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Abstract: The first regioselective enzymatic alkoxycarbonylation of primary amino groups has been 

achieved in pyrimidine 3’,5’-diaminonucleoside derivatives. Thus, Candida antarctica lipase B (CAL-

B) catalyzed this reaction with non-activated homocarbonates allowing the selective synthesis of several 

N-5’ carbamates, including (E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU) analogues, with moderate-

high yields, whereas immobilized Pseudomonas cepacia lipase (PSL-C) afforded mixtures of 

alkoxycarbonylated regioisomers. To obtain N-3’ carbamates selectively, a short and efficient 

chemoenzymatic route was used employing some of the N-5’ protected derivatives previously 

synthesized. 

Lipases are one of the most used biocatalysts due to their versatility in accepting a wide range of 

nucleophiles (alcohols, amines, thiols, water, etc) and carbonylating agents (esters, anhydrides, 
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carbonates, etc).
1
 The enzymatic alkoxycarbonylation reaction has been scarcely studied,

2
 in spite of the 

biological relevance shown by carbonates and carbamates.
3
 In this field, our research group has 

contributed to achieving the first example of alkoxycarbonylation of amines,
4
 and the regioselective 

synthesis of carbonates in carbohydrates,
5
 nucleosides,

6
 and 1,25-dihydroxyvitamin D3 A-ring 

precursors
7
 using vinyl or oxyme carbonates. It is noteworthy that through these processes it is possible 

to introduce functionalities selectively which act as protected or activated groups in alcohols and 

amines. In the last case, reactions are irreversible since carbamates are not substrates to lipases. Thus, 

Wong and co-workers
8
 have used non-activated homocarbonates for preparing chiral protected amines 

with allyl and benzyloxycarbonyl groups. 

Enzymatic reactions have been important processes for achieving nucleoside analogues, relevant 

compounds due to their inherent value as potential therapeutical agents.
9
 Specially, pyrimidine 

nucleoside analogues have shown remarkable antiviral
10

 and antitumor
11

 activities. For example, (E)-5-

(2-bromovinyl)-2’-deoxyuridine (BVDU) has been one of them for treating herpes simplex virus type 1 

(HSV-1) and varicella zoster virus (VZV).
12

 In recent years, the search for new nucleoside derivatives 

using this clean, simple, and efficient methodology has received a great deal of attention from organic 

chemists.
13

 In this context, oxyme carbonates have been used with lipases for direct and selective 

protection of natural nucleosides.
6
 

This regioselective process would be more difficult in the case of two primary amines due to the major 

nucleophilic character of the amino group compared to the hydroxyl group. In fact, to the best of our 

knowledge, there is no example of a regioselective enzymatic alkoxycarbonylation in amines. Recently, 

we have developed the regioselective acylation of 3’,5’-diaminonucleosides with lipases and non-

activated esters.
14

 In this paper, we report the synthesis of novel pyrimidine aminonucleosides 

regioselectively protected as carbamates. For that, direct enzymatic alkoxycarbonylation reaction with 

Candida antarctica lipase B (CAL-B) was carried out to synthesize N-5’ carbamates, whereas the N-3’ 

regioisomers were prepared using a short and efficient chemoenzymatic route. 
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First, pyrimidine diaminonucleosides were synthesized through efficient routes previously described 

for us.
14

 For the alkoxycarbonylation reaction, non-activated carbonates were used as carbonylating 

agents since amines are much more nucleophilic than alcohols and oxime carbonates react non-

enzymatically with the substrates. Specifically, homocarbonates were used because their symmetrical 

structure gives a single unambiguous product. For 3’,5’-diamino-2’,3’,5’-trideoxyuridine (1, Scheme 1), 

a mixture of THF/Py was chosen to dissolve it, whereas for 3’,5’-diamino-3’,5’-dideoxythymidine (2) 

and (E)-3’,5’-diamino-5-(2-bromovinyl)-2’,3’,5’-trideoxyuridine (3), THF was used as solvent. The 

enzymatic reactions were carried out in the presence of molecular sieves (4 Å), which catalyzed these 

processes.
15

 In order to reach high conversions, ratios of alkoxycarbonylating agents have been 

established. 
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Table 1. Regioselective Enzymatic Alkoxycarbonylation of 3’,5’-Diaminonucleosides with CAL-B 

  alkoxycarbonylating agent    isolated yields (%)
a
 

entry substrate R
1
 equiv. Solvent T (ºC) t (h) N-5’ 

