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Abstract

We study the moduli spaces of self-dual instantons on CP2 in a simple group G. When G is a classical 
group, these instanton solutions can be realized using ADHM-like constructions which can be naturally 
embedded into certain three-dimensional quiver gauge theories with four supercharges. The topological 
data for such instanton bundles and their relations to the quiver gauge theories are described. Based on such 
gauge theory constructions, we compute the Hilbert series of the moduli spaces of instantons that correspond 
to various configurations. The results turn out to be equal to the Hilbert series of their counterparts on C2

upon an appropriate mapping. We check the former against the Hilbert series derived from the blowup 
formula for the Hirzebruch surface F1 and find an agreement. The connection between the moduli spaces 
of instantons on such two spaces is explained in detail.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Understanding the dynamics of gauge theories is a central question in modern theoretical 
physics. In particular, many aspects involving non-perturbative effects remain yet to be fully un-

* Corresponding author.
E-mail addresses: noppadol.mekareeya@cern.ch (N. Mekareeya), d.rodriguez.gomez@uniovi.es

(D. Rodríguez-Gómez).
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.009
0550-3213/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

https://core.ac.uk/display/71875756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.009
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/3.0/
mailto:noppadol.mekareeya@cern.ch
mailto:d.rodriguez.gomez@uniovi.es
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.009
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2014.12.009&domain=pdf


N. Mekareeya, D. Rodríguez-Gómez / Nuclear Physics B 891 (2015) 346–377 347
derstood. Over the recent past it has become clear that placing the gauge theory under study on 
different manifolds can help unravel its properties, which may become more manifest upon con-
sidering non-trivial spacetimes. In this paper we take a step along these directions by considering 
pure gauge theories on CP2, focusing in particular on their instanton sector.

Since CP2 is a topologically non-trivial complex manifold, and hence has a preferred orien-
tation, there is an intrinsic difference between self-dual and anti-self-dual instantons on it. More 
precisely, the key issue is whether the connections to describe have the same or the opposite 
duality properties as the Kähler form, which, upon choosing the preferred orientation induced by 
the complex structure, is taken to be self-dual. In the following we will concentrate on self-dual 
instantons. As we will review below, in the case of CP2 these are the connections for which an 
ADHM-like construction exists [1–5]. Note that this is contrary to the standard S4 case, where 
ADHM [6] (see also [7,8]) constructs anti-self-dual connections. This is because in the case at 
hand there is an extra twist, as the ADHM-like construction really gives anti-self-dual connec-
tions on CP2, which, upon orientation reversal, become self-dual connections on CP2.

The structure of the self-dual instanton sector has interesting topological properties. These are 
very reminiscent of the properties of other topological “excitations” in gauge theory, such as line 
operators and surface operators (see e.g. [9] and references therein). In fact, due to the non-trivial 
topology of CP2, our instantons are characterized not only by their instanton number associated 
to an element of H 4(CP2), but also by other characteristic classes depending on the gauge group. 
For example, as we will see below, instantons in the unitary group can be naturally viewed as 
instantons in the group SU(N)/ZN . Therefore, they come with a certain N -ality which suggests 
that the would-be first Chern number is really a mod N integer.

Since S5 can be regarded as the S1 Hopf fibering over CP2, it is natural to suspect that our 
instantons might be relevant to the study of 5d gauge theories on S5. However, as raised above, 
the instantons which we will discuss have the same duality properties as the Kähler form. Hence 
our instantons are different from the ones appearing, at least naively, in the computation of the 
partition function of a five-dimensional gauge theory on S5 [10] or the partition function of a 
four-dimensional gauge theory on CP2. However, via the blowup formula, our instanton partition 
functions do receive contributions from two fixed points, each of which contains the partition 
function of instantons on C2. The physical significance of this fact, as well as other possible 
implications for supersymmetric partition function computations, remain yet to be fully explored.

In the case of instantons on C2 (or its conformal compactification S4), the ADHM construc-
tion allows to find all anti-self-dual connections. As it is well-known, it can be embedded into the 
Higgs branch of a gauge theory with 8 supercharges, therefore free of quantum corrections. In 
turn, such theory arises naturally in string theory as the worldvolume theory of a Dp–D(p + 4)

system [11–13]. Indeed, string theory provides a nice perspective on ADHM, as from the point of 
view of the D(p + 4) brane dissolving Dp branes is done by turning on a worldvolume instanton 
on the 4 transverse coordinates to the Dp inside the D(p + 4). In turn, the ADHM construction 
arises naturally as the Higgs vacua of the Dp–D(p + 4) theory describing microscopically the 
system. In the past this construction has been used to compute the Hilbert series of the instan-
ton moduli space [14,15] which can be interpreted as the Nekrasov instanton partition function. 
In fact, partition functions and related quantities have been computed for instantons on several 
spaces beyond C2 following the seminal work of Vafa and Witten [16]; examples of recent works 
include orbifolds C2/Zn [17–20] as well as general toric spaces [21–24].

In the case of CP2, the ADHM-like construction of instantons in the unitary group was de-
veloped by King in [4] based on previous work by Buchdal in [1–3], while the constructions for 
special orthogonal and symplectic groups were subsequently developed by Bryan and Sanders 
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in [5]. In this paper we review all of such constructions and their realizations from field theories 
which, to the best of our knowledge, have not been spelt out anywhere in the physics literature. 
Interestingly, such constructions can be naturally embedded into three-dimensional quiver gauge 
theories with 4 supercharges. For instantons of the unitary group, such a quiver theory has been 
introduced in [25] in the context of the worldvolume of M2 branes probing a Calabi–Yau 4-fold 
singularity (CY4). On the contrary to [25], we do not focus on the full mesonic moduli space of 
such a theory; rather, we concentrate on a particular branch, dubbed the instanton branch, of the 
moduli space on which the chiral fields acquire vacuum expectation values. On this branch, the 
monopole operators do not play any role in the chiral ring. Making use of this construction as 
well as the analogous ones for instantons in the orthogonal and symplectic groups, we compute 
the generating function, also known as Hilbert series, that counts gauge invariant quantities on 
the instanton branch refining them with respect to commuting U(1) global charges. As a result, 
Hilbert series for distinct instanton configurations on CP2 turn out to be equal to those of in-
stantons on C2. This suggests that, even though such quiver theories have only 4 supercharges 
and not 8 supercharges as those for the standard ADHM construction, the instanton branch pos-
sesses the expected hyper-Kähler property of the instanton moduli space. As we point out in the 
main part of the paper, to see such a hyper-Kähler structure and obtain correct Hilbert series, it is 
crucial to take into account large anomalous dimensions of quiver fields in such theories with 4 
supercharges. These Hilbert series are confirmed by a different method of computations, namely 
via the blowup formula for the Hirzebruch surface F1 [24,26,27].

This paper is organized as follows. In Section 2 we introduce the ADHM-like construction 
of unitary instantons on CP2, reviewing as well some relevant aspects of the standard ADHM 
construction of instantons on C2, introducing in particular several spaces which will play a role 
in later sections. We then embed the ADHM-like construction into a gauge theory admitting 
a stringy description as the worldvolume theory on M2 branes probing a certain CY4. Using 
the gauge theory description we compute the Hilbert series of the instanton moduli space. In 
Section 3 and Section 4 we introduce the theories for symplectic and orthogonal instantons and 
use them to compute their corresponding Hilbert series. Interestingly, in all cases the Hilbert 
series turns out to be identical to the Hilbert series of certain instantons on C2. As we discuss 
in the text, this is because the set of operators relevant for the Hilbert series are in one-to-one 
correspondence with solutions of the corresponding ADHM construction for instantons on C2. 
In Section 5 we recover these results from the point of view of the blowup formula, obtaining 
precise agreement with our Hilbert series. We finish with some conclusions in Section 6.

2. U(N) instantons on CPCPCP2

We are interested in constructing U(N) instantons on CP2. This has a natural relation to a 
problem in differential geometry as it turns out that, on very general grounds, there is a cor-
respondence between the moduli space of instantons on projective algebraic surfaces and the 
moduli space of (stable) holomorphic bundles – the so-called Hitchin–Kobayashi correspon-
dence – which is rather well understood in the mathematical literature e.g. [4,7,8] and references 
therein. Hence, the problem of studying instantons reduces, in these cases, to that of constructing 
holomorphic bundles. In this context, the ADHM construction can be regarded as a device to 
construct such bundles.

In the particular case of instantons on an S4, an alternative version – which turns out to be 
more useful for our true purposes of studying instantons on CP2 – of the Hitchin–Kobayashi 
correspondence was proven by Donaldson [28,29] by using the so-called Ward correspondence 
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which associates an anti-self-dual (ASD) connection – that is, a connection whose curvature is 
ASD – on S4 to a holomorphic bundle on CP2. For completeness, and in order to introduce 
spaces which will be later relevant to our purposes, we will present a very rough outline here and 
refer to e.g. [4] for an exhaustive description.

The key observation is that C2 admits two possible compactifications. On one hand, we can 
find a conformal compactification into S4 given by the stereographic projection. Since both the 
Yang–Mills equations and the self-duality condition are conformally invariant, finite energy so-
lutions on C2 can be extended to S4 by adding the point at infinity, where the gauge field and the 
allowed gauge transformations become trivial.1

On the other hand, we can find a holomorphic compactification into CP2 by adding the line 
at infinity �∞. With a little bit of hindsight, we will be interested on holomorphic bundles on C2. 
As this is a rather sick notion, the addition of �∞ allows to define them on the compact space 
CP2 provided we demand these bundles to be trivial, i.e. a copy of Crank, over �∞.

