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Abstract. Container terminals are facilities where cargo containers are
transshipped between different transport vehicles, for onward transporta-
tion. They are open systems that carry out a large number of different
combinatorial problems that can be solved by means of Artificial Intel-
ligence techniques. In this work, we focus our attention on scheduling
a number of incoming vessels by assigning to each a berthing position,
a mooring time and a number of Quay Cranes. This problem is known
as the Berthing Allocation and Quay Crane Assignment problem. To
formulate the problem, we first propose a mixed integer linear program-
ming model to minimize the total weighted service time of the incoming
vessels. Then, a meta-heuristic algorithm (Genetic Algorithm (GA)) is
presented for solving the proposed problem. Computational experiments
are performed to evaluate the effectiveness and efficiency of the proposed
method.
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1 Introduction

A container terminal is an open system with three distinguishible areas (berth,
container yard and lanside areas) where there exist different complex optimiza-
tion problems. For instance, berthing allocation or stowage planning problems
are related to the berth area [?]; remarshalling problem or transport optimiza-
tion in the yard area; and, planning and scheduling hinterland operations related
to trains and trucks in the landside area [?].

Two planning and scheduling problems are studied in this paper, the Berth
Allocation Problem (BAP) and the Quay Crane Assignment Problem (QCAP).
The former is a well-known combinatorial optimization problem [?], which con-
sists in assigning incoming vessels to berthing positions. The QCAP deals with
assigning a certain number of QCs to each vessel that is waiting at the roadstead
such that all required movements of containers can be fulfilled [?]. Once a vessel
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arrives at the port, it waits at the roadstead until it has permission to moor at
the quay. The locations where mooring can take place are called berths. These
are equipped with giant cranes, known as Quay Cranes (QC), that are used to
load and unload containers which are transferred to and from the yard by a fleet
of vehicles. These QCs are mounted on the same track (or rail) and, therefore
they cannot pass each other. In a transshipment terminal, the yard allows tem-
porary storage before containers are transferred to another ship or to another
transportation mode (e.g., rail or road).

A comprehensive survey of BAP and QCAP is given by [?]. These problems
have been mostly considered separately and with an interest mainly focused on
BAP. However, there are some studies on the combined BAP+QCAP considering
different characteristics of the berths and cranes ([?], [?], [?], [?], [?]). In this
paper, we present a formal mixed integer lineal programming for the combined
BAP+QCAP that extends the model presented in [?], by managing a continuous
quay line. In order to obtain optimized solutions in an efficient way, we develop
a metaheuristic GA, so that compared with mathematical solvers obtains near-
optimal solutions in competitive computational times.

The rest of the paper is organized as follows. In the next two sections we
give a thorough description and a mathematical formulation of the problem. In
Section 4 we give the details of the GA designed for the BAP+QCAP. Section
5 reports the results of the experimental study. Finally, in Section 6 we give the
main conclusions of this work.

2 Problem description

The objective in BAP+QCAP is to obtain an schedule of the incoming vessels
with an optimum order of vessels mooring and a distribution of the docks and
QCs for these vessels. Figure 1(b) shows an example of the graphical space-time
representation of a berth plan with 6 vessels. Each rectangle represents a vessel
with its handling time and length.

Our BAP+QCAP case is classified according to the classification given by
[?] as:

– Spatial attribute: Continuous layout. We assume that the quay is a continu-
ous line, so there is no partitioning of the quay and the vessel can berth at
arbitrary positions within the boundaries of the quay. It must be taken into
account that for a continuous layout, berth planning is more complicated
than for a discrete layout, but it better utilizes the quay space [?].

– Temporal attribute: Dynamic arrival. Fixed arrival times are given for the
vessels, so that vessels cannot berth before their expected arrival times.

– Handling time attribute: Unknown in advance. The handling time of a vessel
depends on the number of assigned QCs (QCAP) and the moves required.

– Performance measure: wait and handling times The objective is to minimize
the sum of the waiting (wi) and handling times (hi) of all vessels.

