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We show how colored SU(2) BPS monopoles (that is: SU(2) monopoles satisfying the Bogomol’nyi 
equation whose Higgs field and magnetic charge vanish at infinity and which are singular at the origin) 
can be obtained from the BPST instanton by a singular dimensional reduction, explaining the origin of 
the singularity and implying that the singularity can be cured by the oxidation of the solution. We study 
the oxidation of other monopole solutions in this scheme.
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1. Introduction: monopoles and instantons

It has been known for a long time that selfdual Yang–Mills 
(YM) instantons in 4-dimensional Euclidean space E4 and mag-
netic monopoles satisfying the Bogomol’nyi equation in E3 [1] 1

are related by dimensional reduction. In its simplest setting, this 
relation can be described as follows: if Âμ̂ (μ̂ = 0, 1, 2, 3) 2 is the 
gauge potential of a selfdual YM instanton solution in E4 and is 
furthermore independent of one of the 4 Cartesian coordinates, 
z say, then the z-component Âz and the other three components 
Âm (m = 1, 2, 3) can be identified with the Higgs field � ≡ − Âz
and the gauge potential Am ≡ Âm of a solution of the Yang–Mills–
Higgs (YMH) system in the Prasad–Sommerfield limit satisfying the 
Bogomol’nyi equation:

Dm� = 1
2εmnp Fnp . (1.1)

The sign in the Bogomol’nyi equation depends on the orienta-
tion of the coordinates; we have taken the one corresponding to z
to be x0 and ε0123 = ε123 = +1.

The coordinate z has to be compactified for the instanton ac-
tion to be finite3: z ∼ z + 4π . Thus, in practice, we are performing 
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1 This is the equation satisfied by the ’t Hooft–Polyakov monopole [2,3] in the 

Prasad–Sommerfield limit [4]. We will henceforth refer to these monopoles as BPS 
monopoles. Since the time direction does not play any role here, we will also refer 
to the spatial parts of 4-dimensional Lorentzian solutions as “3-dimensional” solu-
tions.

2 We dress 4-dimensional objects with a hat; hatless objects are 3-dimensional.
3 This choice of period is unconventional but convenient for what follows.
http://dx.doi.org/10.1016/j.physletb.2015.04.065
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
the dimensional reduction in S1 ×E
3 and the z-independent solu-

tions can be considered to be the Fourier zero modes of instanton 
solutions periodic in the direction z (the so-called calorons).

The paradigm of selfdual YM instanton in E4 is the BPST in-
stanton [5], usually presented in Cartesian coordinates using the 
’t Hooft symbols. It belongs to a family of selfdual YM solutions 
depending on an arbitrary function K , harmonic on E4 (see e.g.
Ref. [6] and the references therein). With K asymptotically con-
stant and with a single point-like pole at the origin K = 1 +
4/(λ2ρ2), where |�x(4)|2 ≡ ρ2, the solution describes a single BPST 
instanton located at the origin. Replacing K by a harmonic func-
tion on S1 ×E

3 with a single pole at the origin and asymptotically 
constant in E3, K = 1 + (sinh r/2)/[λ2r2(cosh r/2−cos z/2)], where 
r2 = |�x(3)|2 and z is the fourth, compact, Euclidean coordinate, we 
get a caloron [7] whose Fourier zero mode gives, upon dimensional 
reduction, the spatial part of a Wu–Yang SU(2) magnetic monopole 
[8], which is singular at the origin.

Since the BPST instanton and caloron are regular everywhere, 
the singularity of the Wu–Yang solution can be understood as the 
result of having ignored the massive Fourier modes in the di-
mensional reduction, but the mere oxidation of the 3-dimensional 
monopole does not automatically restore them: the 4-dimensional 
instanton corresponding to the Fourier zero mode of the BPST 
caloron is singular.

The above redox relation was generalized by Kronheimer in 
Ref. [9] to a relation between selfdual Yang–Mills instanton solu-
tions in hyper-Kähler (HK) spaces [9] and BPS monopoles in E3. 
We are going to see that Kronheimer’s scheme provides an alterna-
tive reduction of the BPST instanton which relates it to the colored
BPS monopole solution of Protogenov [10]. Colored monopoles are 
a rather misterious type of monopole solutions that exist for many 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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gauge groups [11] and are characterized by asymptotically van-
ishing Higgs field and magnetic charge which, nevertheless, can 
contribute to the Bekenstein–Hawking entropy of certain (super-
symmetric) non-Abelian black holes [12,13,11].

