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Abstract
Let us consider a set of training examples described

by continuous or symbolic attributes with categorical
classes. In this paper we present a measure of the po-
tential quality of a region of the attribute space to be
represented as a rule condition to classify unseen cases.
The aim is to take into account the distribution of the
classes of the examples. The resulting measure, called
impurity level, is inspired by a similar measure used in
the instance-based algorithm IB3 for selecting suitable
paradigmatic exemplars that will classify, in a nearest-
neighbor context, future cases. The features of the im-
purity level are illustrated using a version of Quinlan’s
well-known C4.5 where the information-based heuris-
tics are replaced by our measure. The experiments car-
ried out to test the proposals indicate a very high ac-
curacy reached with sets of classification rules as small
as those found by Ripper.

Keywords: Machine learning, classification rules, prun-
ing, decision trees, impurity level.

1. Introduction

Let us start with a collection of training exam-
ples described by a finite set of attributes whose
values can be either numeric or symbolic. One such
attribute is the class; here we expect classes to be
symbolic labels. In this environment, a machine
learning algorithm must induce a function able to
predict the class of unseen cases. To build this
function we assume that training examples are a
representative sample of the future cases that must
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be correctly classified. Additionally, we assume a
kind of continuity in class distributions; that is,
in the surroundings of a set of near examples of
the same class, we hope to find cases of that class,
this is called the similarity hypothesis [30]. In this
paper, we present a measure called impurity level
that it based on this similarity hypothesis.

Given a concentration of training examples, our
measure considers the impurity of their class mix-
ing, in addition to the rarity of the accumulation
in the training set. Thus, the areas concentrating
most of the examples of an infrequent class will
have a very low impurity level, and will be con-
sidered as a good candidate to somehow be part
of the classification function to be returned by a
machine learning algorithm. Another measure that
also takes into account the same circumstances as
our impurity level was proposed by Todorovski et
al. in [34], it is called weighted relative accuracy,
WRAcc.

To implement the idea of our measure, we need
to define effectively the concept of example con-
centration. Usually, we first delimit a territory in
the attribute space and then we gather the train-
ing examples falling within this space. Thus, in an
instance-based scenario, the region that is nearer
to one classification example than the others is a
straightforward realization of the domain of that
example. In fact, the impurity level is based on
Aha et al.’s method to select acceptable classifica-
tion instances in IB3 [1,2]. On the other hand, the
conditions of a classification rule, define the set of
examples fulfilling them.

We have chosen the rule approach to illustrate
the qualities of our measure. We thus implemented
a version of Quinlan’s C4.5 [25] using the impu-
rity level for tree growing and rule pruning. The
resulting system is called IL-rules and, like C4.5-
rules, it acts in two steps. First, to induce deci-
sion trees, we only replaced the information gain
ratio of C4.5 by the impurity level. Then, to ob-
tain a set of rules, the pruning mechanism imple-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Oviedo

https://core.ac.uk/display/71872097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Ranilla, Luaces and Bahamonde / A heuristic for learning and pruning

mented, according to the impurity level philoso-
phy, selects the most promising conditions of each
branch of the decision tree. IL-rules finally returns
a subset of these optimized branches to be part
of a classification function that applies the nearest
rule to each new case. In this way, we have a ma-
chine learning algorithm belonging to the family
of those that try to combine the advantages of rule
sets and instance-based systems. An algorithm be-
longing to the family of Salzberg’s EACH [32], re-
vised by Wettschereck and Dietterich [35], Domin-
gos’ RISE [12], Ranilla’s Fan [29,27], Luaces’ In-
ner [20,22,21], or Del Coz’s Bets [9,10].

The result of our reconstruction of Quinlan’s
learner is that we have interchangeable pieces
available to assemble different C4.5-like machine
learning systems for building and then pruning de-
cision trees to obtain rule sets. So, we can build
decision trees by means of gain ratio or impurity
level, and then we can use a pruning process in
order to obtain a set of rules. If we use the final
stage of C4.5, we obtain rule sets whose applica-
tion follows the standard procedure. Alternatively,
rules will be used by means of a minimum-distance
criterion whenever we use the impurity level as the
driving force of the pruning algorithm.

The experiments reported at the end of the pa-
per show that our IL-rules produces small rule sets
with a high classification accuracy. To compare our
scores we used C4.5-rules since our system is based
on it. Additionally, given the features of the knowl-
edge induced by our system, we also provide a com-
parison with Cohen’s Ripper [8], an improved ver-
sion of Fürnkranz and Widmer’s Irep/Irep* [14].
Finally, we compare IL-rules with a version built
with the measure by Todorovski et al., WRAcc-
rules.

2. A brief introduction to C4.5

In this section we summarize the basic elements
of Quinlan’s C4.5 algorithm. First, we briefly de-
scribe the method used to induce decision trees;
our system employs it except for the use of the
impurity level instead of the information gain ra-
tio. Then, we describe the rule generation process,
which is completely replaced in our algorithm by
a mechanism based on the impurity level, which
prunes the original rules obtained from the deci-
sion tree.

