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Abstract

Introduction: The purpose of this study was to investigate whether common variants across the nuclear factor
erythroid 2-like 2 (NFE2L2) gene contribute to the development of the acute respiratory distress syndrome (ARDS) in
patients with severe sepsis. NFE2L2 is involved in the response to oxidative stress, and it has been shown to be
associated with the development of ARDS in trauma patients.

Methods: We performed a case–control study of 321 patients fulfilling international criteria for severe sepsis
and ARDS who were admitted to a Spanish network of post-surgical and critical care units, as well as 871
population-based controls. Six tagging single-nucleotide polymorphisms (SNPs) of NFE2L2 were genotyped,
and, after further imputation of additional 34 SNPs, association testing with ARDS susceptibility was conducted
using logistic regression analysis.

Results: After multiple testing adjustments, our analysis revealed 10 non-coding SNPs in tight linkage disequilibrium
(0.75 ≤ r2 ≤ 1) that were associated with ARDS susceptibility as a single association signal. One of those SNPs
(rs672961) was previously associated with trauma-induced ARDS and modified the promoter activity of the NFE2L2
gene, showing an odds ratio of 1.93 per T allele (95 % confidence interval, 1.17–3.18; p = 0.0089).

Conclusions: Our findings support the involvement of NFE2L2 gene variants in ARDS susceptibility and reinforce
further exploration of the role of oxidant stress response as a risk factor for ARDS in critically ill patients.
Introduction
Acute respiratory distress syndrome (ARDS) remains a
major cause of death in adult intensive care units (ICUs),
with most epidemiological reports mentioning a hospital
mortality rate over 40 % [1]. Despite a similar pulmonary
response, this complex syndrome develops as a compli-
cation of several acute disease processes, with sepsis be-
ing the most common predisposing condition [1, 2].
Damage to the alveolar–capillary membrane results in
increased vascular permeability and protein-rich alveolar
edema. The clinical diagnosis is made on the basis of a
combination of severe hypoxemia requiring mechanical
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ventilation with high concentrations of oxygen, bilateral
pulmonary infiltrates on chest radiographs, and reduced
lung compliance [3].
Critical illness is characterized by an increased produc-

tion of reactive oxygen species (ROS) [4]. Under physio-
logical conditions, oxygen metabolism generates small
amounts of ROS, although the cells have several antioxi-
dant mechanisms against oxidative damage. A disruption
of oxidant–antioxidant balance is likely to play a role in
the pathogenesis of several inflammatory conditions,
including sepsis and ARDS [5]. The nuclear factor eryth-
roid 2-like 2, also known as NRF2 or NFE2L2, plays a
central role in the antioxidant mechanisms against ROS.
NFE2L2 is a member of the Cap’n’Collar basic leucine
zipper transcription factor family and constitutes a hub,
controlling the expression of several genes involved in
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regulating cellular antioxidant levels and detoxification
[6]. The NFE2L2 gene maps onto chromosome 2 at
2q31. Upon activation by an increase in cellular levels of
ROS, NFE2L2 translocates to the nucleus and binds to
the antioxidant response element (ARE), inducing the
transcription of NFE2L2-regulated genes [6]. In previous
positional cloning studies in experimental animals, re-
searchers have identified NFE2L2 as a candidate gene for
hyperoxia-induced lung injury susceptibility [7, 8]. These
results were validated in humans, in whom common
single-nucleotide polymorphisms (SNPs) were identified
by resequencing analysis and candidate SNP functional-
ity was proven in cell lines. In addition, the association
of common variants with ARDS susceptibility and mor-
tality has been reported recently [9–11].
In the present study, we aimed to assess the associ-

ation of common genetic variants in NFE2L2 with ARDS
in patients admitted with severe sepsis in a Spanish net-
work of post-surgical and critical care units.

Methods
This study is part of an ongoing research program in
which the role of genetic factors on ARDS susceptibility
is being analyzed. This study was approved by the exter-
nal scientific committee and advisory committee of ex-
perts on ethical, economic, environmental, legal, and
social affairs at the Spanish national DNA biobank
(National DNA Bank Carlos III); the ethics committee at
the coordinating center (Hospital Universitario Nuestra
Señora de Candelaria, Tenerife, Spain); and the institu-
tional review boards of participating hospitals (Hospital
Clínico de Santiago de Compostela, Hospital General de
León, Hospital Universitario Río Hortega, Fundació
Althaia, Hospital Clinic de Barcelona, Hospital NS del
Prado, Hospital Vírgen de la Luz, and Hospital General
de Ciudad Real). Informed consent was obtained from
all subjects or from their appropriate surrogates.