Let us start by reviewing Kronheimer’s result: consider a 
4-dimensional HK space admitting a free U(1) action which shifts 
the adapted periodic coordinate z ∼ z + 4π by an arbitrary con-
stant. Its metric can always be put in the form [14]

dŝ 2 = H−1(dz + ω)2 + Hdxmdxm (m = 1,2,3) , (1.2)

where the z-independent function H and 1-form ω are related by4

dH = �dω . (1.3)

The integrability condition of this equation implies that H is a har-
monic function in E3 which is furthermore required to be strictly 
positive in order for the metric to be regular. Now, for any gauge 
group G, let us consider a gauge field Â whose field strength F̂
is selfdual �̂ F̂ = + F̂ in the above HK metric with respect to the 
frame and orientation

ê 0 = H−1/2(dz + ω) , ê a = H1/2δa
mdxm ,

ε0123 = +1 . (1.4)

Then, the 3-dimensional gauge and Higgs fields A and � defined 
by

� ≡ −H Âz ,

Am ≡ Âm − ωm Âz , (1.5)

satisfy the Bogomol’nyi equation in E3 Eq. (1.1). It is worth stress-
ing that, had we started with an anti-selfdual YM field we would 
have obtained the Bogomol’nyi equation with opposite sign, which 
is acceptable, but also Eq. (1.3) with opposite sign, which would be 
a contradiction: in this setup we can only reduce YM fields which 
are selfdual w.r.t. the above frame and orientation.

When H = 1, the HK space is just S1 ×E
3 and one recovers the 

result explained at the beginning. A more interesting choice is H =
1/r with r2 = xmxm . Writing the E3 metric dxmdxm as dr2 +r2d
2

(2)

and then redefining r = ρ2/4 the HK metric Eq. (1.2) becomes the 
metric of E4 in spherical coordinates

ds2 = dρ2 + ρ2d
2
(3) , (1.6)

where d
2
(3) is the round metric of the 3-sphere of unit radius in 

Eq. (A.14). This HK space is, therefore, E4−{0} and the shifts of z act 
freely on it because the origin ρ = 0 does not belong to it.

Obviously, the standard BPST instanton is a selfdual solution in 
this space and, provided that the gauge field is independent of z, 
we can reduce it directly (avoiding the caloron step) using Kro-
nheimer’s scheme to find a monopole in E3

−{0} . This is what we 
are going to do in the next section but, before, we want to review 
the relation between the Euclidean action of the instanton and the 
monopole charge.

The gauge field strength components in the frame Eq. (1.4) are{
F̂ab = H−1 Fab − H−2�(dω)ab ,

F̂0a = H−1Da� − H−2�∂a H .
(1.7)

Substituting them into the YM action and using repeatedly Eq. (1.3), 
the Bogomol’nyi equation (1.1) and Stokes’ theorem we get

4 Unhatted objects are always defined in 3-dimensional Euclidean space E3.
1
4

∫
d4x

√
|ĝ| F̂ 2 = 4π

∫
V 3

1
2 H−2d � dH �2

+ 4π

∫
∂V 3

[
H−1�A F A + 1

2 � dH−1�2
]

, (1.8)

where V 3 is E3 with the singular points of H removed: this means 
that the first term on the r.h.s. always vanishes. The end result 
therefore reads

1
4

∫
d4x

√
|ĝ| F̂ 2 = 4π

∫
∂V 3

[
H−1�A F A + 1

2 � dH−1�2
]

, (1.9)

and one must take into account that the boundary of V 3 includes 
the singularities of H as well as infinity.

For H = 1, V 3 = E
3 and the r.h.s. is directly related to the 

monopole magnetic charge

p = 1
4π

∫
S2∞

�A F A

√
�B�B

, (1.10)

provided the Higgs field is asymptotically constant, as in the BPS 
’t Hooft–Polyakov monopole.

For H = 1/r, which is the case of interest here, V 3 = E
3
−{0} , 

∂V 3 = {0} ∪ S2∞ , and the integral will diverge precisely for 
monopoles with well-defined magnetic charge at infinity and 
asymptotically constant Higgs fields. Thus, we can only expect con-
vergence for colored magnetic monopoles [11]. If the selfdual YM 
field has a finite action, then it must lead to a colored monopole in 
E

3 by Kronheimer’s dimensional reduction. In the next section we 
are going to see that this is indeed the case for the BPST instanton.