2.1. The process of building a decision tree

The method implemented in C4.5 to build deci-
sion trees constitutes the paradigm of the divide-
and-conquer approach in the machine learning lit-
erature. It is based on a previous work of Quinlan
called ID3 [24]. Both share the same central idea
to build decision trees with the Concept Learn-
ing Systems (CLS) of Hunt [16]. Hunt’s method to
construct decision trees from a set of examples E
is as follows:

– If E is composed of examples of one single
class C, then the tree will be a leaf labeled by
class C.

– If E is empty, the tree will be a leaf, but its
label must be determined using heuristic ap-
proaches. C4.5 uses the most frequent class of
the examples of the parent node.

– If E contains examples belonging to different
classes then the tree consists of a node la-
beled with a test based on single attribute val-
ues and with as many branches as the num-
ber of possible results that can be obtained
from that test. The original set E is thus di-
vided into disjoint subsets, one for every pos-
sible result, which will be associated to the
corresponding branch.

The building process continues by applying this
method recursively to each subset.

Once a decision tree has been built, the classifi-
cation of an example consists in applying the test
of the root node to the example and, depending
on the result, descending through the correspond-
ing branch to the next node, repeating the process
until one leaf is reached; the label of the leaf is the
predicted class for the example.

The quality of a decision tree can be consid-
ered from two points of view: classification accu-
racy and simplicity. The former is a desirable prop-
erty for obvious reasons, while the latter is closely
related to the comprehensibility of the resulting
tree, and is frequently a faithful partner of accu-
racy. But unfortunately, an exhaustive exploration
to find the smallest tree consistent with the train-
ing data is an acknowledged NP-complete prob-
lem [17]. Consequently, most building methods are
greedy algorithms in which once a test has been
heuristically selected, it is not revised later.

C4.5 uses the gain ratio to select the attribute
whose value will be tested to decide how the orig-



Ranilla, Luaces and Bahamonde / A heuristic for learning and pruning 3

inal training set will be partitioned. The gain ra-
tio is a refinement of the information gain, used in
C4.5’s precursor ID3.

Several different approaches to the test selec-
tion problem have been studied. There is a sec-
tion in Breslow’s paper [6] especially devoted to
reviewing some alternative test selection criteria.
Among others, we may mention the Gini index [5],
the function G(p) = 2

√
p(1− p) proposed in [11],

possibility-based measures [4], etc. However, none
of these clearly outperforms the gain ratio used in
C4.5.

The information gain, and consequently the gain
ratio, is based on Shannon’s information theory. In
the following, we reproduce the formulas needed
to compute these measures to ease the introduc-
tion of our measure later, in Section 3. Let us sup-
pose that a training set E is composed of examples
belonging to one of the Cj possible classes, where
j = 1 . . . k. If freq(Cj , E) stands for the frequency
of class Cj in the set of examples E, then Equa-
tion (1) measures the average amount of informa-
tion needed to identify the class of an example in
E; this is also known as the entropy of E.

info(E)=−
k∑

j=1

freq(Cj , E)
|E|

·log2

(
freq(Cj , E)
|E|

)
(1)

The training set E can be partitioned on the
basis of any of the attributes involved in the de-
scription of the examples. If an attribute X with
n different results Ei for the test is selected, the
expected information of E is calculated as the
weighted sum of every Ei entropy.

infoX(E) =
n∑

i=1

|Ei|
|E|
· info(Ei) (2)

Hence, the information gained by partitioning E
with attribute X is obtained by

gain(X) = info(E)− infoX(E) (3)

Every time ID3 has to label a node, it selects
the test with maximum gain, or in other words,
it selects the attribute that divides the set of ex-
amples into partitions with the minimum entropy
average.

This criterion guides ID3 to obtain quite good
partitions, but it favors the selection of attributes
with a lot of possible values. Frequently, this bias
implies poor generalization, so C4.5 tries to correct

this deficiency by calculating the so-called gain ra-
tio, whose expression is

gain-ratio(X) =
gain(X)

split-info(X)
(4)

where split-info is the information provided by
a probability distribution

{
|Ei|
|E| : i = 1..n

}
, where

Ei are the subsets of training examples for which
the X value is the i-th possible value of this at-
tribute. Its expression is, therefore

split-info(X) = −
n∑

i=1

|Ei|
|E|
· log2

(
|Ei|
|E|

)
(5)

2.2. Rule generation

Decision trees, even when pruned, can be quite
complex to provide understanding about a prob-
lem. The underlying difficulty is inherent to the
structure used to represent the classification knowl-
edge and it is aggravated when the size of the tree
increases. The most evident way to deal with this
problem is by changing the representation; so C4.5
offers the possibility of transforming its decision
trees into classification rule sets (also known as de-
cision lists) by means of an additional procedure;
the resulting learning algorithm will be referred to
as C4.5-rules in the remainder of this paper.

Transforming a decision tree into a rule set is as
simple as generating a rule for each path from the
root node to every leaf. The antecedents of each
rule will be the tests of the nodes in the corre-
sponding path and the consequent will be the label
of the leaf.