Study design
We used a case–control study design with 1222 DNA
samples from unrelated individuals. We enrolled 322 pa-
tients with a diagnosis of severe sepsis [12] and ARDS
who were admitted into a multidisciplinary network of
post-surgical and ICUs in Spain (see Appendix). All pa-
tients were mechanically ventilated. ARDS was defined
according to the Berlin criteria [13]. For the purpose of
this study, patients with mild, moderate, and severe
ARDS were analyzed as a single group of patients with
ARDS. Although the selection of controls remains a
challenge [14], we preferred to use population-based sub-
jects as controls instead of using patients at risk, because
the former minimize the introduction of selection and
Berkson bias [15, 16] without sacrificing genotype
compliance with Hardy-Weinberg equilibrium (HWE)
expectations and therefore provide an additional quality
control on genotyping. The population-based control
group included DNA samples from 900 unrelated adults
(control/case ratio of approximately 3) provided by the
Spanish national DNA biobank [17]. A health survey was
obtained from all control subjects, and none of them had
a history of respiratory diseases.
We recorded basic demographic data, severity of ill-

ness scores, and clinical information, including source of
infection and development of organ failure until ICU
discharge. Blood samples for genotyping analysis were
collected within the first 24 hours of meeting the criteria
for severe sepsis.

Genotyping
Genomic DNA was extracted from whole blood using
an illustra GFX PCR DNA kit (GE Healthcare Life Sci-
ences, Little Chalfont, UK). We followed current guide-
lines for DNA polymorphism association studies [18].
Sample size was based on an a priori power calculation
with Quanto software (http://biostats.usc.edu/Quanto.
html) [19] to attain 80 % power for an allele frequency
of 10 % and an effect size (odds ratio [OR]) of 1.5, as-
suming an ARDS incidence of 7.2 new cases per 100,000
population per year in the Spanish population [3].
We first selected a set of six tagging SNPs (tSNPs)

using TagIT software [20]. This approach provided a
mean coverage of r2 > 0.85 for the common gene vari-
ation [minor allele frequency (MAF) ≥5 %] based on the
information on the European population derived from
the 1000 Genomes Project (1KGP) [21]. Genotyping was
performed using the MassARRAY iPLEX Gold™ platform
(Sequenom, San Diego, CA USA) and TaqMan™ allelic
discrimination assays (Applied Biosystems, Foster City,
CA, USA). Individual SNP genotype calls were automat-
ically generated using Sequenom TYPER 3.4™ software.
TaqMan genotyping was used for the SNP rs6706649,
and performed using a 7500 Fast Real-Time PCR System
(Life Technologies, Carlsbad, CA, USA). Genotyping was
done blinded to control and case status. DNA from two
HapMap individuals and approximately 7 % of the sam-
ples was genotyped in duplicate to monitor genotyping
quality. The estimated overall genotype concordance
among duplicates was 100 % (95 % confidence interval
[CI], 95.0–100 %). Twenty-nine control subjects and one
patient with ARDS were excluded from downstream
analyses because of a low completion rate (<80 %).

Statistical analysis
Clinical and demographic data were analyzed with χ2

tests for categorical variables and the Mann–Whitney U
test for ordinal data using R 3.01 software [22]. Quality
control and deviations from HWE in genotyped SNPs
were assessed using SNPing software [23]. SNP imputation
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using data from European individuals from 1KGP phase I
(May 2011) [21] was performed using MaCH 1.0 software
[24]. Association testing was conducted for allele dosages
using Mach2dat [24] for those SNPs showing MAF ≥5 %
and squared correlation between imputed and observed
genotypes (R2) ≥0.3. The independence of SNP associa-
tions was examined with conditional regression analysis
using the R statistical software package. To control for
type I errors arising from multiple hypothesis testing, a
false discovery rate (FDR) was calculated by means of qva-
lue [25]. A FDR threshold of 0.05 was established to de-
clare significance. Pairwise r2 values were calculated using
Haploview 3.32 [26] to assess the linkage disequilibrium
(LD) between SNPs based on data deposited for Europeans
in the 1KGP database. Evaluation of functionality of asso-
ciated SNPs was performed with the online software
Table 1 Demographic and clinical characteristics of the study samp

Characteristic

Sex (% male)

Median age, yr (P25–P75)

Hypertension (%)

Smoker (%)

Previous surgery (%)

Ischemic cardiac disease (%)

Source of sepsis (%)

Pulmonary

Extrapulmonary

Pathogen (%)

Gram-negative

Gram-positive

Mixed

Polymicrobial

Virus

Fungi

Negative blood cultures

Organ dysfunction (%)