2. Singular reduction of the BPST instanton

In order to reduce the BPST instanton à la Kronheimer in the HK 
space with H = 1/r, it is convenient to write it in spherical coor-
dinates and, actually, it is easier to rederive it directly using the 
following ansatz for the components of the SU(2) gauge potential

Â A
L
R

= b L
R
(ρ)v A

L
R

, A = 1,2,3 , (2.1)

where the v A
L
R

are the components of the SU(2) Maurer–Cartan 

(MC) 1-forms defined in Eqs. (A.12), satisfying Eq. (A.13), and 
b L

R
(ρ) is a function of ρ to be determined by imposing the selfd-

uality of the gauge field strength. To this end it is most convenient 
to use the frames

ê 0
L
R

= dρ , ê a
L
R

= 1
2ρδa

A v A
L
R

, (2.2)

for the metric Eq. (1.6). Using the MC 1-forms it is straightforward 
to compute the gauge field strength F̂ A

L
R

:

F̂ L
R

A = 2ḃ

ρ
δA

a ê L
R

0 ∧ ê L
R

a + 2b(b ∓ 1)

ρ2
ε A

ab ê L
R

a ∧ ê L
R

b
. (2.3)

Requiring F̂ A
L
R

to be (anti-)selfdual ( F̂ A(±)
0a = ± 1

2 εabc F̂ A(±)
bc) 

in these two frames we arrive at a differential equation for b±
L
R
(ρ)

leading to two self- and two anti-selfdual solutions describing a 
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single BPST instanton or anti-instanton, of size5 determined by the 
parameter λ, at the origin:

�̂ F̂ = + F̂

⎧⎪⎪⎨
⎪⎪⎩

Â A(+)
L = 1

1 + λ2ρ2/4
v A

L ,

Â A(+)
R = − λ2ρ2/4

1 + λ2ρ2/4
v A

R ,

�̂ F̂ = − F̂

⎧⎪⎪⎨
⎪⎪⎩

Â A(−)
L = + λ2ρ2/4

1 + λ2ρ2/4
v A

L ,

Â A(−)
R = − 1

1 + λ2ρ2/4
v A

R .

(2.4)

The gauge fields Â A(±)
L are gauge-equivalent to the Â A(±)

R owing 
to

U Â A(±)
L U−1 + dU U−1 = Â A(±)

R , (2.5)

and the property Eq. (A.11). Then, we could just work with Â A(+)
R

and Â A(−)
L , which are regular (they vanish at ρ = 0 while the 

other two are multivalued there). However, if we want to use Kro-
nheimer’s results we are forced to work with the singular ones, 
Â A(+)

L and Â A(−)
R , because as one can see the transformation be-

tween the frame êâ
L
R

in Eqs. (2.2) and Kronheimer’s frame êâ in 

Eqs. (1.4) preserves the orientation for êâ
L but reverses it for êâ

R . 
In other words: the regular gauge fields Â A(+)

R and Â A(−)
L are anti-

selfdual in Kronheimer’s frame and can therefore not be consis-
tently reduced.

Let us, then, consider Â A(+)
L and Â A(−)

R . By construction, these 
gauge fields are invariant under the free U(1) actions in Eqs. (A.5)
and (A.4), respectively.

In other words: Â A(+)
L is ϕ-independent and Â A(−)

R is ψ-inde-
pendent and can be dimensionally reduced along those directions 
because the only invariant point under these actions (the ori-
gin ρ = 0) does not belong to our HK space. We can expect 
3-dimensional monopoles which are singular there.

Using directly Eqs. (1.5), from Â A(+)
L we get the Yang–Mills and 

Higgs fields of a BPS monopole solution

�
A(+)
L = 1

r(1 + λ2r)
δA

m
ym

L

r
,

A A(+)
L = 1

(1 + λ2r)
ε A

mnd
ym

L

r

yn
L

r
(2.6)

where we have defined the Cartesian coordinates ym/r ≡
−δm

A v A
L ϕ

6:

y1
L ≡ r sin θ cosψ , y2

L ≡ r sin θ sinψ , y3
L ≡ r cos θ . (2.7)

The reduction of Â A(−)
R gives exactly the same 3-dimensional 

fields upon the replacement of the Cartesian coordinates ym
L by 

ym
R ≡ +rδm

A v A
R ψ

7:

y1
R ≡ r sin θ cosϕ , y2

R ≡ −r sin θ sinϕ , y3
R ≡ −r cos θ . (2.8)

As predicted by the arguments based on the Euclidean action, 
the 3-dimensional BPS monopole obtained by this procedure is 

5 In the instanton literature it is customary to denote the size of the (anti-)in-
stanton by ρ , see e.g. Refs. [15], but here we’ll denote it by ρ0. It is then easy to 
see that λ = 2/ρ0.