In order to construct ASD connections on S4, we note that, while S4 is not a complex man-
ifold, the conformal de-compactification C2 is (in fact it is a Kähler space). Hence, considering 
the standard complex structure and the orientation naturally induced by it, we can write the split-
ting of middle degree forms into self-dual (SD) 2-forms Λ+ and anti-self-dual (ASD) 2-forms 
Λ− in terms of complexified forms as

Λ+ = Λ(2,0) ⊕ Λ(0,2) ⊕ ωΛ(0,0), Λ− = Λ
(1,1)
0 ; (2.1)

where Λ(1,1)
0 stands for (1, 1) forms primitive to the Kähler form ω, which is of course, (1, 1)

SD.
According to (2.1), the field strength of ASD unitary connections is in Λ(1,1)

0 , the operator 
∂̄A (whose linearization is ∂̄A = ∂̄ + Ā) satisfies that ∂̄2

A = 0. This integrability condition en-
sures, through the Newlander–Nirenberg theorem, that the equation ∂̄As = 0 has the maximal 
number of solutions, hence defining the sections – and from there the holomorphic structure – 
of a holomorphic bundle on C2. However, being C2 a non-compact space, the notion of moduli 
for such bundle is ill-defined. One can cure this problem by adding �∞ so that C2 is holomor-
phically compactified into CP2 while demanding the bundle to be trivial there, thus turning it 
into a bundle on CP2. This rough argument suggests that indeed framed ASD connections on S4

are in one-to-one correspondence with holomorphic bundles on CP2 with trivial behavior at �∞. 
A more precise derivation makes use of the so-called twistor space introduced by Penrose. Start-
ing with a Riemannian manifold M with metric g, one can associate a 2-form ω to every possible 
complex structure J on T M as ω = g(·, J ·). This identifies the bundle of compatible complex 
structures with the sphere bundle in Λ2+. The total space Z(M) of this bundle is the so-called 
twistor space and it turns out to be a complex manifold as long as M is conformally anti-self-dual 
(that is, the self-dual part of the Weyl tensor vanishes, as it happens for instance on S4 and CP2, 
the opposite-oriented complex projective plane). Then, considering an hermitean vector bundle 
E on M with a unitary connection, the Ward correspondence allows to assign to each instanton – 
that is, to each ASD connection of E – a holomorphic bundle on Z(M). By appropriately consid-
ering restrictions of this bundle, Donaldson was able to prove in [28,29] that indeed one can find 
a bijection between the moduli space of instantons on S4 and the moduli space of holomorphic 

1 Upon the addition of the point at infinity over which the gauge field as well as the gauge transformations are specified 
– in this case to be trivial – the instanton is referred to as framed.
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bundles on CP2 (see, for a complete explanation, e.g. [4,7,8]).2 The ADHM construction can be 
regarded, from this point of view, as the explicit construction of such holomorphic bundles.

This analysis can be extended to the case of our interest, namely instantons on CP2. In order 
to build ASD connections on CP2, following [1–4] we start with ̂C2, the blow up of C2 at a point 
defined as

Ĉ2 = {(x1, x2) × [z1, z2] ∈C2 ×CP1/x1z1 = x2z2
}
. (2.2)

Then, by analogy with the C2 case, on one hand, we can find a conformal compactification of ̂C2

into CP2 – the opposite-oriented CP2 – as follows

Ĉ2 →CP2 : ((x1, x2) × [z1, z2]
)→ { [|x|2, x1, x2],

[0, z1, z2].
(2.3)

Exactly as in the S4 case, we assume a trivial behavior at the added point, so that our instantons 
on CP2 are framed.

On the other hand, we can find a holomorphic compactification by adding the line at infin-
ity �∞. With hindsight, we will consider bundles over this compactification which are trivial over 
this line. This compactifies Ĉ2 into CP2 blown up at a point, that is, Hirzebruch’s first surface 
F1. The same argument as above identifies framed ASD connections on CP2 with holomorphic 
bundles on F1 trivial over �∞ (recall that CP2 is a conformally anti-self-dual space, and hence 
it admits a twistor space which is a complex manifold. In this case it is the flag manifold F3,2). 
These have been constructed by King in [4] using monads, who provided an ADHM-like con-
struction for framed ASD connections on CP2.

Let us summarize the key ingredients of the King construction described in Section 4 of [4]. 
The construction involves the following ingredients:

• Three vectors spaces Vk1 , V ′
k2

and WN of dimension k1, k2 and N respectively.
• Homomorphisms between these spaces; denoted as follows: B1, B2 ∈ Hom(V ′

k2
, Vk1), A2 ∈

Hom(Vk1 , V
′
k2

), Q ∈ Hom(WN, Vk1) and q ∈ Hom(V ′
k2

, WN).
• The integrability equation

B1 · A2 · B2 − B2 · A2 · B1 + q · Q = 0. (2.4)

The solutions of (2.4) are acted by the automorphism group G = U(k1) × U(k2). The King 
construction [4] then identifies the moduli space of rank N framed ASD instantons on CP2 with 
the quotient of the space of such solutions by the complexification of G, namely GL(k1, C) ×
GL(k2, C). As we shall explain below, these ingredients can be nicely described in terms of 3d
N = 2 quiver diagram depicted in (2.6) and the integrability equation (2.4) being identified with 
the F -terms coming from the superpotential (2.5).

Even though in the following we will loosely speak about instantons on CP2,3 it is important 
to stress that the connections constructed in this way are ASD connections on CP2. This mani-
fold is, in a sense, not a complex manifold (since the orientation does not follow from the Kähler 
form). In fact, note that the conformal compactification in Eq. (2.3) is not a holomorphic map, 

2 To be fully precise, the relevant holomorphic bundles are demanded to be stable.
3 Unfortunately this plagues the literature. To begin with, the seminal contributions of [1–4] refer already in the title to 

instantons on CP2.
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since it involves |x|2. Of course, upon inversion of the orientation we obtain SD connections on 
the standard-oriented CP2, where the Kähler form is SD. Hence the King construction can be 
regarded as that of instantons on CP2 with the same duality properties as the Kähler form. In 
particular, this implies that our instantons, regardless on other issues such as framing, are just 
the opposite to the ones appearing in [10]. In fact, as opposed to the case in [10], where the in-
stanton partition functions are computed by “patching” the contributions from three fixed points, 
as we will show in Section 5, via the blowup formula (5.2), our instanton partition functions 
receive contributions from only two “patches”,4 each of which contains the partition function of 
instantons on C2. The physical significance of this remains yet to be fully exploited.

In the following we will embed the King ADHM-like construction in a gauge theory engi-
neered by branes probing a certain singularity and use it to compute the Hilbert series of the 
instanton moduli space. We refer to [4] for further details on the ADHM-like construction of 
instantons on CP2.

2.1. Gauge theory for the King construction

The construction for U(N) instantons on CP2 proposed by [4] can be realized from a 3d
N = 2 gauge theory whose quiver diagram is depicted in (2.6) with the superpotential

W = (A1)
a1

a2(B1)
a2

b1(A2)
b1

b2(B2)
b2

a1

− (A1)
a1

a2(B2)
a2

b1(A2)
b1

b2(B1)
b2

a1 + Qi
a1(A1)

a1
a2q

a2
i

= εαβεσρ Tr(Aα · Bσ · Aβ · Bρ) + Qi · A1 · qi, (2.5)

where a1, b1, . . . = 1, . . . , k1 are the gauge indices for U(k1); a2, b2, . . . = 1, . . . , k2 are the gauge 
indices for U(k2); i, j = 1, . . . , N are the flavor indices for U(N).

(2.6)

Without the flavors the quiver exhibits an SU(2) × SU(2) global symmetry, indicated by the 
indices {α, β = 1, 2} and {σ, ρ = 1, 2} respectively. After coupling A1 to the U(N) flavor sym-
metry, such a symmetry is broken to the second factor of SU(2) that rotates the Bσ fields.

As we will discuss in more detail below, the King construction arises in the branch of the 
moduli space where we set A1 = 0. Then, the only non-trivial F -term is precisely

0 = ∂W

∂A1
a1

a2

= (B1 · A2 · B2 − B2 · A2 · B1)
a2

a1 + qa2 · Qa1 . (2.7)

4 These are labeled by r = 0 and r = 1 in (5.2).
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This is indeed the integrability equation given by (2.4) and Eq. (I) of Section 4 in [4]. Upon 
quotienting by the complexification of the gauge symmetry, we precisely find the moduli space 
of U(N) instantons on CP2.

In addition to the ingredients stated above, King’s construction involves further constraints 
coming from the stability conditions. In physics language these map to restricting the FI param-
eters of the ADHM-like quiver in the to live in certain domains. We refer to [4,33] for further 
details. Nevertheless, for our purposes, since we will be interested on computing the Hilbert 
series of the corresponding instanton moduli spaces, these signs play no role.

Note that the quiver diagram (2.6), interpreted as a four-dimensional gauge theory, would 
contain a gauge anomaly. Nevertheless we can still make sense of this gauge theory in three 
dimensions at the expense of non-zero bare Chern–Simons (CS) levels. Indeed, gauge invariance 
requires the CS levels to be5 N/2 + κ1 and −N/2 + κ2 respectively, with κ1 and κ2 integers. 
Indeed, this theory is among the families considered in [25], namely flavored ABJM theories. It 
is important to stress that these theories are strongly coupled conformal field theories.

An interesting feature of the King construction is the fact the superpotential W is quartic and 
hence the F -terms (2.7) are cubic. This strongly suggests that the corresponding gauge theory 
will have 4 supercharges. This is in sharp contrast with the embedding of the ADHM construc-
tion for instantons on C2 into a gauge theory with 8 supercharges. In particular, that amount of 
SUSY does not allow large anomalous dimensions for the fields, whose dimension is then just 
the classical one. At the same time, the moduli space splits into a Coulomb and a Higgs branch, 
the latter encoding the instanton moduli space and free of quantum corrections. In contrast, in 
the case at hand, owing to the low SUSY, the fields will develop large anomalous dimensions 
and the dynamics of the gauge theory and the structure of its moduli space will be in general 
very complicated. Suppose for example embedding less minimally the King construction into a 
4d N = 1 gauge theory, considering for instance the flavored conifold as described in [30]. Upon 
setting A1 = 0, q = 0 and Q̃ = 0 in (2.6) in that reference we would have obtained the same 
F -term relations and gauge constraints. Nevertheless, this N = 1 theory is not conformal and, 
depending on the ranks of flavor and color nodes, the IR dynamics can be very different, in par-
ticular breaking any R-symmetry.6 In contrast, the proposed 3d theory is a CFT and hence has a 
controlled behavior. Because of this, it is more natural to embed the construction of CP2 instan-
tons in a three-dimensional theory, which is conformal and admits a preferred superconformal 
R-symmetry grading the instanton branch.

