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We study the moduli space of (framed) self-dual instantons on CP2. These are described by an Atiyah-
Drinfeld-Hitchin-Manin (ADHM)-like construction which allows us to compute the Hilbert series of the
moduli space. The latter has been found to be blind to certain compact directions. In this paper, we probe
these, finding them to correspond to a Grassmanian, upon considering appropriate ungaugings. Moreover,
the ADHM-like construction can be embedded into a 3d gauge theory with a known gravity dual. Using
this, we realize in AdS4=CFT3 (part of), the instanton moduli space providing at the same time further
evidence supporting the AdS4=CFT3 duality. Moreover, upon orbifolding, we provide the ADHM-like
construction of instantons on CP2=Zn as well as compute its Hilbert series. As in the unorbifolded case,
these turn out to coincide with those for instantons on C2=Zn.
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I. INTRODUCTION

In the recent past, it has become clear that studying
gauge theories in diverse circumstances is of the utmost
interest in order to unravel their dynamics. In particular, it is
very interesting to consider their response to curvature by
considering placing gauge theories on curved backgrounds.
In that respect, very recently developed techniques—such
as localization—allow us to compute exactly certain
observables, such as partition functions and surface/line
operators in certain gauge theories. In turn, these are
sensible to different physical aspects. For example, while
the supersymmetric partition functions of N ¼ 2 4d
theories on S1 × S3 have the interpretation of an index—
a weighted counting of Bogomol’nyi-Prasad-Sommereld
states—the homologous computation on S4 is interpreted as
a partition function, and it is closely related to the
Zamolodchikov metric [1].
In these computations, the nonperturbative sector typi-

cally plays a crucial role. In particular, it is well known that
instantons are very important configurations in gauge
theory. For example, the partition function of gauge theories
contains contributions from saddle points of all instanton
numbers. This can be made fully precise in the case of
supersymmetric gauge theories with eight supercharges,
when the supersymmetric partition function can be com-
puted exactly thanks to localization (see [2] for a seminal
contribution). One can then explicitly see that, in addition to
purely perturbative saddle points, the partition function
localizes on instantonic configurations, whose contribution
one has to sum. On general grounds, such contributions are
the one-loop determinants around each instanton saddle
point, which can be computed by the so-called Nekrasov
instanton partition function. In turn, in the case of pure

gauge theories, the latter coincides with the Hilbert series of
the instanton moduli space (see, e.g., [3,4]). Therefore,
the construction of instanton moduli spaces, as well as the
computation of their associated Hilbert series, is of the
greatest importance (of course, the reasons alluded to before
are just a very limited subset of those making the instanton
moduli space a very interesting object).
In the case of instantons on C2—or its conformal

compactification S4—the problem of constructing instantons
of pure gauge theories1 with gauge group A, B, C, D was
solved long ago by the Atiyah-Drinfeld-Hitchin-Manin
(ADHM) construction [5]. Moreover, it turns out that the
ADHM construction has a natural embedding into string
theory as it arises as the Higgs branch of the Dp-Dpþ 4-
brane system [6–9]. In this paper, we are interested in the
parallel story but for the case ofCP2. As opposed to S4,CP2

is a Kähler manifold. This naturally induces a preferred
orientation which distinguishes self-dual (SD) from anti-self-
dual (ASD) 2-forms. As a result, the construction of gauge
connections with ASD and SD curvatures is intrinsically
different. In this paper, we will concentrate on SD con-
nections on CP2 (and its orbifolds). In the mathematical
literature, an ADHM-like construction for such gauge
bundles has been developed long ago [10–14]. Very recently,
it has been shown that such construction can be embedded
into a gauge field theory, which, moreover, admits a string/M
theory interpretation [15]. Surprisingly, the gauge theories
engineering the ADHM construction for instantons on CP2

are 3d gauge theories with N ¼ 2 supersymmetry—that is,
four supercharges. Nevertheless, as shown in [16] (see, also,
[15,17,18] for a discussion in the physics context), the
Hilbert series and other properties do indeed satisfy proper-
ties compatible with the expected hyper-Kähler condition of
the moduli space.
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1We will concentrate on instantons in pure gauge theories with
eight supercharges throughout the paper.
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In this paper, we consider several aspects of these moduli
spaces for SD instantons on CP2, as well as develop their
construction on orbifolds of CP2. As introduced above,
being CP2 a Kähler manifold, a preferred orientation is
induced. In turn, this intrinsically distinguishes SD from
ASD configurations. It is then natural to ask whether both
types of instantons can be physically relevant. To elucidate
this, we need to construct a supersymmetric gauge theory
on the curved space such that its instanton sector includes
SD configurations. A very useful strategy put forward by
[19] is to couple the gauge theory to supergravity so that the
combined system is automatically supersymmetric. Then, a
suitable rigid limit freezes the gravity dynamics around the
chosen background in such a way that we are left with the
quantum field theory appropriately supersymmetrized on
the curved space. From this perspective, the vacuum
expectation values (VEVs) of the fields in the SUGRA
multiplet become the supersymmetric couplings in the
gauge theory. Moreover, in order to preserve supersym-
metry, generically the SUGRA, the background must be
nontrivial. A very natural way to supersymmetrize a gauge
theory is by means of topologically twisting—perhaps
including an equivariant version—with the R symmetry.
Following this method, in [20] the partition function for
gauge theories on Kähler spaces, in particular, CP2, was
constructed. However, the relevant instanton sector in that
case was that of ASD configurations. As we describe, this is
related to the choice of topological twist: because of the
Kähler property, twists based on left-handed spinors are
intrinsically different from twists based on right-handed
spinors. As we explicitly spell out in this paper, by
choosing the appropriate twist, it is possible to construct
a supersymmetric gauge theory on CP2 for which the
relevant instanton sector contains SD configurations.
In the case of SD instantons on CP2, the corresponding

Hilbert series was computed in [16–18] and reobtained in
[15] from a physics-based approach. In particular, it was
shown that these coincide with the Hilbert series of a
“parent” instanton on C2. This immediately raises the
question that, being CP2 a topologically nontrivial space,
it is natural to expect that our instantons are described by
extra topological data. In particular, given that CP2 con-
tains a nontrivial CP1, gauge field configurations should be
labeled as well by a first Chern class basically correspond-
ing to flux on the nontrivial CP1. Since the Hilbert series,
which coincides with the Nekrasov instanton partition
function, is insensitive to this information, it follows that
the partition function is independent on the choice of first
Chern class for the gauge bundle. However, other observ-
ables might depend on it (in particular, surface operators).
Thus, on general grounds, it is natural to explore the
structure of the full moduli space. Such description has
been accomplished in the mathematical literature [16–18]
for the unitary case. In particular, it has been shown that the
dimension of the moduli space seen by the Hilbert series is

smaller than the dimension of the actual moduli space. As
argued from a mathematical perspective for the unitary
case, in particular, in [17], such “extra directions” are
associated to (compact) Grassmanian subspaces in the full
moduli space.2 Note that these extra directions were
detected by means of other methods, as being compact,
the Hilbert series is blind to them. In this paper, we explore
from a novel physics-based perspective, these extra direc-
tions associated to the extra topological data. Our approach
applies to the unitary case as well as to orthogonal and
symplectic instantons. For that matter, we consider the
simplest case of a SD configuration probing these extra
directions, namely, that with zero instanton number but
nonzero first Chern class. Amusingly, for unitary instan-
tons, the construction degenerates into a 3d version of the
theory in [21], whose moduli space has been argued to be a
(compact) Grassmanian manifold, thus, reassuringly recov-
ering the expectations in the mathematical literature. This
theory, which admits a brane description, provides a clear
physical description of the extra directions of the moduli
space not captured by the Hilbert series. Moreover, it
suggests a novel way to study such extra directions by
using the so-called master space [22] of the theory. The
latter is an extended notion of the moduli space where one
ungauges the Abelian part of the gauge symmetry. As in
[23], upon appropriately ungauging Uð1Þ groups, we are
effectively considering the complex cone over the compact
base. In this modified scenario, we can now use the Hilbert
series, which probes the extra directions finding agreement
with the expectations. Moreover, we use this technique to
probe the resolved moduli space for orthogonal instantons
as well—symplectic instantons are trivial in this respect.
Thus, our new approach provides a direct and physical
method to explore in detail the moduli space of SD
instantons of all classical groups on CP2.
Yet another very interesting aspect of the construction of

SD instantons on CP2 is that the gauge theory containing
the ADHM construction of unitary instantons admits a
largeN limit where it is dual to an AdS4 geometry. It is then
natural to study the instanton moduli space in the gravity
dual. Similar to other examples in the literature, the gravity
dual captures the subset of operators involving only
bifundamental fields in the quiver corresponding to “closed
string degrees of freedom” (as opposed to fundamental
matter corresponding to “open string degrees of freedom”).
It is possible, however, to identify this subset in the field
theory for detailed comparisons. In particular, the expected
hyper-Kähler structure is recovered from the AdS dual.
Moreover, in order to find agreement with the field theory
description, the exact R charges of the operators are
required. This provides an interesting cross-check of the

2In [15], the full moduli space including the Grassmanian
directions was called the resolved moduli space, as it discerns the
extra directions not seen by the Hilbert series.
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field theory results. At the same time, it provides very
nontrivial evidence of the proposed AdS4=CFT3 dualities,
as, in particular, it requires detailed matchings involving R
charges inN ¼ 2 theories—free to deviate largely from the
free-field ones.
Starting the ADHM construction for instantons on a

given space can be used to find the corresponding con-
struction on related spaces obtained by orbifold projections.
In this manner, we find the ADHM construction, as well as
the Hilbert series for moduli spaces of instantons on
CP2=Zn, whose construction and description were not
known to the best of our knowledge. As these spaces have
an even richer topological structure, the identification of
ADHM-like quiver data with the instanton data is more
involved and not known, yet we propose some conjectures
supported on the observations coming from the unorbi-
folded case. We stress that our approach towards exploring
compact directions of the moduli space plays an important
role in guessing the topological properties of instantons on
the orbifolded spaces.
The structure of this paper is as follows: In Sec. II we

explicitly describe the relevance of SD instantons on CP2

in the computation of the partition function for the
topologically twisted gauge theory. In particular, we show
how SD instantons on CP2 arise as the minima of the
localization action, as well as (very briefly) review some
relevant aspects of the ADHM construction in the math-
ematical literature. In Sec. III we study unitary instantons
on CP2, considering, in particular, our novel approach
consisting of the resolution of the extra directions upon
ungauging Uð1Þ’s as well as the AdS=CFT description of
(part of) the instanton moduli space—this providing very
nontrivial evidence of both the construction and the
AdS=CFT duality, as it requires a precise matching of
superconformal R charges. In Secs. IV–VI we turn to
instantons on orbifolded spaces, for which we provide the
first explicit description. In Sec. IV we consider the
construction of unitary instantons on the orbifold space.
In Sec. V we turn to the symplectic case, finding the
ADHM construction of their moduli space on CP2=Zn. In
Sec. VI we turn to orthogonal instantons, analyzing, very
much like in the unitary case, the compact extra directions
associated to the nontrivial topology. Moreover, we provide
the construction of orthogonal instantons on the orbifolded
space. We provide a short summary of the highlights as
well as some conclusions in Sec. VII. Finally, we describe
some exotic cases as well as compile some figures in the
appendixes in order to not clutter the text.

II. SELF-DUAL INSTANTON CONTRIBUTIONS TO
SUPERSYMMETRIC GAUGE THEORY ON CP2

We are interested in pure gauge theories on CP2. Hence,
our first task is the construction of the supersymmetric
Lagrangian for the theory on the curved manifold. For that
matter, we follow the approach in [19], which amounts to

considering the combined system of supergravity plus the
gauge theory of interest. Then, a rigid limit freezes the
gravitational dynamics so that we are automatically left
with the supersymmetric gauge theory on the curved space.
Since we are interested in N ¼ 2 gauge theories, we will
use conformal supergravity as in [24].
Recently, the partition function of supersymmetric gauge

theories on CP2 was considered in [20]. However, in this
paper, we are interested in a different version of the gauge
theory. Recall that in order to find the supersymmetric
theory, we need to solve the gravitino variation as well as
the auxiliary condition in [24]. These provide both the
background fields as well as the Killing spinors for the
gauge theory on the curved space. A natural solution to
these equations is the topological twist [25]. On general
grounds, this amounts to redefining the Lorentz group—
generically locally SOð4Þ ∼ SUð2Þleft × SUð2Þright—by
twisting either SUð2Þleft;right with SUð2ÞR. Nevertheless,
as described in, e.g., [26], since for Kähler manifolds the
holonomy is really SUð2Þright ×Uð1Þleft, a second version
exists whereby one twists the Uð1Þleft by the Cartan of the
SUð2ÞR (note that in this case, one chirality is privileged
over the other by the orientation naturally induced by the
Kähler form). While in [20] this latter choice was consid-
ered, in this paper we will focus on the former version of
the topological twist, which can be performed both for
positive and negative chiralities of the background Killing
spinors.
Setting to begin with all supergravity fields other than the

metric and SUð2ÞR gauge field to zero, the equations
defining the supersymmetric backgrounds are defined by
the conformal Killing spinor equation [24] (we refer to this
reference for details)

Dμϵ
i
� −

1

4
γμDϵi� ¼ 0; ð1Þ

where the covariant derivative acting on the background
Killing spinors is

Dμϵ
i
� ¼ ∇μϵ

i
� þ ðAμÞijϵj�; ð2Þ

whileAμ is the SUð2ÞR gauge field, and ∇μ is the covariant
derivative acting on spinors including the spin connection.
Moreover, the metric of the CP2 is

dsCP2 ¼ dρ2 þ sin2ρ
4

½dθ2 þ sin2θdϕ2

þ cos2ρðdψ þ cos θdϕÞ2�;

ρ ∈
�
0;
π

2

�
; ψ ∈ ½0; 4π�; θ ∈ ½0; π�; ϕ ∈ ½0; 2π�:

ð3Þ

In hindsight, in this paper we are interested in keeping
the positive chirality spinors. Choosing then
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ðAμÞij ¼ −
i
4
ηIabωμabðσIÞij; ð4Þ

where ηIab is the ’t Hooft symbol and σI are the Pauli
matrices, we have that the spin connection part in the
covariant derivative is canceled, so that the Killing spinors
are simply3

ϵ1þ ¼

0BBB@
iα

0

0

0

1CCCA; ϵ2þ ¼

0BBB@
0

iα

0

0

1CCCA; α ∈ R: ð5Þ

Furthermore, one can check that the remaining supergravity
equation is solved upon appropriately tuning the super-
gravity scalar [25].
Following [24], negative chirality spinors could be

included choosing a Killing vector v of CP2 as ϵi− ¼
ivϵiþ upon turning on T− ¼ 2dvj−. Let us stick, however, to
the topological case. Then, since the theory is invariant
under the supersymmetry generated by the above ϵiþ, we
could add to the action the Q-invariant term −t

R
δV, being

δV ¼ jδΩiþj2 þ jδΩi
−j2. The standard argument suggests

then that the action is t invariant. A straightforward
calculation gives [we set ðϵiþÞ†ϵiþ ¼ 1]

δV ¼ 1

64
ðFþÞ2 þ jDϕ̄j2 þ 1

8
jYi

jj2 þ j½ϕ; ϕ̄�j2; ð6Þ

where we have imposed the reality condition Yi
j ¼ ðYj

iÞ⋆
[20]. Since Eq. (6) is strictly positive, in the classical limit
t → ∞, the theory localizes on configurations such that the
scalar in the vector multiplet is constant and lies along the
Cartan of the gauge group while Fþ ¼ 0. Note that, had we
chosen to keep negative chirality spinors, we would have
obtained F− ¼ 0. Being more explicit, the condition Fþ ¼
0 is, in the conventions of [24], equivalent to4

Fþ ¼ 1

2
ðF − ⋆FÞ ¼ 0 ⇝ F ¼ ⋆F: ð7Þ

That is, Fmust be SD. Since, for the standard orientation of
the CP2, the Kähler form is also self-dual, we have that the
relevant gauge configurations in this case are instantons of
the same duality type of the Kähler form. This is precisely
the type of instantons described in [15] using the King [13]
and Bryan and Sanders [14] constructions elaborating on
[10–12].

A. The construction of self-dual instantons on CP2

While we are interested in constructing self-dual instan-
tons on CP2, it is, however, more convenient to regard
them, upon orientation reversal of the base manifold, as
ASD instantons on CP2 (the opposite-oriented CP2). Then,
we can directly borrow the construction of their moduli
spaces from King [13] and Bryan and Sanders [14]. Let us
give a lightning overview of the relevant ingredients of the
construction and defer to [10–14] for the detailed account
(see, also, [15] for more references).
On very general grounds, there is a correspondence

between the moduli space of instantons on projective
algebraic surfaces and the moduli space of (stable) hol-
omorphic bundles which goes under the name of Hitchin-
Kobayashi correspondence. In this context, the ADHM
construction can be regarded as a device to construct
holomorphic bundles over the appropriate manifold.
An alternative version of the Hitchin-Kobayashi corre-

spondence, more useful for our purposes, was proven by
Donaldson by using the so-called Ward correspondence,
which associates an ASD connection—that is, a connection
whose curvature is ASD—on a (not complex) manifold X
to a holomorphic bundle on a related manifold Xholo.
Roughly speaking, one regards X as a conformal compac-
tification of some underlying complex manifold Xcplx.
Since both the Yang-Mills equations and the self-duality
constraints are conformally invariant, solutions with def-
inite duality properties (say, ASD) on Xcplx can be naturally
extended into solutions on X. Note that, in doing this, the
behavior of the gauge field at the added point must be
specified; that is, a framing must be chosen. In particular,
we choose a trivial framing, where the gauge transforma-
tions become the identity at infinity.
On the other hand, it is well known that connections with

an ASD curvature on a complex manifold Xcplx are in one-
to-one correspondence with holomorphic bundles on Xcplx.

5

Since the moduli space of the latter is a rather sick notion,
being Xcplx a noncompact space, we can considering a
holomorphic compactification of Xcplx into Xholo whereby
we add the complex line at infinity l∞ and demand the
holomorphic bundle to be trivial over there. Hence, all in
all, the problem of constructing trivially framed ASD
connections on X is mapped to the construction of
holomorphic bundles—denote them by E—over Xholo
trivial over l∞. The ADHM construction is precisely the
device constructing such bundles.
In the case at hand, we consider Xcplx ¼ bC2, the blowup

of C2 at a point defined as

3We choose a chiral representation for the Dirac algebra so that
Γ5 ¼ diagð1;−1Þ.

4Here, ð⋆FÞab ¼ 1
2
ϵabcdFcd.

5Roughly speaking, this is due to the fact that the ASD
condition on a connection A is equivalent to the integrability
condition ∂̄2

A ¼ 0 of ∂̄A ¼ ∂̄ þ Ā, hence, defining a holomorphic
bundle on Xcplx through the Newlander-Nirenberg theorem. See
[10–14] and [15] for more references.
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bC2 ¼ fðx1; x2Þ × ½z1; z2� ∈ C2 × CP1=x1z1 ¼ x2z2g: ð8Þ

Then, on one hand, we can find a conformal compactifi-
cation of Xcplx ¼ bC2 into X ¼ CP2—the opposite-oriented
CP2—as follows:

bC2 → CP2∶ ððx1; x2Þ × ½z1; z2�Þ →
� ½jxj2; x1; x2�;
½0; z1; z2�:

ð9Þ

Note that cCP2 is not really a complex manifold, as the
orientation does not follow from the Kähler form.
On the other hand, we can find a holomorphic compac-

tification by adding l∞ which compactifies bC2 into Xholo ¼
CP2 blown up at a point, that is, Hirzebruch’s first surface
F1. Hence, we have that framed ASD connections over CP2

are in one-to-one correspondence with holomorphic bun-
dles over F1 which are trivial over l∞. Since upon
orientation reversal, ASD connections on CP2 become
SD connections on CP2, it follows that the desired moduli
spaces are in correspondence with holomorphic bundles
over F1. Then, the ADHM construction is precisely the
device to construct such bundles.
While here we will not dive into more details, an

instrumental notion in arriving at the actual ADHM
construction, from this point of view, is the associated
twistor space, which takes into account the sphere bundle
of compatible complex structures over Xholo. Instead of
delving into more intricacies, here we will describe the

ADHM-like description of instantons for unitary, orthogo-
nal, and symplectic gauge groups embedded in a gauge
theory as in [15], and refer to [10–14] for the details of their
construction along the lines outlined here.
One word of caution is in order. Even though in the

following we will loosely refer to instantons on CP2, the
previous description of the precise construction should be
borne in mind—that is, we are describing SD instantons on
CP2 or equivalently ASD instantons onCP2. Moreover, we
stress that we discuss framed instantons where a particular
behavior in the added line (trivial) is imposed.

III. UðNÞ INSTANTONS ON CP2

As described in [15], the King [13] construction for
unitary instantons on CP2 can be embedded into a 3d
quiver gauge theory. The theory in question is a 3d N ¼ 2
gauge theory whose quiver is in the left panel of Fig. 1,
supplemented with the superpotential

W ¼ Tr½A1B1A2B2 − A1B2A2B1 þ qA1Q�: ð10Þ

Note that the chiral nature of the theory demands,
because of the parity anomaly, the gauge nodes to have
a nonvanishing Chern-Simons level N

2
þ kL and − N

2
þ kR,

respectively, where kL, kR are integers including zero.
In the following, we will concentrate on the case
kL ¼ kR ¼ 0.
As a 3d gauge theory, it has been argued [27,28] that the

theory flows to an IR fixed point, where the charges of the
fields are listed in Table I. For the particular case N ¼ 1, as
argued in [28], the mesonic moduli space (excluding
“Higgs-like” directions where fundamental fields take a
VEV) of the theory is the direct product of a conifold times
the complex line. In general, as N is increased, this
geometric branch of the moduli space becomes an increas-
ingly more involved toric manifold (see [28]).
The instanton moduli space of interest is that of G ¼

UðNÞ instantons on CP2, denoted as MG
CP2 . It arises as a

Higgs-like branch of the full moduli space of the gauge
theory dubbed the instanton branch where fundamental
fields take a VEV. Note that the instanton gauge group
appears as the flavor symmetry of the ADHM construction.
Note as well that in order to specify the instanton, in

FIG. 1. Quiver diagram for SUðNÞ instantons on CP2 (on the
left) and for SUðNÞ instantons on C2 (on the right).

