hours, for a total of 21600 observation per

day. Then we sample the observations according to different trading scenarios: regular

synchronous trading with duration ρ1 = ρ(n1) between trades for the first asset and

ρ2 = 2ρ1 for the second, i.e. the second asset trades each second time the first asset trades;

regular non-synchronous trading with duration ρ1 between trades for the first asset and

ρ2 = 2ρ1 for the second and displacement δ ·ρ1 between the two, i.e. the second asset starts

trading δ · ρ1 seconds later; Poisson trading with durations between observations drawn

from an exponential distribution with means λ1 and λ2 for the two assets respectively.

The other parameters of the model are: α1 = 0.1 α2 = 0.1, α3 = 0.2, α4 = 0.2, β1 = 0.02,

β2 = 0.01, ω1 = 0.1, ω2 = 0.1, ω3 = 0.2, ω4 = 0.2, θ1 = 0.1, θ2 = 0.1, θ3 = 0.1, θ4 = 0.1,

α = 0.1. The simulations are run for 500 daily replications, using the computer language

Matlab.

In implementing the Fourier estimator Σ̂12
N,n1,n2

, the smallest wavelength that can be

evaluated in order to avoid aliasing effects is twice the smallest distance between two

consecutive prices, which under uniform sampling yields N ≤ min((n1− 1)/2, (n2− 1)/2)

(Nyquist frequency). Nevertheless, as pointed out in the univariate case by [Mancino and Sanfelici, 2008]

and confirmed by our theoretical study in the present paper, smaller values of N may pro-

vide better variance/covariance measures.

Fig. 1 shows the effect of the truncation of the Fourier expansion in terms of the

MSE and bias of the Fourier estimator, by choosing different values of the cutting fre-

quency Ncut in three different trading scenarios. The MSE and bias curves are plotted

versus the sampling interval of the first asset ρ1 and correspond to different choices of
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the cutting frequency: Ncut = 720, 360, 180, 90. In order to separate the Epps effect from

other microstructure effects, we split non-synchronicity from microstructure noise. The

plots at the top refer to the regular non-synchronous trading setting with displacement

δ = 2/3 and no noise. Notice that, as ρ1 increases from 2 seconds to 2 minutes, the level of

non-synchronicity increases as well since it is proportional to ρ1. It is evident that, for any

fixed ρ1, the cutting procedure can reduce both the MSE and the bias for the estimated

covariance, thus contrasting the Epps effect according to Proposition 5.1. More precisely,

the MSE is generally decreased when the number of the Fourier coefficient is reduced,

except for the highest sampling frequencies where the MSE is first reduced by choosing

Ncut = 720 and Ncut = 360 and then increased if the number of Fourier coefficients is too

small with respect to the number of observations. The corresponding bias is reduced in

absolute value for any sampling frequencies as Ncut is reduced. In the case that Ncut was

set equal to the Nyquist frequency, we would observe an explosion of the MSE for high

sampling frequencies, while the bias would be constant and negative over the different ρ1

values.

The plots in the middle refer to the case of synchronous trading (δ = 0) with ρ2 = 2ρ1

and uncorrelated noise. The reduction of Ncut has large benefit on the bias, while the effect

on the MSE has the same characteristics as before, which suggests for each value of n1

the existence of an optimal value for Ncut minimizing the MSE. Such a value increases

with n1, i.e. at the highest frequencies, and must be such that N/n1 → 0 according

to our theoretical analysis. Now, let us consider the combination of non-synchronicity

with noise effects. The plots at the bottom refer to regular non-synchronous trading with

uncorrelated i.i.d. noise. The reduction of Ncut can reduce the negative bias of the Fourier

estimator. More precisely, the choice of a suitable Ncut in the range [360, 720] should yield

a strong reduction of the MSE at the highest frequencies and provide an almost unbiased

covariance estimate.

Fig. 2 shows the MSE and the bias of Σ̂12
N,n1,n2

as a function of the number of the

Fourier coefficients included in the expansion, in the regular non-synchronous trading

setting with uncorrelated i.i.d. noise (Panels A and B), in the Poisson trading setting

with contemporaneously correlated i.i.d. noise (Panels C and D) and in the same setting

with an increased noise term (Panels E and F). The MSE curves are convex and their

minima are attained at suitable cutting frequencies Ncut which can be used to build

optimal MSE-based covariance estimates. In particular, it is evident from Figures 1 and 2
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Figure 1: MSE and bias for Σ̂12
N,n1,n2

as a function of the sampling period ρ1 in the regular

non-synchronous trading setting and no noise (Panels A,B), in the regular synchronous

trading setting and uncorrelated noise (Panels C,D) and in the regular non-synchronous

trading setting and uncorrelated noise (Panels E,F). ’:’ for Ncut = 720; ’-’ for Ncut = 360;

’- -’ for Ncut = 180; ’-.’ for Ncut = 90. ρ1 = 2, 4, 10, 30, 60, 90, 120 sec.

that the smallest MSE is obtained at the highest sampling frequencies for suitable values

of Ncut while, on the contrary, a näıve choice of Ncut would result in an explosion of MSE.

Moreover, the Fourier estimator turns out to be asymptotically unbiased, as pointed out

by the theoretical results.

In [Hoshikawa and al., 2008] a purely empirical comparison between realized covari-

ance, the All-overlapping estimator and the Fourier method is conducted under no market

microstructure noise . Nevertheless the analysis is conducted by allowing the frequency

N go to infinity without establishing any criterion for the optimal choice of N . The

present paper fills this gap, while the importance of the choice of Ncut for the diago-

nal elements of the covariance matrix in the presence of market microstructure effects

is analyzed in [Mancino and Sanfelici, 2008] and will not be discussed here any longer.

A different approach is proposed by [Oya, 2005], who applies the subsampling bias cor-

rection method of [Zhang and al., 2005] to the Fourier estimator of the univariate inte-

grated volatility and obtains smaller MSE’s than with other bias-corrected estimators. In
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Figure 2: MSE and bias for Σ̂12
N,n1,n2

as a function of the cutting frequency Ncut. Panels

A,B: regular non-synchronous trading setting, with ρ1 = 5 sec, ρ2 = 10 sec, δ = 2/3 and

uncorrelated i.i.d. noise. Panels C,D: Poisson trading setting, with λ1 = 5 sec, λ2 = 10 sec

and correlated i.i.d. noise, with ρ = 0.5. Panels E,F: Poisson trading setting, with λ1 = 5

sec, λ2 = 10 sec and increased correlated i.i.d. noise, with ρ = 0.5.

[Precup and Iori, 2007] two interpolation based methods (the traditional Pearson coeffi-

cient and the Co-volatility weighted method proposed by [Dacorogna et al., 2001]) have

been compared with the Fourier method. The authors show that the Fourier method gen-

erates more accurate results than the other two; in particular the other methods generate

correlation estimates which are inferior to the Fourier method in terms of magnitude and

smoothness.