Since the gauge theory we will consider is three-dimensional, there are monopole operators 
that can affect the chiral ring of the theory. For example, as discussed in (6.15) of [25], in the 
case of k1 = k2 = 1 and κ1 = −κ2 = κ , there are monopole operators T and T̃ that carry gauge 
charges (κ + N, −κ − N) and (−κ, κ) under U(k1) × U(k2) respectively; moreover, T and T̃
satisfy a quantum relation T T̃ = AN

1 and both T and T̃ carry U(1) R-charges N/2. These pieces 

5 The condition on the bare CS level κ is κ + 1
2
∑

f d3(Rf ) ∈ Z, where the sum is over fermion f in the representations 
Rf , and d3(R) is the cubic index of R. Here d3 for the fundamental and antifundamental representations of SU(k) are 
+1 and −1 respectively.

6 Note however that we could imagine a regime in which the two color ranks are the same while the flavour rank is 
much smaller, so that we can assume being sufficiently close to the Klebanov–Witten fixed point. Under that assumption, 
we can take the dimensions of the bifundamental fields to be those of the KW theory and fix the quark dimensions by 
a-maximization. Even though we will not pursue this further in the following, one can see that this alternative dimen-
sion assignation would lead to the same quantitative results as below – i.e. the same Hilbert series – upon appropriate 
rescalings of fugacities. However, this is trustable only in a very special rank and energy regime, and hence we prefer to 
concentrate on the 3d embedding into a conformal theory from now on.
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Table 1
Charge assignments of the chiral fields in theory (2.6).

U(k1) U(k2) SU(2) U(N) U(1)R

A1 [1,0, . . . ,0]+1 [0, . . . ,0,1]−1 [0] [0]0 1
A2 [1,0, . . . ,0]+1 [0, . . . ,0,1]−1 [0] [0]0 1/2
B1,B2 [0, . . . ,0,1]−1 [1,0, . . . ,0]+1 [1] [0]0 1/4
Q [0, . . . ,0,1]−1 [0]0 [0] [1,0, . . . ,0]+1

1
4 r

q [0]0 [1,0, . . . ,0]+1 [0] [0, . . . ,0,1]−1 1 − 1
4 r

of information are crucial for the computation of the R-charges of each chiral field. However, as 
we shall discuss subsequently, the monopole operators do not play a role in our analysis on the 
moduli space of instantons on CP2.

The charge assignments
As discussed above, it is natural to embed the King construction into a 3d strongly coupled 

CFT with 4 supercharges. Hence we need to determine the preferred choice of superconformal 
R-symmetry. To that matter, we summarize the transformations of each chiral field and monopole 
operator under the gauge and global symmetries in Table 1. Note that the R-charges are fixed by 
the following requirements:

1. The superpotential (2.5) carries an R-charge 2.
2. The special case of k1 = k2 = 1, N = 1 and κ1 = −κ2 = 1/2. As shown in Section 6.2.1 

of [25], the mesonic moduli space is a conifold times a complex line. The conifold is 
parametrized by four fields x1 = T B1, x2 = A2B2, x3 = T B2, x4 = A2B1, subject to the 
relation x1x2 − x3x4 = 0; the complex line is parametrized by the monopole operator T̃ .
(a) According to the charge assignments and symmetry argument given in Section 4 of [31], 

each field x1, . . . , x4 that parametrizes the conifold carries the same R-charge 3/4 and 
the field T̃ that parametrizes the complex line, as a free field, carries the R-charge 1/2.

(b) Imposing the conditions that T and T̃ carry equal R-charges 1/2, that B1, B2 carry equal 
R-charges (due to their transformation as a doublet of an SU(2) global symmetry) and 
that T T̃ = A1, we obtain the R-charges of A1, A2, B1, B2 as in Table 1.

(c) We conjecture that these R-charge assignments hold for any rank of the gauge groups k1
and k2 and the flavor symmetry U(N).

3. The R-charges of Q and q are left undetermined. The consistency with the above assign-
ments requires them to have charges 1

4 r and 1 − 1
4 r respectively.7 We shall see that the 

unknown value of r does not affect the subsequent analysis of the moduli space of instan-
tons.

The instanton branch of the moduli space
As mentioned above, roughly speaking the King construction of instantons on CP2 arises as 

the A1 = 0 branch of the moduli space. However, due to the presence of monopole operators, we 
need to be more precise. In fact, according to the construction described in [4], the branch of the 
moduli space that can be identified with the instanton moduli space is the one on which A1 =
T = T̃ = 0, which is consistent with the quantum relation among monopoles on the chiral ring. 

7 The normalization 1/4 is introduced for convenience.
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We shall henceforth refer to this as an instanton branch. On this branch, the relevant F -terms are 
given by (2.7).

Note that the description of this branch of the moduli space shares some similarity to that of 
the Higgs branch of the standard ADHM construction. It is parametrized by the gauge invariant 
quantities constructed from the massless chiral fields {A2, B1, B2, Q, q} subject to constraints 
from the F -terms. We shall henceforth denote the instanton branch of quiver (2.6) by MSU(N)

CP
2

and subsequently show that this space is a cone endowed with a hyper-Kähler structure. It should 
be emphasized that this branch of moduli space is different from the mesonic moduli space 
described in [30].

2.2. The Hilbert series of the instanton branch

The Hilbert series of U(N) instantons on CP2 with the configuration k = (k1, k2) can be 
obtained by first computing the Hilbert series of the space of the F -term solutions, also known 
as the F -flat (F �) space,8 and then integrating it over the Haar measure of the gauge symmetry. 
Explicitly, this is given by

H
[
k,U(N),CP2](t;x;y)

=
∫

dμU(k1)(u)

∫
dμU(k2)(w)

× PE
[
χA2 t

2 + χB1,B2 t + χQtr + χqt4−r − χF -termst
4], (2.8)

where the notations are explained below:

• The fugacity t keeps track of the R-charge in the unit of 1/4.
• The fugacities u and w are associated with the gauge groups U(k1) and U(k2), respectively.
• The fugacities x and y are associated with the global symmetries SU(2) and SU(N), respec-

tively.
• The contributions from each chiral field are given below:

χA2 =
k1∑

a=1

k2∑
a=1

uaw
−1
b , χB1,B2 = (x + x−1) k1∑

a=1

k2∑
b=1

u−1
a wb,

χQ =
(

k1∑
a=1

u−1
a

)(
N∑

i=1

yi

)
, χq =

(
k2∑

a=1

wa

)(
N∑

i=1

y−1
i

)
,

χF -terms =
k1∑

a=1

k2∑
b=1

u−1
a wb. (2.9)

• The Haar measure of U(k) can be taken as

8 It can be checked case by case using an algebraic software, e.g. Macaulay2 [32], that the F -flat space associated with 
(2.7) is a complete intersection. As a consequence, there are a finite number of terms in the PE in the integrand of (2.8); 
the terms with positive contributions correspond to the generators and that with the negative contribution corresponds to 
the relation.
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∫
dμU(k)(w) = 1

N !

(
k∏

j=1

∮
|wj |=1

dwj

2πiwj

) ∏
1≤i<j≤k

(wi − wj)
(
w−1

i − w−1
j

)
. (2.10)

We demonstrate in a number of examples below that the Hilbert series of U(N) instantons on 
CP2 with the configuration k = (k1, k2) is equal to the Hilbert series of SU(N) instantons on C2

with instanton number min(k1, k2):

H
[
(k1, k2),U(N),CP2](t;x;y) = H

[
min(k1, k2),SU(N),C2](t3;x;y), (2.11)

where the Hilbert series H [k, SU(N), C2](t; x; y) of k SU(N) instantons on C2 is studied in 
[14,15]. This relation was in fact proven in [33].

Note that the result is symmetric under the exchange of k1 and k2. This stands for the fact that 
the quiver is invariant under the combined action of exchanging the gauge groups and charge 
conjugation.

Mapping between the King construction and the ADHM construction
Following Section 1.3 in [33], it is possible to understand (2.11) by considering a map between 

the King construction and the ADHM construction. Let us assume for definiteness that k1 ≤ k2
and define the map (see Section 1.3 in [33])

π : (A2,B1,B2,Q,q) → (X̂1 = A2B1, X̂2 = A2B2, Î = A2q, Ĵ = Q) (2.12)

where X̂1,2 transform under the adjoint representation of k1 = min(k1, k2), Î is a bifundamental 
chiral field of U(k1) ×U(N), and Ĵ is a bifundamental chiral field in U(N) ×U(k1). After being 
multiplied by A2 on the left, the F -terms (2.7) is mapped by π into the following relation:

[X̂1, X̂2] + Î · Ĵ = 0. (2.13)

Indeed, π maps the King construction for U(N) instantons on CP2 into the ADHM construc-
tion for U(N) instantons on C2. Here X̂1, ̂X2, Î , Ĵ are chiral fields appearing in the ADHM 
quiver (2.14) for k U(N) instantons on C2, written in terms of 4d N = 1 notation, where 
k = min(k1, k2).

(2.14)

The quiver diagram depicted in (2.14) has the superpotential

WADHM = Tr
(
Ĵ · ϕ · Î + ϕ · [X̂1, X̂2]

)
. (2.15)

The F -terms relevant to the Higgs branch of the ADHM quiver (2.14) are given by ∂ϕWADHM =
0, which is precisely (2.13).

On the other hand, it is also possible to construct a map that embeds the ADHM construction 
into the King construction, namely (see Section 1.3 in [33])
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σ : (X̂1, X̂2, Î , Ĵ ) → (A2 = 1k×k,B1 = X̂1,B2 = X̂2, q = Î ,Q = Ĵ ), (2.16)

where 1k×k denotes the k × k identity matrix. This is accompanied with the obvious extension of 
the gauge group. It is clear that the F -terms (2.13) is mapped by σ into (2.7). Indeed, σ induces 
the hyper-Kähler structure from the moduli space of instantons on C2 to the moduli space of 
those on CP2.

As a consequence of these maps, the algebraic constructions of the moduli space of k =
(k1, k2) and the moduli space of min(k1, k2) U(N) instantons on C2 are identified. This algebraic 
identification stands behind the Hilbert series identity found above. Moreover,

dimCMU(N)

CP
2 = 2kN, k = min(k1, k2), (2.17)

Before ending this subsection, we comment on the following crucial points.

1. As a result of the map π , the hyper-Kähler structure for the moduli space of instantons on 
CP2 is established. Given that the gauge theory (2.6) has only 4 supercharges and not 8 
supercharges as for the ADHM quiver, it is not a priori clear that the expected properties 
of the moduli space would emerge. Nevertheless, the instanton branch MSU(N)

CP
2 recovers the 

hyper-Kähler structure through the maps we have described.
2. In order to obtain the Hilbert series that precisely matches that of instantons on C2, it is 

crucial to use a suitable grading associated with the fugacity t that is compatible with the 
correct superconformal R-symmetry. We present these R-charges in Table 1.