TABLE I. Transformations of the fields for the CP2 quiver gauge theory. Here, r is an unknown real parameter
whose value, nevertheless, does not affect subsequent results.

Fields UðkLÞ UðkRÞ UðNÞ SUð2Þ Uð1ÞR
A1 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0� ½0� 1=2
A2 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0� ½0� 1=2
B1, B2 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0� [1] 1=4
q ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0� 1 − 1=4r
Q ½0;…; 0; 1�−1 ½0� ½1; 0;…; 0�þ1 ½0� 1=4r
F term ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0� ½0� 1

ASPECTS OF THE MODULI SPACE OF INSTANTONS ON … PHYSICAL REVIEW D 93, 026009 (2016)

026009-5



general, a set of numbers I including the instanton number
is required. We will come back to this issue below.
More precisely, as described in [15], the instanton branch

of the moduli space arises when we set A1 (as well as all
monopole operators, typically denoted by T, ~T) to zero. It is
important to note that the truncation A1 ¼ T ¼ ~T ¼ 0 is
consistent with the quantum constraint on the moduli space
introduced in [28]. Then, the only relevant F term arises
from the superpotential and reads

∂A1W ¼ B1A2B2 − B2A2B1 þ qQ: ð11Þ

Together with the field content and gauge groups of the 3d
gauge theory, this constraint precisely realizes the King
construction. Note that even though the flavor symmetry
is UðNÞ, the Uð1Þ part is really gauged. Hence, we can
think of our instantons as instantons of SUðNÞ [even
though, as we will review below, we should really think
of SUðNÞ=ZN].
In the following, we are interested in the Hilbert series of

the instanton moduli space. The ADHM construction just
introduced (and the corresponding orthogonal and sym-
plectic versions in addition to their orbifoldings to be
described below) allows us to compute it using by now
standard methods as in, e.g., [15,29–31] (see, also, [32] for
the study of instantons on C2=Zn). Let us pause to make a
point on notation. Throughout the paper, we will denote the
Hilbert series H of the instantons’ moduli space as
H½I; G;M�, being I the integers characterizing the instan-
ton, which appears as the date of the gauge group of the
ADHM construction, G those characterizing the instanton
gauge group appearing as a flavor group in the ADHM
construction, andM the ambient manifold of the instanton.
As anticipated, in order to specify a particular G

instanton on CP2, a set of quantum numbers I is required.
It is clear that one such integer is the instanton number.
However, since CP2 is a topologically nontrivial manifold,
it is natural to expect that instantons on CP2 might carry
extra quantum numbers. Indeed, as reviewed in [15]
following [16], we can characterize the instanton by its
first Chern number bc and its instanton number k̂. Using the
correspondence between ASD connections on X and
holomorphic bundles E on Xholo, these can be written as

hc1ðEÞ; ½C�i ¼ −ĉ;
�
c2ðEÞ −

N − 1

2N
c1ðEÞ2; ½F1�

�
¼ k̂;

ð12Þ

being ½C� the CP1 class inside F1—recall that, in this case,

X ¼ CP2 and Xholo ¼ F1. These, in turn, are related to the
quiver data kL, kR as follows:

ĉ ¼ kR − kL; k̂ ¼ 1

2
ðkL þ kRÞ −

1

2N
ðkL − kRÞ2: ð13Þ

As an algebraic variety, MSUðNÞ
CP2 can be mapped into the

moduli space of a related instanton on C2—described by
the Higgs branch of the theory in the right panel of Fig. 1—
in the following way,

π∶ ðA2; B1; B2; Q; qÞ
→ ðX1 ¼ A2B1; X2 ¼ A2B2; I ¼ A2q; J ¼ QÞ; ð14Þ

being X1, X2, I, J the fields of the quiver diagram for C2

theory. Indeed, if we multiply the F-term relation (11) by
A2 and we apply the map (14), we recover the F term for
SUðNÞ instantons on C2,

½X1; X2� þ I · J ¼ 0: ð15Þ

In turn, the inverse map σ can also be defined as

σ∶ ðX1; X2; I; JÞ
→ ðA2 ¼ 1K×K; B1 ¼ X1; B2 ¼ X2; q ¼ I; Q ¼ JÞ:

ð16Þ

Let us momentarily consider the case where kL ¼ kR,
which corresponds to ĉ ¼ 0 and k̂ ¼ kL. From the con-
struction in Eq. (14), it is clear that the integer K in the
quiver in the right panel of Fig. 1 is identified with kL.
Thus, we have that as an algebraic variety, the moduli space
of kL SUðNÞ instantons on CP2 is identified with the
moduli space of kL SUðNÞ instantons on C2. Consistently,
the Hilbert series of these instantons coincide, from which

it follows that dimCM
SUðNÞ
CP2 ¼ 2NkL.

In the general case kL ≠ kR, one finds that the above
construction still holds upon setting K ¼ minðkL; kRÞ.
Consistently, as described in [15], the Hilbert series
corresponding to the instanton branch of the quiver in
the left panel of Fig. 1 coincides with the Hilbert series of
the Higgs branch of the quiver in the right panel of Fig. 1,
that is,

H½ðkL; kRÞ; SUðNÞ;CP2�ðt; x; yÞ
¼ H½minðkL; kRÞ; SUðNÞ;C2�ðt3; x; yÞ; ð17Þ

where t is the fugacity of the R charge, x the fugacity
associated with the SUð2Þ global symmetry, and y’s are the
fugacities associated with the UðNÞ global symmetry. Note
that the fugacity associated to the R charge is rescaled from
t in the CP2 case into t3 in the C2 case.
Naively, Eq. (17) suggests that the dimension of the

moduli space of unitary instantons on CP2 is

dimCM
SUðNÞ
CP2 ¼ 2NminðkL; kRÞ: ð18Þ

Note that, even though the quiver is specified by three
integers N, kL, kR, Eq. (18) is only sensitive to two of them.
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However, it is possible to consider an extended notion of
the moduli space where the extra directions associated to all
the three quantum numbers specifying the instanton are
taken into account. This is the so-called resolved (as the
extra directions are discerned) moduli space denoted asbMSUðNÞ

CP2 , whose dimension is [16–18]

dimC
bMSUðNÞ

CP2 ¼ 2k̂N ¼ dimCM
SUðNÞ
CP2 þ ĉðN − ĉÞ: ð19Þ

Note that for ĉ ¼ 0, N the dimension of bMSUðNÞ
CP2 is equal to

the dimension of MSUðNÞ
CP2 . This suggests that ĉ is really a

modulo N quantity corresponding to an instanton gauge
group which is really SUðNÞ=ZN. We warn the reader that,
while in the following we will not clutter notation by
suppressing the ZN , the global properties of the gauge
group must be kept in mind.

A. The resolved moduli space and the Grassmanian

In order to explore the resolved moduli space, it is
instructive to first consider the simplest case where kL ¼ 0.
The theory simplifies into a one-noded quiver flavored
only with fundamental fields (and not antifundamentals)
shown in Fig. 2. Recall that the CS level is adjusted so as to
cancel the parity anomaly, and, furthermore, there is no
superpotential.
The leftover theory in this particular case corresponds to

a 3d version of the theory considered in [21]. Then, as
argued in that reference, the moduli space is a complex
Grassmanian (compact) manifold, consistent with the
expectations in [16–18].
We can now understand why MSUðNÞ

CP2 is insensitive to
these extra directions, as forming a compact Grassmanian
manifold, the Hilbert series is blind to them. Indeed, since
in the theory in Fig. 2 the gauge group is UðkRÞ, the Higgs-
like moduli space is empty, as no gauge invariant can be
constructed out of fundamental fields. Consistently, for-
mula (18) gives a zero-dimensional moduli space.
However, as in [23], we can consider a version of the
theory where only the non-Abelian SUðkRÞ part ofUðkRÞ is
gauged, while the Uð1Þ is kept as a global baryonic
symmetry [alternatively, we could think of this as the

master space [22] of the UðkRÞ theory]. In this case, we can
form baryonlike gauge-invariant operators, thus, finding a
nonempty moduli space which, in fact, is a complex cone
over the Grassmanian. It is straightforward to compute the
Hilbert series. Unrefining the flavor fugacities, we have

HS ¼
Z

PE½Ntχ□kR
�; ð20Þ

where χ□kR
is the character of the SUðkRÞ fundamental. Let

us introduce the d-Narayana numbers

Nd;n;k ¼
Xk
j¼0

ð−1Þk−j
�
dnþ 1

k − j

�Yd−1
i¼0

�
nþ iþ j

n

�

×

�
nþ i

n

�−1
: ð21Þ

Using them we can define the Narayana polynomial

P̂d;nðtÞ ¼
Xðd−1Þðn−1Þ

k¼0

Nd;n;ktdk: ð22Þ

In terms of this polynomial, one can see that

HS ¼ ð1 − tkRÞk2R−1−kRNP̂kR;N−kR : ð23Þ

We can easily read off the dimension of the moduli space
from the pole at t ¼ 1, which is simply coming from the
prefactor before the Narayana polynomial, finding (this
result, not known in the literature to the best of our
knowledge, generalizes that in [33])

dimCM
SUðNÞ
CP2 jGrassmanian ¼ kRðN − kRÞ þ 1: ð24Þ

Recalling that the þ1 is due to the Uð1Þ which we are not
integrating over—resulting in moduli space which is a
complex cone over the Grassmanian—we find a result in
accordance with Eq. (19).
Equation (24) is invariant under the exchange

kR ↔ N − kR. Indeed, one can explicitly check that the
Hilbert series of the theories with SUðkRÞ gauge group and
SUðN − kRÞ are identical up to a trivial redefinition of t,
thus, suggesting a duality among these theories. Note that
this should imply nontrivial identities among Narayana
polynomials, which would be interesting to explore. Such
duality is also suggested by the brane construction in [21].6

In that reference, in a IIA system consisting on an NS-brane
and an NS0-N D4-branes intersection, kR D2-branes are
stretched along x6 direction between the NS and the

FIG. 2. Quiver diagrams for Grassmanian (we show the dual
pair—see text).

6We should stress that the same choice of Fayet-Iliopoulos (FI)
parameters as in those references related to the stability con-
ditions in the ADHM-like construction applies.
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NS0-D4 intersection. Then, the N D4’s can be broken on
the NS0 and, say, the lower part of them can be sent to
infinity. As argued in [21], the gauge theory on the D2’s is
precisely the 2d version of the gauge theory in the first
panel of Fig. 2. Upon T duality along x2, this system
engineers the actual 3d gauge theory of interest, namely,
that in the first panel of Fig. 2. Explicitly, the system
contains

(i) An NS-brane along 012345.
(ii) A braneweb with an NS0-brane along 012389 meet-

ing N D5-branes along 012378 and emanating a
ð1; NÞ fivebrane.

(iii) kR D3-branes along 0126, starting at the braneweb
junction and ending on the NS.

Note that the NS0-D4 intersection in the IIA system
becomes a braneweb in the IIB system, as D5-branes
meeting an NS0 give rise to a ð1; NÞ fivebrane. In fact, it is
precisely this bending that gives the expected CS level in
the 3d gauge theory [34,35]. In this, it is important to recall
that the D3’s meet the fivebranes right at the junction, as
this is what makes the 3d theory contain only fundamental
(and not antifundamental) matter [21], which, in turn,
generates the N

2
CS level.

We can now imagine crossing the NS to the other side.
Then, due to the Hanany-Witten effect, the final configu-
ration contains N − kR D3-branes but is otherwise identi-
cal, consistent with our finding that the two theories in
Fig. 2 yield the same Hilbert series (for a more detailed
account of the duality in the 2d case, we refer to [21]).
Coming back to the general discussion, in view of the

kL ¼ 0 case, it is natural to guess that ungauging the
Abelian part of the largest gauge symmetry will allow us to
resolve the extra directions in M̂. For that matter, let us now
consider the case kL ¼ 1. Writing the remaining UðkRÞ
gauge group as Uð1Þ × SUðkRÞ, we can compute the
Hilbert series upon integration only over the non-
Abelian SUðkRÞ part. In this case, finding a closed analytic
form seems a daunting task. Nevertheless, from explicit
computations for kL ¼ 1 and kR ¼ 2, 3 and N ¼ 1, 2, 3, we
find that (the explicit forms of the Hilbert series are rather
unilluminating, and we will refrain from explicitly display-
ing them here) reading the dimension of the moduli space
from the order of the pole at t ¼ 1, the dimension is
compatible with the formula

dimCM̂
SUðNÞ
CP2 ¼ 2kLN þ ĉðN − ĉÞ þ 1; ð25Þ

which is precisely the expected result (19). Unfortunately,
explicitly checking higher-rank cases is technically chal-
lenging. Nevertheless, it would be very interesting to
perform further checks for higher ranks.

B. Rank one and AdS=CFT

In the particular case of kL ¼ kR, upon settingN ¼ 1 and
for kL ¼ kR ¼ 0, the theory engineering the moduli space

of unitary instantons on CP2 becomes exactly that found in
[28] to describe M2 branes probing C × C, the direct
product of a conifold times the complex line. The metric
of the CY4 cone can be written as

ds2cone ¼ dρ2 þ ρ2ds2B; ð26Þ

ds2B ¼ dα2 þ sin2αdγ2 þ cos2α
9

�
dψ þ

X2
i¼1

cos θidϕi

�2

þ
X2
i¼1

cos2α
6

ðdθ2i þ sin2θidϕ2
i Þ: ð27Þ

Then, on general grounds, the near-brane geometry for a
stack of kL M2 branes probing this cone is AdS4 × B,
which, in global coordinates, can be written as

ds2 ¼ −
�
1þ r2

L2

�
dt2 þ dr2

ð1þ r2

L2Þ
þ r2ðsin2θdθ2 þ dϕ2Þ

þ 4L2ds2B; ð28Þ
being L the radius of the AdS4 space. Besides, there is a 6-
form flux whose field strength integrates to kL on B. Hence,
in the large kLð¼ kRÞ limit, the gauge theory is holo-
graphically dual to AdS4 × B with kL units of flux through
B. It is, thus, natural to wonder whether, at least partially,
the moduli space of unitary instantons on CP2 can be
geometrically realized in this context.
As discussed in [28], the gauge theory contains a mesonic

branch of themoduli spacewhich realizes the dual geometry.
In general, it is natural to expect that the holographic dual
captures gauge theory operators made out of bifundamental
fields, while those corresponding to fundamental matter
would require extra multiplets on top of the AdS4 × B to
account for the “flavor brane open string” degrees of free-
dom. Hence, it is natural to expect that the sub-branch of the
instanton branch involving just fA2; Big fields is visible in
thegeometry. This is indeed analogous to the cases discussed
in [31,36], where only the “closed string fields” in the quiver
are captured by the gravity dual.
More explicitly, following [31,36], it is natural to expect

that this sub-branch of the instanton branch is captured by
dual giant graviton branes moving in the appropriate
subspace corresponding to the instanton branch. For that
matter, we consider a probe M2 brane wrapping ðt;Ω2Þ,
where Ω2 is the sphere inside the AdS4. Moreover, we
assume that ψ ¼ ψðtÞ and ϕ2 ¼ ϕ2ðtÞ, while

γ; α; θ1;ϕ1; θ2 ¼ constant: ð29Þ

The action for such probe brane is

S ¼ −T2

Z ffiffiffiffiffiffi
−g

p þ T2

Z
P½Að3Þ�; ð30Þ

which becomes
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S ¼ −T2V2

Z
dtr2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ r2

L2

�
−
4L2cos2α

9
ð _ψðtÞ þ cos θ2 _ϕ2ðtÞÞ2 −

4L2cos2αsin2θ2
6

_ϕ2ðtÞ2
s

−
r3

L

�
:

It is easy to convince oneself that the equations of motion fix α ¼ 0 (for simplicity, from now on we set α ¼ 0). Then,
with the Legendre transforming to the Hamiltonian H ¼ Hðθ2; r; Pψ ; Pϕ2

Þ, we obtain

H ¼ 1

2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ L2

L2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð5 − cos 2θ2ÞP2

ψ − 24 cos θ2PψPϕ2
þ 2ð6P2

ϕ2
þ 4L2r4sin2θ2T2

2V
2
2Þ

2sin2θ2

s
−
V2T2r3

L
:

The minimum energy configurations are

cos θ2 ¼
Pϕ2

Pψ
; ð31Þ

for which

r ¼ 0 or r ¼ 3Pψ

2L2T2V2

: ð32Þ

Both configurations are degenerated in energy, one corre-
sponding to pointlike gravitons and the other to true dual
giant gravitons. The energy is

H ¼ 3Pψ

2L
: ð33Þ

Coming back to the solution in Eq. (31), we can para-
metrize the phase space of the spinning M2 as a dynamical

system by the coordinates QA ¼ fr; α;ψ ; θ2;ϕ2g and the
conjugated momenta PA¼fPr;Pα;Pψ ;Pθ2 ;Pϕ2

g. Moreover,
the conjugated momenta PA must obey the following
constraints:

fr ¼ Pr; fα ¼ Pα; fθ2 ¼ Pθ2 ;

fψ ¼ Pψ −
2L2T2V2r

3
;

fϕ2
¼ Pϕ2

−
2L2T2V2r cos θ2

3
:

As usual, the matrix MAB ¼ ffA; fBgPB encodes the sym-
plectic form associated to the phase space of our dynamical
system as fQA;QBgDB ¼ ðMABÞ−1 (DB stands for Dirac
brackets). Deleting the row and column corresponding to the
trivial α coordinate, we find

MAB ¼

0BBBBBB@
0 2L2T2V2

3
0 2L2T2V2 cos θ2

3

−2LT2V2

3
0 0 0

0 0 0 −2L2r sin θ2T2V2

3

−2L2 cos θ2T2V2

3
0 2L2r sin θ2T2V2

3
0

1CCCCCCA:

Therefore, the symplectic structure reads

ω ¼ 2L2T2V2

3
dr∧dψ þ 2L2T2V2 cos θ2

3
dr∧dϕ2

−
2L2T2V2r sin θ2

3
dθ2∧dϕ2:

Integrating, we obtain

ν ¼ 2L2T2V2r
3

ðdψ þ cos θ2dϕ2Þ ⇒ ω ¼ dν: ð34Þ

Hence, upon introducing ρ2 ¼ 4L2T2V2r=3, we just re-
cover the data of C2. Following [31,36], we can do
symplectic quantization of this dynamical system. On

general grounds, that amounts to identifying the holomor-
phic functions on the phase space—in this case C2—with
the allowed wave functions. These can easily be counted,
simply obtaining the Hilbert series for C2.
Let us now turn to the gauge theory. As discussed, we

expect our probe branes to be dual to operators on the
instanton branch not containing fundamental fields. These
are of the schematic form

On;m ¼ ðA2B1ÞnðA2B2Þm: ð35Þ

Note that the F terms imply that the Bi indices are
completely symmetrized; that is, the operators On;m are

in a spin ðnþmÞ
2

representation of the SUð2Þ global symmetry
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rotating the Bi’s. Hence, for a fixed R charge
R½On;m� ¼ 3

4
ðnþmÞ, the number of operators is

ðnþmÞ þ 1, and the corresponding generating function
is just

P∞
j¼0ðjþ 1Þxj ¼ ð1 − xÞ−2, which is precisely the

C2 Hilbert series; here, x is a generic fugacity.
We can explicitly compare the gauge theory operators

with our probe brane configurations on the gravity side. For
that matter, let us first note that exactly the same configu-
ration on the gravity side would have been obtained fixing
θ2 ¼ 0; π and having our brane orbiting ψ � ϕ1, respec-
tively. Hence, in all our formulas, we can trade ψ for
~ψ ¼ ψ � ϕ1. In particular, Eq. (33) becomes HL ¼ 3

2
P ~ψ .

In order to compare our probe branes with the gauge
theory operators,weneed to identify charges. It is reasonable
to guess that the momentum along ψ is proportional to theR
symmetry. Hence, let us identify Pψ ¼ r, being r (not to be
confusedwith the arbitrary integer in Table I) proportional to
the chargeR under theUð1ÞR in awaywhich wewill shortly
come back to. Moreover, in order to understand the Pϕ1;2

momenta, it is instructive to considermomentarily removing
the quarks from the gauge theory. It then exhibits an
SUð2ÞA × SUð2ÞB global symmetry rotating, respectively,
the Ai and Bi fields. Then, the quark multiplets break the
SUð2ÞA down to a Uð1ÞA, while the SUð2Þ rotating the B’s
remains as a global symmetry.We identify theUð1ÞA charge
denoted as QA, with Pϕ1

as QA ¼ Pϕ1
. With no loss of

generality, let us assume QA½A2� ¼ 1
2
, which corresponds to

the choice θ1 ¼ π. Then P ~ψ ¼ Pψ − Pϕ1
translates into

P ~ψ ¼ r −QA. Analogously, we identify Pϕ2
with the

Cartan of the SUð2ÞB denoted as QB.
Note that Eq. (31) translates into QB ¼ ðr −QAÞ cos θ2,

and, therefore, QB ∈ ½−ðr −QAÞ; ðr −QAÞ�. Let us com-
pare this with the gauge theory operators (35). Using
Table I, the charges of the operators in the expression

(35) are R½On;m� ¼ 3ðnþmÞ
4

and QA½On;m� ¼ nþm
2
. As

expected, being chiral operators, they satisfy the usual
relation Δ ¼ R. Moreover, it is clear that QB ¼ n−m

2
, so that

QB ∈ ½− 2R
3
; 2R
3
�. Comparing the ranges for QB in gravity

and field theory, we find the identification

R ¼ 3

2
ðr −QAÞ: ð36Þ

Turning now to the energy for our branes, we find
HL ¼ 3

2
ðr −QAÞ, which, upon using Eq. (36), becomes

Δ ¼ R, precisely as expected for chiral operators.
Moreover, we can explicitly fix the value of r. For that

matter, let us turn to the field theory operators and consider
the highest QB weight state, which corresponds to m ¼ 0.
For this one, QA ¼ QB ¼ n

2
, while R ¼ 3QA

2
. In turn, from

the gravity side, the brane with the highest QB is
QB ¼ r −QA. Since this must correspond to QB ¼ QA,
we find QA ¼ 2r. Hence, this implies r ¼ 4R

3
.