Proposition 5.1 and Theorem 5.2 provide an operative tool to choose the optimal

Ncut value in the theoretical setting considered in this paper. The practical calculation

hinges on the estimation of the relevant noise moments as well as on the preliminary

identification of E[
∫ 2π

0
Σii(t)dt] and E[

∫ 2π

0
(Σij(t))2dt]. Since the noise moments do not

vary across frequencies in our context, in computing the MSE estimates we use sample

moments constructed by interpolating quote-to-quote return data on a high frequency

uniform grid in order to estimate the relevant population moments of the noise components

18



based on the following relation [Bandi and Russel, 2005b]:

plimM→∞
1

M

M∑

k=1

δk(p̃
i)δk(p̃

j) = E[εiεj] = 2ωij,

where M is the number of high frequency sampling intervals. Preliminary estimates of

E[
∫ 2π

0
Σii(t)dt] and E[

∫ 2π

0
(Σij(t))2dt] are obtained by computing

∫ 2π

0

Σii(t)dt ∼=
M̄∑

k=1

δk(p̃
i)δk(p̃

i), (21)

∫ 2π

0

(Σij(t))2dt ≤
∫ 2π

0

[Σii(t)Σjj(t) + (Σij(t))2]dt ∼=

∼= M̄

2π

M̄∑

k=1

δ2
k(p̃

i)δ2
k(p̃

j)− M̄

2π

M̄−1∑

k=1

δk(p̃
i)δk(p̃

j)δk+1(p̃
i)δk+1(p̃

j) for i 6= j (22)

and in particular

∫ 2π

0

(Σii(t))2dt ∼= M̄

4π

[
M̄∑

k=1

δ4
k(p̃

i)−
M̄−1∑

k=1

δ2
k(p̃

i)δ2
k+1(p̃

i)

]
,

using M̄ 2-min or, equivalently, 15-min returns. We remark that at this stage the in-

tegrated volatility estimate (21) can be substituted by a Fourier estimate using returns

sampled at 2-min frequency and choosing N equal to the Nyquist frequency. This ap-

proach, although more coherent with our Fourier analysis, does not yield any significant

difference in the results. Concerning the computation of the quarticity by means of the

estimator (22), the corresponding formula in the Fourier framework is not available at the

moment and will be the object of future work. The quantities given by (21)-(22), together

with the estimates of Proposition 5.1 and Theorem 5.2 allow to measure the MSE of the

co-volatility estimator also in the case of empirical market quote data, where the efficient

price and volatility and the noise contaminations are not available, assuming that our

theoretical framework holds. Therefore, they can be used to build optimal MSE-based

estimators by choosing the cutting frequency Ncut which minimizes the estimated MSE

instead of the true one.

In Figure 3 we show the true (dotted line) and estimated (solid line) MSE for the

Fourier estimator as a function of the cutting frequency N , obtained according to Proposi-

tion 5.1 and Theorem 5.2 in the case of uncorrelated i.i.d noise (Panel A) and of correlated

i.i.d noise (Panel B) under regular non-synchronous trading. The estimated MSE provides

an upper bound of the actual one, which nevertheless can be used to find out an optimal
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Figure 3: Real (:) and estimated (-) MSE for Σ̂12
N,n1,n2

as a function of the cutting frequency

Ncut. Panels A: regular non-synchronous trading setting, with ρ1 = 5 sec, ρ2 = 10 sec,

δ = 2/3 and uncorrelated i.i.d. noise. Panels B: regular non-synchronous trading setting,

with ρ1 = 5 sec, ρ2 = 10 sec, δ = 2/3 and correlated i.i.d. noise.

cutting frequency Ncut. In fact, in the uncorrelated case, the minimum of the true MSE

is 0.0018 and is attained at N = 252. The covariance estimate is 0.6062. The minimum

of the estimated MSE is attained at N = 261 and the corresponding true MSE value is

0.0018. The covariance estimated for this choice of the cutting frequency is 0.6054, while

the true covariance is 0.6251. In the correlated case, the minimum of the true MSE is

0.0025 and is attained at N = 278. The covariance estimate is 0.6677. The minimum

of the estimated MSE is attained at N = 271 and the corresponding true MSE value is

0.0025. The covariance estimated for this choice of the cutting frequency is 0.6687, while

the true covariance is 0.6897.

This optimal MSE-based covariance estimator is compared to the behavior of the re-

alized covariance RC0.5min
1,2 based on half a minute returns, the realized covariance RC1min

1,2

based on 1 minute returns, the realized covariance RC5min
1,2 based on 5 minute returns and

the corresponding realized covariance plus leads and lags RCLL0.5min
1,2 , RCLL1min

1,2 and

RCLL5min
1,2 , with l = L = 1. The low frequency returns are obtained by imputation on a

uniform grid. As any estimator based on interpolated prices, these methods suffer from

the Epps effect when trading is non-synchronous, but the lead-lag correction reduces such

an effect. The optimal MSE-based Fourier estimator is obtained by minimizing the true

MSE with respect to N . For the regular non-synchronous trading setting, the true MSE

and bias of the optimal estimator based on the minimization of the estimated MSE (as

given by the upper bound in Theorem 5.2) are given in parenthesis. Finally, in our analysis

we consider the All-overlapping estimator AO1,2 as well.
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The results are reported in Tables 1 and 2. Within each table entries are the values

of the MSE and bias, using 500 Monte Carlo replications. In the first day, the initial

values for pi’s and σi’s are extracted from independent standard half normal distributions

and are the same for all the trading setting; then, in the next days, they are set equal

to the closing value of the previous day. Rows correspond to the trading scenarios and

columns to different estimators. The trading settings are denoted by the terms Reg-S, Reg-

NS, Poisson, while the second term (Unc, Cor, Dep) refers to the type of noise, namely

contemporaneously uncorrelated (ωij = 0 for i 6= j), contemporaneously correlated and

dependent on the price process, respectively.

When we consider covariance estimates, the most important effect to deal with is

the Epps effect. The presence of other microstructure effects represents a minor aspect in

this respect. In fact, from Table 1 we see that in the Reg-NS setting without noise the

effects imputable to non-synchronicity are evident and spoil all the covariance estimates

except the AO estimator, which shows the best performance. Nevertheless, the optimal

MSE-based Fourier estimator achieves a very low MSE, but a larger negative bias. The 0.5

minute return lead-lag correction offers a good alternative as it mitigates the bias induced

by non-synchronicity by adding one lead and one lag of the empirical autocovariance

function of returns to the realized covariance measure. Notice, however, that the level of

non-synchronicity is very low in this setting and that the assets are quite active (they trade

each 2 and 4 seconds respectively, with a displacement of 1 second) so that interpolation

of data is not needed actually. The addition of a moderate amount of independent and

uncorrelated noise does not have great effect on the estimates. On the contrary, it may

in some sense even compensate the effects due to non-synchronicity. In general, the AO

estimator provides the best results, followed by the Fourier estimator, which outperforms

RC0.5min
1,2 in terms of MSE to the disadvantage of a slightly larger bias. An exception

to this ranking is provided by the Poisson trading setting with correlated noise and by

the trading settings with dependent noise. In theses cases, the Fourier estimator and the

realized covariance plus lead and lag RCLL0.5min
1,2 slightly outperform the AO estimator.