1 1 Et 10 THF/Py
b
 50 72 67 

2 1 CH2=CHCH2 8 THF/Py
b
 40 72 69 

3 1 Bn 20 THF/Py
b
 60 168 45

c
 

4 2 Et 10 THF 50 42 62 
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5 2 CH2=CHCH2 8 THF 40 24 64 

6 2 Bn 20 THF 60 174 50
c
 

7 3 Et 10 THF 50 135 59 

8 3 CH2=CHCH2 8 THF 40 96 69 

9 3 Bn 20 THF 60 180 50
c
 

a 
Isolated yields by flash chromatography. 

b
 Ratio THF/Py 4.5:1 (v/v). 

c 
In addition to N-5’-

alkoxycarbonylated derivative starting material was recovered. 

 

We focused on CAL-B as biocatalyst since this enzyme has demonstrated an excellent regioselectivity 

towards the amino group at the 5’ position in the enzymatic acylation of diaminonucleosides.
14

 The 

study begins with the diamino derivative of 2’-deoxyuridine (1). Thus, when the reaction was carried out 

with 10 equiv of diethyl carbonate at 50 ºC, the formation of a single product was observed (monitored 

by TLC), which corresponded to monoalkoxycarbonylated derivative at N-5’, 4a being isolated with 

67% yield after flash chromatography (entry 1, Table 1). We also confirmed that no reaction occurred in 

the absence of the enzyme.
16

 The structure of this compound was ascertained from its 
1
H NMR (MeOH-

d4) spectrum, which showed a downfield shift corresponding to both H5’ protons from 2.80–3.07 ppm in 

diaminonucleoside 1 to 3.63 ppm in 4a. Furthermore, H3’ did not display any significant change. In 

addition, heteronuclear correlation 
1
H-

13
C experiments 2D HMBC showed a crosspeak between H5’ and 

C=O, which corresponds to correlation H5’-CNCO via 
3
JCH. It is noteworthy that neither N-3’,5’ nor N-

3’ alkoxycarbonylated derivatives were formed, despite the fact that both amino groups are primaries. 

To confer versatility to this enzymatic reaction, other alkoxycarbonyl moieties were introduced. Thus, 

6 equiv of the more reactive diallyl carbonate at 40 ºC were used to alkoxycarbonylate with total 

regioselectivity 1 at the 5’ position, yielding 4b with 69% (entry 2, Table 1). On the other hand, when 

dibenzylcarbonate was used, it was necessary to increase the carbonate ratio to 20 equiv and the 

temperature up to 60 ºC due to the lower reactivity of this agent.
17

 After seven days, the N-Cbz-

derivative 4c was isolated exclusively with 45% yield, recovering a substantial amount of unreacted 

starting material (entry 3, Table 1). 
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When similar processes were carried out with thymidine and (E)-5-(2-bromovinyl)-2’-deoxyuridine 

derivatives 2 and 3, respectively, comparable behavior was observed. CAL-B showed total 

regioselectivity toward the 5’-NH2, isolating exclusively compounds 5 and 6 with moderate-high yields 

(entries 4–9, Table 1), and recovering part of unreacted diaminonucleosides with dibenzyl carbonate as 

carbonylating agent. 

Then, we tried to find a biocatalyst which alkoxycarbonylated the amino group in the 3’ position. For 

that, immobilized Pseudomonas cepacia lipase (PSL-C), which has shown an excellent regioselectivity 

in the acetylation of 3’-NH2 in 3’,5’-diaminonucleosides was chosen (Scheme 2).
14

 The results are 

summarized in Table 2. 
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Table 2. Regioselective Enzymatic Alkoxycarbonylation of 3’,5’-Diaminonucleosides with PSL-C 

  alkoxycarbonylating agent   isolated yields (%) 

entry substrate R
1
 equiv. solvent t (h) N-3’ N-5’ 

1 1 Et 50 THF/Py
a
 176 27 50 

2 1 CH2=CHCH2 40 THF/Py
a
 117 13 42 

3 2 Et 50 THF 30 22
b
 20

b
 

4 2 CH2=CHCH2 40 THF 30 26 56 

5 3 Et 50 THF 135 31
b,c
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6 3 CH2=CHCH2 40 THF 96 24 62 

a
 Ratio THF/Py 4.5:1 (v/v). 

b
 Starting material was recovered. 

c
 Isolated as a mixture of products 6a:9a 

1:1 by 
1
H-NMR. 