The result of this trivial conversion is usually
a rule set where some of the rules are redun-
dant or have unnecessary, superfluous antecedents,
so a more elaborated transformation mechanism
is needed. C4.5-rules proceeds by deleting an-
tecedents of the rules when their elimination does
not worsen the estimated accuracy of the rule. This
estimation is calculated by forcing some statistical
concepts a little: we can consider the scores ob-
tained by the rule on the training set as a sample
of the behaviour on a population of examples that
will be classified by the rule. Although the exact er-
ror probability cannot be determined, we can bind
it for a given confidence level, CF, by means of its
probability distribution confidence limits. The up-
per limit, UCF (f, n), is then used as a pessimistic
estimation of the probability of error of this rule.
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Thus, a pruned rule R′ (R without antecedent
X) will be preferable to its original version R if
UCF (fR, nR) ≥ UCF (fR′ , nR′), where

– fR and fR′ are the number of training exam-
ples incorrectly covered by R and R′, respec-
tively.

– nR and nR′ are the total number of examples
covered by R and R′, respectively.

This generalization process is repeated for each
path in the unsimplified decision tree, provoking,
as a side effect, the deletion of some rules due to
duplications or unacceptable error rates.

The rules so obtained are not necessarily mutu-
ally exclusive since there will be examples satis-
fying the antecedents of more than one rule, so a
conflict resolution procedure is needed. C4.5-rules
orders the rules so that the first rule covering a
case will be the one that will classify it. This or-
dering is obtained by considering one set of rules
per class; the number of rules in each set is reduced
using a pruning method based on the Minimum
Description Length (MDL) principle [31] and then
subsets so obtained are ordered depending on the
number of incorrectly covered examples.

The MDL-based procedure selects, for each
class, a subset of rules with the lowest cost of cod-
ification. The cost of codification of a subset S is
computed as:

C(S) = CX(S) + 0.5 · CT (S) (6)

where CT (S) is the cost of codification of the the-
ory represented by the subset of rules and CX(S)
is the cost of codification of the exceptions to that
theory. The cost of codification of the theory is
calculated as

CT (S) =
|S|∑
i=1

C(Ri)− log2(|S|!) (7)

which represents the sum of the number of bits
needed to codify each rule Ri minus the number
of bits required to indicate a particular ordering,
log2(|S|!), since rule ordering is not important for
each particular subset, given that all of them pre-
dict the same class.

Exceptions are encoded indicating which cases
are incorrectly covered by the rules in S, false pos-
itives, and those that would be correctly classified
if they were covered, false negatives. Thus,

CX(S) = log2

(
r

fp

)
+ log2

(
|E| − r

fn

)
(8)

where fp and fn are the false positives and false
negatives, respectively; r is the number of cases
covered by the rules in S; and |E| is the number
of cases in the training set E.

Once a subset of rules has been established for
each class, C4.5-rules orders the subsets by select-
ing that with the lowest number of false positives
as the first one; then, the false positives of the re-
maining subsets are recalculated to select the next
one, and so on.

Finally, a default rule is added to deal with cases
not covered by any other rule. The class of the de-
fault rule will be the one with the highest num-
ber of uncovered cases, or that with the highest
absolute frequency in case of ties.

3. The impurity level measure

As pointed out in the introduction, the impurity
level is based on Aha et al.’s mechanism in IB3
[1,2] for selecting a set of representative instances
from a set of training examples. This measure was
formerly [28] devised as a mechanism to estimate
the quality of classification rules and was first im-
plemented in Fan, and used later in other systems
like Inner and Bets with noteworthy success.

Throughout the paper we consider classification
rules represented by

R : C ← Ant1 ∧Ant2 ∧ . . . ∧Antn (9)

where the antecedents of the rule are conditions in-
volving single attribute values; the intended mean-
ing is that whenever all the conditions are fulfilled
by a case, then the predicted class is the label C
of the conclusion of the rule.

The quality of a rule R (Equation (9)) predicting
class C can be estimated in terms of impurity by
means of the success probability of the rule, p(R),
computed as the percentage of correctly covered
examples, that is

p(R) =
sR
nR

(10)

where sR is the number of examples correctly cov-
ered by R and nR is the total number of exam-
ples covered by the rule. However, to take into ac-
count the number of instances involved in these
computations, we will consider the confidence in-
terval of the success probability of rules, CI(R) =
[CIl(R),CIh(R)]. This interval is calculated by
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CI(R)=
p(R)+ z2

2nR
±z

√
p(R)(1−p(R))

nR
+ z2

4n2
R

1 + z2

nR

(11)

where z is a constant obtained from a normal dis-
tribution table which depends on the confidence
level used (by default the confidence level used is
95%, hence z is 1.96).

Once the confidence interval is calculated, the
peculiarities of the predicted class C must be con-
sidered in order to allow fair comparisons between
rules concluding different classes. For this purpose
we compute the confidence interval of the suc-
cess probability when unconditionally predicting
C. This is equivalent to computing the confidence
interval of a rule ΘC concluding C without any an-
tecedent, sometimes called the default rule of class
C.