We remark that under regular non-synchronous trading the optimal Fourier estimator

based on the minimization of the estimated MSE (whose true bias and MSE are given in

parenthesis) is comparable to the Fourier estimator based on the minimization of the true

MSE, thus supporting our theoretical results. Finally, note that the lead/lag correction for

the realized covariance estimator contrasts the Epps effect, thus producing occasionally
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positive biases.

In Table 2, the noise term and the level of non-synchronicity are both increased, by

taking ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 2 seconds, λ1 = 5 sec and λ2 = 10

sec. Again, we see that in some trading scenarios the Fourier estimator outperforms the

AO estimator. Indeed, the AO estimator can sometimes become less effective, as can be

seen in the Poisson trading scheme with correlated noise and in the trading settings with

dependent noise. In fact, the AO remains unbiased under independent noise whenever

the probability of trades occurring at the same time is zero which is not the case for

Poisson arrivals. In particular, in the trading scenarios with noise dependent on the price

process the Fourier estimator remains a robust alternative which outperforms all the other

methods, included the bias corrected realized covariance.

Finally, we further increase the level of noise in such a way that the noise ratio defined

by [Griffin and Oomen, 2006] is around 7. The results are shown in Table 3.

As already found by [Griffin and Oomen, 2006], at this noise level, the All-overlapping

estimator can be even less efficient than the standard realized covariance estimator while

the Fourier estimator always provides a valid alternative. The lead/lag bias correction

comes with a noise accumulation and the balancing of this trade-off determines the relative

efficiency of the estimators. It is clear from the above tables that the Fourier estimator

provides an efficient balance which is robust to any level of noise and non-synchronicity.

Therefore, we can conclude that, in agreement with our theoretical analysis, the

Fourier covariance estimator is not much affected by the presence of noise, so that it be-

comes a very interesting alternative especially when microstructure effects are particularly

relevant in the available data.

8 Conclusions

In this paper we analyzed the properties of Fourier estimator of multivariate volatilities in

the presence of asynchronous trading and microstructure noise. We have proved that the

Fourier estimator of covariance is: (i) consistent under asynchronous trading, (ii) asymp-

totically unbiased in the presence of i.i.d. microstructure noise, (iii) ”nearly” consistent

in the presence of i.i.d. microstructure noise, in the sense that the MSE of the Fourier

estimator converges to a constant as the number of observations increases and it does not

diverge as it happens for the realized covariance or the All-overlapping estimator. Finally
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the results have been extended to some dependent microstructure noise. Our theoretical

results are supported by several Monte Carlo simulations.
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9 Appendix: Proofs

Proof of Proposition 3.2 Note that

∫ 2π

0

Σ12(t)dt =

n1−1∑
i=1

∫

I1
i

Σ12(t)dt =

n1−1∑
i=1

n2−1∑
j=1

∫

{I1
i ∩J2

j }
Σ12(t)dt, (23)

because I1
i and J2

j are partition of [0, 2π]. By Itô energy identity we have

E[DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)I{I1

i ∩J2
j 6=∅}] = DN(t1i − t2j)E[

∫

{I1
i ∩J2

j 6=∅}
Σ12(t)dt].

We prove now the asymptotical unbiasedness of Fourier estimator. Remark that

E[DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)I{I1

i ∩J2
j =∅}] = DN(t1i − t2j)E[

∫

{I1
i ∩J2

j =∅}
Σ12(t)dt] = 0,

therefore only the sum over the intervals such that {I1
i ∩ J2

j 6= ∅} gives contribution in

(9), which follows straightforwardly. Moreover, for t1i , t
2
j ∈ I1

i ∩ J2
j 6= ∅, we have that

|t1i − t2j | ≤ ρ(n) := ρ(n1) ∨ ρ(n2). Observe that

n1−1∑
i=1

n2−1∑
j=1

(
DN(t1i − t2j)− 1

)
E[

∫

I1
i ∩J2

j

Σ12(t)dt] ≤ ρ(n)N

n1−1∑
i=1

n2−1∑
j=1

E[

∫

I1
i ∩J2

j

Σ12(t)dt]

= ρ(n)N E[

∫ 2π

0

Σ12(t)dt],

which goes to zero under the condition ρ(n)N → 0. •
Proof of Theorem (4.1)

Under the data specification of Section 4 we write (17) as

n
2
−1∑

j=1

n∑
i=1

DN(t1i − t2j)δI1
i
(p̃1)δJ2

j
(p̃2)I{I1

i ∩J2
j 6=∅} +

n
2
−1∑

j=1

n∑
i=1

DN(t1i − t2j)δI1
i
(p̃1)δJ2

j
(p̃2)I{I1

i ∩J2
j =∅}

=

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)δI1
i
(p̃1)δJ2

j
(p̃2) (24)

+

n
2
−1∑

j=1




2(j−1)∑
i=1

DN(t1i − t2j)δI1
i
(p̃1)δJ2

j
(p̃2) +

n−1∑

i=2(j−1)+4

DN(t1i − t2j)δI1
i
(p̃1)δJ2

j
(p̃2)


 . (25)

First consider (24). This is equal to

E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)] (26)
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+E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)ε
1
I1
i
δJ2

j
(p2)] (27)

+E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)δI1
i
(p1)ε2

J2
j
] (28)

+E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j
]. (29)

The terms (27) and (28) are zero for the independence between the asset prices and

the noise process. Concerning the term (29) we have

E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j
] =

=

n
2
−1∑

j=1

E[(η2
t2j+1

− η2
t2j
){DN(t12(j−1)+1 − t2j)(η

1
t1
2(j−1)+2

− η1
t1
2(j−1)+1

)

+DN(t12(j−1)+2 − t2j)(η
1
t1
2(j−1)+3

− η1
t1
2(j−1)+2

) + DN(t12(j−1)+3 − t2j)(η
1
t1
2(j−1)+4

− η1
t1
2(j−1)+3

)}].

Each of these terms is zero due to non-synchronicity. Thus, we have to evaluate the bias

E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)−

∫ 2π

0

Σ12(t)dt].

This can be obtained using the result in absence of microstructure noise, that is

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

E[

∫ t1i+1

t1i

Σ12(t)dt](DN(t1i − t2j)− 1).