Let V be the set of incoming vessels. Following, we introduce the notation
used for each vessel i ∈ V (Figure 1(a)). The data variables are:
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Fig. 1. Representation of the BAP+QCAP problem

– QC : Available QCs in the container terminal. All QCs carry out the same
number of movements per time unit (movsQC), given by the container ter-
minal.

– L : Total length of the berth in the container terminal.
– ai : Arrival time of the vessel i at port.
– ci : Number of required movements to load and unload containers of i.
– li : Vessel length.
– pri : Vessel priority.

The decision variables are:

– mi : Mooring time of i. Thus, waiting time (wi) of i is calculated as (wi =
mi − ai).

– pi : Berthing position where i moors.
– qi : Number of assigned QCs to i.
– uik : Indicates whether the QC k works (1) or not (0) on the vessel i.

The variables derived from the previous ones are:

– hi : Loading and unloading time at quay (handling time) of vessel i. This

time depends on qi and ci, that is :
(

ci
qi×movsQC

)
.

– tik : Working time of the QC k that is assigned to vessel i.
– di : Departure time of vessel i (di = mi + hi).
– si, ei : indexes for the first and last QC used in vessel i, respectively.

Our objective is to allocate all vessels according to several constraints mini-
mizing the total weighted waiting and service time for all vessels:

Ts :=
∑
i∈V

(wi + hi)× pri (1)
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Note that this problem is a very special case of a multi-mode resource-
constrained scheduling problem, where there exist shared resources (berth length),
the duration of activities (mooring time) depends on the assigned resources
(QCs), and the objective function is minimizing both the waiting as the pro-
cessing times of vessels.

Moreover, the following assumptions are considered:

– Number of QCs assigned to a vessel do not vary along the moored time.
Once a QC starts a task in a vessel, it must complete it without any pause
or shift (non-preemptive tasks). Thus, all QCs assigned to the same vessel
have the same working time (tik = hi,∀k ∈ QC, uik = 1)

– All the information related to the waiting vessels is known in advance (ar-
rival, priority, moves and length).

– Every vessel has a draft that is lower than or equal to the draft of the quay.

– Movements of QCs along the quay as well as berthing and departure times
of vessels are not considered since it supose a constant penalty time for all
vessels.

– The components of the optimization function (Equation 1) can be indepen-
dently weighted without requiring changes to our proposal.

– Simultaneous berthing is allowed, subject to the length of the berth.

And the following constraints must be accomplished:

– Moored time must be at least the same that its arrival time (mi ≥ ai).

– It must be enough contiguous space at berth to moor a vessel of length (li).

– There is a safety distance (safeDist) between two moored ships. We assume
5% of the maximum length of two contiguous vessels.

– There must be at least one QC to assign to each vessel. The maximum
number of assigned QCs by vessel depends on its length, since a safety dis-
tance is required between two contiguous QCs (safeQC), and the maximum
number of QCs that the container terminal allows per vessel (maxQC). Both
parameters are given by the container terminal.

3 Mathematical formulation

In this section, the mathematical formulation for BAP+QCAP is presented. The
given MILP model solves the BAP+QCAP by minimizing the function given by
the Equation 1, where M denotes a sufficiently large number, subject to the
given constraints:
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mi ≥ ai ∀i ∈ V (2)

wi = mi − ai ∀i ∈ V (3)

pi + li ≤ L ∀i ∈ V (4)

qi =
∑

k∈QC

uik ∀i ∈ V (5)

1 ≤ qi ≤ QC+
i ∀i ∈ V (6)

1 ≤ si, ei ≤ |QC| ∀i ∈ V (7)

si ≥ ei ∀i ∈ V (8)

qi = ei − si + 1 ∀i ∈ V (9)∑
k∈QC

tik × movsQC ≥ ci ∀i ∈ V (10)

hi = max
k∈QC

tik ∀i ∈ V (11)

tik − uik ×M ≤ 0 ∀i ∈ V, ∀k ∈ QC (12)

hi −M × (1− uik)− tik ≤ 0 ∀i ∈ V, ∀k ∈ QC (13)

uik + ujk + zxij ≤ 2 ∀i, j ∈ V, ∀k ∈ QC (14)