2.3. Properties of the instanton moduli space

The moduli space of U(N) instantons on C2 is characterized by the rank N of the gauge 
bundle as well as by its instanton number. It is natural to search for the analogous characterization 
of the moduli space of instantons of the unitary group on CP2.

A priori, unitary instantons on CP2 are characterized by the rank of the gauge group as well as 
by their Chern classes. Since CP2 is a topologically non-trivial space, in contrast to the C2 case, 
we should expect both the first and second Chern classes to be non-trivial. Hence, the instanton 
moduli spaces of interest are characterized by three numbers, which must then correspond to 
certain combinations of the quiver data k1, k2, and N .

One option is to characterize the instanton bundle by the first Chern number ĉ and the instan-
ton number k̂.9 In terms of the topological data of the corresponding holomorphic bundle E on 
F1, these are (see e.g. [33])〈

c1(E), [C]〉= −ĉ,

〈
c2(E) − N − 1

2N
c1(E)2, [F1]

〉
= k̂; (2.18)

where [C] is the class of CP1 inside F1. Besides, further explanation leading to the second 
definition can be found in [34].

These numbers are related to the quiver data k1, k2 and N appearing in the King construction 
as follows [33]:

ĉ = k2 − k1, k̂ = 1

2
(k1 + k2) − 1

2N
(k2 − k1)

2. (2.19)

9 We shall henceforth reserve the hatted symbols for the instanton data and unhatted symbols for the quiver data.
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In principle ĉ ∈ Z and, without loss of generality, we assume ĉ ≥ 0. Note that k̂ ≥ 0 needs not
be an integer. Note that the particular case of k1 = k2, i.e. the zero first Chern number, was 
considered in [4,5,35].

The relation between k = min(k1, k2), appearing in (2.17), and k̂ can be computed by solving 
simultaneously the two equations in (2.19):

k = min(k1, k2) = k̂ − 1

2N
ĉ(N − ĉ). (2.20)

The resolved moduli space of instantons
As we have seen above, the Hilbert series counts the gauge invariant quantities on the instan-

ton branch of the King quiver, and, thanks to the maps π and σ , this branch coincides, as an 
algebraic variety, with the Hilbert series of SU(N) instantons on C2 with an instanton number 
k = min(k1, k2).

The above algebraic identification does not mean that the two moduli spaces – that of instan-
tons on C2 and that of instantons on CP 2 – are equal as Riemann surfaces. Moreover, already at 
the algebraic level they could be different by considering more refined objects such as baryon-
like branches (whose existence in general relies on appropriate choices of FI parameters). Hence, 
including these directions, one can think of a resolved moduli space10 denoted by M̂U(N)

CP
2 ; see 

Section 3 of [36], Section 2 of [26] and Definition 1.3 of [33]. The resolved moduli space is a non-
singular space whose complex dimension can be computed by considering 3k1k2 + k1N + k2N

degrees of freedom of the chiral fields {A2, B1, B2, Q, q} restricted by k1k2 F -term conditions 
and k2

1 + k2
2 D-term conditions:

dimC M̂U(N)

CP
2 = 3k1k2 + k1N + k2N − k1k2 − (k2

1 + k2
2

)
= (k1 + k2)N − (k1 − k2)

2

= 2k̂N, (2.21)

in accordance with Section 2.1 of [26]. The dimension of the resolved moduli space is related to 
that of the instanton branch by

dimC M̂U(N)

CP
2 = dimCMU(N)

CP
2 + ĉ(N − ĉ). (2.22)

This suggests that the extra directions are associated to ĉ, which is related to dissolved surface 
operators associated with ĉ ∼ ∫

CP
1 F . We expect that the moduli space of such operators should 

account for the extra directions. We will leave the study of this connection for future work and 
provide certain comments on this point in Section 6.

Note that for ĉ = 0 and ĉ = N , the dimensions of both spaces are equal. This suggests that 
ĉ should be thought as an integer modulo N . To understand this, let us go back to the case of k
U(N) instantons on C2, whose ADHM construction (2.14) consists on a U(k) gauge group and 
a U(N) flavor symmetry. However, the U(1) subgroup of U(N) is really gauged, as the former 
can be identified with the U(1) subgroup of U(k). Hence the flavor symmetry of the theory is 
U(N)/U(1). Since U(N) = (U(1) × SU(N))/ZN , the group for the instanton bundle is really 
SU(N)/ZN . The same observation holds in the case at hand. Then, the N -ality of the instanton 
can be then thought as the reduction mod N of the first Chern class, which naturally leads to the 

10 By “resolved”, we mean that it discerns these extra directions.
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fact that ĉ is really a modulo-N quantity. We shall henceforth take ĉ to be an integer such that 
0 ≤ ĉ ≤ N − 1.

Note that (2.21) indeed naturally suggests to interpret k̂ as an instanton number for SU(N)

instantons on CP2. On the other hand, the parameter k = min(k1, k2) obtained from the King 
quiver (2.6) should be viewed as the instanton number for the bundle of SU(N) instantons on C2

which is the image of the map π given by (2.12).

2.4. Explicit examples

Let us now check in explicit examples our previous claim, namely that the Hilbert series 
for unitary instantons on CP2 coincides with the Hilbert series of min(k1, k2) U(N) instantons 
on C2.

2.4.1. The configurations with a vanishing first Chern number: k1 = k2
As a warm-up exercise, let us first consider the configurations in which k1 = k2 = k (the 

case of k1 = k2 was introduced in [4,5,35]). This corresponds to the instanton bundle with the 
vanishing first Chern number, that is, ĉ = 0. Hence in this case k̂ = k.

One U(1) instanton: k = (1, 1), and N = 1
Eq. (2.8) reads

H
[
k = (1,1),U(1),CP2](t, x)

=
∮

|u|=1

du

2πiu

∮
|w|=1

dw

2πiw
PE

[
t2 u

w
+ t
(
x + x−1)w

u
+ t2

(
y

u
+ w

y

)
− w

u
t4
]
, (2.23)

where we have chosen for definiteness r = 2. Integrating over the U(1) ×U(1) gauge symmetry 
we find

H
[
k = (1,1),U(1),CP2](t, x) = 1

(1 − t3x)(1 − t3x−1)
(2.24)

which coincides with the Hilbert series of C2, which is the moduli space of 1 U(1) instanton 
on C2.

We can easily understand this counting directly constructing the operators. In this case, the 
F -terms (2.7) becomes Qq = 0, which demands either Q or q to vanish. We therefore have two 
branches of the moduli space: One on which Q = 0 and the other on which q = 0. The branch 
on which Q = 0 is freely generated by

M1 = A2B1, M2 = A2B2, (2.25)

in the doublet of the SU(2) global symmetry. Similarly for the q = 0 branch.

One U(2) instanton, k = (1, 1), and N = 2
Using (2.8), we find that

H
[
(1,1),U(2),CP2](t, x,y) = 1

(1 − t3x)(1 − t3x−1)
× (1 + t6)

(1 − t6 y1
y2

)(1 − t6 y2
y1

)
. (2.26)

This is indeed the Hilbert series of C2 ×C2/Z2, which is the moduli space of 1 SU(2) instanton 
on C2.
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Two U(1) instantons, k = (2, 2), and N = 1
Using (2.8), we find that

H
[
(2,2),U(1),CP2](t, x,y)

= (1 + t6)

(1 − t3x)(1 − t3x−1)(1 − t6x2)(1 − t6x−2)

= 1

2

{
H
[
(1,1),U(1),CP2](t, x,y)2 + H

[
(1,1),U(1),CP2](t2, x2,y2)}. (2.27)

This is indeed the second symmetric power of the Hilbert series of C2, which is the moduli space 
of 1 U(1) instanton on C2.

Two U(2) instantons, k = (2, 2), and N = 2
Unrefining for simplicity, we now find

H
[
(2,2),U(2),CP2](t,x = 1,y = 1)

= 1 + t3 + 3t6 + 6t9 + 8t12 + 6t15 + 8t18 + 6t21 + 3t24 + t27 + t30

(1 − t3)2(1 − t3)6(1 + t3)4(1 + t3 + t6)3
, (2.28)

which is equal to the Hilbert series for 2 instantons on SU(2) on C2 given in (3.16) of [15], upon 
the rescaling t → t3.

2.4.2. The configurations with a non-vanishing first Chern class: k1 �= k2
We now turn to the case of k1 �= k2, in which the first Chern class of the instanton bundle is 

non-zero.

One U(N) instanton: k = (1, k) or (k, 1) with k ≥ 1
The result is the Hilbert series of one SU(N) instantons on CP2 with the configuration 

k = (1, k):

H
[
(1, k);SU(N)

]
(t;x;y) =

∮
|u|=1

du

2πiu

∫
dμU(k)(w)H

[
F �
]
(t;u;w;x;y)

= PE
[(

x + x−1)t3]( ∞∑
m=1

[m,0, . . . ,0,m]y t6m

)
. (2.29)

This is indeed the Hilbert series of one SU(N) instantons on C2; see (3.11) of [14].

The generators of the moduli space
The first factor PE[(x + x−1)t3] is the Hilbert series of C2. The space C2 is parametrized by 

the gauge invariant quantities:

(A2)a2(B1)
a2 , (A2)a2(B2)

a2 , (2.30)

where here and throughout this section we drop the U(1) gauge indices a1, b1 = 1.
The second factor in (2.29), which is an infinite sum, corresponds to the reduced instanton 

moduli space. The generators of this space are

Mi
j = Qi

a (A2)
a1

a qa2
j , (2.31)
1 2
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with i, j = 1, . . . , N . In order to see that M is traceless, namely

Mi
i = 0, (2.32)

we multiply (A2)
a1

a2 to (2.7) and use the cyclic property of the trace. Indeed, M transform under 
the adjoint representation of SU(N).