The term (25) is equal to

E[

n
2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2) +

n−1∑

i=2(j−1)+4

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2) )] (30)

+E[

n
2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)ε
1
I1
i
δJ2

j
(p2) +

n−1∑

i=2(j−1)+4

DN(t1i − t2j)ε
1
I1
i
δJ2

j
(p2) )] (31)

+E[

n
2
−1∑

j=1

(DN(t1i − t2j)δI1
i
(p1)ε2

J2
j

+
n−1∑

i=2(j−1)+4

DN(t1i − t2j)δI1
i
(p1)ε2

J2
j

)] (32)

+E[

n
2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j

+
n−1∑

i=2(j−1)+4

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j

)]. (33)
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Observe that (30) is zero because I1
i ∩ J2

j = ∅. Moreover (31), (32), (33) are zero due

to the independence between price and noise and the non-synchronicity. •
Proof of Proposition 5.1

E[(
∑
i,j

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)−

∫ 2π

0

Σ12(t)dt)2] (34)

= E[(

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)−

∫ 2π

0

Σ12(t)dt)2] (35)

+E[
( n

2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2) +

n−1∑

i=2(j−1)+4

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2))

)2

]. (36)

Firstly consider (35). Remark that

∫ 2π

0

Σ12(t)dt =
∑
i,j

∫

{I1
i ∩J2

j }
Σ12(t)dt,

then we split (35) in two parts:

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)−

∫ 2π

0

Σ12(t)dt

=
1

2N + 1

∑

|s|≤N

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

(Bij + Cij),

where

Bij = eis(t2j−t1i )
(
δI1

i
(p1)δJ2

j
(p2)−

∫

{I1
i ∩J2

j }
Σ12(t)dt

)
, (37)

Cij = (eis(t2j−t1i ) − 1)

∫

{I1
i ∩J2

j }
Σ12(t)dt. (38)

Concerning the term containing (38) we have:

E[(
1

2N + 1

∑

|s|≤N

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

Cij)
2] ≤ E[

1

2N + 1
(
∑

|s|≤N

|s|ρ(n)

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

∫

{I1
i ∩J2

j }
Σ12(t)dt)2]

= ρ(n)2E[| 1

2N + 1
(N(N + 1))

∫ 2π

0

Σ12(t)dt|2] ≤ 1

4
ρ(n)2(N + 1)2E[(

∫ 2π

0

Σ12(t)dt)2].

Consider now the term containing (37). We have

E[(
1

2N + 1

∑

|s|≤N

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

Bij)
2] ≤ E[(

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

δI1
i
(p1)δJ2

j
(p2)−

∫

{I1
i ∩J2

j }
Σ12(t)dt)2].
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For any fixed j we have:

δJ2
j
(p2)

2(j−1)+3∑

i=2(j−1)+1

δI1
i
(p1) =

∫ t2j+1

t2j

dp2(t)

∫ t2j+1

t2j

dp1(t)

+

∫ t2j+1

t2j

dp2(t)(

∫ t2j

t1
2(j−1)+1

dp1(t) +

∫ t1
2(j−1)+4

t2j+1

dp1(t)).

Taking into account the identity (23), first of all we consider

∫ t2j+1

t2j

dp1(t)

∫ t2j+1

t2j

dp2(t)−
∫ t2j+1

t2j

Σ12(t)dt. (39)

Let X(t) = [p1(t)− p1(t2j)] and Y (t) = [p2(t)− p2(t2j)]. By Itô formula

d(XY ) = (p1(t)− p1(t2j))dp2(t) + (p2(t)− p2(t2j))dp1(t) + Σ12(t)dt.

Then (39) is equal to

∫ t2j+1

t2j

(p1(t)− p1(t2j))dp2(t) +

∫ t2j+1

t2j

(p2(t)− p2(t2j))dp1(t). (40)

Consider the first addend in (40); the second term is analogous. Observe that

n
2
−1∑

j=1

∫ t2j+1

t2j

(p1(t)− p1(t2j))dp2(t) =
∑

j

∫

J2
j

X(t)dp2(t) =

∫ 2π

0

X(t)dp2(t).

By Itô energy identity and the orthogonality of W 1 and W 2

E[(

∫ 2π

0

X(t)dp2(t))2] = E[

∫ 2π

0

(X(t))2Σ22(t)dt]

and, by Cauchy-Schwartz inequality

≤ E[

∫ 2π

0

(X(t))4dt]
1
2 E[

∫ 2π

0

(Σ22(t))2dt]
1
2 . (41)

As by hypothesis (H)

E[

∫ 2π

0

(Σ22(t))2dt] < ∞,

let us consider

E[

∫ 2π

0

(X(t))4dt] =
∑

j

E[

∫

J2
j

(

∫ t

t2j

(σ1
1(r)dW 1(r) + σ1

2(r)dW 2(r)))4dt].

For j fixed and applying Burkholder-Davis-Gundy inequality

E[

∫

J2
j

(

∫ t

t2j

(σ1
1(r)dW 1(r) + σ1

2(r)dW 2(r)))4dt]
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≤ E[

∫

J2
j

max
t2j≤t≤t2j+1

(

∫ t

t2j

σ1
1(r)dW 1(r) +

∫ t

t2j

σ1
2(r)dW 2(r))4dt]

≤ 4E[

∫

J2
j

(

∫ t2j+1

t2j

Σ11(r)dr)2dt] ≤ 4|J2
j |2E[

∫

J2
j

(Σ11(t))2dt].

Now we have

∑
j

|J2
j |2E[

∫

J2
j

(Σ11(t))2dt] ≤ 2πρ(n2)E[

∫ 2π

0

(Σ11(t))2dt].

Then (41) is less or equal to

2
√

2π ρ(n2)
1
2 E[

∫ 2π

0

(Σ11(t))2dt]
1
2 E[

∫ 2π

0

(Σ22(t))2dt]
1
2 .

The second term can be treated similarly. Therefore

E[(
∑

j

∫ t2j+1

t2j

dp1(t)

∫ t2j+1

t2j

dp2(t)−
∫ t2j+1

t2j

Σ12(t)dt)2]

≤ 4
√

2π ρ(n2)
1
2 E[

∫ 2π

0

(Σ11(t))2dt]
1
2 E[

∫ 2π

0

(Σ22(t))2dt]
1
2 .

We analyze now the other terms. Fix j

E[(

∫ t2j

t1
2(j−1)+1

dp1(t)

∫ t2j+1

t2j

dp2(t) +

∫ t1
2(j−1)+4

t2j+1

dp1(t)

∫ t2j+1

t2j

dp2(t))2]

=
(
E[

∫ t2j

t1
2(j−1)+1

Σ11(t)dt] + E[

∫ t1
2(j−1)+4

t2j+1

Σ11(t)dt]
)
E[

∫ t2j+1

t2j

Σ22(t)dt].

Therefore, by Cauchy-Schwartz inequality

∑
j

E[(

∫ t2j

t1
2(j−1)+1

dp1(t)

∫ t2j+1

t2j

dp2(t) +

∫ t1
2(j−1)+4

t2j+1

dp1(t)

∫ t2j+1

t2j

dp2(t))2]

≤ ρ(n1)
1
2

∑
j

E[

∫ t2j+1

t2j

Σ22(t)dt](E[

∫ t2j

t1
2(j−1)+1

(Σ11(t))2dt]
1
2 + E[

∫ t1
2(j−1)+4

t2j+1

(Σ11(t))2dt]
1
2 )

≤ 2ρ(n1)
1
2 E[

∫ 2π

0

Σ22(t)dt]E[

∫ 2π

0

(Σ11(t))2dt]
1
2 .