 

Unfortunately, PSL-C did not exhibit selectivity in the alkoxycarbonylation of 1 with 50 equiv of 

diethyl carbonate at 60 ºC affording a mixture of both regioisomers 4a and 7a (entry 1, Table 2). 

Compound 7a was identified from its 
1
H NMR (D2O) spectrum, which presents a downfield shift of the 

H3’ (from 3.33 ppm in 1 to 4.21 ppm in 7a), while H5’ almost did not change. Moreover, experiments 2D 

HMBC showed a crosspeak between H3’ and C=O corresponding to correlation H3’-CNCO via 
3
JCH. To 

avoid the formation of N-5’ monocarbonate 4a, lesser equivalents of diethyl carbonate and/or lower 

temperatures were used, but in all cases a large amount of starting nucleoside was recovered. With 40 

equiv of diallyl carbonate the process takes place with low selectivity, obtaining mainly 4b (entry 2, 

Table 2). 

Similar results were observed when substrates 2 and 3 were subjected to alkoxycarbonylation with 

PSL-C (entries 3–6, Table 2). A mixture of both N-3’ and N-5’ alkoxycarbonylated regioisomers was 

obtained, the latter being the main product when diallyl carbonate was utilized. In the case of dibenzyl 

carbonate, which had already shown low reactivity with CAL-B, the reaction did not occur. 

Since direct enzymatic methodology did not allow for N-3’ alkoxycarbonylated nucleoside derivatives 

with good yields, an orthogonal protection scheme was designed. The strategy starts with the protection 

of the 5’-NH2 group, subsequent derivatization of the N-3’ amine as a carbamate, and finally selective 

deprotection of the 5’ position. 

We decided to synthesize the N-3’-Cbz derivatives 7c–9c (Scheme 3) due to the ease of removing this 

protecting group for further modifications. To selectively protect the 5’-position, reaction of 1 with trityl 

chloride, a reagent with a very appropriate bulky group to modify that position in natural nucleosides 

was carried out. However, a mixture of regioisomers was obtained due to the major nucleophilic 

character of the amine groups. 
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Scheme 3.
a
 Synthesis of 3’-Carbamate Nucleoside Derivatives 
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a
Reaction conditions: (a) BnOCOCl, Na2CO3, THF/H2O, rt, 24 h; (b) PdCl2(PPh3)2, Bu3SnH, AcOH, 

CH2Cl2, rt, 4 h. 

 

We made use of the regioselective enzymatic alkoxycarbonylation shown previously to selectively 

protect the 5’-NH2 group as allyloxycarbamate affording derivatives 4b–6b. Treatment of the later 

compounds with benzyloxycarbonyl chloride at room temperature afforded dicarbamate nucleosides 10–

12 with high efficiency. Then, selective deprotection of the allyloxycarbonyl group in the conditions 

described by Guibé and co-workers
18

 gave place to N-3’-Cbz protected derivatives 7c–9c through a short 

and efficient chemoenzymatic route. 

Regioselective enzymatic alkoxycarbonylation of amines using a very simple procedure with non-

activated homocarbonates and CAL-B as biocatalyst have been shown for the first time, synthesizing N-

5’-carbamate pyrimidine 3’,5’-diaminonucleoside derivatives. Allyloxy or benzyloxycarbonyl protecting 

groups, very useful for further modifications, have also been introduced using this enzymatic 

methodology. The utility of these modified compounds have been presented, achieving the first 

synthesis of N-3’-Cbz-3’,5’-diaminonucleoside analogues through a short and efficient chemoenzymatic 

route with high overall yield. It is noteworthy that a new family derived from BVDU has been obtained. 

Preliminary studies with some of these carbamate derivatives have been performed against several 

viruses.
19

 They show better results than the unmodified 3’,5’-diaminonucleosides.
20

 The complete study 

of the biological activity of these new derivatives will be reported in due course. 
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Experimental Section 

General Methods. Candida antarctica lipase B (CAL-B, Novozym 435, 7300 PLU/g) was a gift from 

Novo Nordisk Co. Immobilized Pseudomonas cepacia lipase on ceramic particles (PSL-C, 783 U/g) was 

purchased from Amano Pharmaceutical Co. 