We can offer an alternative test of our identifications. For
that matter, let us consider metric fluctuations polarized
along the internal manifold. On general grounds, these
fluctuations correspond to operators of the schematic form
T O, being T the stress-energy tensor of the theory. Note
that, for the particular case when the inserted operator O is
one of those in Eq. (35), we expect that the dimension is
3þ Δ. In turn, these fluctuations satisfy the Klein-Gordon
equation in AdS4 × B. For a CY4 of the form C × C, this
problem was considered in [37], where it was shown that
the dimension of the dual operators can be written in terms
of the eigenvalues of the scalar Laplacian on C. In turn,
borrowing the results from [38], the eigenvalues of the
scalar Laplacian on the conifold are

EC ¼ 6

�
l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − r2

8

�
; ð37Þ

where l1;2 are, respectively, the SUð2ÞA × SUð2ÞB total
spin and r the charge along the ψ direction. For the
operators in Eq. (35), we have that l1 ¼ l2 ¼ l. In turn,
the charge r must satisfy r

2
∈ ð−l;lÞ. Focusing on the

highest weight state, we would require r ¼ 2l, which is
nothing but r ¼ 2QA as seen before. Then, using [37]

Δ ¼ 3þ 3

2
l: ð38Þ

This precisely coincides with our expectations upon iden-
tifying Δ ¼ 3

2
l. This can be written as Δ ¼ 3r

4
, which

becomes Δ ¼ R upon using the identification r ¼ 4R
3

advocated above.
Let us stress that these tests find exact matching between

the gauge theory expectations and the gravity dual com-
putations by making explicit use of Uð1ÞR charge assig-
nations. Since these are not protected in N ¼ 2 theories,
the agreement we find should be regarded as a highly
nontrivial check of the duality.
So far, we have considered the case kL ¼ kR. It is natural

to expect that kL ≠ kR can be accommodated into the
gravity dual by adding nonvanishing flat B2 over a 2-cycle
in the internal manifold [39]. Nevertheless, such modifi-
cation of the background would not change our computa-
tion. Hence, we would find the same result even for the case
kL ≠ kR, in agreement with the field theory result where the
Hilbert series only depends on minðkL; kRÞ.

IV. UðNÞ INSTANTONS ON CP2=Zn

A natural generalization of the ADHM construction of
instantons on CP2 is to consider orbifolding the ambient
manifold upon quotienting by a subgroup of its sym-
metries. In particular, sinceCP2 is invariant under aUð1Þ ×
Uð1Þ action corresponding to the ϕ, ψ coordinates in
Eq. (3), it is natural to consider quotienting such symmetry
by some discrete subgroup of it. Note that the spinors in
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Eq. (5) are constant and, moreover, annihilated by
ei

2π
k ðJ12−J34Þ (Jij are the Lorentz generators in tangent space

indices Jij ¼ i
2
½Γi;Γj�). Therefore, we can consider a Zn

orbifold of the ϕ direction whereby we restrict ϕ ∼ ϕþ 2π
n .

In the rest of the paper, we will be interested in the ADHM
construction of instantons on these orbifolded spaces. For
that matter, we will take as the starting point the ADHM
construction in the unorbifolded case, on which we will
implement the orbifold by standard methods [9].
Let us consider the case of unitary instantons presented

above. In order to find the orbifolded theory, we first need
to identify the transformation properties of the fields. These
read as follows:

(i) The fields Aj (with j ¼ 1, 2) in the bifundamental
representation,

Aj ↦ γ1Ajγ−12 : ð39Þ

(ii) The fields B1 and B2 in the bifundamental repre-
sentation,

B1 ↦ ω−1
n γ2B1γ−11 ; B2 ↦ ωnγ2B2γ−11 ; with

ωn ¼ e2πi=n: ð40Þ

(iii) The fields Q and q,

q ↦ γ2qγ−13 ; Q ↦ γ3Qγ−11 ; ð41Þ

where the matrices γ1, γ2, and γ3 are given by

γ1 ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
k1 times

;ωn;…;ωn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k3 times

;…;ωn−1
n …;ωn−1

n|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k2n−1 times

Þ with
X2n−1
i odd

ki ¼ kL;

γ2 ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
k2 times

;ωn;…;ωn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k4 times

;…;ωn−1
n …;ωn−1

n|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k2n times

Þ with
X2n
i even

ki ¼ kR;

γ3 ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
N1 times

;ωn;…;ωn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N2 times

;…;ωn−1
n …;ωn−1

n|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Nn times

Þ with
Xn
i¼1

Ni ¼ N:

It is easy to check that the superpotential (10) is invariant under the transformations (39)–(41). In addition, the two gauge
groups UðkLÞ and UðkRÞ of the initial theory and the flavor group UðNÞ are broken into

UðkLÞ ↦ ⊗
2n−1

i odd
UðkiÞ; UðkRÞ ↦ ⊗

2n

i even
UðkiÞ; UðNÞ ↦ ⊗

n

i¼1
UðNiÞ;

and after the action of the transformations (39)–(41), the various fields become

A1 ¼

0BBBBBB@
A1
11 0 0 � � � 0

0 A1
22 0 � � � 0

0 0 A1
33 ⃜ 0

� � � � � � � � � � � � 0

0 0 0 0 A1
nn

1CCCCCCA; A2 ¼

0BBBBBB@
A2
11 0 0 � � � 0

0 A2
22 0 � � � 0

0 0 A2
33 ⃜ 0

� � � � � � � � � � � � 0

0 0 0 0 A2
nn

1CCCCCCA;

B1 ¼

0BBBBBB@

0 0 0 � � � B1
1;n

B1
21 0 0 � � � 0

0 B1
32 0 � � � 0

� � � � � � � � � 0 0

0 0 0 B1
n;n−1 0

1CCCCCCA; B2 ¼

0BBBBBB@

0 B2
12 0 � � � 0

0 0 B2
23 � � � 0

0 0 0 � � � � � �
� � � � � � � � � � � � B2

n−1;n

B2
n;n−1 0 0 0 0

1CCCCCCA;

q ¼

0BBBBBB@
q11 0 0 � � � 0

0 q22 0 � � � 0

0 0 q33 ⃜ 0

� � � � � � � � � � � � 0

0 0 0 0 qnn

1CCCCCCA; Q ¼

0BBBBBB@
Q11 0 0 � � � 0

0 Q22 0 � � � 0

0 0 Q33 ⃜ 0

� � � � � � � � � � � � 0

0 0 0 0 Qnn

1CCCCCCA:
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A. Constructing UðNÞ instantons on CP2=Zn

Let us now show the actual construction of unitary
instantons on CP2=Zn.

1. The CP2=Z2 case

Let us consider the simplest case of the Z2 orbifold.
Applying the rules above, we obtain a theory whose quiver
is reported in Fig. 3 together with the superpotential (42).
Note that WFI

0
denotes the superpotential for FI

0 (the first
phase of the F0 was studied in [40] in the case of 4d field
theories and in [41] in the context of 3d field theories).
Moreover, for future reference, we compile the trans-
formation properties of the fields and the F terms under
the various symmetry groups in Table II,

W ¼ Tr½Ai
11B

j
12A

k
22B

l
21ϵikϵjl þ q11A1

11Q11 þ q22A1
22Q22�

¼ WFI
0
þ Tr½q11A1

11Q11 þ q22A1
22Q22�: ð42Þ

In the unorbifolded case, the instanton branch appeared
upon setting A1 ¼ 0. Therefore, in this case, we need to
impose A1

11 ¼ A1
22 ¼ 0. Then, the only relevant F terms are

F1∶ ∂A1
11
W ¼ B1

12A
2
22B

2
21 − B2

12A
2
22B

1
21 þ q11Q11 ¼ 0;

ð43Þ
F2∶ ∂A1

22
W ¼ B1

21A
2
11B

2
12 − B2

21A
2
11B

1
12 þ q22Q22 ¼ 0:

ð44Þ

This describes the ADHM construction for instantons
on CP2=Z2.
As we have reviewed above, in the unorbifolded

case, it is possible to map instantons on CP2 into
instantons on C2. Inherited from this, we can find a
mapping from the ADHM construction for instantons
on the orbifolded space into that for instantons on the
appropriate orbifold of C2. To see this, using the map π
in Eq. (14), we have the following identifications
between the fields of the CP2=Z2 theory and the
fields of the C2=Z2 theory,

A2B2 ¼
�

0 A2
11B

2
12

A2
22B

2
21 0

�
¼

�
0 X2

12

X2
21 0

�
¼ X2;

A2q ¼
�
A2
11q11 0

0 A2
22q22

�
¼

�
I11 0

0 I22

�
¼ I;

A2B1 ¼
�

0 A2
11B

1
12

A2
22B

1
21 0

�
¼

�
0 X1

12

X1
21 0

�
¼ X1;

Q ¼
�
Q11 0

0 Q22

�
¼

�
J11 0

0 J22

�
¼ J:

Then, upon multiplication of the F-term relations (43)
and (44) by A1

11 and A
2
22, respectively, these can be rewritten

as

X1
12X

2
21 − X2

12X
1
21 þ I11J11 ¼ 0; ð45Þ

X1
21X

2
12 − X2

21X
1
12 þ I22J22 ¼ 0; ð46Þ

which are the F-term relations for the C2=Z2 theory [31].
Hence, we recover the analog to the unorbifolded case,
namely, that the moduli space (at least removing possible
compact directions, which we will come back to below) is
biholomorphic to the moduli space of C2=Z2.
The Hilbert series of instantons described by the theory

with flavor group UðN1Þ ×UðN2Þ and gauge ranks
k ¼ ðk1; k2; k3; k4Þ7 reads

H½k; F;CP2=Z2�ðt; x; y;dÞ

¼
Z

dμUðk1ÞðuÞ
Z

dμUðk2ÞðwÞ
Z

dμUðk3ÞðzÞ

×
Z

dμUðk4ÞðvÞPE½χA2
11
t2 þ χA2

22
t2 þ χBj

12
tþ χBj

21
t

þ χq11t
2 þ χQ11

t2 þ χq22t
2 þ χQ22

t2 − χF1
t4 − χF2

t4�;
ð47Þ

where we are using the following notation:

FIG. 3. Quiver diagram for the CP2=Z2 theory.

7Wewill summarize the ranks of the various gauge groups with
a vector k and the ranks of the flavor groups with a vector N.
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(i) The fugacity t is associated with the R charge and
keeps track of it in units of one quarter.

(ii) The fugacities u, w, z, and v are associated with the
gauge groups Uðk1Þ, Uðk2Þ, Uðk3Þ, and Uðk4Þ,
respectively.

(iii) The fugacities x, y, and d are associated with the
global symmetries SUð2Þ, UðN1Þ, and UðN2Þ,
respectively.

(iv) The contribution of each field is given by

χA2
11
¼

Xk1
a¼1

Xk2
b¼1

uaw−1
b ; χA2

22
¼

Xk3
a¼1

Xk4
b¼1

zav−1b ; χBj
12
¼

�
xþ 1

x

�Xk2
a¼1

Xk3
b¼1

waz−1b ;

χBj
21
¼

�
xþ 1

x

�Xk4
a¼1

Xk1
b¼1

vau−1b ; χF1
¼

Xk1
a¼1

Xk2
b¼1

u−1a wb; χF2
¼

Xk3
a¼1

Xk4
b¼1

z−1a vb;

χq11 ¼
Xk2
a¼1

XN1

b¼1

way−1b ; χQ11
¼

XN1

a¼1

Xk1
b¼1

yau−1b ; χq22 ¼
Xk4
a¼1

XN2

b¼1

vad−1b ; χQ22
¼

XN2

a¼1

Xk3
b¼1

daz−1b :

(v) The Haar measure of each UðkÞ gauge group is
taken equal toZ

dμUðkÞðuÞ ¼
1

k!

�Yk
j¼1

I
jujj¼1

duj
2πiuj

�
×

Y
1≤i<j≤k

ðui − ujÞðu−1i − u−1j Þ:

In addition, PE stands for the plethystic exponential defined

as PE½fð·Þ� ¼ expðP∞
n¼1

fð·nÞ
n Þ.

Explicit computation shows that the Hilbert series on
the instanton branch for gauge group G ¼ Uðk1Þ ×
Uðk2Þ ×Uðk3Þ ×Uðk4Þ with flavor group UðN1Þ ×
UðN2Þ corresponding to instantons on CP2=Z2 is equal
to the Hilbert series on the Higgs branch of the A1 quiver
with UðK1Þ ×UðK2Þ gauge symmetry and global
UðN1Þ ×UðN2Þ symmetry corresponding to instantons
on C2=Z2 [31], where

K1 ¼ minðk1; k2Þ; K2 ¼ minðk3; k4Þ: ð48Þ

In Fig. 4, we graphically summarize the relation between
the theory describing instantons on CP2=Z2 and that
describing instantons on C2=Z2. Note that each flavor
node flavors two adjacent nodes, which are precisely those
merging into a single node in the C2=Z2 cousin.
Let us turn to explicit examples supporting of our claim.

UðN1Þ instantons: k ¼ ð1; 1; 1; 1Þ and N ¼ ðN1; 0Þ. Using
Eq. (47), we have

H½k ¼ ð1; 1; 1; 1Þ;N ¼ ðN1; 0Þ;CP2=Z2�ðt; x; yÞ

¼ 1

ð2πiÞ4
I
juj¼1

du
u

I
jwj¼1

dw
w

I
jzj¼1

dz
z

×
I
jvj¼1

dv
v

× PE½χA2
11
t2 þ χA2

22
t2 þ χBj

12
tþ χBj

21
t

þ χq11t
2 þ χQ11

t2 − χF1
t4 − χF2

t4�;

where the various characters are given by8

TABLE II. Transformations of the fields and of the F terms for the CP2=Z2 theory.

Fields Uðk1Þ Uðk2Þ Uðk3Þ Uðk4Þ UðN1Þ UðN2Þ SUð2Þ Uð1Þ
A2
11

½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 [0] 1=2
A2
22

½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 [0] 1=2
B1
12, B

2
12

½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 [1] 1=4
B1
21,B

2
21

½0;…; 0; 1�−1 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 [1] 1=4
q11 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 [0] 1 − 1=4r
Q11 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 [0] 1=4r
q22 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0;…; 0; 1�−1 [0] 1 − 1=4r
Q22 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½1; 0;…; 0�þ1 [0] 1=4r
F1 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 [0] 1
F2 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 [0] 1

8We rewrite the flavor group UðN1Þ as Uð1Þ × SUðN1Þ. We
denote with p the fugacity of theUð1Þ subgroup, while we denote
with ~y the fugacities of the SUðN1Þ group.
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χA2
11
¼ uw−1; χA2

22
¼ zv−1;

χBj
12
¼

�
xþ 1

x

�
wz−1; χBj

21
¼

�
xþ 1

x

�
u−1v;

χF1
¼ u−1w; χF2

¼ z−1v;

χq11 ¼ wp−1½0;…; 0; 1�~y; χQ11
¼ u−1p½1; 0;…; 0�~y:

Integrating over z and v, we obtain

1

ð2πiÞ2
I
juj¼1

du
u

I
jwj¼1

dw
w

ð1− t6Þx2ðuþ t4wÞ
ðt2u−wÞðt4w− x2uÞðu− t4x2wÞ

×PE½χq11t2 þ χQ11
t2�;

then integrating over the second gauge group, we find

1þ t6

ð1− t6=x2Þð1− t6x2Þ×
1− t6

ð2πiÞ
I
juj¼1

du
u
PE½up−1t4½0;…;0;1�~y

þu−1pt2½1;0;…0�~y�:

We can reabsorb the fugacity p of the Uð1Þ flavor as
u0 ¼ up−1. Therefore, the previous integral becomes

1þ t6

ð1 − t6=x2Þð1 − t6x2Þ ×
1 − t6

ð2πiÞ
I
ju0j¼1

du0

u0

× PE½u0t4½0;…; 0; 1�~y þ t2=u0½1; 0;…0�~y�:

Finally, doing u0 ¼ u2=t, the previous expression
becomes

1þ t6

ð1− t6=x2Þð1− t6x2Þ×
1− t6

ð2πiÞ
I
ju2j¼1

du2
u2

PE½u2t3½0;…;0;1�~y
þ t3u−12 ½1;0;…0�~y�:

This last expression coincides with the Hilbert series for
one SUðN1Þ instanton on C2=Z2 [it coincides with
Eq. (2.15) of [31]].
Uð1Þ instanton: k ¼ ð2; 1; 1; 1Þ and N ¼ ð1; 0Þ. Using

Eq. (47), we find that

H½k ¼ ð2; 1; 1; 1Þ;N ¼ ð1; 0Þ;CP2=Z2�ðt; xÞ

¼ 1þ t6

ð1 − t6=x2Þð1 − t6x2Þ ;

which is the Hilbert series of oneUð1Þ instanton on C2=Z2.
Uð1Þ instanton: k ¼ ð2; 1; 2; 1Þ and N ¼ ð1; 0Þ. Using

Eq. (47), we find that

H½k ¼ ð2; 1; 2; 1Þ;N ¼ ð1; 0Þ;CP2=Z2�ðt; xÞ

¼ 1þ t6

ð1 − t6=x2Þð1 − t6x2Þ ;

which is again the Hilbert series of one Uð1Þ instanton
on C2=Z2.
Uð1Þ instanton: k ¼ ð1; 2; 1; 2Þ and N ¼ ð1; 0Þ. Using

Eq. (47), we find that

H½k ¼ ð1; 2; 1; 2Þ;N ¼ ð1; 0Þ;CP2=Z2�ðt; xÞ

¼ 1þ t6

ð1 − t6=x2Þð1 − t6x2Þ ;

which is again the Hilbert series of one Uð1Þ instanton
on C2=Z2.
Uð2Þ instanton: k ¼ ð2; 1; 1; 1Þ and N ¼ ð2; 0Þ. Using

Eq. (47), we find that

H½k ¼ ð2; 1; 1; 1Þ;N ¼ ð2; 0Þ;CP2=Z2�ðt; x; y1; y2Þ

¼ ð1þ t6Þ2x2y1y2
ðt6 − x2Þð1 − t6x2Þðt6y1 − y2Þðy1 − t6y2Þ

;

FIG. 4. Relation between the CP2=Z2

quiver gauge theory (on the left) and the
corresponding C2=Z2 quiver gauge
theory (on the right).
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being y1 and y2 the fugacities of the flavor group. The
previous expression coincides with the Hilbert series for
one Uð2Þ instanton on C2=Z2.
Uð2Þ instanton: k ¼ ð2; 2; 1; 1Þ and N ¼ ð2; 0Þ. Using

Eq. (47) and unrefining for simplicity, we find

H½k ¼ ð2; 2; 1; 1Þ;
N ¼ ð2; 0Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1þ 3t6 þ 11t12 þ 10t18 þ 11t24 þ 3t30 þ t36

ð1 − t6Þ6ð1þ t6Þ3 ;

which is the unrefined Hilbert series for K ¼ ð2; 1Þ
instantons with flavor group N ¼ ð2; 0Þ on C2=Z2.
Uð2Þ instanton: k ¼ ð2; 2; 1; 1Þ and N ¼ ð0; 2Þ. Using

Eq. (47), this time we find that

H½k ¼ ð2; 2; 1; 1Þ;N ¼ ð0; 2Þ;CP2=Z2�ðt; x; y1; y2Þ

¼ ð1þ t6Þðx2 þ t6x2 þ t18x2 − t12ð1þ x2 þ x4ÞÞy1y2
ðt6 − x2Þð1 − t6x2Þðt6y1 − y2Þðy1 − t6y2Þ

;

being y1 and y2 the fugacities of theUð2Þ flavor group. The
previous expression is the Hilbert series of K ¼ ð2; 1Þ
instantons with N ¼ ð0; 2Þ on C2=Z2.

2. The CP2=Z3 case

Let us now consider the case of CP2=Z3. Using the rules
above, we find that the quiver describing the moduli space
of instantons on the CP2=Z3 is Fig. 5. We summarize the
fields’ quantum numbers in Table III.
The superpotential (10) becomes

W ¼ Tr½A1
22B

1
21A

2
11B

2
12 − A1

11B
2
12A

2
22B

1
21 þ A1

33B
1
32A

2
22B

2
23

− A1
22B

2
23A

2
33B

1
32 − A1

33B
2
31A

2
11B

1
13 þ A1

11B
1
13A

2
33B

2
31

þ q11A1
11Q11 þ q22A1

22Q22 þ q33A1
33Q33�: ð49Þ

Now the instanton branch emerges upon setting A1
ii ¼ 0.