Moreover, let us show that M is a nilpotent matrix of degree 2, namely M2 = 0. Consider the 
elements of the matrix M2:(

M2)i
k = Mi

jM
j
k

= Qi(A2)a2q
a2

jQ
j (A2)a′

2
qa′

2k

F= −Qi(A2)a2(B1 · A2 · B2 − B2 · A2 · B1)
a2(A2)a′

2
qa′

2k

= −Qi(A2 · B1 · A2 · B2 − A2 · B2 · A2 · B1)(A2)a′
2
qa′

2k

= −Qi[A2 · B1,A2 · B2](A2)a′
2
qa′

2 k

= 0, (2.33)

since A2 · B1 and A2 · B2 are simply numbers due to the fact that the gauge group U(k1) in 
(2.6) is just U(1) in this case; they hence commute with each other. The equality labeled by “F ” 
follows from the F -terms (2.7). In addition, it is clear from the above analysis that

εi1···iN εj1···jN
Mj1

i1M
j2

i2 = 0 (2.34)

Thus, the reduced moduli space in question is indeed

M̃1,SU(N),CP2 = {M : M is an N × Nmatrix satisfying (2.32), (2.33) and (2.34)
}

= M̃1,SU(N),C2, (2.35)

as expect from the second factor of (2.29).

3. USp(2N) instantons on CPCPCP2

Let us now examine a construction and the moduli space of USp(2N) instantons on CP2. 
Such an instanton bundle is characterized by their rank N and their instanton number k̂.

Elaborating on King’s construction, the construction of USp(2N) instantons on CP2 proposed 
by Bryan and Sanders (BS) in [5] can be realized from a 3d N = 2 gauge theory with the quiver 
diagram (3.3), with the superpotential

W = εαβ(Sα)abS̃
bc(Sβ)cdÃda + ÃabQi

aQ
j
bJij , (3.1)

where the charges of the chiral fields are tabulated in Table 2; a, b, c, d = 1, . . . , k are the U(k)

gauge indices; i, j = 1, . . . , 2N are the USp(2N) flavor indices with Jij the corresponding sym-
plectic matrix

J =
(

0 1N×N

−1N×N 0

)
, (3.2)

and α, β = 1, 2 are the indices corresponding to the SU(2) global symmetry under which S1, S2
transform as a doublet.
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Table 2
Charge assignments of each chiral field in the quiver diagram in (3.3).

U(k) USp(2N) SU(2) U(1)R

Q [1,0, . . . ,0]+1 [1,0, . . . ,0] [0] 1/2
S1, S2 [2,0, . . . ,0]+2 [0] [1] 1/4

Ã [0,1,0, . . . ,0]−2 [0] [0] 1
S̃ [2,0, . . . ,0]−2 [0] [0] 1/2

(3.3)

The CS level of the gauge group U(k) can take any integral value.11

The branch of the moduli space that can be identified with that of k USp(2N) instantons on 
CP2, denoted by MUSp(2N)

CP
2 , is the one on which Ã = 0. The relevant F -terms are

0 = ∂W

∂Ãda
= εαβ(Sα)abS̃

bc(Sβ)cd + Qi
dQj

aJij . (3.4)

This is indeed the integrability condition given in Table 1 of [5].
The Hilbert series of the instanton branch of this theory is12

H
[
k,USp(N),CP2](t, x,y)

=
∫

dμU(k)(z)PE
[
χS1,S2 t + χS̃t2 + χQt2 − χF -termst

4], (3.5)

where the contributions from each chiral field are

χS1,S2 = (x + x−1) ∑
1≤a≤b≤k

zazb, χS̃ =
∑

1≤a≤b≤k

z−1
a z−1

b ,

χQ =
[

N∑
i=1

(
yi + y−1

i

)]( k∑
a=1

za

)
, χF -terms =

∑
1≤a<b≤k

zazb. (3.6)

11 The cubic indices for the relevant representations of SU(k) are

d3
([1,0, . . . ,0])= 1, d3

([0,1,0, . . . ,0])= k − 4, d3
([2,0, . . . ,0])= k + 4,

d3
([0, . . . ,0,1,0])= −(k − 4), d3

([0, . . . ,0,2])= −(k + 4).

12 The same comment as footnote 8 applies here.
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Indeed, as a result of the integrations, we see that

H
[
k,USp(N),CP2](t, x,y) = H

[
k,USp(N),C2](t3, x,y

)
. (3.7)

Mapping between the BS construction and the ADHM construction
Similarly to the case of U(N) instantons, it is possible to find a relation among the con-

struction for instantons on CP2 and the ADHM construction for on C2, whose quiver and the 
superpotential in the 4d N = 1 notation are described in (3.8).

WADHM = Jij Î
i
aÂabÎ

j
b + εαβ(Ŝα)abÂbc(Ŝβ)ca, (3.8)

The corresponding F -terms of this ADHM quiver are

0 = ∂Âa′aWADHM = Jij Î
i
a′ Î j

a + εαβ(Ŝα)ba′(Ŝβ)ab. (3.9)

By considering [5]

σ : (Ŝ1, Ŝ2, Î ) → (S1 = Ŝ1, S2 = Ŝ2, S̃ = 1k×k,Q = Î ), (3.10)

one can see that σ maps (3.8) to (3.4) upon multiplication by S̃a′d . This map descends to a 
pull-back of the moduli spaces in agreement with our finding at the level of the Hilbert series 
computation.

One might be tempted to construct in addition the “inverse map”

π : (S1, S2, S̃,Q) → ( Ŝ1, Ŝ2, Î ),

Î i
a Î

j
b = S̃ab′

Qi
b′Qj

b, (Ŝα)ab = (Sα)ab′ S̃b′b. (3.11)

Here Ŝα (with α = 1, 2) are the rank-two symmetric chiral fields, Â is the rank-two anti-
symmetric chiral fields coming from the 4d N = 2 vector multiplet of the O(k) gauge group 
and Q is the bifundamental chiral field. We emphasize that the group under which the indices 
transform has been changed from those of SO(k) to U(k). However, the equation defining the Î
is quadratic – that is, it is of the form Î 2 = S̃Q2 –, as opposed to the unitary case. Hence, even 
though π converts the CP2 F -terms into the S4 F -terms, π is not an algebraic mapping.

Properties of the instanton moduli space
It is natural to guess that, by allowing a different FI parameter associated with the gauge 

group U(k) in the quiver (3.3), a resolved moduli space M̂USp(2N)

CP
2 might exist also in this case.

Its dimension would be computed in a similar way to (2.21).
In this case, the number of degrees of freedom of the chiral fields {Q, S1, S2, ̃S} is 2Nk +

3 k(k+1)
2 , while we have k(k−1)

2 D-term constraints and k2 F -term constraints. Hence, the complex 
dimension of the resolved instanton moduli space is
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Table 3
Charge assignments of each chiral field in the quiver diagram in (4.3). Note that k can be integral or half-odd-integral.

U(2k) SO(N) SU(2) U(1)R

Q [1,0, . . . ,0]+1 [1,0, . . . ,0] [0] 1/2
A1,A2 [2,0, . . . ,0]+2 [0] [1] 1/4
Ã [0,1,0, . . . ,0]−2 [0] [0] 1/2
S̃ [2,0, . . . ,0]−2 [0] [0] 1

dimC M̂USp(2N)

CP
2 = 2Nk + 3

k(k + 1)

2
− k(k − 1)

2
− k2 = 2k(N + 1), (3.12)

equal to the dimension of the moduli space for USp(2N) instantons on C2, which is in agreement 
with the result from the Hilbert series:

dimM̂USp(2N)

CP
2 = dimMUSp(2N)

CP
2 = dimMUSp(2N)

C2 . (3.13)

From (3.12), the instanton number can be identified with the rank k of the gauge symmetry U(k)

in the quiver (3.3). Indeed, it can take only be integral, on the contrary to SU(N) instantons 
on CP2. This, together with the fact that in this case there is no other class characterizing the 
instanton and potentially standing for extra dimensions in the moduli space, suggests that in 
this case M̂USp(2N)

CP
2 and MUSp(2N)

C2 might be directly related one to the other. In particular, this 
suggests that the maps π , σ indeed provide an algebraic identification of the spaces.

4. SO(N) instantons on CPCPCP2

The construction of SO(N) instantons on CP2 was provided in [5]. Being a real bundle, it is 
characterized by the rank N and the instanton number k, and the second Stiefel–Whitney class.

The construction of SO(N) instantons on CP2 provided in [5] can be realized from a 3d N = 2
gauge theory with the quiver diagram (4.3), with the superpotential

W = εαβ(Aα)abÃ
bc(Aβ)cd S̃da + S̃abQi

aQ
j
bM

SO(N)
ij , (4.1)

where the charges of the chiral fields are tabulated in Table 3; a, b, c, d = 1, . . . , 2k are the U(2k)

gauge indices with k being integral or half-odd-integral; and i, j = 1, . . . , N are the SO(N)

flavors indices with MSO(N) given by

MSO(2N) =
(

0 1N×N

1N×N 0

)
, MSO(2N+1) =

⎛⎝ 0 1N×N 0

1N×N 0 0

0 0 1

⎞⎠ , (4.2)

and α, β = 1, 2 are the indices corresponding to the SU(2) global symmetry under which A1, A2

transform as a doublet.
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(4.3)

The CS level for the U(2k) gauge group can take the value −N/2 + κ , with κ an integer.
The branch of the moduli space that can be identified with that of k SO(N) instantons on CP2, 

denoted by MSO(N)

CP
2 , is the one on which S̃ = 0. The relevant F -terms are

0 = ∂S̃daW = εαβ(Aα)abÃ
bc(Aβ)cd + Qi

dQj
aM

SO(N)
ij . (4.4)

This is indeed the integrability condition given in Table 1 of [5].
The Hilbert series of the instanton branch of this theory is13

H
[
k,SO(N),CP2](t, x,y)

=
∫

dμU(2k)(z)PE
[
χA1,A2 t + χÃt2 + χQt2 − χF -termst

4], (4.5)

where the contributions from each chiral field are

χQ =
(

2k∑
a=1

za

)
×
{∑N/2

i=1 (yi + y−1
i ), N even,∑(N−1)/2

i=1 (yi + 1 + y−1
i ), N odd,

χÃ =
∑

1≤a<b≤2k

z−1
a z−1

b ,

χA1,A2 = (x + x−1) ∑
1≤a<b≤2k

zazb,

χF -terms =
∑

1≤a≤b≤2k

zazb. (4.6)

Indeed, as a result of the integrations, we see that

H
[
k,SO(N),CP2](t, x,y) = H

[�k,SO(N),C2](t3, x,y
)
, (4.7)

where �k denotes the floor function selecting the largest integer that is smaller or equal to k. It 
then follows that

dimCMSO(N)

CP
2 = 2(N − 2)�k. (4.8)

13 The same comment as footnote 8 applies here for N ≥ 5.
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Mapping between the BS construction and the ADHM construction
As in the previous cases, it is possible to relate the construction for instantons on CP2 into the 

ADHM construction for on C2, whose quiver and the superpotential in the 4d N = 1 notation 
are described in (4.9).