Circulatory

Renal

Hepatic

Neurologic

Coagulation

APACHE II, mean (P25–P75)

PaO2/FiO2 mean,c mmHg (P25–P75)

ICU mortality (%)

APACHE II Acute Physiology and Chronic Health Evaluation II, ICU intensive care uni
partial pressure arterial oxygen and fraction of inspired oxygen
aχ2 test
bMann–Whitney U test
cAt the time of onset
HaploReg v3 [27] on the basis of empirical data from the
ENCODE project [28] with the aim of identifying func-
tional elements in the human genome sequence. Specific-
ally, we focused our attention on ENCODE experiments
performed on cell lines and tissues obtained from lungs,
lung developmental stages, and endothelium.

Results
Characteristics of patients
Demographic and clinical data from the 321 ARDS pa-
tients and 871 population-based control subjects with
SNP completion rate ≥80 % are summarized in Table 1.
The overall mortality rate at discharge from the ICU was
36.3 %. In 35 % of patients, no pathogens were identified
as the causative microorganism for sepsis, although all
of them had an identified or highly suspected site of
le

ARDS patients Controls p value

(n = 321) (n = 871)

63.2 59.6 0.242a

67 (55–75) 41 (32–49) <0.001b

42.4 3.1 <0.001a

27.9 31.2 0.422a

65 NA

9.0 NA

41.9 NA

58.1 NA

29.3 NA

21.1 NA

5.7 NA

3.3 NA

2.8 NA

2.8 NA

35.0 NA

58.0 NA

43.6 NA

21.4 NA

20.8 NA

18.9 NA

22 (17–27) NA

206 (124–255)

36.3 NA

t, NA not applicable, P25 percentile 25, P75 percentile 75, PaO2/FiO2 ratio of
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infection, a finding that is in accordance with published
data [29]. The most common sites of infection were the
lung, the abdominal cavity, and the gastrointestinal tract.

Genotype frequencies and association with acute
respiratory distress syndrome
All the tSNPs had a genotype completion rate >95 %. In
the control group, none of the six tSNPs deviated signifi-
cantly from HWE expectations (Table 2). After imput-
ation, association testing was conducted for 40 SNPs
with MAF ≥5 % and R2 ≥ 0.3. Finally, a total of 10 SNPs,
all non-coding, were significantly associated with ARDS
susceptibility after multiple testing adjustments (FDR =
0.036), with the top hit being rs4243387 (OR for C allele =
1.93; 95 % CI, 1.19–3.12; p = 0.0068) (Table 3). Although
the 10 SNPs associated are distributed along approxi-
mately 10 kb of the gene, and though several of them
relate to histone marks according to empirical data
(Table 3), they constitute a single association signal,
owing to the strong LD among them (0.75 ≤ r2 ≤ 1) (Fig. 1).
In fact, association analyses using regression models ac-
counting for the top hit rendered the remaining SNPs
non-significant (Table 4). In addition, of the 10 associated
SNPs that were not independent from each other, it is
worth noting that the rs6721961 was among the associ-
ated SNPs showing an OR of 1.93 per each addition of a T
allele (95 % CI, 1.17–3.18; p = 0.0089). This SNP is located
at −178 bp from the transcription start site of the gene
[30] and was previously associated with trauma-induced
ARDS, although it was described at position −617 bp in
that publication [9].

Discussion
This study is the first examining, the association of com-
mon variants of NFE2L2 gene with susceptibility to
ARDS among patients with severe sepsis, finding an as-
sociation of 10 SNPs with this syndrome. Although these
SNPs were widely distributed across the gene, all of
them showed strong LD with each other. One of the
associated SNPs, rs6721961, which showed a minor
allele frequency of 11.1 % in this sample, was located in
Table 2 Location, allele frequency, and quality control information for
gene

tSNPs Alleles Positiona CR (%)