Now by considering the summation in j we observe that in the mixing terms only

first order autocorrelations remains: in fact

∑
j

∑

j′>j

E[δJ2
j
(p2)

2(j−1)+3∑

i=2(j−1)+1

δI1
i
(p1)δJ2

j′
(p2)

2(j′−1)+3∑

i′=2(j′−1)+1

δI1
i′
(p1)]

=

n
2
−1∑

j=1

E[δJ2
j
(p2)

2(j−1)+3∑

i=2(j−1)+1

δI1
i
(p1)δJ2

j+1
(p2)

2j+3∑
i=2j+1

δI1
i
(p1)]
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=

n
2
−1∑

j=1

E[

∫ t2j+1

t1
2(j−1)+3

Σ12(t)dt]E[

∫ t1
2(j−1)+4

t2j+1

Σ12(t)dt].

Finally we have:

E[(

n
2
−1∑

j=1

∫ t2j

t1
2(j−1)+1

dp1(t)

∫ t2j+1

t2j

dp2(t) +

∫ t1
2(j−1)+4

t2j+1

dp1(t)

∫ t2j+1

t2j

dp2(t))2]

≤ 2ρ(n1)
1
2 E[

∫ 2π

0

Σ22(t)dt]E[

∫ 2π

0

(Σ11(t))2dt]
1
2 + ρ(n1)

1
2 E[

∫ 2π

0

(Σ12(t))2dt].

Finally it remains to consider the lead-lag components (36):

E[
( n

2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2) +

n−1∑

i=2(j−1)+4

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2))

)2

].

Define

U(φ1, φ2) :=
∑

i

∑
j

DN(t1i − t2j)χI1
i
(φ1)χJ2

j
(φ2),

where DN(s) is the rescaled Dirichlet kernel. Then

∑
i,j

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)I{I1

i ∩J2
j =∅} =

=

∫ ∫

φ1<φ2

U(φ1, φ2)dp1(φ1)dp2(φ2) +

∫ ∫

φ2<φ1

U(φ1, φ2)dp1(φ1)dp2(φ2).

Consider the first term. The second one is analogous. By Itô energy identity and Cauchy-

Schwartz inequality, we have

E[(

∫ ∫

φ1<φ2

U(φ1, φ2)dp1(φ1)dp2(φ2))
2]

= E[

∫ 2π

0

(

∫ φ2

0

U(φ1, φ2)dp1(φ1))
2Σ22(φ2)dφ2]

≤ E[

∫ 2π

0

(

∫ φ2

0

U(φ1, φ2)dp1(φ1))
4dφ2]

1
2 E[

∫ 2π

0

(Σ22(φ2))
2dφ2]

1
2 .

By hypothesis (H)

E[

∫ 2π

0

(Σ22(φ2))
2dφ2] < ∞,

then it is enough to consider the first term. The Burkoholder-Davis-Gundy inequality

allows to estimate

E[

∫ 2π

0

(

∫ φ2

0

U(φ1, φ2)dp1(φ1))
4dφ2] ≤ E[

∫ 2π

0

max
0≤φ2≤2π

(∫ φ2

0

U(φ1, φ2)dp1(φ1)

)4

dφ2]

≤ 4E[

∫ 2π

0

(

∫ 2π

0

U2(φ1, φ2)Σ
11(φ1)dφ1)

2 dφ2]
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= 4E[

∫ 2π

0

∫ 2π

0

D4
N(φ1 − φ2)(Σ

11(φ1))
2dφ1dφ2] ≤ 8

∫ 2π

0

D4
N(v)dv E[

∫ 2π

0

(Σ11(φ1))
2dφ1].

Since |DN(v)| ≤ 1, then by Plancherel inequality

∫ 2π

0

D4
N(v)dv ≤

∫ 2π

0

D2
N(v)dv =

2π

2N + 1
,

and we conclude

E[

∫ 2π

0

(

∫ φ2

0

U(φ1, φ2)dp1(φ1))
4dφ2]

1
2 ≤ 4

√
2π√

2N + 1
E[

∫ 2π

0

(Σ22(t))2dt]
1
2 E[

∫ 2π

0

(Σ11(t))2dt]
1
2 .

•
Proof of Theorem 5.2

E[(Σ̂12
N,n −

∫ 2π

0

Σ12(t)dt)2]

= E[(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)−

∫ 2π

0

Σ12(t)dt)2] (42)

+E[(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j){δI1
i
(p1)ε2

J2
j

+ δj(p
2)ε1

I1
i

+ ε1
I1
i
ε2

J2
j
})2] (43)

+2E[(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)−

∫ 2π

0

Σ12(t)dt)× (44)

×(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j){δI1
i
(p1)ε2

J2
j

+ δJ2
j
(p2)ε1

I1
i

+ ε1
I1
i
ε2

J2
j
})].

As for (42) we know that it is o(1) for Proposition 5.1. Therefore consider (43).

E[(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j){δI1
i
(p1)ε2

J2
j

+ δJ2
j
(p2)ε1

I1
i

+ ε1
I1
i
ε2

J2
j
})2]

= E[(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)δI1
i
(p1)ε2

J2
j
)2] (45)

+E[(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)δJ2
j
(p2)ε1

I1
i
)2] (46)

+E[(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j
)2] (47)

+E[

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)δI1
i
(p1)ε2

J2
j

∑

j′ 6=j

∑

i′ 6=i

DN(t1i′ − t2j′)δJ2
j′
(p2)ε1

I1
i′
] (48)
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+E[

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)δJ2
j
(p2)ε1

I1
i

∑

j′ 6=j

∑

i′ 6=i

DN(t1i′ − t2j′)ε
1
I1
i′
ε2

J2
j′
] (49)

+E[

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)δI1
i
(p1)ε2

J2
j

∑

j′ 6=j

∑

i′ 6=i

DN(t1i′ − t2j′)ε
1
I1
i′
ε2

J2
j′
]. (50)

First of all observe that (48), (49), (50) are zero. In fact as for (48) it is enough to

note that due to the independence between noise and prices

E[δI1
i
(p1)ε2

J2
j
δJ2

j′
(p2)ε1

I1
i′
] = E[δI1

i
(p1)δJ2

j′
(p2)]E[ε1

I1
i′
ε2

J2
j
],

which is zero, because E[ε1
I1
i′
ε2

J2
j
] = 0 due to the non-synchronicity. Consider (49): by the

independence between price and noise

E[δJ2
j
(p2)ε1

I1
i
ε1

I1
i′
ε2

J2
j′
] = E[δJ2

j
(p2)]E[ε1

I1
i
ε1

I1
i′
ε2

J2
j′
] = 0.

Analogously the term (50) is zero. Now we compute the second moments (45), (46), (47).