WADHM = J ba′
J acÎ i

bŜa′aÎ
j
cM

SO(N)
ij + εαβJ cc′

J ba′
J ab′

(Âα)cbŜa′a(Âβ)b′c′ , (4.9)

The corresponding F terms are now

0 = ∂Ŝa′aWADHM = J ba′
J acÎ i

bÎ
j
cM

SO(N)
ij + εαβJ a′b(Âα)bcJ

cc′
(Âβ)c′b′J b′a, (4.10)

Defining [5]

σ : (Â1, Â2, Î ) → (
(Aα)ab = J ab′

(Âα)b′b, Ã
ab = Jab,Q

i
a = J abÎ i

b

)
, (4.11)

It is straightforward to see that σ maps (3.8) to (3.4) after multiplication by Ãda′
, hence finding 

again a pull-back of moduli spaces consistent with our computation.
Exactly as in the symplectic case, one might consider an “inverse map”

π : (A1,A2, Ã,Q) → (Â1, Â2, Î ), such that

Ãda′
Qi

dQi
a = J ba′

J acÎ i
bÎ

j
c, (Aα)ab′Ãb′a′ = (Âα)abJ

ba′
, (4.12)

where Âα (with α = 1, 2) are the rank-two symmetric chiral fields, Ŝ is the rank-two anti-
symmetric chiral fields coming from the 4d N = 2 vector multiplet of the USp(2k) gauge group 
and Q is the bifundamental chiral field. We emphasize that the group under which the indices 
transform has been changed from those of U(2k) to USp(2k).

This relation is, as in the symplectic case, quadratic, and hence does not define an algebraic 
map. Nevertheless direct use of it converts the CP2 F -terms into the S4 F -terms.

Properties of the instanton moduli space
Let us introduce the resolved moduli space M̂SO(N)

CP
2 of SO(N) instantons on CP2 by allowing 

a different FI parameter associated with the gauge group U(2k) in the quiver (4.3). The dimen-
sion of the resolved moduli space can be computed in a similar way to (2.21).

In this case the total degrees of freedom of {Q, A1, A2, Ã} are 2Nk + 3k(2k − 1), while the 
F -terms impose k(2k +1) conditions and the D-terms inpose 4k2 conditions. Thus, the expected 
complex dimension of the resolved moduli space is

dimC M̂SO(N)
2 = 2Nk + 3k(2k − 1) − k(2k + 1) − 4k2 = 2k(N − 2). (4.13)
CP
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We therefore identify k as an instanton number and emphasize that k can be either an integer or 
a half-odd-integer. On the other hand, as we have shown above, at least at the algebraic level, 
the moduli space of k SO(N) instantons on CP2 can be mapped to that of �k SO(N) instantons 
on C2. It is then natural to identify 2(k−�k) with the second Stiefel–Whitney class; hence, if k is 
an integer the second Stiefel–Whitney class is trivial and if k is a half-odd-integer it is non-trivial. 
Furthermore, analogously to the role of the first Chern class ĉ for the unitary instantons, the 
second Stiefel–Whitney class is responsible for the extra directions that are present in M̂SO(N)

CP
2

but not MSO(N)

CP
2 . We again expect that these extra directions are related to the moduli space 

of certain dissolved surface operators. Presumably, the quadratic nature of the map π might be 
related to these issues.

It is interesting to analyze in detail the case of SO(6), whose double cover is SU(4). The 
obstruction to lift an SU(4) bundle to SO(6) is represented by the second Stiefel–Whitney class, 
which can be seen as the reduction modulo 2 of the first Chern class. Thus, an SU(4) instanton 
bundles can be identified with an SO(6) bundle if and only if ĉ = 0 modulo 2. Indeed, it can be 
seen from (2.20), (2.21) and (4.13) that the dimension of the resolved space of SU(4) instantons 
can be equated to that of SO(6) instantons if and only if ĉ vanishes modulo 2.

It is also very interesting to consider the SO(3) case. However in this case the gauge symmetry 
of the ADHM quiver is not fully broken, hence requiring the aid of computing programs such 
as Macaulay2 [32] to compute the Hilbert series. Unfortunately the computing needs increase 
very rapidly with the instanton number and we have not been able to perform detailed tests. Note, 
however, that the spin group for SO(3) is SU(2), for which the first Chern class mod 2 vanishes 
only for ĉ = 0. This would suggest that an SO(3) instanton bundle with the instanton number 
k can be identified with an SU(2) bundle with the instanton number 2k and the vanishing first 
Chern class.

5. The blowup formula

In this section, we present another method to compute the Hilbert series of instantons on CP2, 
namely via the blowup formula. Recall that framed SD connections on CP2 (or, equivalently, 
framed ASD connections on CP2) constructed through the King construction are in one-to-one 
correspondence with holomorphic bundles14 on F1 with trivial behavior at �∞. Hence, we can 
interchangeably refer to sheaves on F1 or ASD bundles (i.e. holomorphic bundles with ASD 
connection) on CP2. The blowup formula in fact precisely constructs those bundles.

For instantons in a special unitary gauge group, such a formula for the blowup of CP2 was 
given in (2.2) of [26]. Moreover, since CP2 blown up at one point can be identified with the 
Hirzebruch surface F1, a similar blowup formula can be obtained from (3.21) of [24], with the 
surface Xp,q being X1,1 = F1. A generalization for instantons in a general gauge group was 
discussed in [27,36].

Let us summarize the computation using the blowup formula. First of all, we define the gen-
erating function H[G, C2] for the Hilbert series of G instantons on C2 as

H
[
G,C2](t1, t2;z;q) =

∞∑
k=0

H
[
k,G,C2](t1, t2;z)qk, (5.1)

14 Strictly speaking the should talk about torsion free sheaves.
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where H [k, G, C2](t1, t2; z) denotes the Hilbert series of k G instantons on C2 and q is the 
fugacity associated with the instanton number for instantons on C2. Then, the blowup formula 
for a one-point-blown-up of CP2, i.e. the Hirzebruch surface F1, reads

H[G; ĉ;F1](t1, t2;z;q)

=
∑

v∈VG(ĉ)

q
1
2 v·v∏

α∈�G
�
F1
α (t1, t2;z;v)

1∏
r=0

H
[
G,C2](t (r)1 , t

(r)
2 ;z(r);q), (5.2)

where H[G; ĉ; F1](t1, t2; z; q) is the generating function for the Hilbert series of instantons 
on CP2, and r = 0, 1 labels the ‘patches’, each of which contains the Hilbert series of instan-
tons on C2. It should be emphasized that even though we indicate F1 in the square bracket to 
indicate the blown-up space, the space on which instantons live is CP2.

For G a unitary group, the parameter ĉ has an interpretation of the first Chern class of the 
instanton bundle. In general, we observe that ĉ is related with the homotopy group π1(G), as 
explained below. The notations in the (5.2) are defined as follows.

• The parameters t (r)1 , t (r)2 and z(r), with r = 0, 1, are defined as follows:

t
(0)
1 = t1, t

(0)
2 = t2t

−1
1 , z(0)

a = t
va

1 za,

t
(1)
1 = t1t

−1
2 , t

(1)
2 = t2, z(1)

a = t
va

2 za. (5.3)

• We denote the set of roots of G by �G. For any root α ∈ �G, the corresponding coroot α∨
of G is defined as α∨ = 2α/(α · α). The normalization for the root system is such that the 
squared length of the long roots is 2. We also take “·” to be an inner product with respect to 
the standard orthonormal basis {ei}.

• The set VG(c) is a set of the fixed points for the blowup formula. For each group G, it is 
given as follows.
1. For a unitary group or strictly speaking G = SU(N)/ZN , π1(G) = ZN ; hence, ĉ is an 

integer modulo N . The set VG(ĉ) is defined as

VSU(N)(ĉ) =
{
v ∈Qrk(G)

∣∣∣∑
a

va = 0, va = − ĉ

N
(mod Z),1 ≤ a ≤ N

}
.

Note that, for ĉ = 0, the set VSU(N)(ĉ = 0) is spanned by the simple roots of SU(N), 
namely

e1 − e2, e2 − e3, . . . , eN−1 − eN. (5.4)

In the language of the King quiver (2.6), ĉ = |k1 −k2|. Note that the powers of q appearing 
in the blowup formula (5.2) indicate the instanton numbers k̂ given by (2.20).

2. For G = SO(N), the homotopy group π1(G) = Z2. In this case, the parameter ĉ, which 
can be 0 or 1, has an interpretation of the Stiefel–Whitney class. The sets VG, for G =
BN = SO(2N + 1) and G = DN = SO(2N), are given by

VBN ,DN
(ĉ) =

{
v ∈ ZN

∣∣∣∣ N∑
a=1

va = ĉ = 0,1 (mod 2)

}
. (5.5)

Indeed, for ĉ = 0, the sets VBN,CN
(ĉ = 0) are spanned by their simple roots; respectively, 

these are
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G = BN : e1 − e2, e2 − e3, . . . , eN−1 − eN, eN. (5.6)

G = DN : e1 − e2, e2 − e3, . . . , eN−1 − eN, eN−1 + eN. (5.7)

The powers of q in (5.2) indicates the instanton numbers. Such numbers are integral if 
ĉ = 0 and half-odd-integral if ĉ = 1.

3. For G = USp(2N), the homotopy group π1(G) is trivial; hence, the only possible value 
of ĉ is zero. The set VUSp(N) is spanned by the simple roots of USp(N), namely

1√
2
(e1 − e2),

1√
2
(e2 − e3), . . . ,

1√
2
(eN−1 − eN),

√
2eN. (5.8)

In this case and below, the powers of q appearing in (5.2) correspond to the instanton 
numbers.

4. For G = G2, the homotopy group π1(G) is trivial; the only possible value of ĉ is zero. 
The set VG2 is spanned by the simple roots√

2

3
e1, −

√
3

2
e1 + 1√

2
e2. (5.9)

5. For G = F4, E6, E7, E8, their π1(G) are trivial, and so we expect VG to be spanned by 
their respective simple roots with the appropriate normalization. Although explicit checks 
for these groups are possible, they can be rather cumbersome in practice and we shall not 
present any computation for such groups in this paper.