The relevant F terms are

F1∶ ∂A1
11
W ¼ B1

13A
2
33B

2
31 − B2

12A
2
22B

1
21 þ q11Q11 ¼ 0;

F2∶ ∂A1
22
W ¼ B1

21A
2
11B

2
12 − B2

23A
2
33B

1
32 þ q22Q22 ¼ 0;

F3∶ ∂A1
33
W ¼ B1

32A
2
22B

2
23 − B2

31A
2
11B

1
13 þ q33Q33 ¼ 0:

This defines the ADHM construction for instantons
on CP2=Z3.
If we multiply F1, F2, and F3, respectively, by A2

11, A
2
22,

and A2
33, we obtain

A2
11B

1
13A

2
33B

2
31 − A2

11B
2
12A

2
22B

1
21 þ A2

11q11Q11 ¼ 0; ð50Þ

A2
22B

1
21A

2
11B

2
12 − A2

22B
2
23A

2
33B

1
32 þ A2

22q22Q22 ¼ 0; ð51Þ

A2
33B

1
32A

2
22B

2
23 − A2

33B
2
31A

2
11B

1
13 þ A2

33q33Q33 ¼ 0: ð52Þ

It is easy to check using the identification provided by the
map π in Eq. (14) that the expressions (50)–(52) match the
corresponding F terms of the C2=Z3 theory. Note that, as
opposed to the unorbifolded and Z2 orbifold, the SUð2Þ
global symmetry rotating the Bi fields is broken due to the
orbifold action. This correlates with the fact that the moduli
space of instantons on CP2=Zn is biholomorphic to the
moduli space of instantons on C2=Zn, which exhibits a
SUð2Þ symmetry for n ¼ 1, 2 but not for higher n.
The Hilbert series for F ¼ UðN1Þ ×UðN2Þ ×UðN3Þ

instantons on CP2=Z3 with the configuration k ¼
ðk1; k2; k3; k4; k5; k6Þ reads

FIG. 5. The quiver diagram for the
CP2=Z3 theory.
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H½k; F;CP2=Z3�ðt; y;d; sÞ ¼
Z

dμUðk1ÞðuÞ
Z

dμUðk2ÞðwÞ
Z

dμUðk3ÞðzÞ
Z

dμUðk4ÞðvÞ ×
Z

dμUðk5ÞðjÞ
Z

dμUðk6ÞðcÞ

× PE½χA2
11
t2 þ χA2

22
t2 þ χA2

33
t2 þ χB2

12
tþ χB2

23
tþ χB2

31
tþ χB1

21
tþ χB1

13
tþ χB1

32
tþ χq11t

2

þ χQ11
t2 þ χq22t

2 þ χQ22
t2 þ χq33t

2 þ χQ33
t2 − χF1

t4 − χF2
t4 − χF3

t4�; ð53Þ

where the contributions of the F terms and the various fields are given by

χF2
¼
Xk3
a¼1

Xk4
b¼1

z−1a vb; χF3
¼
Xk5
a¼1

Xk6
b¼1

j−1a cb; χq11 ¼
Xk2
a¼1

XN1

b¼1

way−1b ; χQ11
¼
XN1

a¼1

Xk1
b¼1

yau−1b ;

χq22 ¼
Xk4
a¼1

XN2

b¼1

vad−1b ; χQ22
¼
XN2

a¼1

Xk3
b¼1

daz−1b ; χq33 ¼
Xk6
a¼1

XN3

b¼1

cas−1b ; χQ33
¼
XN3

a¼1

Xk5
b¼1

saj−1b ;

χA2
11
¼
Xk1
a¼1

Xk2
b¼1

uaw−1
b ; χA2

22
¼
Xk3
a¼1

Xk4
b¼1

zav−1b ; χA2
33
¼
Xk5
a¼1

Xk6
b¼1

jac−1b ; χB2
12
¼
Xk2
a¼1

Xk3
b¼1

waz−1b ; χB2
23
¼
Xk4
a¼1

Xk5
b¼1

vaj−1b ;

χB2
31
¼
Xk6
a¼1

Xk1
b¼1

cau−1b ; χB1
21
¼
Xk4
a¼1

Xk1
b¼1

vau−1b ; χB1
13
¼
Xk2
a¼1

Xk5
b¼1

waj−1b ; χB1
32
¼
Xk6
a¼1

Xk3
b¼1

caz−1b ; χF1
¼
Xk1
a¼1

Xk2
b¼1

u−1a wb:

As above, the Hilbert series on the instanton
branch of the quiver describing instantons on
CP2=Zn with gauge group of G ¼ Uðk1Þ ×
Uðk2Þ × Uðk3Þ × Uðk4Þ × Uðk5Þ × Uðk6Þ and
flavor group UðN1Þ ×UðN2Þ ×UðN3Þ is equal to
the Hilbert series of the Higgs branch describing the
moduli space of instantons on C2=Z3 with flavor group
UðN1Þ×UðN2Þ×UðN3Þ instantons and gauge group K ¼
ðK1; K2; K3Þ [31], where

K1 ¼ minðk1; k2Þ;
K2 ¼ minðk3; k4Þ; and K3 ¼ minðk5; k6Þ: ð54Þ

We can again summarize graphically the relation
between the theory describing CP2=Z3 instantons and its
C2=Z3 cousin as in Fig. 6. As in the Z2 orbifold case, each
flavor node flavors a pair of gauge nodes which “merge”
into a single node in the cousin C2=Z3 theory.

TABLE III. Transformations of the fields and F terms for the CP2=Z3 theory.

Fields Uðk1Þ Uðk2Þ Uðk3Þ Uðk4Þ Uðk5Þ Uðk6Þ UðN1Þ UðN2Þ UðN3Þ Uð1ÞR
A2
11

½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1=2

A2
22

½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1=2

A2
33

½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 1=2

B1
13

½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 1=4

B1
21

½0;…; 0; 1�−1 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1=4

B1
32

½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 1=4

B2
12

½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1=4

B2
23

½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 1=4

B2
31

½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 1=4

q11 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 1 − 1=4r

Q11 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 1=4r
q22 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 1 − 1=4r
Q22 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 1=4r

q33 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0;…; 0; 1�−1 1 − 1=4r
Q33 ½0�0 ½0�0 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 1=4r

F1 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1
F2 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1

F3 ½0�0 ½0�0 ½0�0 ½0�0 ½0;…:; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 1
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Let us support our claim with explicit examples. Uð1Þ instanton: k ¼ ð1; 1; 1; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using Eq. (53),
we find that

H½ð1; 1; 1; 1; 1; 1Þ; ð1; 0; 0Þ;CP2=Z3�ðtÞ ¼
1 − t3 þ t6

ð1 − t3Þ2ð1þ t3 þ t6Þ ;

which is the Hilbert series for N ¼ ð1; 0; 0Þ instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð2Þ instanton: k ¼ ð1; 1; 1; 1; 1; 1Þ
and N ¼ ð1; 1; 0Þ. Using Eq. (53) and unrefining, we find that

H½ð1; 1; 1; 1; 1; 1Þ; ð1; 1; 0Þ;CP2=Z3�ðt; 1; 1Þ ¼
1þ t6 þ 2t9 þ 2t12 þ 2t15 þ t18 þ t24

ð1 − t3Þ4ð1þ t3Þ2ð1þ t6Þð1þ t3 þ t6Þ2 ;

which is the unrefined Hilbert series for N ¼ ð1; 1; 0Þ instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð1Þ instanton:
k ¼ ð2; 1; 1; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using Eq. (53), we find that

H½ð2; 1; 1; 1; 1; 1Þ; ð1; 0; 0Þ;CP2=Z3�ðtÞ ¼
1 − t3 þ t6

ð1 − t3Þ2ð1þ t3 þ t6Þ ;

which is again the Hilbert series for N ¼ ð1; 0; 0Þ instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð1Þ instanton:
k ¼ ð2; 1; 2; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using Eq. (53), we find that

H½ð2; 1; 2; 1; 1; 1Þ; ð1; 0; 0Þ;CP2=Z3�ðtÞ ¼
1 − t3 þ t6

ð1 − t3Þ2ð1þ t3 þ t6Þ ;

which is again the Hilbert series for N ¼ ð1; 0; 0Þ instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð2Þ instanton: k ¼
ð2; 1; 1; 1; 1; 1Þ and N ¼ ð2; 0; 0Þ. Using Eq. (53), we find that

H½ð2; 1; 1; 1; 1; 1Þ; ð2; 0; 0Þ;CP2=Z3�ðt; y1; y2Þ ¼
ð1 − t3 þ 2t6 − t9 þ t12Þy1y2

ð1 − t3Þ2ð1þ t3 þ t6Þðt6y1 − y2Þðt6y2 − y1Þ
;

being y1 and y2 the fugacities of the flavor group Uð2Þ. The previous expression is the Hilbert series for N ¼ ð2; 0; 0Þ
instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð2Þ instanton: k ¼ ð2; 2; 1; 1; 1; 1Þ and N ¼ ð2; 0; 0Þ. Using Eq. (53) and
unrefining, we find that

H½ð2; 2; 1; 1; 1; 1Þ; ð2; 0; 0Þ;CP2=Z3�ðt; 1; 1Þ

¼ 1 − t3 þ 2t6 − t9 þ 3t12 þ 2t15 − t18 − t21 − 5t27 þ 2t30 − 5t33 − t39 − t42 þ 2t45 þ 3t48 − t51 þ 2t54 − t57 þ t60

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6Þð1 − t12Þ2ð1 − t15Þ2 ;

which is the Hilbert series for N ¼ ð2; 0; 0Þ instantons and K ¼ ð2; 1; 1Þ on C2=Z3. Uð2Þ instanton: k ¼ ð2; 1; 2; 1; 1; 1Þ
and N ¼ ð2; 0; 0Þ. Using Eq. (53), we find that

FIG. 6. Relation between the
CP2=Z3 quiver gauge theory (on
the left) and the corresponding
C2=Z3 quiver gauge theory (on
the right).
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H½ð2; 1; 1; 1; 1; 1Þ; ð2; 0; 0Þ;CP2=Z3�ðt; y1; y2Þ ¼
ð1 − t3 þ 2t6 − t9 þ t12Þy1y2

ð1 − t3Þ2ð1þ t3 þ t6Þðt6y1 − y2Þðt6y2 − y1Þ
;

FIG. 7. (a),(b) and (c) are the steps for the construction of the quiver diagram for the CP2=Z4 theory.
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being y1 and y2 the fugacities of the flavor groupUð2Þ. The
previous expression is the Hilbert series for N ¼ ð2; 0; 0Þ
instantons and K ¼ ð1; 1; 1Þ on C2=Z3.

3. The CP2=Zn case (n ≥ 3)

It is now easy to generalize the previous construction of
UðNÞ instantons to higher orbifolds ofCP2. For a generalZn
orbifold, the resulting procedure is as follows (see Fig. 7):

(i) The quiver has 2n circular nodes linked together in
an alternating way; i.e., a segment with fields A1

ii and
A2
ii is alternated with a segment with field B2

i;iþ1 [see
Fig. 7(a)].

(ii) Then we add the contribution due to the fields B1
iþ1;i.

In order to do this, we begin from one circular node
[for example, the one in which there is the gauge
group Uðk1Þ], and we move clockwise counting
three segments (in this case, we will count the
segment labeled by A1

11, the segment labeled by
B2
12, and finally the segment labeled by A1

22). When
we reach the circular node at the end of the third
segment, we draw a line between this node and the
initial circular node [in this case, a line between the
node Uðk4Þ and the initial node Uðk1Þ]. This line we
labeled by a B1

iþ1;i field (in the case we are consid-
ering, by the field B1

2;1) [see Fig. 7(b)].
(iii) We apply the same procedure starting this time from

the next circular node arising from the first gauge
groupUðkLÞ [in this case, the one labeled byUðk3Þ],
and we will continue to apply this algorithm up
to the end of the circular nodes arising from the
decomposition of the first gauge group. Finally, we
add the contributions due to thevarious flavor groups,
and we obtain the quiver reported in Fig. 7(c).

Note that N corresponds to the sum of the ranks of the
flavor nodes. In turn, the gauge ranks correspond to the
instanton number as well as, together with relative flavor
ranks, other quantum numbers describing the instanton (we
will briefly come back to these issues below).
We can compute the Hilbert series on the instanton

branch. In general, we find a correspondence between the
Hilbert series for the moduli space of N¼ðN1;…;NnÞ

instantons with k¼ðk1;k2;…;k2nÞ on CP2=Zn and the
Hilbert series for the moduli space of N¼ðN1;…NnÞ
instantonswithK¼ðK1;…;KnÞ onC2=Zn upon identifying

K1 ¼ minðk1; k2Þ;
K2 ¼ minðk3; k4Þ;…Kn ¼ minðk2n−1; k2nÞ: ð55Þ

This can be easily proven in the particular case

G ¼ ⊗
2n

i¼1
Uð1Þi; F ¼ ⊗

n

i¼1
UðNiÞ:

Moreover, we denote with zi i ¼ 1;…; 2n the fugacities of
the various Uð1Þi gauge groups and with ui and ~yi the
fugacities of each flavor groupUðNiÞ [being ui the fugacity
of theUð1Þ part, while ~yi’s are the fugacities associated with
the SUðNÞ part of the flavor group].
The Hilbert series reads

H½ð1; 1;…; 1Þ; ðN1; N2;…; NnÞ;CP2=Zn�ðt; ui; ~yiÞ

¼
Y2n
i¼1

1

2πi

I
jzij

dzi
zi

Yn
j¼1

χA2
j;j
ðt; z2j−1; z2jÞ × χB2

j;jþ1
ðt; z2j; z2jþ1ÞχB1

jþ1;j
ðt; z2j; z2j−1ÞχFj

ðt; z2j−1; z2jÞ

× χqj;jðt; z2j; ~yj; ujÞχQj;j
ðt; z2j−1; ~yj; ujÞ: ð56Þ

The contributions of the various fields are9

FIG. 8. Basic element of the quiver diagram for the CP2=Zn
theory.

9See Fig. 8.
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χA2
j;j
ðt; z2j−1; z2jÞ ¼ PE½t2z2j−1z−12j �; χB2

j;jþ1
ðt; z2j; z2jþ1Þ ¼ PE½tz2jz−12jþ1�;

χB1
jþ1;j

ðt; z2jþ2; z2j−1Þ ¼ PE½tz2jþ2z−12j−1�; χFj
ðt; z2j−1; z2jÞ ¼ PE½−t4z−12j−1z2j�;

χQj;j
ðt; z2j−1; ~yj; ujÞ ¼ PE½t2z−12j−1½1; 0;…; 0� ~yjuj�; χqj;jðt; z2j; ~yj; ujÞ ¼ PE½t2z2j½0;…; 0; 1� ~yju−1j �:

Therefore, the Hilbert series (56) becomes

Y2n
i¼1

1

2πi

I
jzij

dzi
zi

Yn
j¼1

PE½t2z−12j−1½1; 0;…; 0� ~yjuj þ t2z2j½0;…; 0; 1� ~yju−1j �ðz2j−1 − t4z2jÞ
z2j−1
z2j

ðz2j − t2z2j−1Þð1 − tz2j
z2jþ1

Þð1 − tz2jþ2

z2j−1
Þ :

It is important to note that we can integrate over the gauge groupUð1Þi with an even value of the index i. This is due to the
fact that the only contribution to these integrals comes from the poles located at z2j ¼ t2z2j−1. Therefore, performing the
integrations, we obtain

Y2n
i odd

1

2πi

I
jzij

dzi
zi

Yn
j¼1

PE½t2z−12j−1½1; 0;…; 0� ~yjuj þ t4z2j−1½0;…; 0; 1� ~yju−1j �ðz2j−1 − t6z2j−1Þ
z2j−1ð1 − t3z2j−1

z2jþ1
Þð1 − t3z2jþ1

z2j−1
Þ

;

then we perform the change of variables z2j−1 ↦ tz2j−1,

Y2n
i odd

1

2πi

I
jzij

dzi
zi

Yn
j¼1

PE½t3z−12j−1½1; 0;…; 0� ~yjuj þ t3z2j−1½0;…; 0; 1� ~yju−1j �ð1 − t6Þ
ð1 − t3z2j−1

z2jþ1
Þð1 − t3z2jþ1

z2j−1
Þ

:

Finally, we observe that instead of considering only the odd numbers between 1 and 2n, it is more useful to consider all the
integer numbers between 1 and n. Therefore, we can make the following replacements z2j−1 ↦ zj and z2jþ1 ↦ zjþ1, and
we rewrite the previous integral as

Yn
i¼1

1

2πi

I
jzij

dzi
zi

ð1 − t6Þn
Yn
j¼1

PE½t3z−1j ½1; 0;…; 0� ~yjuj þ t3zj½0;…; 0; 1� ~yju−1j �PE½t3zjz−1jþ1 þ t3zjþ1z−1j �;

which is the Hilbert series for N ¼ ðN1; N2;…; NnÞ in-
stantons withK ¼ ð1; 1;…; 1Þ on C2=Zn [it coincides with
the expression (2.41) of [31]].
Up to now, we have deliberately postponed discussing

the identification of the quantum numbers of the instanton.
Recall that in the C2=Zn case [31], the instanton is
described by n − 1 first Chern classes, one second Chern
class, and n holonomies of the gauge field, all in all a total
of 2n quantum numbers corresponding to the 2n integers
specifying the An−1 quiver.
In the case at hand, the quiver describing instantons on

CP2=Zn is specified by a total of 3n integers corresponding
to 2n gauge ranks and n flavor ranks. In turn, we expect the
instanton on CP2=Zn to be described by 2n − 1 first Chern
classes—corresponding to n orbifold copies of the CP2 2-
cycle plus n − 1 extra 2-cycles introduced by the orbifold—
one second Chern class and n holonomies, hence, totaling
the expected 3n quantum numbers. While the exact
identification of integers is not known, note that, from
the examples above, the mapping of the CP2=Zn quiver
into the C2=Zn one is such that one node of the latter arises

from the merging of two adjacent commonly flavored
nodes of the former in such a way that the common flavor
group in the CP2=Zn case becomes the flavor group in the
C2=Zn case. Hence, it is natural to guess that the n
holonomies correspond to the n flavor nodes. Moreover,
the n − 1 first Chern classes associated to the cycles arising
from the orbifold are naturally associated to the differences
among the minima of the ranks of each pair of “merging
nodes.” Obviously, there are n such nodes arising from
merging, whose n − 1 rank differences would correspond
to first Chern classes. In turn, the relative rank between the
merging nodes is naturally associated with the n remaining
2-cycles, orbifold copies of the original 2-cycle in CP2.
Finally, the sum of the ranks is naturally related to the
second Chern class. Note that clearly the identification ofN
with the sum of the ranks of the flavor nodes is consistent.
As a small consistency check, let us consider the simple

case of the vanishing first Chern class associated to cycles
introduced by the orbifold. This would correspond to a rank
assignation of the form ð� � � ; k; qn; k; qnþ1; k; � � �Þ with
qi > k, so that among each “merging pair,” the minimum
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rank is k. Then all relative rank differences among the
“merged nodes” are 0 corresponding to a C2=Zn instanton
with zero first Chern classes. Moreover, let us consider the
case of the vanishing second Chern class from the C2=Zn
point of view, which demands k ¼ 0. This is analogous to
the case kL ¼ 0 in Sec. III A. We are then left with a gauge
rank assignation of the form ð� � � ; 0; qn; 0; qnþ1; 0; � � �Þ.
According to our conjecture, these integers qi should
correspond to the first Chern classes on the n 2-cycles
coming from the orbifold images of the original 2-cycle.
Indeed, if we consider just one of them, that is, we set all
but one of the qi’s to vanish, we simply recover the
Grassmanian quiver above. Note that, as expected, indeed
we have n such possibilities corresponding to the n 2-cycles
coming from the orbifold images of the original 2-cycle.

V. SpðNÞ INSTANTONS ON CP2=Zn

So far, we have concentrated on the case of unitary
instantons. Let us now turn to the case of instantons in the
symplectic gauge group. The explicit ADHM construction
of such instantons was introduced in [14]. As described in
[15], it can be embedded into a 3d gauge theory upon
restricting to the appropriate instanton branch. In 3dN ¼ 2
notation, such theory contains one UðkÞ vector multiplet
coupled to one chiral multiplet ~A in the second rank
antisymmetric tensor representation of the gauge group
and three chiral multiplets S1, S2, ~S in the second rank
symmetric tensor representation. In addition, there is a
number of chiral multiplets in the fundamental representa-
tion with an SpðNÞ global symmetry. The corresponding
quiver is reported in Fig. 9.
In turn, the superpotential is

W ¼ ϵαβðSαÞab ~SbcðSβÞcd ~Ada þ ~AabQi
aQj

bJij; ð57Þ
being J the SpðNÞ symplectic matrix. As shown in [15], the
instanton branch emerges upon setting ~A—as well as the
monopole operators—to zero.
As in the unitary case, it is possible to embed the CP2

symplectic instantons ADHM construction into the C2

symplectic ADHM construction and vice versa [15]. It
should be noted though that now the equivalent to the map
π in Eq. (14) is quadratic and, hence, does not define a
proper mapping. Nevertheless, as a consequence, the
Hilbert series for symplectic instantons on CP2 coincides
with that of symplectic instantons on C2. We refer to [15]
for further details.