We split (45) as follows:

E[

n
2
−1∑

j=1

n−1∑
i=1

D2
N(t1i − t2j)(δI1

i
(p1))2(ε2

J2
j
)2]

+E[

n
2
−1∑

j=1

n−1∑
i=1

∑

i′ 6=i

DN(t1i − t2j)DN(t1i′ − t2j)δI1
i
(p1)(ε2

J2
j
)2δI1

i′
(p1)]

+2E[

n
2
−2∑

j=1

n−1∑
i=1

DN(t1i − t2j)DN(t1i − t2j+1)ε
2
J2

j
ε2

J2
j+1

(δI1
i
(p1))2]

+E[

n
2
−1∑

j=1

n−1∑
i=1

∑

j′ 6=j,j+1

∑

i′
DN(t1i − t2j)DN(t1i′ − t2j′)ε

2
J2

j
ε2

J2
j′
δI1

i
(p1)δI1

i′
(p1)].

Note that

E[(δI1
i
(p1))2] = E[

∫ t1i+1

t1i

Σ11(t)dt],

E[(ε2
J2

j
)2] = 2E[η2

t2j
] = 2ω22,

E[δI1
i
(p1)δI1

i′
(p1)] = E[δI1

i
(p1)]E[δI1

i′
(p1)] = 0, if i 6= i′

E[ε2
J2

j
ε2

J2
j′
] = −ω22 if |j − j′| = 1 .

Therefore (45) is equal to

2ω22

n
2
−1∑

j=1

n−1∑
i=1

D2
N(t1i − t2j)E[

∫ t1i+1

t1i

Σ11(t)dt]
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−2ω22

n
2
−2∑

j=1

n−1∑
i=1

DN(t1i − t2j)DN(t1i − t2j+1)E[

∫ t1i+1

t1i

Σ11(t)dt].

Note that

|DN(t1i − t2j)−DN(t1i − t2j+1)| ≤ Cρ(n)N,

for a constant C; therefore we conclude the computation of (45) as

2ω22

n−1∑
i=1

D2
N(t1i − t2n

2
−1)E[

∫ t1i+1

t1i

Σ11(t)dt] + o(1).

Similarly (46) splits as:

n
2
−1∑

j=1

n−1∑
i=1

D2
N(t1i − t2j)E[(δJ2

j
(p2))2(ε1

I1
i
)2]

+2

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)DN(t1i+1 − t2j)E[(δJ2
j
(p2))2ε1

I1
i
ε1

I1
i+1

]

+

n
2
−1∑

j=1

n−1∑
i=1

∑

i′ 6=i,i+1

DN(t1i − t2j)DN(t1i′ − t2j)E[ε1
I1
i
ε1

I1
i′
(δJ2

j
(p2))2]

+

n
2
−1∑

j=1

n−1∑
i=1

∑

j′ 6=j

n−1∑

i′=1

DN(t1i − t2j)DN(t1i′ − t2j′)E[ε1
I1
i
ε1

I1
i′
δJ2

j
(p2)δJ2

j′
(p2)].

Using again the independence of noise and prices, this is equal to

2ω11

n
2
−1∑

j=1

n−1∑
i=1

D2
N(t1i − t2j)E[(δJ2

j
(p2))2]−2ω11

n
2
−1∑

j=1

n−2∑
i=1

DN(t1i − t2j)DN(t1i+1− t2j)E[(δJ2
j
(p2))2].

As |D2
N(t1i−t2j)−DN(t1i+1−t2j)| ≤ Cρ(n)N , for a constant C, we conclude the computation

of (46) as

2ω11

n
2
−1∑

j=1

D2
N(t1n−1 − t2j)E[

∫ t2j+1

t2j

Σ22(t)dt] + o(1).

Consider now (47):

E[(

n
2
−1∑

j=1

n−1∑
i=1

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j
)2] = E[

n
2
−1∑

j=1

(
n−1∑
i=1

DN(t1i − t2j)ε
1
I1
i

)2

(ε2
J2

j
)2]

+2E[

n
2
−1∑

j=1

∑

j′>j

ε2
J2

j
ε2

J2
j′

(
n−1∑
i=1

DN(t1i − t2j)ε
1
I1
i

)(
n−1∑

i′=1

DN(t1i′ − t2j′)ε
1
I1
i′

)
]

= E[

n
2
−1∑

j=1

(ε2
J2

j
)2

(
n−1∑
i=1

D2
N(t1i − t2j)(ε

1
I1
i
)2 + 2

n−1∑
i=1

∑

i′>i

DN(t1i − t2j)DN(t1i′ − t2j)ε
1
I1
i
ε1

I1
i′

)
]
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+2E[

n
2
−1∑

j=1

∑

j′>j

ε2
J2

j
ε2

J2
j′

(
n−1∑
i=1

DN(t1i − t2j)DN(t1i − t2j′)(ε
1
I1
i
)2 + 2

n−1∑
i=1

∑

i′>i

DN(t1i − t2j)DN(t1i′ − t2j′)ε
1
I1
i
ε1

I1
i′

)
]

=

n
2
−1∑

j=1

E[(ε2
J2

j
)2]

n−1∑
i=1

D2
N(t1i−t2j)E[(ε1

I1
i
)2]+2

n
2
−1∑

j=1

E[(ε2
J2

j
)2]

n−2∑
i=1

DN(t1i−t2j)DN(t1i+1−t2j)E[ε1
I1
i
ε1

I1
i+1

]

+2

n
2
−2∑

j=1

E[ε2
J2

j
ε2

J2
j+1

]

(
n−1∑
i=1

DN(t1i − t2j)DN(t1i − t2j+1)E[(ε1
I1
i
)2]+

+ 2
n−2∑
i=1

DN(t1i − t2j)DN(t1i+1 − t2j+1)E[ε1
I1
i
ε1

I1
i+1

]

)

= 4ω22ω11

n
2
−1∑

j=1

n−1∑
i=1

D2
N(t1i − t2j)− 4ω22ω11

n
2
−1∑

j=1

n−2∑
i=1

DN(t1i − t2j)DN(t1i+1 − t2j)

−4ω22ω11

n
2
−2∑

j=1

n−1∑
i=1

DN(t1i − t2j)DN(t1i − t2j+1) + 4ω22ω11

n
2
−2∑

j=1

n−2∑
i=1

DN(t1i − t2j)DN(t1i+1 − t2j+1)

= 4ω22ω11

(
n−1∑
i=1

D2
N(t1i − t2n

2
−1)−

n−2∑
i=1

D2
N(t1i − t2n

2
−1)

)
+o(1) = 4ω22ω11D

2
N(t1n−1−t2n

2
−1)+o(1).