M × (1− uik) + (ei − k) ≥ 0 ∀i ∈ V, ∀k ∈ QC (15)

M × (1− uik) + (k − si) ≥ 0 ∀i ∈ V, ∀k ∈ QC (16)

pi + li ≤ pj − sdij +M × (1− zxij) ∀i, j ∈ V, i ̸= j (17)

ei + 1 ≤ sj +M × (1− zxij) ∀i, j ∈ V, i ̸= j (18)

mi + hi ≤ mj +M × (1− zyij) ∀i, j ∈ V, i ̸= j (19)

zxij + zxji + zyij + zyji ≥ 1 ∀i, j ∈ V, i ̸= j (20)

zxij , z
y
ij , uik 0/1 integer ∀i, j ∈ V, i ̸= j,∀k ∈ QC (21)

The given formulation expands the model presented in [?] by adding the
needed constraints to take into consideration QCs. Thereby, the handling time
of vessels depends on the number of QCs and these QCs cannot pass each other
when are relocated.

In the proposed model, there are two auxiliary variables: zxij is a decision
variable that indicates if vessel i is located to the left of vessel j on the berth
(zxij = 1); and, zyij = 1 indicates that vessel i is moored before vessel j in time
(see constraint 21). Moreover, Constraint 2 ensures that vessels must moor once
they arrive at the terminal. Constraint 4 guarantees that a moored vessel does
not exceed the length quay. Constraints 5, 6, 7, 8 and 9 assign the number of QCs
to the vessel i. Constraint 10 establishes the needed handling time to load and
unload their containers. Constraint 12 ensures that QCs that are not assigned
QCs to i have tik zero. Constraint 13 forces all assigned QCs to i working the
same number of hours. Constraint 11 assigns the handling time for vessel i.



6 Mario Rodriguez-Molins et al.

Constraint 14 avoids that one QC is assigned to two different vessels at the
same time. Constraints 15 and 16 force the QCs to be assigned contiguously
(from si up to ei). Constraint 17 takes into account the safety distance between
each two vessels. Constraint 18 avoids that one vessel uses a QC which should
cross through the others QCs. Constraint 19 avoids that vessel j moors while
the previous vessel i is still at the quay. Finally, constraint 20 establishes the
relationship between each pair of vessels.

This mathematical model has been coded in IBM ILOG CPLEX Optimiza-
tion Studio 12.3 as detailed in the Evaluation Section 5.

4 Genetic Algorithm

Algorithm 1 shows the structure of the GA we have considered herein. The core
of this algorithm is taken from [?,?] and is quite similar to others generational
genetic algorithms described in the literature ([?], [?] or [?]). In the first step,
the initial population is generated and evaluated. Then, the genetic algorithm
iterates over a number of steps or generations. In each iteration, a new generation
is built from the previous one by applying the genetic operators of selection,
reproduction and replacement. These operators can be implemented in a variety
of ways and, in principle, are independent from each other. However, in practice
all of them should be chosen considering their effect on the remaining ones in
order to get a successful overall algorithm. The approach taken in this work is the
following. In the selection phase all chromosomes are grouped into pairs, and then
each one of these pairs is mated or not in accordance with a crossover probability
(Pc) to obtain two offspring. Each offspring, or parent if the parents were not
mated, undergoes mutation in accordance with the mutation probability (Pm).
Finally, the replacement is carried out as a tournament selection (4:2) among
each pair of parents and their offspring.