ΘC : C ← (12)

Now we are ready to define the impurity level of
R as the overlapping percentage of two confidence
intervals, CI(R) and CI(ΘC). In symbols,

IL(R) =
CIh(ΘC)− CIl(R)
CIh(R)− CIl(R)

× 100 (13)

Roughly speaking, the impurity level of a rule
attempts to resolve to what extent it is worth eval-
uating rule antecedents to predict a rule conclu-
sion class instead of simply always predicting that
class. The lower the impurity level, the more valu-
able the rule. Therefore, while we try to figure out
which rule set to return from the training exam-
ples, rules with a lower impurity level will be pre-
ferred to rules with a higher impurity level.

The idea of estimating a rule’s accuracy using
a relative measure with respect to the accuracy of
a default rule is also present in [34]. In this work
Todorovski et al. investigate the use of the weighted
relative accuracy (WRAcc) as a quality estimator
of a rule; for a given a rule this measure is defined
as

WRAcc(R) =
nR

|E|
(p(R)− p(ΘC)) (14)

where |E| is the number of examples in the train-
ing set. In this equation, p(R) − p(ΘC) measures
the accuracy gain of rule R with respect to a rule
(see (12)) unconditionally predicting C. This gain
is weighted by the proportion of training examples
covered by the rule; the intention is to avoid highly
specific rules. In Section 6 we briefly report some
result obtained using this measure instead of our
impurity level.

4. Using IL in decision tree construction

In this section we describe an algorithm simi-
lar to C4.5. Our modifications to Quinlan’s algo-
rithm are primarily based on the use of the im-
purity level, both for selecting tests in the tree-
building stage and for rule generation. We show
how the underlying principles used to calculate the
impurity level of a rule can be easily adapted to
evaluate potential splits of the data.

The impurity level of a rule can be easily gen-
eralized to select tests to build decision trees.
IL-rules uses the exact same approach described
above to build a decision tree, but using the impu-
rity level instead of the gain ratio. The idea is to
indicate how impure the subsets obtained by parti-
tioning a set of examples on each possible attribute
are, allowing us to select the test (attribute) that
produces the partition with the lowest impurity.
Therefore, we define the impurity level of a subset
of training examples, Ei, as the impurity level of a
rule whose conditions are fulfilled by the examples
in Ei and whose conclusion is the majority class
in Ei.

Analogous to infoX calculated by Equation (2),
the impurity level due to attribute X is computed
as a weighted sum of the impurity level of the sub-
sets it produces

ILX(E) =
n∑

i=1

|Ei|
|E|
· IL(Ei) (15)

To illustrate the use of the impurity level we are
going to detail the construction of a decision tree
with the data set shown in Table 1. This data set,
taken from [24], is composed of examples described
by three attributes: Height, Hair and Eyes; and the
classes to be predicted, which can be +© or −©.

Initially, we can take three different tests to label
the root node, so we have to compute the impurity
level for each one. In the case of attribute Height,
which can take two different values, the original
set, let us name it E, can be split into two sub-
sets, Eshort containing short individuals and Etall

containing tall individuals.
Subset Eshort has n = 3 examples, 2 −© and 1 +©;

so the majority class is −© with probability p = 2
3 .

The confidence interval CI(Eshort) calculated by
Equation (11) using the default value, 1.96, for z
is [0.208, 0.939] approximately.

Now we have to calculate the confidence interval
of the success probability when predicting −© but
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Table 1

A simple data set built up by examples belonging to two

different classes and described by three symbolic attributes.

Height Hair Eyes CLASS

short blonde blue +©
short dark blue −©
tall dark brown −©
tall blonde brown −©
tall dark blue −©
short blonde brown −©
tall red blue +©
tall blonde blue +©

considering E, and this probability is p = 5
8 , given

that there are 5 −© in the n = 8 examples of E.
With these values, the confidence interval CI(E) is
[0.306, 0.863].

The impurity level of Eshort is then calculated
as

IL(Eshort) =
CIh(E)− CIl(Eshort)

CIh(Eshort)−CIl(Eshort)
· 100 =

=
0.863− 0.208
0.939− 0.208

· 100 = 89.603 (16)

This calculation is repeated for Etall, where
there are n = 5 examples, 3 −© and 2 +©. So
once more the majority class is −© with probability
p = 3

5 , thus giving CI(Etall) = [0.231, 0.882]. The
confidence interval when predicting −© in E was
previously calculated, so the impurity level of Etall

is

IL(Etall) =
CIh(E)− CIl(Etall)

CIh(Etall)− CIl(Etall)
· 100 =

=
0.863− 0.231
0.882− 0.208

· 100 = 97.081 (17)

We can now calculate the impurity level cor-
responding to the attribute Height using Equa-
tion (15), obtaining the following

ILHeight(E) =
|Eshort|
|E|

· IL(Eshort) +

+
|Etall|
|E|

· IL(Etall) =

=
3
8
· 89.603 +

5
8
· 97.081 = 94.277 (18)

These calculations must also be done for at-
tributes Hair and Eyes; their impurity levels are
ILHair(E) ≈ 75 and ILEyes(E) ≈ 73. Therefore,
a test on attribute Eyes will be selected to label

+ +
−

−

Blue Brown

RedBlonde
Dark

Hair?