Finally term (44) is zero due to non-synchronicity and the independence between noise

and prices. •
Proof of Theorem (6.1)

The computation is the same as in Theorem 4.1 except for (27), (28), (29), (31), (32)

and (33). In this case we have:

E[Σ̂12
N,n −

∫ 2π

0

Σ12(t)dt]

= E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2)−

∫ 2π

0

Σ12(t)dt] (51)

+E[

n
2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2) +

n−1∑

i=2(j−1)+4

DN(t1i − t2j)δI1
i
(p1)δJ2

j
(p2) )] (52)

+E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)ε
1
I1
i
δJ2

j
(p2)] (53)

+E[

n
2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)ε
1
I1
i
δJ2

j
(p2) +

n−1∑

i=2(j−1)+4

DN(t1i − t2j)ε
1
I1
i
δJ2

j
(p2) )] (54)

+E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)δI1
i
(p1)ε2

J2
j
] (55)

35



+E[

n
2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)δI1
i
(p1)ε2

J2
j

+
n−1∑

i=2(j−1)+4

DN(t1i − t2j)δI1
i
(p1)ε2

J2
j

)] (56)

+E[

n
2
−1∑

j=1

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j
] (57)

+E[

n
2
−1∑

j=1

(

2(j−1)∑
i=1

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j

+
n−1∑

i=2(j−1)+4

DN(t1i − t2j)ε
1
I1
i
ε2

J2
j

)]. (58)

We have that (51) is equal to (18). Moreover (52) is zero as the returns of the efficient

price are taken over disjoint intervals. Consider now (53) and (54). Then (55) and (56)

are analogous. We can rewrite the sum of (53) and (54) as follows

E[

n
2
−1∑

j=1

δJ2
j
(p2){

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)ε
1
I1
i

+
b−1∑

h=0

DN(t12(j−1)−h − t2j)ε
1
I1
2(j−1)−h

(59)

+
b∑

h=1

DN(t12(j−1)+3+h − t2j)ε
1
I1
2(j−1)+3+h

}]

+E[

n
2
−1∑

j=1

δJ2
j
(p2){

2(j−1)−b∑
i=1

DN(t1i − t2j)ε
1
I1
i

+
n∑

i=2(j−1)+4+b

DN(t1i − t2j)ε
1
I1
i
}]. (60)

Note that (60) is zero, because the closest points in time have distance |t12(j−1)−b+1 − t2j |
and |t12(j−1)+4+b − t2j+1|, which are both greater than θ0, so that we can use assumption

(MD1) and the dependence vanishes.

Regarding (59), we remark that for any fixed j:

E[δJ2
j
(p2){

2(j−1)+3∑

i=2(j−1)+1

DN(t1i − t2j)ε
1
I1
i

+
b−1∑

h=0

DN(t12(j−1)−h − t2j)ε
1
I1
2(j−1)−h

+
b∑

h=1

DN(t12(j−1)+3+h − t2j)ε
1
I1
2(j−1)+3+h

}]

= E[δJ2
j
(p2){

2(j−1)+3∑

i=2(j−1)+1

ε1
I1
i

+
b−1∑

h=0

ε1
I1
2(j−1)−h

+
b∑

h=1

ε1
I1
2(j−1)+3+h

}] + Rj
n,N ,

where

Rj
n,N := E[δJ2

j
(p2)(

2(j−1)+3∑

i=2(j−1)+1

ε1
I1
i
(DN(t1i − t2j)− 1)

+
b−1∑

h=0

(DN(t12(j−1)−h − t2j)− 1)ε1
I1
2(j−1)−h

+
b∑

h=1

(DN(t12(j−1)+3+h − t2j)− 1)ε1
I1
2(j−1)+3+h

)].
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For any fixed j

E[δJ2
j
(p2){

2(j−1)+3∑

i=2(j−1)+1

ε1
I1
i
+

b−1∑

h=0

ε1
I1
2(j−1)−h

+
b∑

h=1

ε1
I1
2(j−1)+3+h

}] = E[δJ2
j
(p2)(−η1

t1
2(j−1)−b+1

+η1
t1
2(j−1)+3+b+1

)]

which is zero, as |t12(j−1)−b+1 − t2j | > θ0, |t12(j−1)+3+b+1 − t2j+1| > θ0.

We observe that Rj
n,N is o(1). In fact we have:

|DN(t12(j−1)−h− t2j)−1| ≤ |t12(j−1)−h− t2j |N ≤ (hρ1(n)+ρ2(n))N ≤ (bρ1(n)+ρ2(n))N → 0,

in fact if θ0 is fixed then also b is finite and fixed. The estimation is uniform in j. Finally

|
n
2
−1∑

j=1

Rj
n,N | ≤ Cρ(n)N

n
2
−1∑

j=1

E[|δJ2
j
(p2)(−η1

t1
2(j−1)−b+1

+ η1
t1
2(j−1)+3+b+1

)]

≤ C1 ρ(n)N

n
2
−1∑

j=1

E[(δJ2
j
(p2))2]

1
2 E[(−η1

t1
2(j−1)−b+1

+ η1
t1
2(j−1)+3+b+1

)2]
1
2

≤ C1 ρ(n)NE[

∫ 2π

0

Σ22(t)dt]
1
2 (2ω11)

1
2 ,

where C1 is a constant. •
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Σ̂12
N,n1,n2

RC0.5min
1,2 RC1min

1,2 RC5min
1,2

MSE bias MSE bias MSE bias MSE bias

Reg-NS 8.67e-4 -1.36e-2 2.90e-3 -4.37e-2 3.18e-3 -3.25e-2 1.17e-2 -8.75e-3

(8.81e-4) (-1.30e-2)

Reg-S + Unc 7.19e-4 -7.01e-3 1.50e-3 -2.03e-2 2.08e-3 2.70e-3 1.14e-2 5.00e-3

Reg-NS + Unc 6.48e-4 -1.05e-2 2.36e-3 -3.65e-2 2.78e-3 -2.94e-2 9.98e-3 -2.13e-3

(6.99e-4) (-7.13e-3)

Reg-NS + Cor 9.38e-4 -1.18e-2 3.17e-3 -4.41e-2 3.37e-3 -3.14e-2 1.11e-2 -5.38e-3

(9.50e-4) (-1.27e-2)

Reg-NS + Dep 1.01e-3 -7.83e-3 3.52e-3 -4.09e-2 4.46e-3 -3.24e-2 1.56e-2 -3.14e-3

Poisson + Unc 1.66e-3 -1.81e-2 6.32e-3 -7.11e-2 3.33e-3 -3.26e-2 1.43e-2 -3.15e-3

Poisson + Cor 1.92e-3 -2.03e-2 6.43e-3 -7.06e-2 4.06e-3 -3.65e-2 1.40e-2 -5.51e-3

Poisson + Dep 1.79e-3 -1.93e-2 5.95e-3 -6.63e-2 4.32e-3 -3.43e-2 1.40e-2 -1.13e-2