• The factor �F1
α (t1, t2; z; v) is defined as

�F1
α (t1, t2;z;v) =

⎧⎪⎪⎨⎪⎪⎩
∏

i,j≥0
i+j≤−(v·α)−1

(
1 − t−i

1 t
−j

2

∏rk(G)
a=1 z

αa
a

)
for v · α < 0,∏

i,j≥0
i+j≤(v·α)−2

(
1 − t i+1

1 t
j+1
2

∏rk(G)
a=1 z

αa
a

)
for v · α > 1,

1 otherwise.

(5.10)

• The explicit expressions for the Hilbert series of one and two G instantons on C2, with G a 
simple group, are given in [14,15]. For one instanton, the formula takes a simple expression:

H
[
k = 1;G;C2](t1, t2;z) = 1

(1 − t1)(1 − t2)

∞∑
p=0

χG
p·Adj(z)t

2p, (5.11)

where p · Adj denotes the irreducible representation of G whose highest weight is equal 
to p times that of the adjoint representation, and χG

p·Adj(z) denotes its character written 
in terms of z. For G = SU(N), explicit expressions of Hilbert series for higher instanton 
numbers k can be efficiently computed by summing over contributions over partitions of 
Young diagrams [36–39]; see also Section 2.3.1 of [19].

One interesting observation that applies to all simple groups G of our interest is as fol-
lows. When ĉ is an even number, the powers of q in (5.2) are integral; this corresponds to the 
integer-valued instanton numbers. On the other hand, if ĉ is odd, the powers of q in (5.2) are 
half-odd-integral, corresponding to half-odd-integer-valued instanton numbers.

Below we demonstrate the use of blowup formula (5.2) in various examples, including instan-
tons in A, B , C, D and G type gauge groups.
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5.1. SU(2) instantons

In this subsection, we take G = SU(2). The set of roots is

�SU(2) = {(1,−1), (−1,1)
}
. (5.12)

Below we demonstrate the blowup formula (5.2) for certain small values of the first Chern 
classes.

5.1.1. The first Chern class ĉ = 0
From (5.4), the set V(ĉ = 0) is given by

V(ĉ = 0) = {(m,−m)
∣∣m ∈ Z

}
(5.13)

From (5.2), we see that the powers of q are 0, 1, 2, . . . , corresponding to the instanton numbers. 
According to Theorem 2.4 of [26], the Hilbert series for SU(2) instantons on F1 with the vanish-
ing first class ĉ = 0 and the instanton number k is equal to that of k SU(2) instantons on C2. We 
demonstrate this statement for a few small instanton numbers below.

The instanton number k̂ = 1
This configuration of the instanton can be realized using the King quiver (2.6), with k1 = k2 =

1 and N = 2. Below we compute the Hilbert series using the blowup formula.
The contributions to coefficient of q1/2 in (5.2) come from

v = (1,−1), (0,0), (−1,1). (5.14)

From the blowup formula (5.2), we can extract the coefficient q , which gives the Hilbert series 
for the SU(2) instanton with ĉ = 0 and instanton number 1, as

H
[
k = 1;SU(2); ĉ = 0;F1

]
(t1, t2,z)

= 1∏
α∈�SU(2)

�
F1
α (t1, t2;z; (0,0))

[
1∑

r=0

H
[
k = 1;SU(2);C2](t (r)1 , t

(r)
2 ;z(r)

)]
v=(0,0)

+ 1∏
α∈�SU(2)

�
F1
α (t1, t2;z; (1,−1))

+ 1∏
α∈�SU(2)

�
F1
α (t1, t2;z; (−1,1))

= H
[
k = 1;SU(2);C2](t1, t2;z), (5.15)

where the Hilbert series of 1 SU(2) instanton on C2 is

H
[
k = 1;SU(2);C2](t1, t2;z)
= PE[t1 + t2] × PE

[
t1t2
(
1 + z1z

−1
2 + z2z

−1
1

)− (t1t2)
2]

= 1

(1 − t1)(1 − t2)
× 1 − (t1t2)

2

(1 − t1t2)(1 − t1t2z1z
−1
2 )(1 − t1t2z

−1
1 z2)

, (5.16)

and various �-factors are given by

�F1
α

(
t1, t2;z; (0,0)

)= 1, for all α ∈ �SU(2),

�
F1
(1,−1)

(
t1, t2;z; (1,−1)

)= 1 − t1t2
z1

,

z2
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�
F1
(−1,1)

(
t1, t2;z; (1,−1)

)= (1 − z2

z1

)(
1 − z2

t1z1

)(
1 − z2

t2z1

)
,

�F1
α

(
t1, t2; (z1, z2); (−1,1)

)= �
F1−α

(
t1, t2; (z2, z1); (1,−1)

)
. (5.17)

The instanton number k̂ = 2
Using the blowup formula (5.2) and extracting the coefficient of q2, the Hilbert series of 

question is given by

H
[
k = 2;SU(2); ĉ = 0;F1

]
(t1, t2,z)

= 1∏
α∈�SU(2)

�
F1
α (t1, t2;z; (0,0))

[
1∑

r=0

H
[
k = 2;SU(2);C2](t (r)1 , t

(r)
2 ;z(r)

)
+

2∏
s=0

H
[
k = 1;SU(2);C2](t (s)1 , t

(s)
2 ;z(s)

)]
v=(0,0)

+
∑

v=±(1,−1)

1∏
α∈�SU(2)

�
F1
α (t1, t2;z;v)

[
1∑

r=0

H
[
k = 1;SU(2);C2](t (r)1 , t

(r)
2 ;z(r)

)]
v

= H
[
k = 2;SU(2);C2](t1, t2,z). (5.18)

where the above �-factors are unity, and the Hilbert series for two SU(2) instantons
H [k = 2;SU(2);C2](t1, t2,z) is given by Eq. (3.12) of [15].

Note that this configuration of instantons can be realized from quiver (2.6) with k1 = k2 = 2
and N = 2.

5.1.2. The first Chern class ĉ = 1
From (5.4), the set V(ĉ = 1) is given by

V(ĉ = 1) = {(m + 1/2,−m − 1/2)
∣∣m ∈ Z

}
. (5.19)

From (5.2), we see that the smallest power of q for ĉ = 1 is 1/4, corresponding to the instanton 
number k̂ = 1/4. The next higher power of q is 3/4. We examine these two cases below.

The instanton number k̂ = 1/4
The contributions to coefficient of q1/4 in (5.2) come from

v = (1/2,−1/2), (−1/2,1/2) (5.20)

in the product of the �-factors, and not from the non-trivial parts of H[G, C2](t1, t2; z; q), since 
the latter contains only positive powers of q . The relevant �-factors are given by

�
F1
(−1,1)

(
t1, t2;z; (1/2,−1/2)

)= 1 − z2

z1
, �

F1
(1,−1)

(
t1, t2;z; (−1/2,1/2)

)= 1 − z1

z2
,

�
F1
(1,−1)

(
t1, t2;z; (−1/2,1/2)

)= 1, �
F1
(−1,1)

(
t1, t2;z; (1/2,−1/2)

)= 1. (5.21)

Hence, the Hilbert series for SU(2) instantons on F1 with ĉ = 1, k̂ = 1/4 is

H
[
k̂ = 1/4;SU(2); ĉ = 1;F1

]
(t1, t2,z) = 1

1 − z z−1
+ 1

1 − z z−1
= 1. (5.22)
2 1 1 2
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The moduli space is a point, i.e. zero complex-dimensional. For the King quiver (2.6), this cor-
responds to k1 = 0, k2 = 1, N = 2.

The instanton number k̂ = 5/4
The contributions to q5/4 in (5.2) come from the product of the �-factors in (5.21) and the 

Hilbert series of 1 instanton on C2:

H
[
k̂ = 5/4;SU(2); ĉ = 1;F1

]
(t1, t2,z)

= 1

1 − z2z
−1
1

[
(t1 + 1)t2z1z2

( t1
t2

− 1)(t2 − 1)(t1t2z1 − z2)(t1z2 − t2z1)
+ (t1 ↔ t2)

]
+ (z1 ↔ z2)

= PE[t1 + t2] × PE
[
t2(1 + z1z

−1
2 + z2z

−1
1

)− t4]
= H

[
k = 1;SU(2);C2](t1, t2,z), (5.23)

where H [k = 1; SU(2); C2](t1, t2, z) denotes the Hilbert series (5.16) of one SU(2) instanton on 
C2; this is equal to the product of the Hilbert series of C2 × (C2/Z2). Note that the moduli space 
is 4 complex-dimensional.

For the King quiver (2.6), this configuration corresponds to k1 = 1, k2 = 2, N = 2.

5.2. USp(4) instantons

In this subsection, we apply the blowup formula (5.2) to compute the Hilbert series of USp(4)

instantons. For the generating function H[USp(4); F1](t1, t2; z; q) up to q2, the relevant elements 
of the set of fixed points VUSp(4) are

v = (−√
2,−√

2), (−√
2,0), (−√

2,
√

2), (0,−√
2),

(0,0), (0,
√

2), (
√

2,−√
2), (

√
2,0), (

√
2,

√
2). (5.24)

The relevant products of the �-factors are∏
α∈C2

�F1
α

(
t1, t2;z; (0,0)

)= 1,

∏
α∈C2

�F1
α

(
t1, t2;z; (0,

√
2)
)

= (1 − z
− 1√

2
1 z

− 1√
2

2

)(
1 − z

1√
2

1 z
− 1√

2
2

)(
1 − z

−√
2

2

)
× (1 − t−1

1 z
−√

2
2

)(
1 − t−1

2 z
−√

2
2

)(
1 − t1t2z

√
2

2

)
,∏

α∈C2

�F1
α

(
t1, t2;z; (

√
2,

√
2)
)

= (1 − z
−√

2
1

)(
1 − z

− 1√
2

1 z
− 1√

2
2

)(
1 − z

−√
2

2

)(
1 − t−1

1 z
−√

2
1

)
× (1 − t−1

2 z
−√

2
1

)(
1 − t1t2z

√
2

1

)(
1 − t−1

1 z
− 1√

2
1 z

− 1√
2

2

)(
1 − t−1

2 z
− 1√

2
1 z

− 1√
2

2

)
× (1 − t1t2z

1√
2 z

1√
2
)(

1 − t−1z
−√

2)(1 − t−1z
−√

2)(1 − t1t2z
√

2)
, (5.25)
1 2 1 2 2 2 2
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with

�F1
α

(
t1, t2; (z1, z2); (v1, v2)

)= �F1
α

(
t1, t2; (z2, z1); (v2, v1)

)
,

�F1
α

(
t1, t2; (z1, z2); (v1,−v2)

)= �F1
α

(
t1, t2;

(
z1, z

−1
2

); (v1, v2)
)
,

�F1
α

(
t1, t2; (z1, z2); (−v1, v2)

)= �F1
α

(
t1, t2;

(
z−1

1 , z2
); (v1, v2)

)
. (5.26)

The blowup formula (5.2) gives

H
[
USp(4);F1

]
(t1, t2;z;q) = 1 + H

[
1;USp(4);C2](t1, t2;z1/

√
2)q

+ H
[
2;USp(4);C2](t1, t2;z1/

√
2)q2 + · · · . (5.27)

5.3. SO(5) instantons

In this subsection, we apply the blowup formula (5.2) to compute the Hilbert series of SO(5)

instantons.