6 We use the identity v A
L (ϕ = 0) − cos θ v A

L ϕdψ = ε A
mnd

ym
L
r

yn
L

r .
7 Now we use the identity v A

R (ψ = 0) − cos θ v A
R ψdϕ = −ε A

mnd
ym

R
r

yn
R

r .
the colored monopole found by Protogenov in Ref. [10]. The Higgs 
field vanishes at infinity and the magnetic charge, as defined in 
Eq. (1.10) vanishes identically. The solution approaches the Wu–
Yang monopole [8] for r → 0 (which corresponds to λ2 = 0) and, 
therefore, one can argue that the solution describes a magnetic 
monopole at the origin whose charge is completely screened at in-
finity. This interpretation is supported by the computation of the 
Bekenstein–Hawking entropy SBH of non-Abelian black holes with 
this kind of gauge fields: there is a contribution to SBH correspond-
ing to a magnetic charge [12,13].

3. Oxidation of the singular Protogenov monopoles

Reversing the procedure we just carried out, we see that the 
singularity of the SU(2) colored BPS monopole disappears com-
pletely when it is oxidized to 4 Euclidean dimensions. Since there 
are other singular SU(2) BPS monopoles [10], it is natural to ask 
whether their singularities can also be cured by oxidizing them 
within this scheme.

The spherically symmetric solutions of the SU(2) Bogomol’nyi 
equations have the following hedgehog form [10]:

A A = −r2h(r)ε A
mn

yn

r
d

(
ym

r

)
, (3.1)

�A = −r f (r)δA
m

ym

r
, (3.2)

where the functions f (r) and h(r) must satisfy the differential 
equations

rḣ + 2h + f (1 + r2h) = 0 , (3.3)

r(ḣ − ḟ ) − r2h(h − f ) = 0 , (3.4)

if the above Yang–Mills and Higgs fields are to satisfy the Bogo-
mol’nyi equation (1.1). Apart from the family of colored solutions 
in Eq. (2.6), there is another 2-parameter (μ and s) family of solu-
tions given by

r f = −1

r
[1 − μr coth (μr + s)] ,

rh = 1

r

[
μr

sinh (μr + s)
− 1

]
. (3.5)

The BPS limit of the ’t Hooft–Polyakov monopole [2,3] is the 
s = 0 member of this family, and the only regular one. Before 
oxidizing them, we can compute the action of the corresponding 
instanton using Eq. (1.9). The action turns out to diverge for all 
values of s. However, even if all hope of getting a regular instan-
ton by oxidizing these solutions is lost, it is still worth finding the 
general expression of the singular instantons, since it may give us 
inspiration for making instanton ansätze directly in 4 dimensions. 
Using Kronheimer’s relations, Eq. (1.5), we find

Â A = −r2 f (r)v A
L + r2 [ f (r) − h(r)] u A , (3.6)

where we have defined the 1-forms

u1 = cosψ sin θ cos θdψ + sinψdθ ,

u2 = sinψ sin θ cos θdψ − cosψdθ ,

u3 = − sin2 θdψ . (3.7)

These 1-forms depend only on two coordinates (ψ and θ ) and they 
can be seen as projections of the left-invariant MC 1-forms v A

L

u A = v B
L

[
δA

B − yB y A

2

]
. (3.8)
r
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They satisfy differential equations identical to the ones satisfied by 
the left-invariant MC 1-forms v A

L up to the 1/2 factor, i.e.

du A = −ε A
BC uB ∧ uC , (3.9)

which makes them well suited for a generalization of the ansatz 
Eq. (2.1):

Â A = b(ρ)v A
L + c(ρ)u A . (3.10)

Imposing selfduality of the corresponding field strength with the 
redefinition

b(ρ(r)) = −r2 f (r) , c(ρ(r)) = −r2 [h(r) − f (r)] , (3.11)

leads to Protogenov’s equations (3.3) and (3.4); the oxidation of 
the BPS monopoles gives all the selfdual instantons of that form.