General Procedure for the Enzymatic Alkoxycarbonylation of 3’,5’-Diaminonucleosides. 

Corresponding homocarbonate (diethyl, diallyl, or dibenzyl carbonates) was added to a suspension of 

diaminonucleoside (20 mg, in the case of 1 it was previously dissolved in 1 mL of dry pyridine), lipase 

(10 mg of CAL-B or 130 mg of PSL-C), and molecular sieves 4 Å (20 mg) in dry THF (4.5 mL) under 

nitrogen, and the mixture was stirred at 250 rpm (ratios, temperatures, and reaction times are indicated 

in Tables 1 and 2). Then, the enzyme and molecular sieves were filtered off and washed with MeOH 

(35 mL). The filtrate was evaporated to dryness, and the crude residue was purified by flash 

chromatography (gradient eluent 10% MeOH/EtOAc–MeOH for compounds 4a–c, 5a–c, 6a–c and 

gradient eluent 10% MeOH/EtOAc–MeOH–10% NH3(aq)/MeOH for compounds 7a–b, 8a–b, 9a–b). 

Synthesis of Dicarbamate Nucleosides 10–12. To a solution of N-5’-protected nucleosides 4b–6b 

(20 mg, 1 equiv) in a mixture of H2O (1 mL) and THF (0.5 mL), sodium carbonate (1.2 equiv) and 

benzyloxycarbonyl chloride (1.2 equiv) were added. The mixture was stirred at room temperature during 

24 h. The solvents were evaporated under vacuum, and the crude residue was purified by flash 

chromatography (gradient eluent 20% Hexane/EtOAc–EtOAc). 

Synthesis of Monocarbamate Nucleosides 7c–9c. Substrates 10–12 (20 mg, 1 equiv), PdCl2(PPh3)2 

(0.02 equiv), and acetic acid (2.4 equiv) were dissolved in dry CH2Cl2 under nitrogen. With a syringe, 

Bu3SnH (1.1 equiv) was then added rapidly in one portion. The reaction was stirred at room temperature 

during 4 h. The solvent was evaporated under vacuum, and the crude residue was purified by flash 

chromatography (gradient eluent MeOH–5% NH3(aq)/MeOH). 

3’-Amino-5’-ethoxycarbonylamino-2’,3’,5’-trideoxyuridine (4a): 
1
H NMR (MeOH-d4, 200 MHz) 

δ 1.43 (t, 3H, H4’’, 
3
JHH 7.1 Hz), 2.36-2.49 (m, 2H, H2’), 3.50 (m, 1H, H3’), 3.63 (m, 2H, H5’), 3.89 (m, 

1H, H4’), 4.27 (q, 2H, H3’’, 
3
JHH 7.1 Hz), 5.88 (d, 1H, H5, 

3
JHH 8.1 Hz), 6.29 (dd, 1H, H1’, 

3
JHH 6.8, 

3
JHH 
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5.1 Hz), and 7.92 (d, 1H, H6, 
3
JHH 8.1 Hz); MS (ESI

+
, m/z) 337 [(M+K)

+
, 8], 321 [(M+Na)

+
, 100], and 

299 [(M+H)
+
, 31]. 

5’-Allyloxycarbonylamino-3’-amino-2’,3’,5’-trideoxyuridine (4b): 
1
H NMR (MeOH-d4, 300 MHz) 

δ 2.36-2.53 (m, 2H, H2’), 3.50 (m, 1H, H3’), 3.59-3.72 (m, 2H, H5’), 3.90 (m, 1H, H4’), 4.74 (d, 2H, H3’’, 

3
JHH 5.4 Hz), 5.37 (dd, 1H, H5’’Z, 

3
JHH 10.5 |

2
JHH| 1.4 Hz), 5.50 (dd, 1H, H5’’E, 

3
JHH 17.1 |

2
JHH| 1.4 Hz), 

5.87 (d, 1H, H5, 
3
JHH 8.0 Hz), 6.06-6.19 (m, 1H, H4’’), 6.29 (dd, 1H, H1’, 

3
JHH 6.8 

3
JHH 4.6 Hz), and 7.92 

(d, 1H, H6, 
3
JHH 8.0 Hz); MS (ESI

+
, m/z) 349 [(M+K)

+
, 20], 333 [(M+Na)

+
, 100], and 311 [(M+H)

+
, 42]. 