5.3.1. The case of ĉ = 0
For ĉ = 0, the generating function H[SO(5); F1](t1, t2; z; q) up to q2 arises from the following 

elements of the set of fixed points VSO(5)(ĉ = 0) are

v = (−2,0), (−1,−1), (−1,1), (0,−2), (0,0), (0,2), (1,−1), (1,1), (2,0). (5.28)

The fugacities z = (z1, z2) for USp(4) in the previous subsection are related to those of x =
(x1, x2) for SO(5) by

x1 = (z1z2)
1/

√
2, x2 = (z1z

−1
2

)1/
√

2
. (5.29)

The relevant �-factors are similar to (5.25); for example,∏
α∈B2

�F1
α

(
t1, t2;x; (0,2)

)= ∏
α∈C2

�F1
α

(
t1, t2;z; (

√
2,−√

2)
)
. (5.30)

Using the blowup formula (5.2), we find that

H
[
SO(5); ĉ = 0;F1

]
(t1, t2;x;q) = 1 + H

[
1;SO(5);C2](t1, t2;x)q

+ H
[
2;SO(5);C2](t1, t2;x)q2 + · · · . (5.31)

This result is in agreement with the Hilbert series computed from the King construction (4.3), 
with N = 5 and k being integer-valued equal to the powers of q in (5.31).

5.3.2. The case of ĉ = 1
Up to order q3/2 of the generating function H[SO(5); ĉ = 1; F1](t1, t2; x; q) given by (5.2), 

the relevant elements of the set of fixed points VSO(5)(ĉ = 1) are

v = (1,0), (0,1), (−1,0), (0,−1). (5.32)

The relevant products of �-factors are given by∏
�F1
α

(
t1, t2;x; (1,0)

)= (1 − 1

x1

)(
1 − 1

x1x2

)(
1 − x2

x1

)
, (5.33)
α∈B2
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together with (5.26). Using the blowup formula (5.2), we find that

H
[
SO(5); ĉ = 1;F1

]
(t1, t2;x;q) = q1/2 + H

[
1;SO(5);C2](t1, t2;x)q3/2 + · · · . (5.34)

This result is in agreement with the Hilbert series computed from the King construction (4.3), 
with N = 5 and k being half-odd-integer-valued equal to the powers of q in (5.34).

5.4. SO(6) instantons

In this subsection, we apply the blowup formula (5.2) to compute the Hilbert series of SO(6)

instantons.

5.4.1. The case of ĉ = 0
For ĉ = 0, the generating function H[SO(6); F1](t1, t2; z; q) up to q2 arises from the following 

elements of the set of fixed points VSO(6)(ĉ = 0) are

(−2,0,0), (−1,−1,0), (−1,0,−1), (−1,0,1), (−1,1,0), (0,−2,0),

(0,−1,−1), (0,−1,1), (0,0,−2), (0,0,0), (0,0,2), (0,1,−1), (0,1,1),

(0,2,0), (1,−1,0), (1,0,−1), (1,0,1), (1,1,0), (2,0,0). (5.35)

Using the blowup formula (5.2), we find that

H
[
SO(6); ĉ = 0;F1

]
(t1, t2;x;q) = 1 + H

[
1;SO(6);C2](t1, t2;x)q

+ H
[
2;SO(6);C2](t1, t2;x)q2 + · · · . (5.36)

This result is in agreement with the Hilbert series computed from the King construction (4.3), 
with N = 6 and k being integer-valued equal to the powers of q in (5.36).

5.4.2. The case of ĉ = 1
Up to order q5/2 of the generating function H[SO(6); ĉ = 1; F1](t1, t2; x; q) given by (5.2), 

the relevant elements of the set of fixed points VSO(6)(ĉ = 1) are

(−1,−1,−1), (−1,−1,1), (−1,0,0), (−1,1,−1), (−1,1,1),

(0,−1,0), (0,0,−1), (0,0,1), (0,1,0), (1,−1,−1), (1,−1,1),

(1,0,0), (1,1,−1), (1,1,1). (5.37)

Using the blowup formula (5.2), we find that

H
[
SO(6); ĉ = 1;F1

]
(t1, t2;x;q) = q1/2 + H

[
1;SO(6);C2](t1, t2;x)q3/2

+ H
[
2;SO(6);C2](t1, t2;x)q5/2 + · · · . (5.38)

This result is in agreement with the Hilbert series computed from the King construction (4.3), 
with N = 6 and k being half-odd-integer-valued equal to the powers of q in (5.38).

5.5. G2 instantons

Let us apply the blowup formula to compute the Hilbert series of G2 instantons on CP2. In this 
case, there is no known construction from a quiver gauge theory. However, it is still possible to 
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compute the Hilbert series using the blowup formula in a similar way to [27] as we demonstrate 
below.

Up to order q of the generating function H[G2; F1](t1, t2; x; q) given by (5.2), the relevant 
elements of the set of fixed points VG2 are

(0,0), (0,
√

2),

(√
3

2
,

1√
2

)
,

(
−
√

3

2
,
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2

)
,(√

3

2
,− 1√

2

)
, (0,−√

2),

(
−
√

3

2
,− 1√

2

)
. (5.39)

The relevants products of �-factors are given by∏
α∈G2
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, (5.40)

together with the identities (5.26). Using the blowup formula (5.2), we find that

H[G2;F1](t1, t2;x;q) = 1 + H
[
1;G2;C2](t1, t2;x)q + · · · . (5.41)

6. Conclusions

In this paper we have studied self-dual connections on CP2. These are described by an 
ADHM-like connection introduced in the mathematical literature in [1–5]. We have embedded 
such construction into a supersymmetric gauge theory. Surprisingly, and as opposed to the well-
known ADHM constructions for instantons on S4, in the case at hand such gauge theory is 
naturally a 3d gauge theory with 4 supercharges. The low amount of supersymmetry allows for 
quantum corrections that render large anomalous dimensions of the chiral fields at the conformal 
fixed point. These are crucial to correctly obtain, in the suitable instanton branch, the expected 
properties for the moduli space of instantons of a pure gauge theory, such as the hyper-Kähler
structure. However, it is important to stress that quantum effects due to monopole operators in 
the instanton branch vanish.

Since CP2 is a topologically non-trivial space, the structure of the instanton sector is more 
involved than in the S4 counterpart. In particular, the global structure of the gauge group becomes 
manifest. As we have argued, in the case of unitary instantons, we are led to conclude that the 
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gauge group is SU(N)/ZN . Because of this, the first Chern class of the a priori U(N) instanton 
gets reduced mod N . We have encountered a similar phenomenon for orthogonal instantons, 
only that in this case mod 2. On the other hand, symplectic instantons don’t seem to exhibit such 
phenomenon. In fact, it would be interesting to reconsider in deeper detail this point, as well as 
the exact global properties of the gauge group for orthogonal and unitary instantons along the 
lines of [9].

The Hilbert series is only sensitive to the mesonic type operators in the in the instanton branch
MG

CP
2 . However there is a resolved moduli space M̂G

CP
2 , which is a non-singular space with a 

generically larger dimension than the former: dimC M̂G

CP
2 ≥ dimCMG

CP
2 .15 It is natural to ask to 

classify operators that parametrize such ‘extra directions’. These might involve baryon-like op-
erators, Wilson lines or monopole operators, possibly slightly departing from the strict definition 
of the instanton branch we have used where all monopole operators are set to zero. It would be 
very interesting to study such an aspect of the resolved space. Note that the parameter ĉ, which 
has an interpretation as the first Chern class for unitary instantons, can be regarded as a dissolved 
surface operator, since, at least morally speaking, ĉ ∼ ∫

CP
1⊂CP

2 TrF . In fact, we can consider a 
special case in which either k1 or k2 is zero; then, the quiver (2.6) becomes a quiver theory with 
a rank ĉ gauge group, with 0 ≤ ĉ ≤ N − 1. Naively, for the appropriate FI choice, we expect the 
latter to describe a moduli space of vortices, which, being typically a compact space, cannot be 
parametrized in terms of holomorphic gauge invariant quantities as for the case of non-compact 
hyper-Kähler cone. The study of such vortex moduli space might provides deeper insights into 
the ‘extra directions’ described above in the context of the resolved moduli space (of course, 
similar observations can be made for orthogonal instantons). It will be very interesting to pursue 
this further, perhaps along the lines of [42], task which we leave for future research.

At least for the unitary case, the gauge theory in which we have embedded the ADHM con-
struction of CP2 instantons admits a stringy interpretation as the worldvolume theory on M2 
branes probing a Calabi–Yau 4-fold singularity [25]. This opens up the possibility of an explicit 
geometric study of the instanton properties. In particular, holographic tools along the lines of 
[19,43] could be of great interest. Of course, it would be interesting to extend this analysis and 
explore the precise stringy realization of the orthogonal and symplectic cases. We will postpone 
these studies for future work.

As mentioned above, our ADHM instantons have the same duality properties as the Kähler 
form, and hence naively do not seem to be the ones relevant for localization of gauge theories 
on CP2. However, it would be interesting to clarify whether they might contribute under some 
circumstances to partition functions. On a related note, the blowup formula localizes on two 
contributions. It would be interesting to clarify possible relations to the factorization properties 
of instanton partition functions recently discussed in e.g. [44–46].
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