A. Constructing SpðNÞ instantons on CP2=Zn

Just as in the case of unitary instantons, we can consider
orbifolding the base CP2 manifold and study SpðNÞ
instantons on CP2=Zn. It is then natural to engineer the
ADHM-like construction by orbifolding the CP2 case, just
as for unitary instantons. As a guideline, let us compare
with the case of instantons on C2 and its orbifolds [31]. The
gauge theory realizing the ADHM construction for unitary
instantons on C2=Zn can be thought of as the world volume
theory on a D3-D7 system, where the transverse directions
to the D3’s inside the D7’s wrap C2=Zn. Then, symplectic
(and orthogonal) instantons can be constructed upon add-
ing O7 planes of the appropriate charge. A comprehensive
picture appears upon T duality along the asymptotically
locally Euclidean (ALE) space. Then, the D3-branes are
mapped to D4-branes wrapping a circle. In turn, the D7’s
are mapped into D6 at fixed positions in the circle. Finally,
n NS5-branes on the circle arise from T dualizing the ALE
space. In this context, the construction of symplectic
(alternatively, orthogonal) instantons boils down to adding
two identical— because they come from T duality of a
single O7-O6 plane of the appropriate charge at opposite
points in the circle such that each side of the circle mirrors
—due to the orientifold projection—the other side. This
procedure highlights an obvious difference between the
cases of even and odd orbifolds. As the distribution of NS5-
branes must be symmetric on the circle, for an odd n, it is
clear that one suchNS5must be stuck in an orientifold plane.
In turn, in the case of even n, we can have a symmetric
distribution by either sticking oneNS5 at eachO plane or not
sticking anyNS5’s on theO planes. These possibilities lead,
respectively, to the so-called no-vector structure (NVS) and
vector structure (VS).We refer to [31] and references therein
for further explanations.Note that theT-duality construction
suggests that the two O planes are of the same type.
Nevertheless, once in the IIA setup, one might imagine
other versions whereby the O planes are of different type.
These configurations were dubbed hybrid in [31]. We will
briefly touch on the equivalent to these in the case at hand
below, showing an explicit example in Appendix A.
In view of the C2=Zn case, it is natural to proceed in a

similar way in the case of instantons on the orbifoldedCP2,
that is, first consider orbifolding unitary instantons and then
considering orientifolding. Note, however, that in this case,
the brane picture is much less clear. Nevertheless, as we
will see, the results are qualitatively similar. Since we will
set monopole operators to zero, formally the procedure isFIG. 9. Quiver diagram for SpðNÞ instantons on CP2.
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identical to the case of 4d gauge theories. Hence, we can
borrow the technology developed [42,43] to construct the
relevant theories.
As illustrated in [42], the orientifold field theory is

obtained from the parent field theory performing a Z2

identification of the gauge groups, chiral multiplets, and
superpotential couplings. As explained in [43], this means
that the O-plane involution defines a Z2 automorphism of
the quiver diagram that reverses the directions of the
arrows. Therefore, the quiver of the parent theory has a
Z2 symmetry that can be visualized as a reflection through
a fixed line once we embed the quiver diagram in R2. In the
following, we will follow the method used in [43] that
allows us to obtain the orientifold theory starting directly
from its quiver diagram. Of course, as can be verified, the
application of the method of [42] that acts on the dimer
diagram of the theory leads to the same results.
In order to explain how this procedure works, we apply it

to the case of the CP2=Z2 theory, and we refer to [43] for
the analysis of the general case. An inspection of the
corresponding quiver diagram shows that there are two
inequivalent ways to cut it with a line, such that the quiver
displays arrows reversing the symmetry with respect to this
line (see Fig. 10).
In order to obtain the corresponding orientifold theory,

we label each node and each line intersecting perpendicu-
larly to the cutting line with a sign (denoted with a roman
number in the figure) that can be positive or negative. Then,
the orientifold theory is constructed as follows. Each node
untouched by the cutting line corresponds to a UðkÞ group,
while each node touched by the line corresponds to an
SOðNÞ or SpðNÞ (for a positive or negative sign, respec-
tively) in the orientifold field theory. In the same way, each
edge of the quiver diagram away from the cutting line

corresponds to bifundamental matter, while each edge
crossing the cutting line perpendicularly corresponds to
symmetric matter (positive sign) or antisymmetric matter
(negative sign) in the orientifold field theory. The values of
the signs must be fixed requiring that the superpotential of
the parent theory is invariant under the involution. Note
that, in general, more than one choice is allowed. For
example, in the case of the quiver diagram in Fig. 10(b), we
can choose the following values of the signs ðþ;þ;þ;þÞ,
ð−;þ;þ;−Þ, ðþ;−;þ;−Þ, ðþ;þ;−;−Þ. In the following,
we will always fix the signs in order to obtain the theory
whose Higgs branch describes the moduli space for SpðNÞ
instantons (respectively, SO) on CP2=Zn, which, in the
case at the hand, means to select the ðþ;þ;þ;þÞ con-
figuration. The remaining allowed choices correspond to
the “hybrid configurations” discussed in [31]. Even though
we will not touch upon these further in this paper, we
present an explicit example in Appendix A.
Therefore, as in [31], we have two different situations

depending on whether the degree of the orbifold is even
or odd.

(i) If n is odd, we have only one type of quiver diagram
corresponding to the fact that we have only one
inequivalent way to cut it with a line.

(ii) If n is even, we have two types of quiver gauge
theories corresponding to the two possible inequi-
valent ways to cut it with a fixed line. These two
cases are just the equivalent of the vector-structure
and no-vector-structure cases for C2=Zn symplectic
instantons. By analogy, in the following we will
refer to them as the VS and the NVS, respectively.

Note that N corresponds to the sum of the ranks of the
flavor groups in the ADHM quiver. In turn, gauge group
ranks correspond to the instanton number (as well as to
other possible quantum numbers labeling the instanton).

1. SpðNÞ instantons on CP2=Z2: VS

Starting from the CP2=Z2 and applying the rules above,
we can obtain the VS theory for SpðNÞ instantons on
CP2=Z2. The corresponding quiver diagram is reported in
Fig. 11, while we summarize the transformations of the

FIG. 11. Quiver diagram for VS symplectic instantons on
CP2=Z2.

FIG. 10. The two inequivalent ways to obtain the CP2=Z2

orientifold theory. The VS case (a) and the NVS case (b).
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fields under the different groups in Table IV. Note
that N ¼ N1 þ N2.
The branch of themoduli space that can be identified with

SpðNÞ instantons on CP2=Z2 is the one on which ~A1 ¼ 0
and A2 ¼ 0. Then, the Hilbert series of the instanton branch
corresponding to the VS theory with flavor symmetry
SpðN1Þ × SpðN2Þ and gauge ranks k ¼ ðk1; k2Þ is
H½k; F;CP2=Z2�ðt; x; y;dÞ

¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞPE½χS2t2 þ χ ~S1t
2 þ χBjt

þ χQ1
t2 þ χQ2

t2 − χF1
t4 − χF2

t4�; ð58Þ
where z and p are the fugacities of the Uðk1Þ and Uðk2Þ
gauge groups, respectively, while y and d denote the
fugacities of the SpðN1Þ and SpðN2Þ flavor groups, respec-
tively. Finally, x denotes the fugacity of the global SUð2Þ
symmetry rotating the B1 and B2 fields. The contribution of
each field is given by

χQ1
¼

XN1

i¼1

�
yi þ

1

yi

�Xk1
a¼1

za;

χQ2
¼

XN2

j¼1

�
dj þ

1

dj

�Xk2
b¼1

p−1
b ; χF1

¼
X

1≤a<b≤k1

zazb;

χS2 ¼
X

1≤a≤b≤k2

papb; χ ~S1
¼

X
1≤a≤b≤k1

z−1a z−1b ;

χBj ¼
�
xþ 1

x

�Xk1
a¼1

Xk2
b¼1

zap−1
b ; χF2

¼
X

1≤a<b≤k2

p−1
a p−1

b :

Explicit computation shows that the Hilbert series for the
instanton branch of the VS theory with gauge group G ¼
Uðk1Þ ×Uðk2Þ and flavor group SpðN1Þ × SpðN2Þ corre-
sponding to the moduli space of instantons on CP2=Z2

turns out to be equal to the Hilbert series for SpðNÞ
instantons on C2=Z2 with gauge group G ¼ OðK1Þ ×
OðK2Þ (see [31] for more details). The two theories share
the same flavor groups, and the gauge groups are related as

K1 ¼ k1; K2 ¼ k2: ð59Þ

Let us show some explicit examples supporting our claim.
Spð2Þ instanton: k ¼ ð1; 1Þ andN ¼ ð1; 1Þ. Using Eq. (58)
and unrefining, we find that

H½k ¼ ð1; 1Þ; Spð1Þ × Spð1Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1 − 2t3 þ 6t6 − 2t9 þ t12

ð1 − t3Þ6ð1þ t3Þ4 ;

which is the unrefined Hilbert series for Spð2Þ instantons
on C2=Z2 with K ¼ ð1; 1Þ and N ¼ ð1; 1Þ. Spð3Þ instan-
ton: k ¼ ð1; 1Þ and N ¼ ð1; 2Þ. Using Eq. (58) and
unrefining, we find that

H½k ¼ ð1; 1Þ; Spð1Þ × Spð2Þ;CP2=Z2�ðt; 1; 1; 1; 1Þ

¼ ð1þ t6Þð1 − 2t3 þ 10t6 − 2t9 þ t12Þ
ð1 − t3Þ8ð1þ t3Þ6 ;

which is the unrefined Hilbert series for Spð3Þ instantons
on C2=Z2 with K ¼ ð1; 1Þ and N ¼ ð1; 2Þ.

2. SpðNÞ instantons on CP2=Z2: NVS

Let us now consider the second possible configuration
corresponding to the NVS case. The quiver diagram of the
corresponding theory is reported in Fig. 12, while the

TABLE IV. Transformations of the fields for VS symplectic instantons on CP2=Z2.

Fields Uðk1Þ Uðk2Þ SpðN1Þ SpðN2Þ SUð2Þ Uð1Þ
~A1

½0; 1; 0…; 0�−2 ½0� ½0� ½0� [0] 1=2
~S1 ½2; 0;…; 0�−2 ½0� ½0� ½0� [0] 1=2
A2 ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� [0] 1=2
S2 ½0� ½2; 0;…; 0�þ2 ½0� ½0� [0] 1=2
B1, B2 ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� [1] 1=4
Q1 ½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0� ½0� [0] 1=2
Q2 ½0� ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0� [0] 1=2
F1 ½0; 1;…; 0�þ2 ½0� ½0� ½0� [0] 1
F2 ½0� ½0; 1;…; 0�−2 ½0� ½0� [0] 1

FIG. 12. Quiver diagram for NVS symplectic instantons on
CP2=Z2.
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transformations of the fields and of the F term are
summarized in Table V.
The branch of the moduli space that can be identified

with SpðNÞ instantons on CP2=Z2 is the one on which
A1
11 ¼ 0. Then, the Hilbert series of the instanton branch

corresponding to the NVS theory with flavor symmetry
UðNÞ and gauge ranks k ¼ ðk1; k2Þ is
H½k; F;CP2=Z2�ðt; x; yÞ

¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞ × PE½χSi tþ χ ~Sj
t

þ χA2
11
t2 þ χQt2 þ χqt2 − χFt4�; ð60Þ

wherez andp are the fugacities of theUðk1Þ andUðk2Þ gauge
groups, respectively,while y denotes the fugacity of theUðNÞ
flavor group, and x denotes the fugacity of the global SUð2Þ
symmetry acting separately on the two doublets ~Sα and Sβ.
The contribution of each field is given by

χSj ¼
�
xþ1

x

� X
1≤a≤b≤k2

papb; χ ~Si
¼
�
xþ1

x

� X
1≤a≤b≤k1

z−1a z−1b ;

χA2
11
¼
Xk1
a¼1

Xk2
b¼1

zap−1
b ; χQ¼

XN
i¼1

Xk1
a¼1

z−1a yi;

χq¼
XN
j¼1

Xk2
b¼1

pby−1j ; χF¼
Xk1
a¼1

Xk2
b¼1

z−1a pb:

In this case, by explicit computationof theHilbert series of the
instanton branch of the NVS theory with gauge group G ¼
Uðk1Þ ×Uðk2Þ and flavor group UðNÞ for the moduli space
of instantons onCP2=Z2, we find that it turns out to be equal
to the Hilbert series for SpðNÞ instantons on C2=Z2 with

gauge groupG ¼ UðK1Þ (see [31] for more details). The two
theories share the same flavorgroup, and the gaugegroups are
related in the following way:

K1 ¼ minðk1; k2Þ: ð61Þ
Let us explicitly show a few examples supporting our claim.
Spð1Þ instanton: k ¼ ð1; 1Þ and N ¼ 1. Using Eq. (60) and
unrefining, we find that

H½k ¼ ð1; 1Þ; Uð1Þ;CP2=Z2�ðt; 1; 1Þ

¼ 1þ 2t6 þ 2t9 þ 2t12 þ t18

ð1 − t3Þ4ð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is the Hilbert series for Spð1Þ instantons on C2=Z2

with N ¼ 1 and K1 ¼ 1. Spð2Þ instanton: k ¼ ð1; 1Þ and
N ¼ 2. Using Eq. (60) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð2Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1 − t3 þ 5t6 þ 4t9 þ 4t12 þ 4t15 þ 5t18 − t21 þ t24

ð1 − t3Þ6ð1þ t3Þ2ð1þ t3 þ t6Þ3 ;

which is the Hilbert series for Spð2Þ instantons on C2=Z2

with N ¼ 2 and K1 ¼ 1. Spð1Þ instanton: k ¼ ð2; 1Þ and
N ¼ 1. Using Eq. (60) and unrefining, we find that

H½k ¼ ð2; 1Þ; Uð1Þ;CP2=Z2�ðt; 1; 1Þ

¼ 1þ 2t6 þ 2t9 þ 2t12 þ t18

ð1 − t3Þ4ð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is again the Hilbert series for Spð1Þ instantons on
C2=Z2 withN ¼ 1 andK1 ¼ 1. Spð1Þ instanton:k ¼ ð2; 2Þ
and N ¼ 1. Using Eq. (60) and unrefining, we obtain

H½k ¼ ð2; 2Þ; Uð1Þ;CP2=Z2�ðt; 1; 1Þ

¼ 1

ð1 − t3Þ8ð1þ t3Þ4ð1þ t6Þ2ð1þ t3 þ t6Þ2ð1þ t3 þ t6 þ t9 þ t12Þ2 ð1þ 2t6 þ 2t9 þ 9t12 þ 10t15 þ 15t18 þ 18t21

þ 28t24 þ 26t27 þ 34t30 þ 26t33 þ palindromeþ t60Þ;
which is the Hilbert series for Spð1Þ instantons on C2=Z2 with N ¼ 1 and K1 ¼ 2. In the NVS case, we can graphically
summarize the relation between the parent C2=Z2 instanton and the CP2=Z2 one as in Fig. 13. Note that, as in the unitary
instanton case, we again have a merging of the flavored pair of gauge nodes into a single node with the rank the minimum of
the “merged ones.”

TABLE V. Transformations of the fields for NVS symplectic instantons on CP2=Z2.

Fields Uðk1Þ Uðk2Þ UðNÞ SUð2Þ Uð1Þ
~S1, ~S2 ½2; 0;…; 0�−2 ½0� ½0� [1] 1=4
S1, S2 ½0� ½2; 0;…; 0�þ2 ½0� [1] 1=4
A2
11

½1; 0;…; 0�þ1 ½0; 0;…; 1�þ1 ½0� ½0� 1=2
q ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� 1=2
Q ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0�þ1 ½0� 1=2
F ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� 1
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3. SpðNÞ instantons on CP2=Z3

For the case of odd orbifolds, there is only one
inequivalent choice. We report in Fig. 14 the quiver
diagram of the corresponding field theory, while we
summarize the fields and F-term transformations in
Table VI. Note that N ¼ N1 þ N2.
The branch of the moduli space that can be identified

with SpðNÞ instantons on CP2=Z3 is the one on which
A1
22 ¼ 0 and ~A1 ¼ 0. The Hilbert series of the instanton

branch corresponding to the theory with flavor symmetry
SpðN1Þ ×UðN2Þ and gauge ranks k ¼ ðk1; k2; k3Þ is

H½k; F;CP2=Z3�ðt; x; y;dÞ

¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞ
Z

dμUðk3ÞðwÞ

× PE½χq1t2 þ χq2t
2 þ χq3t

2 þ χB2
12
tþ χA2

22
t2

þ χB1
13
tþ χ ~S1

t2 þ χ ~S2
tþ χS3t − χF1

t4 − χF2
t4�; ð62Þ

where z, p, and w are the fugacities of the Uðk1Þ, Uðk2Þ,
and Uðk3Þ gauge groups, respectively, while y denotes the
fugacity of the SpðN1Þ flavor group and d the fugacity of
the UðN2Þ flavor group. Finally, x is the fugacity of the
Uð1Þ symmetry acting on the ~S2 and S3 fields. The
contribution of each field and of the F terms are

χ ~S1
¼

X
1≤a≤b≤k1

z−1a z−1b ; χ ~S2
¼

X
1≤a≤b≤k2

p−1
a p−1

b x−1;

χS3 ¼
X

1≤a≤b≤k3

wawbx;

χq1 ¼
Xk1
a¼1

XN1

i¼1

za

�
yi þ

1

yi

�
; χq2 ¼

Xk3
a¼1

XN2

j¼1

wad−1j ;

χq3 ¼
Xk2
a¼1

XN2

j¼1

p−1
a dj; χF2

¼
Xk2
a¼1

Xk3
b¼1

p−1
a wb;

χB2
12
¼

Xk1
a¼1

Xk2
b¼1

zap−1
b ; χA2

22
¼

Xk2
a¼1

Xk3
b¼1

paw−1
b ;

χB1
13
¼

Xk1
a¼1

Xk3
b¼1

zawb; χF1
¼

X
1≤a<b≤k1

zazb:

By explicit computation, we find that the Hilbert series
of the theory with gauge group G ¼ Uðk1Þ ×Uðk2Þ ×
Uðk3Þ and flavor group SpðN1Þ × UðN2Þ for the moduli
space of instantons on CP2=Z3 coincides with the Hilbert
series for the moduli space of SpðNÞ instantons on
C2=Z3 with gauge group G ¼ OðK1Þ ×UðK2Þ and flavor

TABLE VI. Transformations of the fields for symplectic instantons on CP2=Z3.

Fields Uðk1Þ Uðk2Þ Uðk3Þ SpðN1Þ UðN2Þ Uð1Þ Uð1Þ
q1 ½1; 0;…; 0�þ1 ½0� ½0� ½1; 0;…; 0� ½0� ½0� 1=2
q2 ½0� ½0� ½1; 0;…0�þ1 ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q3 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
B2
12

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=4
A2
22

½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=2
B1
13

½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0� 1=4
~S1 ½2; 0;…; 0�−2 ½0� ½0� ½0� ½0� ½0� 1=2
~S2 ½0� ½2; 0;…; 0�−2 ½0� ½0� ½0� 1=x 1=4
S3 ½0� ½0� ½2; 0;…; 0�þ2 ½0� ½0� x 1=4
F1 ½0; 1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� ½0� 1
F2 ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� 1

FIG. 13. Relation between the CP2=Z2 quiver gauge theory in
the NVS case (on the left) and the C2=Z2 quiver gauge theory (on
the right). ~Dβ are two fields in the symmetric conjugate
representation of the gauge group UðK1Þ, while Dα are two
fields in the symmetric representation of the gauge group UðK1Þ
(see [31] for more details).

FIG. 14. Quiver diagram for symplectic instantons on CP2=Z3.
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group SpðN1Þ ×UðN2Þ (see [31] for more details) upon
identifying

K1 ¼ k1; K2 ¼ minðk2; k3Þ: ð63Þ
Let us turn to explicit examples supporting our claim.

Spð1Þ instanton: k ¼ ð1; 1; 1Þ and N ¼ ð1; 0Þ. Using
Eq. (62) and unrefining, we find that

H½k ¼ ð1; 1; 1Þ; Spð1Þ;CP2=Z3�ðt; 1; 1Þ

¼ ð1þ t6Þð1 − t3 þ t6Þ
ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6Þ ;

which is the Hilbert series for Spð1Þ instantons on C2=Z3

withN¼ð1;0Þ andK¼ð1;1Þ. Spð1Þ instanton:k ¼ ð1; 1; 1Þ
andN ¼ ð0; 1Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð1; 1; 1Þ; Uð1Þ;CP2=Z3�ðt; 1; 1Þ

¼ 1þ t6 þ 2t9 þ 2t12 þ 2t15 þ t18 þ t24

ð1 − t3Þ4ð1þ t3Þ2ð1þ t6Þð1þ t3 þ t6Þ2 ;

which is the Hilbert series for Spð1Þ instantons on C2=Z3

with N ¼ ð0; 1Þ and K ¼ ð1; 1Þ. Spð2Þ instanton: k ¼
ð1; 1; 1Þ and N ¼ ð1; 1Þ. Using Eq. (62) and unrefining,
we find that

H½k ¼ ð1; 1; 1Þ; Spð1Þ ×Uð1Þ;CP2=Z3�ðt; 1; 1; 1Þ ¼
1 − 2t3 þ 5t6 − 2t9 þ 6t12 − 2t15 þ 5t18 − 2t21 þ t24

ð1 − t3Þ6ð1þ t6Þð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is the Hilbert series for Spð2Þ instantons on C2=Z3 with N ¼ ð1; 1Þ and K ¼ ð1; 1Þ. Spð1Þ instanton: k ¼ ð1; 2; 1Þ
and N ¼ ð1; 0Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð1; 2; 1Þ; Spð1Þ;CP2=Z3�ðt; 1; 1Þ ¼
ð1þ t6Þð1 − t3 þ t6Þ

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6Þ ;

which is again the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð1; 0Þ and K ¼ ð1; 1Þ. Spð1Þ instanton:
k ¼ ð1; 1; 2Þ and N ¼ ð1; 0Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð1; 2; 1Þ; Spð1Þ;CP2=Z3�ðt; 1; 1Þ ¼
ð1þ t6Þð1 − t3 þ t6Þ

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6Þ ;

which is again the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð1; 0Þ and K ¼ ð1; 1Þ. Spð1Þ instanton:
k ¼ ð1; 1; 2Þ and N ¼ ð0; 1Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð1; 1; 2Þ; Uð1Þ;CP2=Z3�ðt; 1; 1Þ ¼
1þ t6 þ 2t9 þ 2t12 þ 2t15 þ t18 þ t24

ð1 − t3Þ4ð1þ t3Þ2ð1þ t6Þð1þ t3 þ t6Þ2 ;

which is again the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð0; 1Þ and K ¼ ð1; 1Þ. Spð1Þ instanton:
k ¼ ð1; 2; 1Þ and N ¼ ð0; 1Þ. Using Eq. (62) and unrefining, we find

H½k ¼ ð1; 2; 1Þ; Uð1Þ;CP2=Z3�ðt; 1; 1Þ ¼
1þ t6 þ 2t9 þ 2t12 þ 2t15 þ t18 þ t24

ð1 − t3Þ4ð1þ t3Þ2ð1þ t6Þð1þ t3 þ t6Þ2 ;

which is again the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð0; 1Þ and K ¼ ð1; 1Þ. Spð1Þ instanton:
k ¼ ð2; 1; 1Þ and N ¼ ð1; 0Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð2; 1; 1Þ; Spð1Þ;CP2=Z3�ðt; 1; 1Þ

¼ 1

ð1 − t3Þ6ð1þ t3Þ4ð1þ t3 þ t6Þð1þ t3 þ 2t6 þ 2t9 þ 2t12 þ t15 þ t18Þ2 ð1þ t3

þ 3t6 þ 4t9 þ 8t12 þ 14t15 þ 19t18 þ 23t21 þ 27t24 þ 26t27 þ 27t30 þ palindromeþ t54Þ
¼ 1þ 4t6 þ 2t9 þ 13t12 þ 14t15 þ 33t18 þ 42t21 þ 80t24 þ 104t27 þ oðt27Þ;

which is the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð1; 0Þ and K ¼ ð2; 1Þ.
As shown in Fig. 15, we can graphically summarize the relation between the symplectic CP2=Z3 instanton and its cousin

on C2=Z3 as the merging of the flavored pair of gauge nodes into a single node whose rank is the minimum among the
“merging ones.”
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4. SpðNÞ instantons on CP2=Z4: VS

Starting from the theory whose instanton branch
describes instantons on CP2=Z4 and applying the rules
in [42], we obtain the theory for SpðNÞ instantons on

CP2=Z4 in the VS case. The corresponding quiver diagram
is reported in Fig. 16, while we summarize the trans-
formations of the fields under the different groups in
Table VII.