RCLL0.5min
1,2 RCLL1min

1,2 RCLL5min
1,2 AO1,2

MSE bias MSE bias MSE bias MSE bias

Reg-NS 3.20e-3 -2.49e-3 6.51e-3 -3.68e-3 3.41e-2 1.16e-2 2.00e-4 -3.47e-4

Reg-S + Unc 3.25e-3 2.75e-3 6.42e-3 5.04e-3 3.12e-2 3.15e-4 2.64e-4 -1.10e-3

Reg-NS + Unc 2.89e-3 5.72e-4 5.84e-3 -1.94e-3 3.26e-2 -1.79e-3 2.69e-4 2.31e-4

Reg-NS + Cor 3.46e-3 -9.42e-4 6.37e-3 3.79e-3 3.58e-2 7.43e-3 3.41e-4 9.01e-5

Reg-NS + Dep 5.08e-3 1.58e-3 9.24e-3 -4.81e-4 4.30e-2 -2.53e-3 7.11e-3 7.86e-2

Poisson + Unc 3.79e-3 4.32e-3 7.60e-3 4.61e-3 4.07e-2 1.24e-3 6.21e-4 1.53e-3

Poisson + Cor 4.06e-3 -1.99e-4 7.91e-3 1.86e-3 4.20e-2 1.51e-3 3.66e-3 5.47e-2

Poisson + Dep 4.31e-3 -2.93e-3 8.24e-3 -5.16e-4 4.18e-2 -6.98e-3 8.01e-3 8.31e-2

Table 1: Comparison of integrated volatility estimators. The noise variance is 90% of the

total variance for 1 second returns. ρ1 = 2 sec, ρ2 = 4 sec with a displacement of 0 seconds

for Reg-S and 1 second for Reg-NS trading; λ1 = 2 sec and λ2 = 4 sec for Poisson trading.
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Σ̂12
N,n1,n2

RC0.5min
1,2 RC1min

1,2 RC5min
1,2

MSE bias MSE bias MSE bias MSE bias

Reg-S + Unc 1.72e-3 -8.98e-3 2.35e-3 -1.63e-3 3.92e-3 -1.70e-3 1.32e-2 -3.20e-3

Reg-NS + Unc 1.95e-3 -1.42e-2 3.28e-2 -1.74e-1 1.01e-2 -8.42e-2 1.14e-2 -1.55e-2

(1.99e-3) (-1.52e-2)

Reg-NS + Cor 1.83e-3 -1.46e-2 3.02e-2 -1.67e-1 9.32e-3 -8.07e-2 1.20e-2 -1.90e-2

(1.85e-3) (-1.53e-2)

Reg-NS + Dep 6.13e-3 -3.97e-3 8.72e-2 -2.04e-1 3.89e-2 -9.76e-2 3.29e-2 -1.55e-2

Poisson + Unc 4.62e-3 -3.48e-2 3.57e-2 -1.79e-1 1.29e-2 -9.39e-2 1.45e-2 -1.46e-2

Poisson + Cor 3.52e-3 -3.07e-2 2.69e-2 -1.55e-1 9.84e-3 -8.20e-2 1.20e-2 -2.23e-2

Poisson + Dep 6.43e-3 -1.97e-2 4.67e-2 -1.54e-1 2.19e-2 -8.06e-2 2.13e-2 -1.21e-2

RCLL0.5min
1,2 RCLL1min

1,2 RCLL5min
1,2 AO1,2

MSE bias MSE bias MSE bias MSE bias

Reg-S + Unc 5.17e-3 -5.50e-3 8.74e-3 -3.99e-3 3.59e-2 1.20e-2 2.16e-3 -3.10e-3

Reg-NS + Unc 4.13e-3 1.72e-3 7.09e-3 1.64e-3 3.38e-2 5.25e-3 1.94e-3 -1.44e-3

Reg-NS + Cor 4.14e-3 4.93e-4 8.04e-3 -5.65e-4 3.51e-2 3.18e-3 1.82e-3 -3.25e-3

Reg-NS + Dep 3.41e-2 -2.05e-3 2.89-2 -8.53e-3 6.45e-2 -1.44e-2 7.71e-2 7.92e-2

Poisson + Unc 5.27e-3 -6.90e-3 9.46e-3 -5.72e-3 4.43e-2 7.82e-3 2.70e-3 1.12e-3

Poisson + Cor 4.08e-3 -9.31e-3 7.12e-3 -6.25e-3 3.36e-2 -3.99e-3 1.11e-2 9.35e-2

Poisson + Dep 1.90e-2 -1.84e-3 1.84e-2 -8.70e-3 4.57e-2 9.31e-3 3.56e-2 6.56e-2

Table 2: Comparison of integrated volatility estimators. The noise is ten times the one in

Table 1. ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 0 seconds for Reg-S and 2 seconds

for Reg-NS trading; λ1 = 5 sec and λ2 = 10 sec for Poisson trading.
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Σ̂12
N,n1,n2

RC0.5min
1,2 RC1min

1,2 RC5min
1,2

MSE bias MSE bias MSE bias MSE bias

Reg-S + Unc 5.60e-3 -5.77e-3 4.97e-2 -7.22e-3 3.09e-2 -3.99e-3 2.65e-2 -1.34e-2

Reg-NS + Unc 4.25e-3 -8.06e-3 7.01e-2 -1.63e-1 3.05e-2 -8.55e-2 2.47e-2 -1.79e-2

Reg-NS + Cor 5.21e-3 -3.40e-3 9.16e-2 -2.05e-1 4.20e-2 -9.16e-2 2.82e-2 -2.03e-2

Reg-NS + Dep 1.58e-2 6.68e-3 1.88e+0 -4.52e-2 9.60e-1 3.87e-3 2.59e-1 -3.91e-2

Poisson + Unc 7.77e-3 -2.36e-2 7.95e-2 -1.68e-1 4.16e-2 -9.64e-2 2.70e-2 -2.16e-2

Poisson + Cor 9.14e-3 -3.38e-3 5.09e-2 -3.95e-2 4.23e-2 -2.07e-2 3.37e-2 3.09e-3

Poisson + Dep 1.36e-2 -2.56e-3 1.25e+0 -1.66e-1 6.93e-1 -4.43e-2 1.75e-1 -1.19e-2

RCLL0.5min
1,2 RCLL1min

1,2 RCLL5min
1,2 AO1,2

MSE bias MSE bias MSE bias MSE bias

Reg-S + Unc 4.23e-2 -8.06e-3 2.74e-2 -1.65e-2 5.47e-2 -2.75e-2 1.16e-1 -2.39e-2

Reg-NS + Unc 3.02e-2 1.99e-3 2.67e-2 4.86e-3 4.28e-2 -2.99e-3 7.32e-2 -2.80e-2

Reg-NS + Cor 3.91e-2 8.87e-3 3.45e-2 1.11e-3 5.50e-2 2.16e-2 9.97e-2 -1.12e-2

Reg-NS + Dep 1.37e+0 -6.30e-3 6.39-1 2.58e-2 1.83e-1 2.22e-2 3.66e+0 1.84e-1

Poisson + Unc 4.11e-2 -3.19e-2 2.85e-2 -1.04e-2 4.46e-2 -4.31e-3 7.79e-2 8.41e-3

Poisson + Cor 4.35e-2 -6.34e-3 3.14e-2 5.57e-3 6.81e-2 6.95e-3 1.62e+0 1.22e+0

Poisson + Dep 8.53e-1 3.32e-2 4.48e-1 3.83e-2 1.39e-1 -2.93e-2 2.02e+0 5.10e-2

Table 3: Comparison of integrated volatility estimators. Noise ratio γ ' 7. ρ1 = 5 sec,

ρ2 = 10 sec with a displacement of 0 seconds for Reg-S and 2 seconds for Reg-NS trading;

λ1 = 5 sec and λ2 = 10 sec for Poisson trading.
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