3’-Amino-5’-benzyloxycarbonylamino-2’,3’,5’-trideoxyuridine (4c): 
1
H NMR (MeOH-d4, 200 

MHz) δ 2.41 (m, 2H, H2’), 3.48 (m, 1H, H3’), 3.67 (m, 2H, H5’), 3.88 (m, 1H, H4’), 5.21-5.36 (m, 2H, 

H3’’), 5.79 (d, 1H, H5, 
3
JHH 8.1 Hz), 6.27 (dd, 1H, H1’, 

3
JHH 6.3 

3
JHH 4.9 Hz), 7.48-7.55 (m, 5H, Har), and 

7.87 (d, 1H, H6, 
3
JHH 8.1 Hz); MS (ESI

+
, m/z) 399 [(M+K)

+
, 19], 383 [(M+Na)

+
, 100], and 361 [(M+H)

+
, 

41]. 

3’-Amino-5’-ethoxycarbonylamino-3’,5’-dideoxythymidine (5a): 
1
H NMR (MeOH-d4, 200 MHz) δ 

1.43 (t, 3H, H4’’, 
3
JHH 7.1 Hz), 2.09 (s, 3H, H7), 2.42 (m, 2H, H2’), 3.55 (m, 1H, H3’), 3.64 (m, 2H, H5’), 

3.84 (m, 1H, H4’), 4.28 (q, 2H, H3’’, 
3
JHH 7.1 Hz), 6.31 (dd, 1H, H1’, 

3
JHH 6.8, 

3
JHH 4.9 Hz), and 7.74 (s, 

1H, H6); MS (ESI
+
, m/z) 351 [(M+K)

+
, 10], 335 [(M+Na)

+
, 100], and 313 [(M+H)

+
, 28]. 

5’-Allyloxycarbonylamino-3’-amino-3’,5’-dideoxythymidine (5b): 
1
H NMR (MeOH-d4, 200 MHz) 

δ 2.08 (s, 3H, H7), 2.43 (m, 2H, H2’), 3.50 (m, 1H, H3’), 3.66 (m, 2H, H5’), 3.88 (m, 1H, H4’), 4.74 (d, 

2H, H3’’, 
3
JHH 5.1 Hz), 5.36 (dd, 1H, H5’’Z, 

3
JHH 10.2 |

2
JHH| 1.2 Hz), 5.49 (dd, 1H, H5’’E, 

3
JHH 17.3 |

2
JHH| 

1.2 Hz), 6.03-6.21 (m, 1H, H4’’), 6.31 (dd, 1H, H1’, 
3
JHH 6.6 Hz), and 7.73 (s, 1H, H6); MS (ESI

+
, m/z) 

363 [(M+K)
+
, 5], 347 [(M+Na)

+
, 100], and 325 [(M+H)

+
, 27]. 

3’-Amino-5’-benzyloxycarbonylamino-3’,5’-dideoxythymidine (5c): 
1
H NMR (MeOH-d4, 200 

MHz) δ 2.00 (s, 3H, H7), 2.39 (m, 2H, H2’), 3.50 (m, 1H, H3’), 3.69 (m, 2H, H5’), 3.88 (m, 1H, H4’), 

5.21-5.37 (m, 2H, H3’’), 6.30 (dd, 1H, H1’, 
3
JHH 6.4 

3
JHH 5.1 Hz), 7.46-7.53 (m, 5H, Har), and 7.71 (s, 1H, 

H6); MS (ESI
+
, m/z) 413 [(M+K)

+
, 14], 397 [(M+Na)

+
, 100], and 375 [(M+H)

+
, 63]. 
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(E)-3’-Amino-5-(2-bromovinyl)-5’-ethoxycarbonylamino-2’,3’,5’-trideoxyuridine (6a): 
1
H NMR 

(MeOH-d4, 200 MHz) δ 1.46 (t, 3H, H4’’, 
3
JHH 7.1 Hz), 2.45 (m, 2H, H2’), 3.50 (m, 1H, H3’), 3.68 (m, 

2H, H5’), 3.88 (m, 1H, H4’), 4.31 (q, 2H, H3’’, 
3
JHH 7.1 Hz), 6.28 (dd, 1H, H1’, 

3
JHH 6.1, 

3
JHH 4.9 Hz), 7.07 

(d, 1H, H7, 
3
JHH 13.7 Hz), 7.56 (d, 1H, H8, 

3
JHH 13.7 Hz), and 8.01 (s, 1H, H6); MS (ESI

+
, m/z) 443 

[(M
81

Br+K)
+
, 15], 441 [(M

79
Br+K)

+
, 13], 427 [(M

81
Br+Na)

+
, 100], 425 [(M

79
Br+Na)

+
, 98], 405 

[(M
81

Br+H)
+
, 73], and 403 [(M

79
Br+H)

+
, 75]. 