TABLE VII. Transformation of the fields for VS symplectic instantons on CP2=Z4.

Fields Uðk1Þ Uðk2Þ Uðk3Þ Uðk4Þ SpðN1Þ UðN2Þ SpðN3Þ Uð1Þ
B2
12

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� ½0� 1=4
A2
22

½0� ½1; 0…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=2
B2
23

½0� ½0� ½1; 0…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
~S2 ½2; 0;…; 0�−2 ½0� ½0� ½0� ½0� ½0� ½0� 1=2
S4 ½0� ½0� ½0� ½2; 0…; 0�þ2 ½0� ½0� ½0� 1=2
B1
24

½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1=4
B1
32

½0� ½0;…; 0; 1�þ1 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
q1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½1; 0;…:; 0� ½0� ½0� 1=2
q3 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
q2 ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q4 ½0� ½0� ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0� 1=2
F1 ½0; 1; 0…; 0�þ1 ½0� ½0� ½0� ½0� ½0� ½0� 1
F2 ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1
F3 ½0� ½0� ½0� ½0; 1; 0;…; ; 0�−1 ½0� ½0� ½0� 1

FIG. 15. Relation between the
quiver diagram for SpðNÞ instantons
on CP2=Z3 and the quiver diagram
for SpðNÞ instantons on C2=Z3. In
the figure, the symbol Dα denotes
two fields transforming in the sym-
metric representation of the gauge
group UðK2Þ (however, see [31] for
more details).

FIG. 16. Quiver diagram for VS
symplectic instantons on CP2=Z4.
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The branch of the moduli space that can be identified
with SpðNÞ instantons on CP2=Z4 is the one on which
A1
22 ¼ 0, ~S1 ¼ 0, and S3 ¼ 0. The Hilbert series of the

instanton branch corresponding to the VS theory with
flavor symmetry SpðN1Þ ×UðN2Þ × SpðN3Þ and gauge
ranks k ¼ ðk1; k2; k3; k4Þ is

H½k; F;CP2=Z4�ðt; x; y;d;uÞ ¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞ
Z

dμUðk3ÞðwÞ
Z

dμUðk4ÞðvÞ

× PE½χq1t2 þ χq2t
2 þ χq3t

2 þ χq4t
2 þ χB2

12
tþ χA2

22
t2 þ χB2

23
tþ χB1

24
tþ χB1

32
t

þ χ ~S2
t2 þ χS4t

2 − χF1
t4 − χF2

t4 − χF3
t4�; ð64Þ

where z, p, w, and v are the fugacities of the Uðk1Þ, Uðk2Þ, Uðk3Þ, and Uðk4Þ gauge groups, respectively, while y, d, and u
denote the fugacities of the SpðN1Þ flavor group, the UðN2Þ flavor group, and the SpðN3Þ, respectively. The contributions
of the various fields are

χB2
12
¼

Xk1
a¼1

Xk2
b¼1

zap−1
b ; χA2

22
¼

Xk2
a¼1

Xk3
b¼1

paw−1
b ; χB2

23
¼

Xk3
a¼1

Xk4
b¼1

wav−1b ;

χS4 ¼
X

1≤a≤b≤k4

vavb; χF1
¼

X
1≤a<b≤k1

zazb; χF3
¼

X
1≤a<b≤k4

v−1a v−1b ;

χB1
24
¼

Xk1
a¼1

Xk3
b¼1

zawb; χB1
32
¼

Xk2
a¼1

Xk4
b¼1

p−1
a v−1b ; χ ~S2

¼
X

1≤a≤b≤k1

z−1a z−1b ; χF2
¼

Xk2
a¼1

Xk3
b¼1

p−1
a wb;

χq1 ¼
Xk1
a¼1

XN1

j¼1

za

�
yj þ

1

yj

�
; χq3 ¼

XN2

j¼1

Xk2
b¼1

djp−1
b ; χq2 ¼

Xk3
a¼1

XN2

i¼1

wad−1i ; χq4 ¼
Xk4
a¼1

XN3

i¼1

v−1a

�
ui þ

1

ui

�
:

By explicit computation of the instanton branch Hilbert
series for the theory with gauge group G¼Uðk1Þ×Uðk2Þ×
Uðk3Þ×Uðk4Þ and flavor group SpðN1Þ×UðN2Þ×
SpðN3Þ, we find that it is equal to the Hilbert series for
SpðNÞ instantons onC2=Z4 with gauge groupG¼OðK1Þ×
UðK2Þ×OðK3Þ and flavor group SpðN1Þ×UðN2Þ×
SpðN3Þ (see [31] for more details) upon identifying

K1 ¼ k1; K2 ¼ minðk2; k3Þ; K3 ¼ k3: ð65Þ

Let us show some explicit examples supporting our claim.
Spð1Þ instanton: k ¼ ð1; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using
Eq. (64) and unrefining, we find that

H½k¼ð1;1;1;1Þ;Spð1Þ;CP2=Z4�ðt;1Þ¼
1þ t12

ð1− t6Þ4 ; ð66Þ

which is the Hilbert series for Spð1Þ instantons on C2=Z4

with N ¼ ð1; 0; 0Þ andK ¼ ð1; 1; 1Þ. Spð1Þ instanton: k ¼
ð1; 1; 1; 1Þ and N ¼ ð0; 1; 0Þ. Using Eq. (64) and unrefin-
ing, we find that

H½k¼ð1;1;1;1Þ;Uð1Þ;CP2=Z4�ðt;1Þ¼
1þ4t12þ t24

ð1− t6Þ4ð1þ t6Þ2 ;

which is the Hilbert series for Spð1Þ instantons on C2=Z4

with N ¼ ð0; 1; 0Þ and K ¼ ð1; 1; 1Þ. Spð1Þ instanton:

k ¼ ð1; 2; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using Eq. (64) and
unrefining, we find again the expression (66). Spð1Þ
instanton: k¼ð1;1;2;1Þ and N¼ð1;0;0Þ. Using Eq. (64)
and unrefining, we find again the expression (66). Spð1Þ
instanton: k ¼ ð2; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using
Eq. (64) and unrefining, we find that

H½k¼ð2;1;1;1Þ;Spð1Þ;CP2=Z4�ðt;1Þ

¼ 1þ t6þ5t12þ8t18þ8t24þ8t30þ5t36þ t42þ t48

ð1− t6Þ6ð1þ t6Þð1þ t6þ t12Þ2 ;

which is the Hilbert series for Spð1Þ instantons on C2=Z4

with N ¼ ð1; 0; 0Þ and K ¼ ð2; 1; 1Þ.
We can graphically relate the symplectic VS CP2=Z4

instantons with their cousin on C2=Z4 as in Fig. 17.

5. SpðNÞ instantons on CP2=Z4: NVS

Let us now consider the second configuration leading to
the NVS case. The quiver diagram of the corresponding
theory is reported in Fig. 18, while the transformations of
the fields and of the F terms are summarized in Table VIII.
The branch of the moduli space that can be identified

with SpðNÞ instantons on CP2=Z4 in the NVS case is the
one on which A1

11 ¼ 0 and A1
33 ¼ 0. The Hilbert series of

the instanton branch corresponding to the NVS theory with
flavor symmetry UðN1Þ ×UðN2Þ and gauge ranks k ¼
ðk1; k2; k3; k4Þ is
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H½k; F;CP2=Z4�ðt; x; y;dÞ ¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞ
Z

dμUðk3ÞðwÞ

×
Z

dμUðk4ÞðvÞ × PE½χq1t2 þ χq2t
2 þ χq3t

2 þ χq4t
2 þ χB2

23
tþ χA2

11
t2 þ χA2

33
t2

þ χB1
32
tþ χ ~S1

tþ χS2tþ χ ~S3
tþ χS4t − χF1

t4 − χF2
t4�; ð67Þ

where z, p, w, and v are the fugacities of the Uðk1Þ, Uðk2Þ, Uðk3Þ, and Uðk4Þ gauge groups, respectively, while y and d
denote the fugacities of the UðN1Þ flavor group and the UðN2Þ flavor group, respectively. The contributions of the various
fields are given by

FIG. 17. Relation between the CP2=Z4

quiver gauge theory in the VS case and
the corresponding C2=Z4 quiver gauge
theory.

FIG. 18. Quiver diagram for NVS sym-
plectic instantons on CP2=Z4.
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χS4 ¼
X

1≤a≤b≤k4

vavb; χF1
¼

Xk1
a¼1

Xk2
b¼1

pbz−1a ; χF2
¼

Xk3
a¼1

Xk4
b¼1

w−1
a vb;

χ ~S1
¼

X
1≤a≤b≤k1

z−1a z−1b ; χS2 ¼
X

1≤a≤b≤k2

papb; χ ~S3
¼

X
1≤a≤b≤k3

w−1
a w−1

b ;

χq1 ¼
Xk2
a¼1

XN1

i¼1

pay−1i ; χq2 ¼
Xk1
a¼1

XN1

i¼1

z−1a yi; χq3 ¼
Xk4
a¼1

XN2

j¼1

vad−1j ; χq4 ¼
Xk3
a¼1

XN2

j¼1

w−1
a dj;

χA2
11
¼

Xk1
a¼1

Xk2
b¼1

zap−1
b ; χB2

23
¼

Xk2
a¼1

Xk3
b¼1

paw−1
b ; χA2

33
¼

Xk3
a¼1

Xk4
b¼1

wav−1b ; χB1
32
¼

Xk1
a¼1

Xk4
b¼1

vbz−1a :

Explicit computation of the instanton branch Hilbert series with gauge group G ¼ Uðk1Þ ×Uðk2Þ ×Uðk3Þ ×Uðk4Þ and
flavor group UðN1Þ ×UðN2Þ shows that it coincides with the Hilbert series for SpðNÞ instantons on C2=Z4 with gauge
group G ¼ UðK1Þ ×UðK2Þ and flavor group UðN1Þ ×UðN2Þ (see [31] for more details) upon the identification

K1 ¼ minðk1; k2Þ; K2 ¼ minðk3; k4Þ: ð68Þ

Let us show a few explicit examples. Spð1Þ instanton: k ¼ ð1; 1; 1; 1Þ and N ¼ ð1; 0Þ. Using Eq. (67) and unrefining, we
find that

H½k ¼ ð1; 1; 1; 1Þ; Uð1Þ;CP2=Z4�ðt; 1Þ ¼
1 − t3 þ 2t9 − t15 þ t18

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6 þ t9 þ t12Þ ; ð69Þ

which is the Hilbert series for Spð1Þ instantons onC2=Z4 withN ¼ ð1; 0Þ andK ¼ ð1; 1Þ. Spð2Þ instanton: k ¼ ð1; 1; 1; 1Þ
and N ¼ ð1; 1Þ. Using Eq. (67) and unrefining, we find that

H½k ¼ ð1; 1; 1; 1Þ; Uð1Þ ×Uð1Þ;CP2=Z4�ðt; 1; 1Þ

¼ 1þ 2t6 þ 3t9 þ 8t12 þ 11t15 þ 13t18 þ 12t21 þ 13t24 þ 11t27 þ 8t30 þ 3t33 þ 2t36 þ t42

ð1 − t3Þ6ð1þ t3Þ2ð1þ t3 þ t6Þ3ð1þ t3 þ 2t6 þ 2t9 þ 2t12 þ t15 þ t18Þ ;

which is the Hilbert series for Spð2Þ instantons on C2=Z4 with N ¼ ð1; 1Þ and K ¼ ð1; 1Þ. Spð1Þ instantons: k ¼
ð1; 2; 1; 1Þ and N ¼ ð1; 0Þ. Using Eq. (67), we find again the expression (69).

TABLE VIII. Transformation of the fields for NVS symplectic instantons on CP2=Z4.

Fields Uðk1Þ Uðk2Þ Uðk3Þ Uðk4Þ UðN1Þ UðN2Þ Uð1Þ
A2
11

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=2
B2
23

½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
A2
33

½0� ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� 1=2
B1
32

½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0� 1=4
~S1 ½2; 0…; 0�−2 ½0� ½0� ½0� ½0� ½0� 1=4
S2 ½0� ½2; 0;…; 0�þ2 ½0� ½0� ½0� ½0� 1=4
~S3 ½0� ½0� ½2; 0;…; 0�−2 ½0� ½0� ½0� 1=4
S4 ½0� ½0� ½0� ½2; 0;…; 0�þ2 ½0� ½0� 1=4
q1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q2 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
q3 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0;…; 0; 1�þ1 1=2
q4 ½0� ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 1=2
F1 ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1
F2 ½0� ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� 1

ALESSANDRO PINI and DIEGO RODRIGUEZ-GOMEZ PHYSICAL REVIEW D 93, 026009 (2016)

026009-30



Finally, in Fig. 19 we graphically show the relation
between symplectic NVS instantons on CP2=Z4 and their
cousins on C2=Z4.

6. SpðNÞ instantons on CP2=Zn with n > 4

Let us now consider the generic case of instantons on Zn

orbifolds of CP2 with n > 4. Based on the previous
examples, we can extract the generic pattern of both the
quiver as well as the relation between the symplectic
instanton on CP2=Zn with its relative on C2=Zn.
Recall that N is the sum of the ranks of the flavor groups

in the ADHM quiver, while the ranks of the gauge groups
are related to instanton number and, together with the
relative flavor ranks, to other possible quantum numbers
labeling the instanton. Unfortunately, the precise identi-
fication between quiver data and instanton data is not
known. SpðNÞ instantons on CP2=Z2nþ1. Elaborating on
the previous examples, we conjecture that the theory
describing symplectic instantons on CP2=Z2nþ1 is related
to its counterpart on C2=Z2nþ1 as in Fig. 31. Moreover,
while the flavor groups continue to be the same, the ranks
of the gauge groups are related in the following way:

K1 ¼ k1; K2 ¼ minðk2; k3Þ;
K3 ¼ minðk4; k5Þ;…Knþ1 ¼ minðk2n; k2nþ1Þ: ð70Þ

SpðNÞ instantons on CP2=Z2n: VS. Elaborating on the
lowest n cases, we can extrapolate both the quiver for VS
symplectic instantons on CP2=Z2n and their relation to

their cousins (of course, VS) on C2=Z2n as shown in
Fig. 32. Moreover, while flavor nodes remain the same, the
gauge rank identification is as follows:

K1 ¼ k1; K2 ¼ minðk2; k3Þ;…
Kn−1 ¼ minðk2n−2; k2n−1Þ; Kn ¼ k2n: ð71Þ

SpðNÞ instantons on CP2=Z2n: NVS. Elaborating on the
lowest n cases, in this case, we can extrapolate both the
quiver for NVS symplectic instantons on CP2=Z2n and
their relation to their cousins (of course, NVS) on C2=Z2n
as shown in Fig. 33. Moreover, while the flavor nodes
remain the same, the gauge rank identification is as follows:

K1 ¼ minðk1; k2Þ;
K2 ¼ minðk3; k4Þ;…Kn ¼ minðk2n−1; k2nÞ: ð72Þ

It is interesting to note that the merging nodes are those
going over, in the C2=Zn parent, to unitary gauge groups.
In turn, in the parentC2=Zn, these are the nodes admitting a
blowup mode through the FI parameter. It would be
interesting to have a deeper understanding of these facts,
as well as the topological data characterizing Sp instantons
on CP2=Zn.

VI. SOðNÞ INSTANTONS ON CP2 AND ITS
ORBIFOLDS

We now turn to the case of orthogonal instantons on CP2

and its orbifolds. As described in [15], the ADHM
construction for orthogonal instantons can be embedded
into a 3d gauge theory which, in 3d N ¼ 2 language,
contains a Uð2kÞ vector multiplet as well as one chiral
multiplet ~S in the symmetric two-index tensor representa-
tion of the gauge group and three chiral multiplets A1, A2, ~A
in the antisymmetric two-index tensor representation of the
gauge group. The corresponding quiver is shown in Fig. 20.
Note that the total flavor rank corresponds to N, while the
gauge ranks—as well as the relative configurations of the

FIG. 19. Relation between the CP2=Z4 quiver gauge theory in
the NVS case and the corresponding C2=Z4 quiver gauge theory,
where D1, ~D2 are two fields in the symmetric representation of
the gauge group UðK1Þ, while L1, ~L2 are two fields in the
symmetric representation of the gauge group UðK2Þ (however,
see [31] for more details regarding the C2=Z4 theory).

FIG. 20. Quiver diagram for SOðNÞ instantons on CP2.
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flavor ranks—correspond to instanton number and other
data specifying the instanton.
In turn, the superpotential reads

W ¼ ϵαβðAαÞab ~AbcðAβÞcd ~Sda þ ~SabQi
aQj

bMij; ð73Þ

being M given by

MSOð2NÞ ¼
�

0 1N×N

1N×N 0

�
;

MSOð2Nþ1Þ ¼

0B@ 0 1N×N 0

1N×N 0 0

0 0 1

1CA: ð74Þ

As shown in [15], the construction of orthogonal instantons
on CP2 can be embedded into that of a parent orthogonal
instanton on C2. As a consequence, the Hilbert series of the
instanton on CP2=Zn matches that of its counterpart on C2.

A. Resolved moduli space for orthogonal instantons

The gauge group in the ADHM construction of orthogo-
nal instantons onCP2 isUð2kÞ. However, as shown in [15],
k can be a half-integer while the Hilbert series is only
sensitive to ⌊k⌋, that is, the largest integer which is smaller
or equal to k. In fact, it was conjectured that the instantons are
distinguished by their second Stiefel-Whitney class written
as 2ðk − ⌊k⌋Þ. From this perspective, it is also natural to
expect a notion of “resolved moduli space”—resolved, as in
the unitary case, in the sense that these extra directions
associate to other quantum numbers are discerned.
In order to explore the possibility of such resolvedmoduli

space, following the example set by the unitary case, let us
consider the simplest case where such extra directions are
present. The instanton number was conjectured to be ⌊k⌋.
Then the analogous, for orthogonal instantons, to the case of
a unitary instantonwith kL ¼ 0 (as discussed in Sec. III A) is
k ¼ 1

2
, corresponding to a Uð1Þ gauge theory. Such theory

does not have the antisymmetric matter, and on the instanton
branch, ~S ¼ 0. Therefore, the theory only contains the Q’s
out of which no gauge invariant can be constructed. Hence,
very much like the Grassmanian, we find a extra compact
manifold associated to the extra directions labeled in this
case by the Stiefel-Whitney class. Just like in the unitary
case, we can imagine resolving these directions by ungaug-
ing the Uð1Þ global symmetry. It is then straightforward to
compute the instanton branch Hilbert series, which, upon
unrefining the SOðNÞ labels, reads

HS ¼ 1þ t
ð1 − tÞN−1 : ð75Þ

Interestingly, this can be written as

HS ¼ 2

ð1 − tÞN−1 −
1

ð1 − tÞN−2 ; ð76Þ

which is the Hilbert series for two CN−1 meeting at a CN−2.
This is a dimension N − 1 manifold analogous to the cone
over the Grassmanian in the unitary case. Note that the
dimension of the resolved moduli space is 2kðN − 2Þ, while
that seen by the Hilbert series is 2⌊k⌋ðN − 2Þ [15]. Hence,
the difference is 2ðN − 2Þðk − ⌊k⌋Þ. Particularizing to the
case k ¼ 1

2
, this is an (N − 2)-dimensional compact mani-

fold. Then, the complex cone over it is a N − 1 complex
dimensional manifold, just as we have found.
Note that the case of symplectic instantons does not

admit a similar construction. For example, in the quiver in
Fig. 9, the instanton branch appears upon setting to zero an
antisymmetric field while keeping the symmetric fields.
Hence, the theory is never empty of gauge-invariant
operators, as it happens in the case of unitary and
orthogonal instantons, therefore, suggesting that no com-
pact directions exist in that case.

B. Constructing SOðNÞ instantons on CP2=Zn

Let us now turn to the construction of orthogonal
instantons upon orbifolding the base space. In view of
the ALE case, and following the symplectic instanton case
in Sec. V, we construct the theories whose instanton branch
describes orthogonal instantons on CP2=Zn by first orbi-
folding and then orientifolding the unitary instanton case
following the rules in [42,43]. As for symplectic instantons,
we have qualitatively different situations depending on
whether n is even or odd:

(i) If n is odd, we have only one type of quiver diagram
corresponding to the fact that we have only one
inequivalent way to cut the quiver diagramwith a line.

(ii) If n is even, we have two types of quiver gauge
theories corresponding to two possible inequivalent
ways in which we can cut the quiver diagram with a
line. Inspired by the ALE case, we will refer to them
as the VS case and the NVS case, respectively.

Also, in this case, there can be hybrid configurations
associated with one choice for the values of the signs
implementing the orientifold prescription. As above, we
restrict our analysis to the configuration of signs correspond-
ing to the quantum field theory whose instanton branch
describes orthogonal instantons on CP2=Zn which, for the
case of even n, are either VS or NVS. Just as in the other
cases, the rank of the SOðNÞ bundle corresponds to the sum
of flavor ranks in the ADHM quiver. The rest of the ADHM
data correspond to other data specifying the instanton.