Algorithm 1 The genetic algorithm

Require: A BAP-QCAP instance P
Ensure: A mooring schedule for instance P

1. Generate the initial population;
2. Evaluate the population;
while No termination criterion is satisfied do

3. Select chromosomes from the current population;
4. Apply the reproduction operators to the chromosomes selected at step 3. to
generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the replacement criterion to the set of chromosomes selected at step 3.
together with the chromosomes generated at step 4.;

end while
return The schedule from the best chromosome evaluated so far;
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The coding schema is based on permutations of vessels, each one with a given
number of QCs. So a gene is a pair (i, qi), 1 ≤ qi ≤ min(maxQCi,maxQC), and
a chromosome includes a gene like this for each one of the vessels. For example,
for an instance with 5 vessels where the maximum number of QCs are 2, 3, 4, 3
and 2 respectively, two feasible chromosomes are the following ones:

c1: ( (1 1) (2 1) (3 1) (4 2) (5 1) )

c2: ( (3 2) (1 2) (2 2) (5 2) (4 3) )

Note that, the same vessel may have different number of QCs in each chro-
mosome. In accordance with this encoding, a chromosome expresses the number
of QCs that each vessel is assigned in the solution and an order for building the
schedule.

The order of vessels in chromosomes is used as a dispatching rule. Hence,
we use the following decoding algorithm: the genes are visited from left to right
in the chromosome sequence. For each gene (i, qi) the vessel i is scheduled at
the earliest mooring time with qi consecutive QCs available, so that none of the
constraints is violated. If there are several positions available at the earliest time,
that closest to one of the berth extremes is selected. Also, the QCs are chosen
starting from the same extreme of the berth.

For chromosome mating we have considered a classical crossover operator
such as Generalized Position Crossover (GPX) which is commonly used in per-
mutation based encodings. This is a two points crossover operator which work
as follows. Let us consider two parents like:

p1: ( (1 1) | (2 1) (3 1) | (4 2) (5 1) )

p2: ( (3 2) | (1 2) (2 2) | (5 2) (4 3) )

Symbols ”|” represent crossover positions, 1 and 3 respectively in this ex-
ample, which are selected at random for each mating. Then two offsprings are
built taking the substrings between positions 1 and 3 in each parent and then
filling the remaining positions with the genes representing the remaining vessels
taken from the other parent keeping their relative order. So in this case the two
offsprings are:

o1: ( (1 2) | (2 1) (3 1) | (5 2) (4 3) )

o2: ( (3 1) | (1 2) (2 2) | (4 2) (5 1) )

For mutation we have implemented an operator that shuffles a random sub-
string of the chromosome and at the same time changes the number of QCs
assigned to each one of the shuffled genes at random, provided that the number
of QCs is kept in between the proper limits for the vessel.

The initial population in generated at random, i.e. a random order for the
vessels is chosen and each vessel i is assigned a number of QCs chosen uniformly
in [1,min(maxQCi,maxQC)]. The termination condition is given in one of these
three forms: (1) a number of generations, (2) a time limit or (3) a number of
evaluations.
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5 Evaluation

The experiments were performed in a corpus of 100 instances generated ran-
domly, each one is composed of a queue from 5 to 20 vessels. These instances fol-
low an exponential distribution for the inter-arrival times of the vessels (λ = 1

20 ).
The number of required movements and length of vessels are generated uniformly
in [100, 1000] and [100, 500] respectively. In all cases, the berth length (L) is fixed
to 700 meters; the number of QCs is 7 (corresponding to a determined MSC berth
line) and the maximum number of QCs per vessel is 5 (maxQC); the safety dis-
tance between QCs (safeQC) is 35 meters and the number of movements that
QCs carry out is 2.5 (movsQC) per time unit.

The two approaches developed in this paper, the GA and the MILP model,
were coded using C++ and the IBM ILOG CPLEX Optimization Studio 12.3,
respectively. They were solved on a Linux PC 2.26Ghz.

In the GA, the population size is 200. Mutation and crossover probabilities
are Pm = 0.1 and Pc = 0.8, respectively. Due to the stochastic nature of the GA
process, each one of the instances were solved 30 times and the results show the
average obtained values.