(E)-5’-Allyloxycarbonylamino-3’-amino-5-(2-bromovinyl)-2’,3’,5’-trideoxyuridine (6b): 
1
H NMR 

(MeOH-d4, 200 MHz) δ 2.44 (m, 2H, H2’), 3.50 (m, 1H, H3’), 3.68 (m, 2H, H5’), 3.92 (m, 1H, H4’), 4.76 

(d, 2H, H3’’, 
3
JHH 5.6 Hz), 5.38 (dd, 1H, H5’’Z, 

3
JHH 10.5 |

2
JHH| 1.5 Hz), 5.50 (dd, 1H, H5’’E, 

3
JHH 17.3 

|
2
JHH| 1.5 Hz), 6.05-6.22 (m, 1H, H4’’), 6.29 (dd, 1H, H1’, 

3
JHH 6.1 Hz), 7.06 (d, 1H, H7, 

3
JHH 13.7 Hz), 

7.56 (d, 1H, H8, 
3
JHH 13.7 Hz), and 8.01 (s, 1H, H6); MS (ESI

+
, m/z) 439 [(M

81
Br+Na)

+
, 97], 437 

[(M
79

Br+Na)
+
, 100], 417 [(M

81
Br+H)

+
, 89], and 415 [(M

79
Br+H)

+
, 86]. 

(E)-3’-Amino-5’-benzyloxycarbonylamino-5-(2-bromovinyl)-2’,3’,5’-trideoxyuridine (6c): 
1
H 

NMR (MeOH-d4, 300 MHz) δ 2.42 (m, 2H, H2’), 3.49 (m, 1H, H3’), 3.61-3.75 (m, 2H, H5’), 3.90 (m, 

1H, H4’), 5.31 (m, 2H, H3’’), 6.27 (dd, 1H, H1’, 
3
JHH 6.1 Hz), 7.05 (d, 1H, H7, 

3
JHH 13.6 Hz), 7.45-7.57 

(m, 6H, Har+H8), and 8.00 (s, 1H, H6); MS (ESI
+
, m/z): 489 [(M

81
Br+Na)

+
, 32], 487 [(M

79
Br+Na)

+
, 33], 

467 [(M
81

Br+H)
+
, 94], and 465 [(M

79
Br+H)

+
, 100]. 

5’-Amino-3’-benzyloxycarbonylamino-2’,3’,5’-trideoxyuridine (7c): 
1
H NMR (MeOH-d4, 200 

MHz) δ 2.55 (m, 2H, H2’), 3.10 (m, 2H, H5’), 3.92 (m, 1H, H4’), 4.35 (m, 1H, H3’), 5.27 (br s, 2H, H3’’), 

5.90 (d, 1H, H5, 
3
JHH 8.3 Hz), 6.27 (dd, 1H, H1’, 

3
JHH 7.1 Hz), 7.53 (s, 5H, Har), and 7.93 (d, 1H, H6, 

3
JHH 

8.3 Hz); MS (ESI
+
, m/z) 383 [(M+Na)

+
, 71], and 361 [(M+H)

+
, 100]. 

5’-Amino-3’-benzyloxycarbonylamino-3’,5’-dideoxythymidine (8c): 
1
H NMR (MeOH-d4, 200 

MHz) δ 2.09 (s, 3H, H7), 2.44-2.67 (m, 2H, H2’), 3.11 (m, 2H, H5’), 3.93 (m, 1H, H4’), 4.37 (m, 1H, H3’), 

5.28 (s, 2H, H3’’), 6.33 (dd, 1H, H1’, 
3
JHH 5.6 Hz), 7.53 (br s, 5H, Har), and 7.73 (s, 1H, H6); MS (ESI

+
, 

m/z) 397 [(M+Na)
+
, 9], and 375 [(M+H)

+
, 63]. 
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(E)-5’-Amino-3’-benzyloxycarbonylamino-5-(2-bromovinyl)-2’,3’,5’-trideoxyuridine (9c): 
1
H 