1. SOðNÞ instantons on CP2=Z2: VS

Starting from the CP2=Z2 and applying the rules in [42],
we obtain the theory for SOðNÞ instantons onCP2=Z2. The
corresponding quiver diagram is reported in Fig. 21, while
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we summarize the transformations of the fields under the
different groups in Table IX.
The branch of the moduli space that can be identified

with SOðNÞ instantons on CP2=Z2 is the one on which

~S1 ¼ 0 and S2 ¼ 0. The Hilbert series of the instanton
branch corresponding to the VS theory with flavor sym-
metry SOðN1Þ × SOðN2Þ and gauge ranks k ¼ ðk1; k2Þ is

H½k; F;CP2=Z2�ðt; x; y;dÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞPE½χA2
t2 þ χ ~A1

t2 þ χBj
t

þ χQ1
t2 þ χQ2

t2 − χF1
t4 − χF2

t4�; ð77Þ

where z and p are the fugacities of the Uð2k1Þ and
Uð2k2Þ gauge groups, respectively, while y and d denote
the fugacities of the SOðN1Þ and SOðN2Þ flavor groups.
Finally, x is the fugacity of the SUð2Þ symmetry acting
on the Bj doublet. The contribution of each field is
given by

χF1
¼

X
1≤a≤b≤2k1

zazb; χF2
¼

X
1≤a≤b≤2k2

p−1
a p−1

b ;

χA2
¼

X
1≤a<b≤2k2

papb; χ ~A1
¼

X
1≤a<b≤2k1

z−1a z−1b ; χBj ¼
�
xþ 1

x

�X2k1
a¼1

X2k2
b¼1

zap−1
b ;

χQ1
¼

�X2k1
a¼1

za

�
×

8<:
PN1=2

i¼1

�
yi þ 1

yi

�
N1 even;

1þPðN1−1Þ=2
i¼1

�
yi þ 1

yi

�
N1 odd;

χQ2
¼

�X2k2
b¼1

p−1
b

�
×

8><>:
PN2=2

i¼1

�
di þ 1

di

�
N2 even;

1þPðN2−1Þ=2
i¼1

�
di þ 1

di

�
N2 odd:

Explicitly computing the Hilbert series with gauge
group G ¼ Uð2k1Þ ×Uð2k2Þ and flavor group SOðN1Þ ×
SOðN2Þ for the moduli space of instantons on
CP2=Z2 shows that it is equal to the Hilbert series for
SpðNÞ instantons on C2=Z2 with gauge group G ¼
SpðK1Þ × SpðK2Þ (see [31] for more details) upon
identifying

K1 ¼ k1; K2 ¼ k2: ð78Þ

Let us show a few explicit examples. SOð5Þ instanton:
k ¼ ð1; 1Þ and N ¼ ð2; 3Þ. Using Eq. (77) and unrefin-
ing, we find that

H½k ¼ ð1; 1Þ; SOð2Þ × SOð3Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1 − t3 þ 5t6 þ 4t9 þ 4t12 þ 4t15 þ 5t18 − t21 þ t24

ð1 − t3Þ6ð1þ t3Þ2ð1þ t3 þ t6Þ3 ;

which is the Hilbert series for the SOð5Þ instanton on
C2=Z2 with K ¼ ð1; 1Þ and N ¼ ð2; 3Þ. SOð6Þ instanton:

TABLE IX. Transformations of the fields for VS orthogonal instantons on CP2=Z2.

Fields Uð2k1Þ Uð2k2Þ SOðN1Þ SOðN2Þ SUð2Þ Uð1Þ
~A1

½0; 1; 0; 0�−2 ½0� ½0� ½0� ½0� 1=2
~S1 ½2; 0;…; 0�−2 ½0� ½0� ½0� ½0� 1=2
A2 ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� ½0� 1=2
S2 ½0� ½2; 0;…; 0�þ2 ½0� ½0� ½0� 1=2
Bj ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� [1] 1=4
Q1 ½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0� ½0� ½0� 1=2
Q2 ½0� ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0� ½0� 1=2
F1 ½2; 0;…; 0�þ2 ½0� ½0� ½0� ½0� 1
F2 ½0� ½2; 0;…; 0�−2 ½0� ½0� ½0� 1

FIG. 21. Quiver diagram for VS orthogonal instantons on
CP2=Z2.
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k ¼ ð1; 1Þ and N ¼ ð3; 3Þ. Using Eq. (77) and unrefin-
ing, we find that

H½k¼ð1;1Þ;SOð3Þ×SOð3Þ;CP2=Z2�ðt;1;1;1Þ

¼ 1−2t3þ8t6þ5t12þ12t15þ5t18þ8t24−2t27þ t30

ð1− t3Þ8ð1þ t3Þ2ð1þ t3þ t6Þ4 ;

which is the Hilbert series for the SOð6Þ instanton on
C2=Z2 with K ¼ ð1; 1Þ and N ¼ ð3; 3Þ.

2. SOðNÞ instantons on CP2=Z2: NVS

Let us now consider the case of orthogonal NVS
instantons on CP2=Z2 upon choosing the other nonequiva-
lent way to cut the quiver diagram. The quiver diagram of
the corresponding theory is reported in Fig. 22, while the
transformations of the fields and of the F term are
summarized in Table X.

The branch of the moduli space that can be identified
with SOðNÞ instantons on CP2=Z2 is the one on which
A1
11 ¼ 0. The Hilbert series of the instanton branch corre-

sponding to the NVS theory with flavor symmetry UðNÞ
and ranks k ¼ ðk1; k2Þ is

H½k;F;CP2=Z2�ðt; x;yÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞ

×PE½χAi
tþ χ ~Aj

tþ χA2
11
t2 þ χQt2 þ χqt2 − χFt4�; ð79Þ

where z and p are the fugacities of the Uð2k1Þ and Uð2k2Þ
gauge groups, respectively, while y denotes the fugacity of
the UðNÞ flavor group. Finally, x is the fugacity of the
SUð2Þ acting on the Aβ and ~Aα doublets. The contribution
of each field is given by

χAj
¼

�
xþ 1

x

� X
1≤a<b≤2k2

papb; χ ~Ai
¼

�
xþ 1

x

� X
1≤a<b≤2k1

z−1a z−1b ;

χA2
11
¼

X2k1
a¼1

X2k2
b¼1

zap−1
b ; χQ ¼

XN
i¼1

X2k1
a¼1

z−1a yi; χq ¼
XN
j¼1

X2k2
b¼1

pby−1j ; χF ¼
X2k1
a¼1

X2k2
b¼1

z−1a pb:

The explicit computation of the instanton branch Hilbert series with gauge group G ¼ Uð2k1Þ ×Uð2k2Þ and flavor group
UðNÞ shows that it coincides with the Hilbert series for SOðNÞ instantons on C2=Z2 with gauge group G ¼ Uð2K1Þ (see
[31] for more details regarding the C2=Z2 Hilbert series) upon setting

FIG. 22. Quiver diagram for NVS orthogonal
instantons on CP2=Z2.

TABLE X. Transformations of the fields for NVS orthogonal instantons on CP2=Z2.

Fields Uð2k1Þ Uð2k2Þ UðNÞ SUð2Þ Uð1Þ
~A1; ~A2

½0; 1; 0…; 0�−2 ½0� ½0� [1] 1=4
A1; A2 ½0� ½0; 1; 0;…; 0�þ2 ½0� [1] 1=4
A2
11

½1; 0;…; 0�þ1 ½0; 0;…; 1�þ1 ½0� ½0� 1=2
q ½0� ½1; 0;…; 0�þ1 ½0; 0;…; 1� ½0� 1=2
Q ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0� ½0� 1=2
F ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� 1
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K1 ¼ minðk1; k2Þ: ð80Þ

Let us show explicit examples supporting our claim. SOð6Þ instanton: k ¼ ð1; 1Þ and N ¼ 3. Using Eq. (79) and
unrefining, we find that

H½k ¼ ð1; 1Þ; Uð3Þ;CP2=Z2�ðt; 1; 1; 1; 1Þ

¼ 1þ 2t3 þ 9t6 þ 24t9 þ 50t12 þ 76t15 þ 108t18 þ 120t21 þ 108t24 þ palindromeþ � � � þ t42

ð1 − t3Þ8ð1þ t3Þ6ð1þ t3 þ t6Þ12 ;

which is the Hilbert series for the SOð6Þ instanton onC2=Z2

with K¼ð1;1Þ and N¼3. SOð8Þ instanton: k¼ð1;1Þ and
N ¼ 4. Using Eq. (79) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð4Þ;CP2=Z2�ðt; 1; 1; 1; 1; 1Þ

¼ 1

ð1 − t3Þ12ð1þ t3Þ8ð1þ t3 þ t6Þ18 ð1þ 2t3 þ 14t6

þ 44t9 þ 123t12 þ 272t15 þ 546t18 þ 886t21

þ 1259t24 þ 1544t27 þ 1678t30

þ palindromeþ � � � þ t60Þ;

which is the Hilbert series for the SOð8Þ instanton onC2=Z2

with K ¼ ð1; 1Þ and N ¼ 4.

We graphically summarize in Fig. 23 the relation
between the NVS orthogonal instanton on CP2=Z2 and
its cousin on C2=Z2.

3. SOðNÞ instantons on CP2=Z3

In this case, there is only one inequivalent choice of the
orientifold action. We report in Fig. 24 the quiver diagram
of the corresponding field theory, while we summarize the
fields and F-term transformations in Table XI.
The branch of the moduli space that can be identified

with SOðNÞ instantons on CP2=Z3 is the one on which
A1
22 ¼ 0 and ~S1 ¼ 0. The Hilbert series of the instanton

branch corresponding to a theory with flavor symmetry
SOðN1Þ ×UðN2Þ and gauge ranks k ¼ ðk1; k2; k3Þ is

H½k;F;CP2=Z3�ðt;x;y;dÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞ
Z

dμUð2k3ÞðwÞ

×PE½χq1t2þ χq2t
2þχq3t

2þχB2
12
tþχA2

22
t2

þχB1
13
tþχ ~A1

t2þχ ~A2
tþχA3

t−χF1
t4−χF2

t4�; ð81Þ

where z, p, and w are the fugacities of the Uð2k1Þ, Uð2k2Þ,
and Uð2k3Þ gauge groups, respectively, while y denotes the
fugacity of the SOðN1Þ flavor group and d the fugacity of
the UðN2Þ gauge group. Finally, x is the fugacity of the
Uð1Þx symmetry acting on ~A2 and A3. The contribution of
each field and of the F terms are

FIG. 24. Quiver diagram for
SOðNÞ instantons on CP2=Z3.

FIG. 23. Relation between the CP2=Z2 quiver gauge theory in
the NVS case (on the left) and the corresponding C2=Z2 quiver
gauge theory (on the right), where ~Lβ are two fields in the
antisymmetric conjugate representation of the gauge group
Uð2K1Þ, while Lα are two fields in the antisymmetric represen-
tation of the gauge group Uð2K1Þ (see [31] for more details).
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χB2
12
¼

X2k1
a¼1

X2k2
b¼1

zap−1
b ; χA2

22
¼

X2k2
a¼1

X2k3
b¼1

paw−1
b ; χB1

13
¼

X2k1
a¼1

X2k3
b¼1

zawb; χF1
¼

X
1≤a≤b≤2k1

zazb;

χq1 ¼
X2k1
a¼1

za ×

8><>:
PN1=2

i¼1

�
yi þ 1

yi

�
N1 even;

1þPðN1−1Þ=2
i¼1

�
yi þ 1

yi

�
N1 odd;

χq2 ¼
X2k3
b¼1

XN2

j¼1

wbd−1j ; χq3 ¼
X2k2
a¼1

XN2

j¼1

p−1
a dj;

χ ~A1
¼

X
1≤a<b≤2k1

z−1a z−1b ; χ ~A2
¼

X
1≤a<b≤2k2

p−1
a p−1

b x−1; χA3
¼

X
1≤a<b≤2k3

wawbx; χF2
¼

X2k2
a¼1

X2k3
b¼1

p−1
a wb:

By explicitly evaluating the Hilbert series with gauge
group G ¼ Uð2k1Þ × Uð2k2Þ ×Uð2k3Þ and flavor group
SOðN1Þ ×UðN2Þ for the moduli space of instantons on
CP2=Z3, we find it to be equal to the Hilbert series for
SOðNÞ instantons on C2=Z3 with gauge group G ¼
SpðK1Þ ×Uð2K2Þ and flavor group SOðN1Þ ×UðN2Þ
(see [31] for more details) with the identification

K1 ¼ k1; K2 ¼ minðk2; k3Þ: ð82Þ

Supporting our claim, we show a few explicit examples.
SOð5Þ instanton: k ¼ ð1; 1; 1Þ and N ¼ ð3; 1Þ. Using
Eq. (81) and unrefining, we find that

H½k¼ ð1;1;1Þ; SOð3Þ×Uð1Þ;CP2=Z3�ðt;1;1;1Þ

¼ 1

ð1− t3Þ6ð1þ t3Þ4ð1þ t6Þ2ð1þ t3 þ t6Þ3 ð1þ t3 þ 4t6

þ 9t9 þ 18t12 þ 25t15 þ 33t18

þ 30t21 þ 33t24 þ palindromeþ � � � þ t42Þ;

TABLE XI. Transformations of the fields for SOðNÞ instantons on CP2=Z3.

Fields Uð2k1Þ Uð2k2Þ Uð2k3Þ SOðN1Þ UðN2Þ Uð1Þx Uð1Þ
q1 ½1; 0;…; 0�þ1 ½0� ½0� ½1; 0;…; 0� ½0� ½0� 1=2
q3 ½0� ½0� ½1; 0;…0�þ1 ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q2 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
B2
12

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=4
A2
22

½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=2
B1
13

½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0� 1=4
~A1

½0; 1; 0;…; 0�−2 ½0� ½0� ½0� ½0� ½0� 1=2
~A2

½0� ½0; 1; 0;…; 0�−2 ½0� ½0� ½0� 1=x 1=4
A3 ½0� ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� x 1=4
F1 ½2; 0;…; 0�þ2 ½0� ½0� ½0� ½0� ½0� 1
F2 ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� 1

FIG. 25. Relation between the quiver
diagram for SOðNÞ instantons on
CP2=Z3 and the quiver diagram for
SOðNÞ instantons on C2=Z3, being Dα

two fields transforming in the antisym-
metric representation of Uð2K2Þ gauge
group (see [31] for more details).
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which is the Hilbert series for the SOð5Þ instantons on
C2=Z3 with N ¼ ð3; 1Þ and K ¼ ð1; 1Þ. SOð5Þ instanton:
k ¼ ð1; 1; 1Þ and N ¼ ð1; 2Þ. Using Eq. (81) and unrefin-
ing, we find that

H½k ¼ ðt; 1; 1; 1Þ; SOð2Þ × Uð1Þ;CP2=Z3�ðt; 1; 1; 1Þ

¼ 1 − 2t3 þ 5t6 − 2t9 þ 6t12 − 2t15 þ 5t18 − 2t21 þ t24

ð1 − t3Þ6ð1þ t6Þð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is the Hilbert series for the SOð5Þ instantons on
C2=Z3 with N ¼ ð1; 2Þ and K ¼ ð1; 1Þ. We can, as well,
graphically summarize the relation between the orthogonal
instanton on CP2=Z3 and its cousin on C2=Z3 as in Fig. 25.

4. SOðNÞ instantons on CP2=Z4: VS

Starting from the theory for unitary instantons on
CP2=Z4 and applying the rules in [42,43], we obtain the
theory for SOðNÞ instantons on CP2=Z4 in the VS case.
The corresponding quiver diagram is reported in Fig. 26,
while we summarize the transformations of the fields under
the different groups in Table XII.

The branch of the moduli space that can be identified
with SpðNÞ instantons on CP2=Z4 is the one on which
A1
22 ¼ 0, ~A1 ¼ 0, and A3 ¼ 0. The Hilbert series of the

instanton branch corresponding to the VS theory with
flavor symmetry SOðN1Þ ×UðN2Þ × SOðN3Þ and gauge
ranks k ¼ ðk1; k2; k3; k4Þ is
H½k; F;CP2=Z4�ðt; x; y;d;uÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞ
Z

dμUð2k3ÞðwÞ

×
Z

dμUð2k4ÞðvÞ × PE½χq1t2 þ χq2t
2 þ χq3t

2

þ χq4t
2 þ χB2

12
tþ χA2

22
t2 þ χB2

23
tþ χB1

24
tþ χB1

32
t

þ χ ~A2
t2 þ χA4

t2 − χF1
t4 − χF2

t4 − χF3
t4�; ð83Þ

where z, p, w, and v are the fugacities of the Uð2k1Þ,
Uð2k2Þ, Uð2k3Þ, and Uð2k4Þ gauge groups, respectively,
while y and d denote the fugacities of the SOðN1Þ flavor
group of the UðN2Þ flavor group and of the SOðN3Þ flavor
group, respectively. The contributions of the various
fields are

FIG. 26. Quiver diagram for VS
orthogonal instantons on CP2=Z4.

TABLE XII. Transformation of the fields for VS orthogonal instantons on CP2=Z4.

Fields Uð2k1Þ Uð2k2Þ Uð2k3Þ Uð2k4Þ SOðN1Þ UðN2Þ SOðN3Þ Uð1Þ
B2
12

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� ½0� 1=4
A2
22

½0� ½1; 0; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=2
B2
23

½0� ½0� ½1; 0…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
~A2

½0; 1; 0…; 0�−2 ½0� ½0� ½0� ½0� ½0� ½0� 1=2
A4 ½0� ½0� ½0� ½0; 1; 0…; 0�þ2 ½0� ½0� ½0� 1=2
B1
24

½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1=4
B1
32

½0� ½0;…; 0; 1�þ1 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
q1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½1; 0;…:; 0� ½0� ½0� 1=2
q3 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
q2 ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q4 ½0� ½0� ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0� 1=2
F1 ½2; 0…; 0�þ2 ½0� ½0� ½0� ½0� ½0� ½0� 1
F2 ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1
F3 ½0� ½0� ½0� ½2; 0;…; ; 0�−2 ½0� ½0� ½0� 1

ASPECTS OF THE MODULI SPACE OF INSTANTONS ON … PHYSICAL REVIEW D 93, 026009 (2016)

026009-37



χB2
12
¼

X2k1
a¼1

X2k2
b¼1

zap−1
b ; χA2

22
¼

X2k2
a¼1

X2k3
b¼1

paw−1
b ; χB2

23
¼

X2k3
a¼1

X2k4
b¼1

wav−1b ; χ ~A2
¼

X
1≤a<b≤2k1

z−1a z−1b ;

χq1 ¼
X2k1
a¼1

za ×

8<:
PN1=2

i¼1 ðyi þ 1
yi
Þ N1 even;

1þPðN1−1Þ=2
i¼1 ðyi þ 1

yi
Þ N1 odd;

χq3 ¼
XN2

j¼1

X2k2
b¼1

djp−1
b ; χB1

32
¼

X2k2
a¼1

X2k4
b¼1

p−1
a v−1b ;

χB1
24
¼

X2k1
a¼1

X2k3
b¼1

zawb; χq2 ¼
X2k3
a¼1

XN2

i¼1

wad−1i ; χq4 ¼
X2k4
a¼1

v−1a ×

8<:
PN3=2

i¼1 ðyi þ 1
yi
Þ N3 even;

1þPðN3−1Þ=2
i¼1 ðyi þ 1

yi
Þ N3 odd;

χA4
¼

X
1≤a<b≤2k4

vavb; χF1
¼

X
1≤a≤b≤2k1

zazb; χF2
¼

X2k2
a¼1

X2k3
b¼1

p−1
a wb; χF3

¼
X

1≤a≤b≤2k4

v−1a v−1b :

By computing the Hilbert series with gauge group G ¼ Uð2k1Þ ×Uð2k2Þ ×Uð2k3Þ ×Uð2k4Þ and flavor group
SOðN1Þ ×UðN2Þ × SOðN3Þ, we find that it turns out to be equal to the Hilbert series for SOðNÞ instantons on
C2=Z4 with gauge group G ¼ SpðK1Þ × Uð2K2Þ × SpðK3Þ and flavor group SOðN1Þ × UðN2Þ × SOðN3Þ (see [31] for
more details) with the identification

K1 ¼ k1; K2 ¼ minðk2; k3Þ; K3 ¼ k4: ð84Þ

Let us now show a few explicit examples. SOð6Þ instanton: k ¼ ð1; 1; 1; 1Þ and N ¼ ð2; 0; 4Þ. Using Eq. (83) and
unrefining, we find that

H½k ¼ ð1; 1; 1; 1Þ; SOð2Þ × SOð4Þ;CP2=Z4�ðt; 1; 1Þ ¼
1þ 4t6 þ 22t12 þ 36t18 þ 54t24 þ 36t30 þ 22t36 þ 4t42 þ t48

ð1 − t3Þ8ð1þ t3Þ8ð1þ t6Þ4 ;

which is the Hilbert series for the SOð6Þ instantons on C2=Z4 with N ¼ ð2; 0; 4Þ and K ¼ ð1; 1; 1Þ. SOð6Þ instanton:
k ¼ ð1; 1; 1; 1Þ and N ¼ ð2; 1; 2Þ. Using Eq. (83) and unrefining, we find that

H½k ¼ ð1; 1; 1; 1Þ; SOð2Þ ×Uð1Þ × SOð2Þ;CP2=Z4�ðt; 1; 1; 1Þ

¼ 1

ð1 − t3Þ8ð1þ t3Þ4ð1þ t6Þ2ð1þ t3 þ t6Þ12ð1þ t3 þ t6 þ t9 þ t12Þ ð1þ t3 þ 3t6 þ 7t9 þ 18t12 þ 33t15

þ 51t18 þ 69t21 þ 93t24 þ 110t27 þ 120t30 þ 110t33 þ palindromeþ � � � þ t60Þ;

which is the Hilbert series for SOð6Þ instantons on C2=Z4

with N ¼ ð2; 1; 2Þ and K ¼ ð1; 1; 1Þ. Finally, we summa-
rize in Fig. 27 the relation between the theory describing
VS orthogonal instantons on CP2=Z4 and its cousin on
C2=Z4.