4. Conclusions

In this paper we have shown how a misterious kind of SU(2)

BPS magnetic monopoles known as colored monopoles, which are 
singular at the origin and have vanishing asymptotic charge and 
Higgs field, can be understood as the result of the singular dimen-
sional reduction of the BPST instanton, which is itself globally reg-
ular. The parameter appearing in the monopole family of solutions 
turns out to be related to the one that measures the instantons’ 
size.

The mechanism is analogous to the well-known mechanism 
curing gravitational singularities by oxidation as for example the 
KK-monopole [16] or in certain 4-dimensional dilatonic black holes 
[17], but with the twist that here the fields are non-Abelian. The 
mechanism that cures the singularity of the colored monopole 
does not, however, work for the rest of the spherically-symmetric 
BPS monopoles of the theory: they always have infinite action, 
but depending on the application this may or may not be a prob-
lem.

We have argued, based on the relation between the instan-
ton action and the monopole magnetic charge, that this rela-
tion between regular instantons and singular, colored magnetic 
monopoles should be general. It has recently been shown in 
Ref. [11] that colored magnetic monopoles are present in the 
Yang–Mills–Higgs theory for all SU(N) groups and the results of 
that paper can be used to construct regular selfdual SU(N) in-
stantons [18]. Possibly, the transmutation monopoles discovered in 
Ref. [11], which have different (non-vanishing) charges at infinity 
and at the origin, can be related to regular solutions by a similar 
mechanism.

The case studied here is just the simplest and most special of 
those comprised in Kronheimer’s work Ref. [9], since it just in-
volves E4−{0} . One may wonder if the rest can be of any relevance 
in physics. It turns out that the relation between N = 1, d = 5 and 
N = 2, d = 4 super-Einstein–Yang–Mills (SEYM) theories must in-
clude the relation between selfdual instantons in HK spaces and 
BPS monopoles in E3 discovered by Kronheimer: the timelike su-
persymmetric solutions of N = 1, d = 5 [19] (as it happens in the 
Abelian case [20]) involve a 4-dimensional Euclidean base space of 
HK type and the YM field strengths have a piece which is selfd-
ual in that space. On the other hand the YM fields of the timelike 
supersymmetric solutions of N = 2, d = 4 SEYM [21] are required 
to satisfy the Bogomol’nyi equation in E3 in combination with an 
effective Higgs field. These two classes of theories and their so-
lutions are related by dimensional reduction. Explicit solutions of 
the latter describing non-Abelian black holes have been obtained 
in [22,23,12,13,11]. Some of the solutions are powered by the col-
ored BPS monopoles that we have shown to be related to the 
BPST instanton. It is then natural to expect that the oxidation of 
the complete supergravity solutions will provide us with explicit 
solutions of the N = 1, d = 5 SEYM theory8 involving the BPST 
instanton. These solutions, whose form is quite intriguing, may 
be globally regular. The oxidation à la Kronheimer of solutions in-
volving other monopoles will give potentially singular solutions, 
but, just as it happens with singular monopoles in d = 4, grav-
ity may cover the singularities with event horizons. All these new 
possibilities opened by the result presented in this paper are very 
interesting and well worth investigating. Work in this direction is 
already under way [24].
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Appendix A. The metrics of the round S3 and S2

In this appendix we will review the well-known construction of 
the SO(4)-invariant metric on S3 using its identification with the 
SU(2) group manifold, the construction of SO(3)-invariant metric 
on S2 using its identification with the SU(2)/U(1) coset space and 
the relation between both of them.

All matrices U ∈ SU(2) (U † = U−1, det U = +1) can be para-
metrized by two complex numbers z0, z1

U ≡
(

z0 z1
−z̄1 z̄0

)
, |z0|2 + |z1|2 = 1 . (A.1)

Therefore, the SU(2) manifold can be identified with S3. Both are 
traditionally parametrized by the Euler angles {θ, ϕ, ψ}:

z0 = cos(θ/2) ei(ϕ+ψ)/2 , z1 = sin(θ/2) ei(ϕ−ψ)/2 . (A.2)

The main property of this parametrization is that any SU(2) rota-
tion can be written as the product of three rotations with these 
angles:

U (ϕ, θ,ψ) = U (ϕ,0,0)U (0, θ,0)U (0,0,ψ) . (A.3)

The Euler angles are usually assumed to take values in the 
intervals θ ∈ [0, π ], ϕ ∈ [0, 2π), and ψ ∈ [0, 4π). Other choices 
are possible: for instance, θ ∈ [0, π ], ϕ ∈ [0, 4π), and ψ ∈ [0, 2π)

also covers once S3. Only the coordinate chosen to take values in 
[0, 4π) should be considered periodic. There is a free U(1) action 
on S3 associated to constant shifts of the periodic coordinate. For 
the standard choice, this action is

U (ϕ, θ,ψ) → U (ϕ, θ,ψ)U (0,0,2α) , α ∈ [0,2π) . (A.4)

Being a right action, it is adequate to define the right coset space 
SU(2)/U(1). If we choose instead ϕ to be the periodic coordinate, 

8 So far, no explicit solutions of these theories have been constructed.
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the U(1) action is

U (ϕ, θ,ψ) → U (2α,0,0)U (ϕ, θ,ψ) , α ∈ [0,2π) . (A.5)

Being a left action, it is adequate to define the left coset space 
U(1)\SU(2), which is a more unusual option.

A convenient basis of the su(2) Lie algebra is provided by the 
anti-Hermitian matrices9

T A = i
2σ A , [T A, T B ] = −εABC TC . (A.7)

In this basis

U (ϕ,0,0) = eϕT3 , U (0, θ,0) = eθT2 ,

U (0,0,ψ) = eψT3 . (A.8)

The left- (resp. right-)invariant Maurer–Cartan (MC) 1-form V L
(resp. V R ) are defined by

V L ≡ −U−1dU , V R ≡ −dU U−1 , (A.9)

and as a consequence of their definition they satisfy the MC equa-
tions

dV L
R

∓ V L
R

∧ V L
R

= 0 . (A.10)

Observe that the left- and right-invariant MC 1-forms are re-
lated by the following gauge transformations:

V R = U V L U−1 . (A.11)

The components of the MC 1-forms in the above basis V L
R

≡
v A

L
R

T A are given by

⎧⎪⎨
⎪⎩

v1
L = sinψ dθ − sin θ cosψ dϕ ,

v2
L = − cosψ dθ − sin θ sinψ dϕ ,

v3
L = −(dψ + cos θ dϕ) ,⎧⎪⎨

⎪⎩
v1

R = − sinϕ dθ + sin θ cosϕ dψ ,

v2
R = − cosϕ dθ − sin θ sinϕ dψ ,

v3
R = −(dϕ + cos θ dψ) ,

(A.12)

and the MC equations in components take the form

dv A
L
R

± 1
2εABC v B

L
R

∧ vC
L
R

= 0 . (A.13)

As their name indicates, the left- (resp. right-)invariant MC 
1-forms are invariant under the left (resp. right) U(1) action in 
Eq. (A.5) (resp. Eq. (A.4)).

Both the left- or the right-invariant MC 1-forms can be used 
as Dreibeins to construct a bi-invariant (that is SU(2) × SU(2) ∼
SO(4)-invariant) metric on SU(2) (∼ S3) with tangent space metric 
δAB . The result is exactly the same in both cases: normalizing the 
metric so as to get the volume of the 3-sphere of unit radius, we 
find

d
2
(3) = 1

4 v A
L v A

L = 1
4 v A

R v A
R

= 1
4

[
dθ2 + dϕ2 + dψ2 + 2 cos θ dϕdψ

]
. (A.14)

It is customary to rewrite this metric so that the invariance un-
der the chosen U(1) action is manifest. For the standard choice in 
which ψ ∈ [0, 4π) is the periodic coordinate and there is invari-
ance under the right action in Eq. (A.4)

9 The σ A are the Pauli matrices, which we take to satisfy

σ Aσ B = δAB + iε ABC σ C . (A.6)
d
2
(3) = 1

4

[
d
2

(2)(θ,ϕ) + v3
L v3

L

]
, (A.15)

where d
2
(2)

(θ, ϕ) is the standard metric of the round 2-sphere of 
unit radius

d
2
(2)(θ,ϕ) = dθ2 + sin2 θdϕ2 = v1

L v1
L + v2

L v2
L . (A.16)

For the other choice, we just have to interchange ϕ and ψ and L
by R in the above expressions.
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