Eyes?

Figure 1. Using the impurity level, we obtain this decision

tree for the data set in Table 1.

the root node. Thus, we obtain a preliminary tree
with a root node and two descendants, given that
Eyes can be blue or brown. The node with brown-
eyed examples is a leaf, since all of them belong to
class −©. However, the building process must con-
tinue from the node with blue-eyed examples as
the training set (i.e. considering E = Eblue) and
two possible tests, the remaining attributes: Height
and Hair. In this case the selected test is Hair and
thus the final decision tree built by means of the
impurity level is shown in Figure 1.

4.1. Missing values and continuous attributes:
their peculiarities

The described process for building decision trees
is directly applicable to problems in which the ex-
amples are composed of discrete attributes with a
finite (usually small) number of possible different
values, where the value of every attribute is always
known. Sometimes, however, we have to manage
datasets with examples where the value of some at-
tribute is unknown, so a special handling is needed
to deal with these missing values. C4.5’s approach
consists in computing the gain ratio for every at-
tribute, considering only examples with known val-
ues and a fictitious subset containing the examples
with the missing value, if there are any.

Additionally, a weighted scheme is used, associ-
ating with every example a probability of belong-
ing to a subset. Thus, an example with an un-
known value in the attribute used as a test is con-
sidered to belong to every subset with the proba-
bility of such subset, i.e. the number of examples
of the node divided by the number of examples in
the parent node.

Another difficulty arises when the examples con-
tain continuous attributes, since they can take (po-
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tentially) infinitely many different values. The ap-
plicable test for these kind of attributes consists in
selecting a threshold t to divide the data set E in
two parts: examples whose value for the attribute
are lower than or equal to the threshold, E≤t, and
those with values higher than the threshold, E>t.

Given a continuous attribute X taking n dif-
ferent values in the data set E, there are n − 1
non trivial thresholds; if X values are ordered as
{v1, v2, . . . , vn}, every potential threshold can be
calculated as ti = vi+vi+1

2 with i = 1, . . . , n − 1.
However, instead of ti, C4.5 uses the highest vi

lower than the calculated ti to ensure that the se-
lected threshold occurs in the data set, so the pos-
sible thresholds are {v1, . . . , vn−1}.

The threshold that maximizes the splitting cri-
terion will be selected. In C4.5 release 7, this cri-
terion was the gain ratio, but release 8 includes a
modification [26] where the gain ratio is penalized
by subtracting log2(n−1)

|E| . This modification clearly
improves the handling of continuous attributes,
correcting the bias in the choice of a test towards
continuous attributes with many different values.

The impurity level version, IL-rules, applies the
same discretization method. Like C4.5, our system
also applies a penalty, trying not to favor the selec-
tion of attributes with many possible thresholds.
However, the penalty is applied in a slightly differ-
ent way due to the semantics of the impurity level
measure; in IL-rules, the impurity level is increased
by a fraction of itself. This fraction is determined
by log2(n−1)

|E| . Thus, our system will select a thresh-
old t which minimizes the penalized impurity level,
ILp

(X,t), whose expression is

ILp
(X,t)(E) = IL(X,t)(E)·

(
1+

log2(n−1)
|E|

)
(19)

where IL(X,t)(E) is the impurity level of the split-
ting of E into E≤t and E>t. So, IL(X,t)(E) is cal-
culated by

IL(X,t)=
|E≤t|
|E|
·IL(E≤t)+

|E>t|
|E|

· IL(E>t) (20)

5. Rule generation in IL-rules

C4.5-rules has its counterpart in our impurity
level-based algorithm. The procedure to obtain
rules from trees implemented in IL-rules is com-
pletely different from that of C4.5-rules except for

the first, trivial stage, that is to say, the generation
of one rule for every path from the root node to
each leaf. Once the tree has been rewritten as a
rule set, IL-rules applies a generic method to im-
prove the quality of these preliminary rules. This
method is likewise based on the impurity level, and
constitutes part of the systems Fan [29,27] and
Inner [20,21].

The method to improve rule sets has some sim-
ilarities with the approach followed by Cohen’s
Grow [7] in the sense that both algorithms start
building a theory that is augmented with general-
izations of the rules induced. These generalizations
are constructed by an antecedent pruning mecha-
nism. Then, a rule selection procedure reduces the
final rule set. The starting theory for IL-rules is
the set of rules obtained directly from the decision
tree; this set of rules is augmented with partial
descriptions of each rule by the rule qualification
process and the resulting set of rules is pruned by
the rule selection process. Also, we can find some
similarities with specific parts of Ripper, an im-
proved version of Fürnkranz and Widmer’s Irep
which, in turn, was developed as an alternative ap-
proach to Grow. In the next sections we are go-
ing to briefly describe our rule qualification and
selection processes, pointing out those similarities.

5.1. Rule qualification: pruning antecedents

From the trivial conversion of a decision tree to a
set of preliminary rules, the qualification algorithm
(see Algorithm 1) returns optimized, less impure,
versions of each original rule.