5. SOðNÞ instantons on CP2=Z4: NVS

Let us now consider the second possibility leading
to the NVS case. The quiver diagram of the corresponding
theory is reported in Fig. 28, while the transformations
of the fields and of the F terms are summarized in
Table XIII.
The branch of the moduli space that can be identified

with SOðNÞ instantons on CP2=Z4 is the one on which
A1
11 ¼ 0 and A1

33 ¼ 0. The Hilbert series of the instanton
branch corresponding to the NVS theory with flavor

symmetry UðN1Þ ×UðN2Þ and gauge ranks k ¼
ðk1; k2; k3; k4Þ is
H½k; F;CP2=Z4�ðt; x; y;dÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞ
Z

dμUð2k3ÞðwÞ

×
Z

dμUð2k4ÞðvÞ × PE½χq1t2 þ χq2t
2 þ χq3t

2

þ χq4t
2 þ χB2

23
tþ χA2

11
t2 þ χA2

33
t2 þ χB1

32
tþ χ ~A1

t

þ χA2
tþþχ ~A3

tþ χA4
t − χF1

t4 − χF2
t4�; ð85Þ

where z, p, w, and v are the fugacities of the Uð2k1Þ,
Uð2k2Þ, Uð2k3Þ, and Uð2k4Þ gauge groups, respectively,
while y and d denote the fugacities of the UðN1Þ flavor
group and the UðN2Þ flavor group, respectively. The
contributions of the various fields are given by
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χ ~A3
¼

X
1≤a<b≤2k3

w−1
a w−1

b ; χA4
¼

X
1≤a<b≤2k4

vavb; χq1 ¼
X2k2
a¼1

XN1

i¼1

pay−1i ;

χB1
32
¼

X2k1
a¼1

X2k4
b¼1

vbz−1a ; χ ~A1
¼

X
1≤a<b≤2k1

z−1a z−1b ; χA2
¼

X
1≤a<b≤2k2

papb;

χq2 ¼
X2k1
a¼1

XN1

i¼1

z−1a yi; χq3 ¼
X2k4
a¼1

XN2

j¼1

vad−1j ; χq4 ¼
X2k3
a¼1

XN2

j¼1

w−1
a dj; χF1

¼
X2k1
a¼1

X2k2
b¼1

pbz−1a ;

χA2
11
¼

X2k1
a¼1

X2k2
b¼1

zap−1
b ; χB2

23
¼

X2k2
a¼1

X2k3
b¼1

paw−1
b ; χA2

33
¼

X2k3
a¼1

X2k4
b¼1

wav−1b ; χF2
¼

X2k3
a¼1

X2k4
b¼1

w−1
a vb:

Performing the computation of the Hilbert series with gauge group G ¼ Uð2k1Þ ×Uð2k2Þ ×Uð2k3Þ × Uð2k4Þ and
flavor group UðN1Þ ×UðN2Þ, we find that it coincides with the Hilbert series for SOðNÞ instantons on C2=Z4 with gauge
group G ¼ Uð2K1Þ × Uð2K2Þ and flavor group UðN1Þ ×UðN2Þ (see [31] for more details) with the identification

FIG. 27. Relation between the
CP2=Z4 quiver gauge theory in the
VS case and its relation with the
corresponding C2=Z4 quiver gauge
theory.

FIG. 28. Quiver diagram for NVS
orthogonal instantons on CP2=Z4.
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K1 ¼ minðk1; k2Þ; K2 ¼ minðk3; k4Þ: ð86Þ

Let us show an explicit example of our claim. SOð6Þ instanton: k ¼ ð1; 1; 1; 1Þ and N ¼ ð2; 1Þ. Using Eq. (85) and
unrefining, we obtain

H½k ¼ ð1; 1; 1; 1Þ; Uð2Þ ×Uð1Þ;CP2=Z4�ðt; 1; 1; 1Þ ¼
1

ð1 − t3Þ8ð1þ t3Þ6ð1þ t6Þ3ð1þ t3 þ t6Þ3ð1þ t3 þ t6 þ t9 þ t12Þ2
× ð1þ 3t3 þ 9t6 þ 22t9 þ 54t12 þ 114t15 þ 219t18 þ 371t21

þ 582t24 þ 827t27 þ 1092t30 þ 1323t33 þ 1493t36

þ 1548t39 þ 1493t42 þ palindromeþ t72Þ;

which is the Hilbert series for SOð6Þ instantons on C2=Z4

with N ¼ ð2; 1Þ and K ¼ ð1; 1Þ. Finally, we graphically
summarize the relation between the theory describing the
NVS orthogonal instantons on CP2=Z4 and its cousin on
C2=Z4 in Fig. 29.

TABLE XIII. Transformation of the fields for NVS orthogonal instantons on CP2=Z4.

Fields Uð2k1Þ Uð2k2Þ Uð2k3Þ Uð2k4Þ UðN1Þ UðN2Þ Uð1Þ
A2
11

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=2
B2
23

½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
A2
33

½0� ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� 1=2
B1
32

½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0� 1=4
~A1

½0; 1; 0;…; 0�−2 ½0� ½0� ½0� ½0� ½0� 1=4
A2 ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� ½0� ½0� 1=4
~A3

½0� ½0� ½0; 1; 0;…; 0�−2 ½0� ½0� ½0� 1=4
A4 ½0� ½0� ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� 1=4
q1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q2 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
q3 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0;…; 0; 1�þ1 1=2
q4 ½0� ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 1=2
F1 ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1
F2 ½0� ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� 1

FIG. 29. Relation between the CP2=Z4 quiver gauge theory in
the NVS case and the corresponding C2=Z4 quiver gauge theory,
where D1, ~D2 are two fields in the antisymmetric representation
of the gauge group Uð2K1Þ, while L1, ~L2 are two fields in the
antisymmetric representation of the gauge group Uð2K2Þ.

FIG. 30. Quiver diagram for instantons of the hybrid configu-
ration on CP2=Z2.
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6. SOðNÞ instantons on CP2=Zn with n > 4

Let us now consider the generic case of instantons on Zn

orbifolds of CP2 with n > 4. Based on the previous
examples above, we can extract the generic pattern of both

the quiver as well as the relation between the orthogonal

instanton on CP2=Zn with its relative on C2=Zn.
Recall that N is the sum of the ranks of the flavor groups

in the ADHM quiver, while the ranks of the gauge groups

FIG. 31. Relation between the quiver diagram for SpðNÞ instantons on CP2=Z2nþ1 (on the left) and the quiver diagram for SpðNÞ
instantons on C2=Z2nþ1 (on the right), where ~D1 and D2 are two fields in the symmetric representation of the gauge group UðKnþ1Þ.
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FIG. 32. Relation between the quiver diagram for VS SpðNÞ instantons on CP2=Z2n (on the left) and the quiver diagram for VS
SpðNÞ instantons on C2=Z2n (on the right).
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are related to instanton number and, together with
the relative flavor ranks, to other possible quantum
numbers labeling the instanton. Unfortunately, also in this
case, the precise identification between quiver data and
instanton data is not known. SOðNÞ instantons on
CP2=Z2nþ1. Elaborating on the previous examples,
we conjecture that the theory describing orthogonal instan-
tons on CP2=Z2nþ1 is related to its counterpart on
C2=Z2nþ1 as in Fig. 34. Moreover, the gauge ranks are
related by

K1 ¼ k1; K2 ¼ minðk2; k3Þ;
K3 ¼ minðk4; k5Þ;…Knþ1 ¼ minðk2n; k2nþ1Þ: ð87Þ

SOðNÞ instantons on CP2=Z2n: VS. In this case, based
on the lowest n examples, the relation between the theory
describing VS instantons on CP2=Z2n and their VS
counterparts on C2=Z2n is summarized in Fig. 35. In
addition, we find the gauge rank identification

FIG. 33. Relation between the quiver diagram for NVS SpðNÞ instantons on CP2=Z2n (on the left) and the quiver diagram for NVS
SpðNÞ instantons on C2=Z2n (on the right), where ~D1 and D2 are two fields in the symmetric representation of the gauge group UðK1Þ,
while D3 and ~D4 are two fields in the symmetric representation of the gauge group UðKnÞ.
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K1 ¼ k1; K2 ¼ minðk2; k3Þ;…Kn−1 ¼ minðk2n−2; k2n−1Þ;
Kn ¼ k2n: ð88Þ

SOðNÞ instantons onCP2=Z2n: NVS. Elaborating on the
previous examples, we conjecture that the theory describ-
ing NVS orthogonal instantons on CP2=Z2nþ1 is related to
its NVS counterpart on C2=Z2nþ1 as in Fig. 36. In addition,
the gauge rank assignation is

FIG. 34. Relationbetween thequiverdiagramforSOðNÞ instantonsonCP2=Z2nþ1 (on the left) and thequiverdiagramforSOðNÞ instantons
on C2=Z2nþ1 (on the right), where ~L1 and L2 are two fields in the antisymmetric representation of the gauge group Uð2Knþ1Þ.
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FIG. 35. Relation between the quiver diagram for VS SOðNÞ instantons on CP2=Z2n (on the left) and the quiver diagram for VS
SOðNÞ instantons on C2=Z2n (on the right).
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K1 ¼ minðk1; k2Þ; K2 ¼ minðk3; k4Þ;…
Kn ¼ minðk2n−1; k2nÞ: ð89Þ

Note that, as in the symplectic case, the merging nodes are
those going over to unitary nodes in the parent C2=Zn
theory. It would be very interesting to understand this
feature deeper, as well as the topological data classifying
orthogonal instantons.

VII. CONCLUSIONS

In this paper, we analyzed and clarified several aspects of
the moduli space of instantons on CP2. First, we explicitly
spelled in which context the instanton configurations
arising from the ADHM-like construction on CP2 are
relevant. Then, by using master space techniques, we
explored from a physical perspective the topological
properties of the instanton moduli space to which the
Hilbert series alone is blind. In the particular case of unitary

FIG. 36. Relation between the quiver diagram for NVS SOðNÞ instantons on CP2=Z2n (on the left) and the quiver diagram for NVS
SOðNÞ instantons on C2=Z2n (on the right), where ~L1 and L2 are two fields in the antisymmetric representation of the gauge group
Uð2K1Þ, while L3 and ~L4 are two fields in the antisymmetric representation of the gauge group Uð2KnÞ.
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instantons, an AdS=CFT approach is feasible, finding
perfect agreement between gauge theory and gravity
computations. Moreover, this can be regarded as a non-
trivial check of the alluded AdS=CFT pair, as it is sensible,
in particular, to nonprotected scaling dimensions of oper-
ators in N ¼ 2 theories. We also provided the construction
of instantons on orbifolds of CP2. While their topological
classification is not fully understood, by using our master
space approach, we are able to provide conjectures on the
identification of quantum numbers and quiver data.
Since CP2 is a Kähler manifold, its Kähler form

naturally induces an orientation which, in particular,
intrinsically distinguishes ASD and SD 2-forms. This is
very relevant for the construction of gauge bundles whose
curvature has definite duality properties, as such construc-
tion will be different depending on whether we are
interested in the SD or ASD case. In this paper, we were
interested in SD connections, whose physical relevance in a
suitably constructed gauge theory we have shown. In turn,
these are the ones which admit an ADHM-like construction
recently embedded into a 3d N ¼ 2 gauge theory arising
from a brane construction in [15].
Since CP2 is a topologically nontrivial manifold, the

gauge bundles of interest are classified by more than simply
the instanton number. Indeed, they admit a nonzero first
Chern class. As a consequence, the moduli space of
instantons on CP2 typically has compact submanifolds
associated to these extra directions. In turn, the Hilbert
series of the moduli space—that is, the generating function
of holomorphic functions on the instanton moduli space or,
equivalently, the generating function of gauge-invariant
operators in the ADHM description of the instanton moduli
space—which coincides with the Nekrasov instanton par-
tition function, and it is, therefore, a very interesting
quantity, is not sensible to these compact directions.
Hence, in retrospect, it is natural to expect that it would
coincide with the Hilbert series for a parent instanton onC2,
as it was explicitly shown in [15]. In this paper, we
provided evidence of this picture by probing the compact
directions upon using a novel approach. Focusing on the
simplest case admitting such directions, and following [23],
we considered the master space of the gauge theory
describing these instantons. This amounts to ungauging
a Uð1Þ, which allows us to construct extra gauge invariants
otherwise not present. These precisely reproduce a moduli
space, which is a complex cone over the noncompact
directions. By using this strategy, we were able to under-
stand the extra directions in the unitary and orthogonal
cases. In turn, the case of symplectic instantons does not
admit a similar construction, consistent with the observa-
tion in [15] that it does not involve quantum numbers other
than the instanton number. Note, however, that we explic-
itly checked this picture for the lowest instanton numbers. It
would be worth exploring this new approach further to all
instanton numbers, including studying the geometry of the

moduli space with extra directions, which is not simply a
direct product of the noncompact times the compact
directions (this can be easily checked already in the
simplest cases by studying the relations among operators
in the moduli space).
The case of unitary instantons is particularly interesting,

as its AHDM construction is in terms of the gauge theory
dual to M2 branes probing a certain CY4 cone [28]. Hence,
it is natural to guess that, at least partially, the instanton
moduli space can be read from the AdS=CFT duality.
Typically, fundamental degrees of freedom—that is, open
stringlike—are not captured by the geometry alone in
AdS=CFT. Hence, it is natural to expect that the back-
grounds in [28] can capture only the part of the instanton
moduli space which does not involve fundamental fields.
We explicitly checked this proposal, finding complete
agreement between field theory results and gravity com-
putations. Turning things around, we can think of our
results as a nontrivial check of the proposed AdS4=CFT3

duality in [28], where we explicitly match charges in field
theory with geometrical data in AdS.
The ambient manifold where our instantons live is CP2,

which is, in particular, a toric manifold. Being acted by a
T2, it is natural to consider quotienting by a discrete
subgroup—that is, orbifolding. In turn, by means of the
standard methods, we can orbifold the CP2 ADHM
construction as a field theory to find the ADHM con-
struction of instantons on CP2=Zn. This way, we con-
structed the ADHM construction for unitary, symplectic,
and orthogonal instantons on CP2=Zn. Note that the
orbifolded space has a nontrivial topology containing
2-cycles of a somewhat different origin. On one hand,
we originally had a 2-cycle in the CP2 which gets mirrored
by the orbifold. On the other hand, the orbifold introduces
extra (vanishing) 2-cycles at the orbifold fixed point. It is
natural to expect that the cycles originating from the
original one in CP2 are invisible to the Hilbert series—
just as the original one was—while the others introduced by
the orbifold are, indeed, visible. In fact, it is natural to guess
that the Hilbert series for instantons on CP2=Zn coincides
with the Hilbert series of a parent instanton on C2=Zn just
as in the unorbifolded case. Note that, consistently, the
Hilbert series of instantons on C2=Zn is, indeed, sensible to
the 2-cycles associated to the orbifold fixed point [31].10 In
this paper, we, indeed, confirmed this picture, in particular,
by explicitly showing the matching of the CP2=Zn Hilbert
series with that of a parent C2=Zn one. As shown in the
text, the process suggests a certain “folding” of theCP2=Zn

quiver by “node merging” into that of C2=Zn. In fact, since
at least for unitary instantons on C2=Zn, the matching

10Strictly speaking, this applies to unitary instantons. The case
of orthogonal and symplectic instantons is more involved, as the
ADHM construction does not allow for enough FI parameters so
as to blow up all cycles (see [44] for related discussions).
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between quiver data and instanton data is known, this
naturally suggests, at least partially, an identification of the
quiver data with the instanton data in the CP2=Zn case.
Unfortunately, the full identification with the ADHM
quiver data of the relevant quantum numbers specifying
instantons on the orbifolded CP2 space is not known.
Nevertheless, we provided—at least for the case of unitary
instantons—certain conjectures based on the mapping into
C2=Zn based, in particular, on our approach via the master
space to all directions in the moduli space. As a check, the
expected compact directions can be recovered upon appro-
priate ungaugings of Uð1Þ’s. Of course, a more compre-
hensive study of these aspects would be very interesting.
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APPENDIX A: HYBRID CONFIGURATION
(AN EXAMPLE)

In this appendix, we study an example of a hybrid
configuration, making the following choice for the charges
of the orientifolds plane in Fig. 10 ðI; II; III; IVÞ ¼
ðþ;−;þ;−Þ. The corresponding quiver is reported in
Fig. 30, while the transformations of the fields are
summarized in Table XIV.
The Hilbert series of the hybrid configuration is given by

H½k; F;CP2=Z2�ðt; a; s; yÞ

¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞPE½χ ~S1
tþ χS2tþ χ ~A1

t

þ χA2
tþ χA2

11
t2 þ χQt2 þ χqt2 − χFt4�; ðA1Þ

where z and p are the fugacities of the Uðk1Þ and Uðk2Þ
gauge groups, respectively, y denotes the fugacity of the
UðNÞ flavor group, s denotes the fugacity of the global
Uð1Þs symmetry acting ~S1 and S2, while a denotes the
fugacity of the globalUð1Þa symmetry acting on ~A1 and A2.
The contribution of each field is given by

χA2
11
¼

Xk1
a¼1

Xk2
b¼1

zap−1
b ; χQ ¼

XN
i¼1

Xk1
a¼1

z−1a yi;

χq ¼
XN
j¼1

Xk2
b¼1

pby−1j ; χF ¼
Xk1
a¼1

Xk2
b¼1

z−1a pb;

χS2 ¼ s
X

1≤a≤b≤k2

papb; χ ~S1
¼ 1

s

X
1≤a≤b≤k1

z−1a z−1b ;

χA2
¼ a

X
1≤a<b≤k2

papb; χ ~A1
¼ 1

a

X
1<a<b≤k1

z−1a z−1b :

In this case, by explicit computation of the Hilbert series
for the hybrid configuration with gauge group G ¼
Uðk1Þ ×Uðk2Þ and flavor group UðNÞ, we find it to be
equal to the Hilbert series for the SA hybrid configuration
on C2=Z2 with gauge group G ¼ UðK1Þ (see [31] for more
details). The two theories share the same flavor group, and
the gauge groups are related in the following way:

K1 ¼ minðk1; k2Þ: ðA2Þ

Let us explicitly show a few examples supporting our
claim. k ¼ ð1; 1Þ and N ¼ 1. Using Eq. (A1) and unrefin-
ing, we find that

H½k ¼ ð1; 1Þ; Uð1Þ;CP2=Z2�ðt; 1; 1Þ ¼
1 − t18

ð1 − t6Þð1 − t9Þ2 ;

which is the Hilbert series for the SA hybrid configuration
on C2=Z2 with N ¼ 1 and K1 ¼ 1. k ¼ ð1; 1Þ and N ¼ 2.
Using Eq. (A1) and unrefining, we find that

TABLE XIV. Transformations of the fields for instantons of the hybrid configuration on CP2=Z2.

Fields Uðk1Þ Uðk2Þ UðNÞ Uð1Þs Uð1Þa Uð1Þ
~S1 ½2; 0;…; 0�−2 ½0� ½0� 1=s [0] 1=4
S2 ½0� ½2; 0;…; 0�þ2 ½0� s ½0� 1=4
~A1

½0; 1; 0…; 0�−1 ½0� ½0� ½0� 1=a 1=4
A2 ½0� ½0; 1; 0;…; 0�þ1 ½0� ½0� a 1=4
A2
11

½1; 0;…; 0�þ1 ½0; 0;…; 1�þ1 ½0� ½0� ½0� 1=2
q ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� 1=2
Q ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� 1=2
F ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� [0] 1
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H½k ¼ ð1; 1Þ; Uð2Þ;CP2=Z2�ðt; 1; 1Þ ¼
1þ 2t6 þ 4t9 þ 2t12 þ t18

ð1 − t3Þ4ð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is the Hilbert series for the SA hybrid configuration on C2=Z2 with N ¼ 2 and K1 ¼ 1. k ¼ ð1; 2Þ and N ¼ 2. Using
Eq. (A1) and unrefining, we find that

H½k ¼ ð1; 2Þ; Uð2Þ;CP2=Z2�ðt; 1; 1Þ ¼
1þ 2t6 þ 4t9 þ 2t12 þ t18

ð1 − t3Þ4ð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is again the Hilbert series for the SA hybrid configuration on C2=Z2 with N ¼ 2 and K1 ¼ 1. k ¼ ð1; 1Þ and N ¼ 3.
Using Eq. (A1) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð3Þ;CP2=Z2�ðt; 1; 1Þ ¼
1þ t3 þ 6t6 þ 15t9 þ 21t12 þ 18t15 þ 21t18 þ 15t21 þ 6t24 þ t27 þ t30

ð1 − t3Þ6ð1þ t3Þ4ð1þ t3 þ t6Þ3 ;

which is the Hilbert series for the SA hybrid configuration on C2=Z2 with N ¼ 3 and K1 ¼ 1. k ¼ ð1; 2Þ and N ¼ 3. Using
Eq. (A1) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð3Þ;CP2=Z2�ðt; 1; 1Þ ¼
1þ t3 þ 6t6 þ 15t9 þ 21t12 þ 18t15 þ 21t18 þ 15t21 þ 6t24 þ t27 þ t30

ð1 − t3Þ6ð1þ t3Þ4ð1þ t3 þ t6Þ3 ;

which is again the Hilbert series for the SA hybrid configuration on C2=Z2 with N ¼ 3 and K1 ¼ 1. k ¼ ð1; 1Þ and N ¼ 4.
Using Eq. (A1) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð4Þ;CP2=Z2�ðt; 1; 1Þ

¼ 1þ 2t3 þ 13t6 þ 40t9 þ 86t12 þ 132t15 þ 194t18 þ 220t21 þ 194t24 þ palindromeþ t42

ð1 − t3Þ8ð1þ t3Þ6ð1þ t3 þ t6Þ4 ;

which is the Hilbert series for the SA hybrid configuration
on C2=Z2 with N ¼ 4 and K1 ¼ 1. k ¼ ð2; 2Þ and N ¼ 1.
Using Eq. (A1) and unrefining, we find that

H½k ¼ ð2; 2Þ; Uð1Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1 − t3 þ 2t9 − t15 þ t18

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6 þ t9 þ t12Þ ;

which is the Hilbert series for the SA hybrid configuration
on C2=Z2 with N ¼ 1 and K1 ¼ 2.

APPENDIX B: QUIVERS AND RELATIONS
FOR SpðNÞ AND SOðNÞ INSTANTONS ON

CP2=Zn WITH n > 4

In this appendix, we collect the quiver diagrams for
SpðNÞ and SOðNÞ instantons on CP2=Zn (with n > 4)
showing their relations with the corresponding quiver
diagrams of the corresponding C2=Zn theory.
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