rs35652124 T/C 177,265,344 98.3

rs6706649 C/T 177,265,342 95.2

rs2364722 A/G 177,260,058 99.6

rs72946143 T/C 177,253,423 100

rs1806649 C/T 177,253,423 99.3

rs6726395 A/G 177,238,500 99.1

CR completion rate, HWE Hardy-Weinberg equilibrium p value, MAF minor allele fre
aAccording to National Center for Biotechnology Genome Reference Consortium NC
the promoter region of the gene, and its T-allele had been
previously linked to a reduction in functionality that
limited the NFE2L2 triggering of the antioxidative
response [9]. Consistent with those findings, we found
that the T allele at rs6721961 conferred greater risk for
ARDS susceptibility in patients with sepsis than in healthy
subjects. A functional evaluation of the associated SNPs
with empirical data from the ENCODE project revealed
that seven of them are located in histone marks and/or on
DNase I hypersensitivity sites (Table 3). Specifically, the
SNP rs6721961 locates in a promoter histone mark in
lung fibroblasts and fetal lung. It is also located in a
DNase I hypersensitivity site, as reported in an epithelial
cell line derived from a lung carcinoma tissue. Given that
chromatin modifications on histone marks are critically
involved in the regulation of gene expression and that
these regions tend to collocate with DNase-sensitive sites
in transcriptional start sites [31], this evidence highlights
the key role of rs6721961 in the regulation of NFE2L2 ex-
pression. Overall, our results highlight the importance of
NFE2L2 gene variants in modulating the response to oxi-
dative damage among critically ill patients.
Reduction–oxidation (redox) balance is particularly im-

portant in the airways because they represent the first
contact with environmental oxidants. Generation of ROS
has been implicated in the pathogenesis of many acute
and chronic pulmonary diseases, including ARDS [32],
and it is a common condition among critically ill patients
that results in the development of multiple organ system
failure [33]. In this respect, researchers in several studies
have reported the presence of oxidative damage in pa-
tients with sepsis [34, 35]. High levels of protein oxidation
have been found, both in plasma and in bronchoalveolar
fluids, in early stages of severe sepsis development and
during major trauma [36]. NFE2L2 constitutes a hub and
a master regulator of detoxifying systems, such as catalase,
superoxide dismutase, and glutathione peroxidase, that
are critically involved in protecting the cells against oxida-
tive stress [6]. Using experimental animal models where
this transcription factor was disrupted allowed the identi-
fication of dependent genes that are critical in pulmonary
tagging single-nucleotide polymorphisms genotyped for NFE2L2

MAF cases MAF controls HWE controls

0.250 0.274 0.231

0.115 0.126 0.341

0.254 0.280 0.152

0.044 0.067 0.270

0.300 0.317 0.481

0.469 0.494 0.378

quency
BI build GRCh38



Table 3 Summary of NFE2L2 variants associated with acute respiratory distress syndrome susceptibility with false discovery rate <0.05

Positiona SNPs Functionalityb Minor allele MAF R2 OR (95 % CI) p value

177,265,308 rs6721961 5′ flanking T 0.111 0.32 1.93 (1.17–3.18) 0.0089

Histone mark, DHS

177,255,662 rs10188193 Intron 1 T 0.110 0.33 1.95 (1.19–3.17) 0.0071

177,255,583 rs10188107 Intron 1 T 0.110 0.33 1.95 (1.19–3.17) 0.0071

177,254,567 rs10497511 Intron 1 G 0.110 0.33 1.95 (1.19–3.17) 0.0070

DHS

177,253,821 rs2001297 Intron 1 C 0.110 0.33 1.95 (1.20–3.16) 0.0069

Histone mark

177,253,036 rs4243387c Intron 1 C 0.112 0.34 1.93 (1.19–3.12) 0.0068

Histone mark

177,249,903 rs10930781c Intron 1 A 0.106 0.35 1.90 (1.17–3.12) 0.0085

177,248,755 rs1962142c Intron 1 A 0.103 0.33 1.96 (1.18–3.23) 0.0083

Histone mark

177,240,415 rs2364720 Intron 1 A 0.106 0.35 1.90 (1.17–3.09) 0.0082

Histone mark

177,235,696 rs2001350c Intron 1 C 0.103 0.32 2.00 (1.20–3.35) 0.0075

Histone mark

CI confidence interval, DHS DNase I hypersensitivity site, FDR false discovery rate, MAF minor allele frequency, OR odds ratio, R2 squared correlation between
imputed and observed genotypes, SNP single-nucleotide polymorphism
aAccording to National Center for Biotechnology Genome Reference Consortium NCBI build GRCh38
bFunctionality obtained from HaploReg v3 [27]
cSNPs associated with primary graft dysfunction in Cantu et al. [11]
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protection and confirmed that its disruption promotes
susceptibility to several prooxidant-induced lung diseases,
primarily owing to decreased levels of the basal and indu-
cible expression of several antioxidant enzymes [37–40].
The importance of redox balance in the pathogenesis