NMR (MeOH-d4, 300 MHz) δ 2.55-2.72 (m, 2H, H2’), 3.27-3.42 (m, 2H, H5’), 4.08 (m, 1H, H4’), 4.44 

(m, 1H, H3’), 5.29 (br s, 2H, H3’’), 6.28 (dd, 1H, H1’, 
3
JHH 5.7 Hz), 7.05 (d, 1H, H7, 

3
JHH 13.7 Hz), 7.53 

(m, 6H, Har+H8), and 7.98 (s, 1H, H6); MS (ESI
+
, m/z) 505 [(M

81
Br+K)

+
, 3], 503 [(M

79
Br+K)

+
, 3], 489 

[(M
81

Br+Na)
+
, 30], 487 [(M

79
Br+Na)

+
, 28], 467 [(M

81
Br+H)

+
, 100], and 465 [(M

79
Br+H)

+
, 99]. 

5’-Allyloxycarbonylamino-3’-benzyloxycarbonylamino-2’,3’,5’-trideoxyuridine (10):
21

 
1
H NMR 

(CDCl3, 200 MHz) δ 2.26-2.39 (m, 2H, H2’), 3.39 (m, 1H, H5’), 3.62 (m, 1H, H5’), 3.89 (m, 1H, H4’), 

4.11 (m, 1H, H3’), 4.56 (d, 2H, H3’’, 
3
JHH 5.1 Hz), 5.11-5.33 (m, 4H, H3’’’+H5’’Z+H5’’E), 5.73-6.04 (m, 

4H, H5+H4’’+2 NH), 6.13 (dd, 1H, H1’, 
3
JHH 6.2 Hz), 7.34 (s, 5H, Har), 7.43 (d, 1H, H6, 

3
JHH 8.7 Hz), and 

9.75 (s, 1H, NH); MS (ESI
+
, m/z) 483 [(M+K)

+
, 67], and 467 [(M+Na)

+
, 100]. 

5’-Allyloxycarbonylamino-3’-benzyloxycarbonylamino-3’,5’-dideoxythymidine (11):
21

 
1
H NMR 

(CDCl3, 200 MHz) δ 1.90 (s, 3H, H7), 2.18-2.35 (m, 2H, H2’), 3.43 (m, 1H, H5’), 3.62 (m, 1H, H5’), 3.89 

(m, 1H, H4’), 4.11 (m, 1H, H3’), 4.57 (d, 2H, H3’’, 
3
JHH 5.1 Hz), 5.10-5.33 (m, 4H, H3’’’+H5’’Z+H5’’E), 

5.72 (br s, 1H, NH), 5.80-5.99 (m, 1H, H4’’), 6.20 (dd, 1H, H1’, 
3
JHH 5.9 Hz), 6.28 (d, 1H, NH, 

3
JHH 6.4 

Hz), 7.34 (m, 6H, Har+H6), and 9.77 (s, 1H, NH); MS (ESI
+
, m/z) 497 [(M+K)

+
, 100], and 481 

[(M+Na)
+
, 76]. 

(E)-5’-Allyloxycarbonylamino-3’-benzyloxycarbonilamino-5-(2-bromovinyl)-2’,3’,5’-

trideoxyuridine (12):
21

 
1
H NMR (MeOH-d4, 300 MHz) δ 2.55 (m, 2H, H2’), 3.57-3.74 (m, 2H, H5’), 

4.08 (m, 1H, H4’), 4.31 (m, 1H, H3’), 4.75 (br s, 2H, H3’’), 5.28-5.37 (m, 3H, H3’’’+H5’’Z), 5.49 (dd, 1H, 

H5’’E, 
3
JHH 17.3 |

2
JHH| 1.4 Hz), 6.06-6.18 (m, 1H, H4’’), 6.30 (dd, 1H, H1’, 

3
JHH 6.0 Hz), 7.06 (d, 1H, H7, 

3
JHH 13.7 Hz), 7.54 (m, 6H, Har+H8), and 7.99 (s, 1H, H6); MS (ESI

+
, m/z) 589 [(M

81
Br+K)

+
, 22], 587 

[(M
79

Br+K)
+
, 30], 573 [(M

81
Br+Na)

+
, 100], 571 [(M

79
Br+Na)

+
, 91], 551 [(M

81
Br+H)

+
, 7], and 549 

[(M
79

Br+H)
+
, 8]. 
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