The impurity level plays an important role in
the qualification process. In order to avoid an ex-
haustive exploration of possibilities, the algorithm
heuristically guides the search for a rule whose an-
tecedents will be a subset of those in the origi-
nal, unpruned rule. Thus, we start ordering the an-
tecedents of the rule to be qualified by their im-
purity level. Let us suppose that the ordered an-
tecedents of R are:

R : C ← Ant1 ∧Ant2 ∧ . . . ∧Antn. (21)

This means that:

IL(C ← Ant1) ≤ . . . ≤ IL(C ← Antn). (22)

Hence, the first step of the qualification process
starts with an initial empty set of descriptions and
progressively adds partial descriptions of the orig-
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Function Qualify (Rule, Examples) : SetOfRules
RuleList = ∅, class = ClassOf (Rule)

/* We order the antecedents of Rule attending to their Impurity Level */

SortedListOfAntecedents = SortByIL (BodyOf (Rule), Examples)
Body = True

repeat/* First step */

Body = Body ∧ Pop (SortedListOfAntecedents)
p = SuccessProb (’class ← Body’, Examples)

if p ≥ Threshold then

RuleList = InsertByIL (’class ← Body’, RuleList, Examples)
end if

until p = 1 ∨ SortedListOfAntecedents = ∅
Rbest = First (RuleList)

/* Recall that RuleList was ordered by the Impurity Level of rules */

let Body = A1 ∧A2 ∧ . . . ∧Ak ∧Ak+1 be Rbest’s body
pbest=SuccessProb (Rbest, Examples)

if k≥2 then/* Second step */

for i = k downto 1 do
TentativeBody = AllBut (Ai, Body)

if SuccessProb (’class←TentativeBody’, Examples) > pbest then

RuleList = InsertByIL (’class ← TentativeBody’,RuleList,Examples)
Body = TentativeBody

end if

end for
end if

Rbest = First (RuleList) /* Notice that RuleList could have changed */

ILbest=ImpurityLevel (ILbest, Examples)
return {R: R ∈ RuleList ∧ ImpurityLevel (R,Examples) ≤ ILbest+10 }

Algorithm 1. Qualification pseudo-code. This algorithm implements the pruning of the rule antecedents according
to the impurity level, returning a set of possible optimized versions.

inal rule being qualified. These descriptions are of
the form:

Ri : C ← Ant1 ∧ . . . ∧Anti (23)

where i = 1 . . . n. Only those descriptions with
a success probability higher than an acceptance
threshold are saved. Furthermore, if a partial de-
scription with no errors is found, no more de-
scriptions are added. The way these descriptions
are constructed looks like Ripper’s rule growing
process, which starts from an empty conjunction
of antecedents and repeatedly adds the condition
that maximizes an information gain measure. The
difference, however, is that at each iteration Rip-
per replaces the previous description of the rule
with a new version having one more condition,
while IL-rules saves every partial description un-
til the iterative process finishes, which yields, in
general, a set of rules instead of just one rule.

Once we have a set of partial descriptions, the
second step consists in selecting the best rule,
namely Rbest, to add more partial descriptions by
greedily deleting one antecedent after the other,

starting at the penultimate. At every iteration the
new partial description is constructed by eliminat-
ing the corresponding antecedent in the previously
accepted partial description; only those descrip-
tions with a success probability higher than that
of Rbest will be accepted. This part of the quali-
fication process is also similar to the rule pruning
used in Ripper, but again we add several pruned
versions of Rbest to the rule set, while Ripper re-
places the grown rule with its pruned version.

Additionally, two noticeable differences between
IL-rules and Cohen’s algorithm are:

– Ripper splits the training data set into two
partitions, one used for rule growing and the
other for rule pruning.

– Ripper implements a separate-and-conquer
approach, where only those training examples
not covered by previously induced rules are
used to induce a new rule.

Finally, we return a subset of descriptions fil-
tered from all the possibilities considered so far.
The qualified subset is composed of the rule
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:D5 Ant Ant Ant1 2 4C
:D6 Ant Ant1 4C

3 C Ant Ant Ant 3:D
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. . .

C ...antecedents...
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Figure 2. Qualification process. Suppose R3 has its an-

tecedents ordered and is going to be qualified. The first step

generates four possible descriptions: the candidates. If all
of them surpass the acceptance threshold and D4, which

coincides with R3, is the best, then it is selected to gener-

ate new descriptions by dropping its antecedents from the
penultimate to the first, giving D5 and D6. If both have

a success probability higher than that of D4 then they are

added to the previous set, giving {D1, D2, D3, D4, D5,
D6}. Only the best rule and those with similar impurity

levels will be returned. In this example, these will be {D3,
D4, D5, D6}.

with the lowest impurity level together with those
of similar impurity level (see last step in Algo-
rithm 1). Figure 2 depicts a diagram of a hypo-
thetical example of the qualification process.

5.2. Rule selection: deleting rules

Rule selection is intended to prune the rule set
obtained by the qualification. Taking into account
the fact that rule generation is applied to unpruned
trees and that the qualification process generally
produces more than one description for each pre-
liminary rule, a pruning process is needed to ob-
tain more compact rule sets. Such sets are more
comprehensible and they usually provide more ac-
curate generalizations.