of ARDS, as well as the implication of NFE2L2 in disease
susceptibility or outcome, is supported by the identifica-
tion of variants in a few genes involved in the oxidative
stress response previously associated with ARDS suscep-
tibility or outcome [41, 42]. Marzec et al. [9] assessed
the functionality of the SNP rs6721961 (referred to by
those authors at position −617 bp) on the promoter re-
gion by means of a reporter gene assay and an electro-
phoretic mobility shift assay (EMSA). In the reporter
gene assay, the luciferase activity for the T allele was less
than half of the activity for the G allele, indicating a sig-
nificant reduction of NFE2L2 gene expression. Congru-
ently, results derived from the EMSA showed that the
formation of a protein–DNA complex was significantly
diminished in the presence of the T allele, suggesting a
less efficient binding of the NFE2L2 transcription factor
to the ARE-like sequences of its target genes. In the
same study, and consistent with these results, the pres-
ence of the T allele at rs6721961 was associated with risk
for ARDS susceptibility in a nested case–control associ-
ation study conducted with 30 patients with trauma-
induced ARDS and 60 matched at-risk control subjects.
A fixed-effects meta-analysis combining these results
with those derived from our study confirmed the con-
cordance of effects at the SNP level, showing an OR for
the T allele of 2.18 (95 % CI, 1.35–3.50; p = 0.0013). The
same SNP was recently found to be associated with 28-
day mortality in a nested case–control study that included
224 patients with ARDS from a cohort of 750 patients
with systemic inflammatory response syndrome [10]. Also,
Cantu et al. [11] found a few NFE2L2 SNPs associated
with primary graft dysfunction, a specific form of ARDS
developed within 72 hours after lung transplantation. Four
of those SNPs (rs10930781, rs1962142, rs2001350, and
rs4243387) were also significantly associated with ARDS
in our study.
The reliability of association findings can be assessed

only by replicating the results in independent samples.
Such an effort has been widely recognized as a major
gap in the field [14, 43]. In this respect, the present
study can be considered a SNP-level replication of previ-
ous findings in a large series of patients, although the
precipitating injury was severe sepsis instead of trauma.
As a result of this, although ancestry adjustments were
not implemented, a confounder effect due to the presence
of population stratification in this study would be min-
imal. Besides, we acknowledge some minor limitations.



Fig. 1 Regional plot of association results. Upper panel: The y-axis represents the − log10-transformed p values for association tests. The x-axis
represents the approximate location of the 40 single-nucleotide polymorphisms (SNPs) tested for association relative to the gene. Red circles
depict associated SNPs after multiple comparison adjustments. Lower panel: This linkage disequilibrium (LD) plot is based on pairwise r2 values
among SNPs from the European population of the 1000 Genomes Project. Each diamond of the LD plot represents an r2 value between two
SNPs, schematically symbolized by a color gradient ranging from black (r2 = 1, corresponding to complete LD) to gray (1 < r2 < 0, moderate LD)
and white (r2 = 0, absence of LD)

Table 4 Conditional regression results accounting for the effect
of rs4243387

SNP Univariate
association p value

Conditional
regression p value

rs10188107 0.0071 0.464

rs10188193 0.0071 0.498

rs10497511 0.0070 0.580

rs10930781 0.0085 0.929

rs1962142 0.0083 0.956

rs2001297 0.0069 0.678

rs2001350 0.0075 0.940

rs2364720 0.0082 0.980

rs6721961 0.0089 0.292

SNP single-nucleotide polymorphism
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First, although the study sample provided 80 % power
to detect a minimum risk of 1.5, we recognize that this
sample size is limited to detect smaller effect sizes that
are expected on average for complex traits [44]. Sec-
ond, we assessed only the common variation within the
NFE2L2 gene, and they would contribute to an ex-
planation of only a modest fraction of the genetic
component of the syndrome. Third, the use of population-
based controls instead of at-risk controls precludes dedu-
cing whether the NFE2L2 gene is associated with ARDS
or with the underlying condition (e.g., severe sepsis). How-
ever, whatever the case, the fact that our results replicated
previous findings from a study using at-risk controls
strongly supports that this gene is directly involved in
ARDS susceptibility.
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Conclusions
We provide evidence implicating common NFE2L2 gene
variants in ARDS susceptibility, reinforcing further ex-
plorations of the role of oxidant stress response as a
risk factor for ARDS in critically ill patients. Research
in this field will eventually translate into potentially
useful information by identifying new pathways and
novel therapeutic approaches, and also by developing
predisposition biomarkers to stratify at-risk patients,
thus facilitating personalized patient assessment and
better patient management.

Key messages

� A number of common variants of the NFE2L2 gene
are associated with ARDS in patients with severe
sepsis.

� One of the associated SNPs is located in the
promoter region and has been proven to modify the
promoter activity of the NFE2L2 gene.

� Our study supports the role of the oxidant stress
response as a risk factor for ARDS in critically ill
patients, irrespective of the precipitating injury.
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