Table 1 shows the results form CPLEX and GA averaged for each group
of 100 instances with the same number of vessels (5 to 20). The timeout was
10 seconds. For CPLEX, the reported values are the average value of Ts for
the solutions reached, the number of instances solved to optimality (#Opt), the
number of instances solved without certify optimality (#NOpt) and the number
of instances for which no solution is reached by the timeout (#NSol) The last
two columns show the best and the average values of the solutions obtained by
the GA in 30 runs. Obviously, in all cases, the objective function (Ts) increases
as the number of incoming vessels increases from 5 up to 20.

Table 1. Comparision CPLEX with GA (timeout 10 secs)

|V| CPLEX GA

Avg Ts #Opt #NOpt #NSol Best Ts Avg Ts

5 1723.75 98 2 0 1723.75 1723.75

6 2193.06 88 12 0 2189.63 2189.63

7 2702.46 66 34 0 2681.14 2681.67

8 3287.66 41 59 0 3219.80 3222.13

9 3891.09 24 76 0 3729.78 3734.72

10 4642.23 14 86 0 4337.10 4350.23

11 5453.31 6 94 0 4946.66 4971.86

12 6557.60 3 97 0 5552.09 5589.16

13 7944.50 2 98 0 6181.67 6236.60

14 9332.26 1 98 1 6854.33 6931.59

15 11578.40 0 98 2 7526.27 7631.98

16 13518.00 0 97 3 8290.95 8438.06

17 15105.80 0 94 6 8972.13 9163.65

18 17253.80 0 85 15 9694.16 9927.06

19 18390.40 0 65 35 10506.20 10787.79

20 20410.50 0 46 54 11395.52 11725.64
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From these results, we can observe that CPLEX is not able to reach any
optimal solution by the given timeout in at least 30% of the instances with 7
vessels or more. In addition, it can not get any optimal solution from 15 up
to 20 vessels with this timeout. Moreover, for a number of instances with more
than 14 vessels CPLEX is not able to reach a feasible solution. Regarding GA,
all instances are solved and we can observe that the average values are better
than those from CPLEX, the differences being in direct ratio with the number
of vessels. Here, it is important to remark that GA reaches 1063 generations
in 10 seconds. However, the GA is able to converge in lower times. Figure 2
shows the GA convergence for one representative instance of 20 vessels, so that
near-optimal values are obtained after 100 generations, taking 0.94 seconds. Fur-
thermore, Figure 3 shows how the average Ts for 10 vessels decreases as more
computation time is allowed. In this experiment, the timeout was set to 5, 10,
20, and 60 seconds. As it can be observed, the GA approach does not require a
large timeout (the improvement is lower than 1% beyond 5 seconds).

We remark that we have not been able to use previous test cases proposed
in the literature because we assume a continuous berthing and non-preemtitive
tasks ([?], [?]). However, even considering this more complex case, we can see that
the results achieved are highly competitive against these previous approaches.
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6 Conclusions

The competitiveness among container terminals causes the need to improve the
efficiency of each one of the subprocesses that are performed within them. This
paper focuses on two of the main related problems, the Berth Allocation and
Quay Crane Assignment Problems, in an integrated way. To this end, a mixed
integer lineal programming model and a Genetic Algorithm were developed. The
MILP model was unable to get optimal solutions when a reasonable timeout is
set or when the problem becomes harder (more than 10 vessels). Moreover,
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many of the instances were solved but without any guarantees of being the
optimal ones since the timeout was reached. However, the GA approach is able to
obtain near-optimal solutions in lower computational times and it also maintains
a rapid convergence of the results even with large vessel queues. From these
results, it is concluded the adequacy of a metaheuristic approach based on GA
for solving the BAP+QCAP problem. This approach also extends the previous
approaches given in the literature by adding features (as continuous quay line
and non-preemptitive QC assignments) and it gives near-optimal solutions in a
very competitive computational time. For future research, we propose devising
some local search strategy that can be then combined with the GA or other
metaheuristics such as GRASP, Tabu or Scatter Search.
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