Algorithm 2 depicts the selection algorithm. The
first stage is especially devised to deal with over-
fitting, since it is aimed at detecting and delet-
ing those rules classifying too specific peculiari-
ties of data caused by noisy examples disturbing
the induction process. This task is accomplished
by DeleteNoisyRules, shown in Algorithm 3.
Basically the procedure deletes rules whose suc-
cess probability is lower than a noise threshold,
computed for every problem as follows. We select
those rules whose impurity level is lower (i.e. bet-
ter) than the impurity level of the worst of the best
rules of each class (see Figure 3); then we compute

R1 R2 R3

R6

R8R7

R5R4

Impurity
Threshold

Lower Impurity = Better rules

C1

C2

C3

....

....

....

Higher Impurity = Worse rules

CLASS

Rules used to compute
the noise threshold

Figure 3. The worst of the best rules of each class in this

example is R7, so the noise threshold will be computed from

the error probability of {R1, R2, R4, R5, R7}.

the error probability of this rule set, which is the
sum of incorrectly covered examples divided by the
number of applicable examples. This error prob-
ability has a confidence interval whose midpoint
constitutes the noise threshold.

Once we have deleted the noisy rules, we try to
FindBestRuleSet (see Algorithm 4). This part
of the selection algorithm consists of two phases.
The first phase looks for the best impurity level
threshold, which enables a reduction in size of the
rule set, yielding the same or higher accuracy. For
every possible threshold starting at the highest im-
purity level in the rule set, our process evaluates
the subset containing only those rules with a lower
or equal impurity level, and at least one for ev-
ery class. If there are K different impurity levels,
we select the best of the K − 1 possible subsets in
terms of accuracy.

This is the first time in our rule generation pro-
cess where rules compete to classify examples, and
that they are applied on the basis of a minimum
distance criterion. The next section is devoted to
describe the distance function used in our algo-
rithm.

The second phase when searching for the best
rule set tries to detect and eliminate useless rules
still undeleted in prior steps. The process goes
through the ordered rule set and for each rule,
starting with the worst one, it computes the accu-
racy of the resulting rule set should that rule be
deleted. Only when the accuracy does not decrease
is the rule permanently removed; the accuracy of
the resulting rule set is then considered the new
threshold for subsequent eliminations.

There is a final stage in the rule selection pro-
cess related to the comprehensibility of the result-
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Function Select (RuleSet, Examples) : SetOfRules
RuleSet = DeleteNoisyRules (RuleSet)

RuleSet = FindBestRuleSet (RuleSet, Examples)

if all attributes are symbolic then
RuleSet = AddDefaultRule (RuleSet, Examples)

end if

return (RuleSet)

Algorithm 2. General description of selection function. This returns the final rule set from the rules provided by
qualification.

Function DeleteNoisyRules (RuleSet, Examples) : SetOfRules
/* As a side effect of the qualification process, all rules have some numbers attached:

applicable training examples, those at distance 0;

failed, applicable with different class;
successful, applicable with the same class */

WorseBestImpurityLevel =
Max (Min (ImpurityLevel (R,Examples): R rule of class C): C ∈ Set of classes)

/* Recall that better impurity levels correspond to lower values */

let FailedSum and ApplicableSum be the sums of failed and applicable ex-
amples of rules with Impurity Level lower (better) than WorseBestImpu-

rityLevel
Threshold = Middle point of

ConfidenceInterval (FailedSum/ApplicableSum, ApplicableSum, z)
/* ConfidenceInterval (p, n, z) computes Equation (11) */

return {Rule: Rule ∈ RuleSet ∧ SuccessProb (Rule, Examples) < Threshold}

Algorithm 3. To filter rules that presumably provide from noisy data we use this function.

ing rule set. Whenever all the attributes describ-
ing the training examples have symbolic values, IL-
rule selection is allowed to include a default rule
that will be applied to a given case when no other
rule is at distance zero. To achieve this, our default
rules have no conditions at all, they consist of a
class label like in Formula (12). In data sets with
some continuous attributes, the default rule would
destroy the benefits of the application by means
of a minimal distance criterion, so IL-rules never
includes default rules in these cases.

5.3. Measuring distances

In order to choose the closest rule to an exam-
ple, our distance function must be able to mea-
sure distances from rules to examples. From a ge-
ometrical point of view, a rule r can be seen as a
hyperrectangle in the attribute space representing
r’s antecedents, and we define the distance from
r to an example e as a function of the distances
between their projections. For this purpose we use
a HEOM-like [36] metric defined as:

distance(r, e) =

√√√√ m∑
a=1

difference2
a(ra, ea) (24)

where m is the number of attributes describing
the examples, ra is the condition on attribute a
in rule r and ea is the actual value of attribute a
in example e. For every attribute a, in turn, dif-
ferences are calculated using the normalized Eu-
clidean distance if a takes continuous values, or us-
ing the overlap function (likewise HEOM) if a is a
symbolic attribute.

differencea(ra, ea) =

=
{

overlap(ra, ea), if a is symbolic
n eucl(ra, ea), if a is numeric (25)

The overlap metric [36] yields a difference of 1
when the symbolic value of the attribute is differ-
ent than the value mentioned in the condition of
the rule, and 0 otherwise, that is,

overlap(ra, ea) =
{

0, if ea fulfills ra

1, otherwise (26)

For numerical attributes, rules will have condi-
tions like (a > v1), (a ≤ v2) or (a > v1 ∧ a ≤ v2),
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Function FindBestRuleSet (RuleSet, Examples) : SetOfRules
/* We first gather the list of impurity levels of all available rules. The list will be

sorted from worse (higher) to better (smaller) values */

SortedListOfIL = Sort (ImpurityLevel (Rule, Examples): Rule ⊂ RuleSet)

BestRuleSet = RuleSet

BestSuccesses = Evaluate (BestRuleSet, Examples)
/* Now we test if any other rule set (rules whose impurity levels are better than a

given threshold) can improve the classification accuracy */

for each 2 consecutive values x0 and x1 of SortedListOfIL do

TentativeThreshold = (x0 + x1)/2

TentativeRuleSet =
RulesBetterThan (TentativeThreshold, RuleSet, Examples)

ClassificationSuccesses = Evaluate (TentativeRuleSet, Examples)

if ClassificationSuccesses ≥ BestSuccesses then
BestSuccesses = ClassificationSuccesses

BestRuleSet = TentativeRuleSet

end if
end for

/* Second phase: assume BestRuleSet is ordered from worse to better rules */

for each Rule ∈ BestRuleSet do

TentativeRuleSet = AllBut (Rule, BestRuleSet)

ClassificationSuccesses = Evaluate (TentativeRuleSet, Examples)
if ClassificationSuccesses ≥ BestSuccesses then

BestSuccesses = ClassificationSuccesses

BestRuleSet = TentativeRuleSet
end if

end for
return (BestRuleSet)

Function RulesBetterThan (Threshold, RuleSet, Examples) : SetOfRules
/* We assume that all classes have at least one rule in RuleSet */

List = (Rule ∈ RuleSet : ImpurityLevel (Rule, Examples) < Threshold)

if some class has no rules in List then
List = List ∪ Best rule of the class in RuleSet

end if

List = DeleteRedundantRules (List)
return (List)

Algorithm 4. This is the main function in the selection of a final rule set; it exploits the impurity level features as
well as a distance-based evaluation method.

due to the kind of tests used in the nodes of deci-
sion trees. These conditions can be expressed us-
ing intervals; thus, a ∈ (v1,∞), a ∈ (−∞, v2] and
a ∈ (v1, v2] represent the aforesaid conditions, re-
spectively. With such representation, we define

n eucl(ra, ea) =
{

0, if ea fulfills ra
|ea−va|

4σa
, otherwise

(27)

where va, for a given ea, is the nearest boundary of
the interval used in ra. Differences are normalized
by means of a commonly used large value: four
times the standard deviation, σa, of the observed
attribute values [36].

To completely specify the distance function we
must define how to deal with missing values. If ra

is missing then no particular value of a is required
to apply r, i.e. the value of a makes no difference.
A missing ea means that the value of a is unknown
in example e. In both cases our difference func-
tion will return a value of 0 to make the value of
a have no influence in the distance computation.
RISE [12] deals with missing numerical values in
the exact same way.

6. Experimental results

In this section, we experimentally justify the
goals of the impurity level as a heuristic for learn-
ing concise and accurate classification rules. To
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this end, we report the scores obtained by IL-rules,
the rule generation procedure based on the im-
purity level. We will compare these results with
those obtained with Quinlan’s C4.5-rules (release
8) and with Cohen’s Ripper in terms of accu-
racy and size of the induced knowledge. To close
the section, we discuss the experimental scores of
WRAcc-rules, a system built like our IL-rules, but
using the weighted relative accuracy presented in
Section 3.

The comparison with C4.5-rules is needed since
our system shares an important part of the induc-
tion algorithm with it. Additionally, we included
Ripper in the comparisons reported here due to its
high accuracy and effectiveness for pruning rules.

To carry out the experiments, we choose a well-
known set of 16 problems used by Holte in [15].
These problems were downloaded from the UCI
Machine Learning Repository [3].

Following the recommendations in [19], we used
a 10-fold stratified cross-validation repeated 5
times. The experiments were carried out using
some tools of the MLC++ [18] in order to assure
that the algorithms were run on identical train-
ing and test sets. Table 2 shows the average clas-
sification errors, and the number of rules and an-
tecedents.

When we compare our approach with C4.5-rules,
we observe a slight improvement in average accu-
racy in the collection of datasets used for exper-
iments; in fact it is a difference statistically sig-
nificant, as reported in Table 4A, although the
correlation between the errors of both algorithms
is 0.99, and there are only 9 differences favorable
to IL-rules, and 7 favorable to C4.5-rules. How-
ever, when we compare the size of rule sets, the
differences are clearly significant (see Tables 4B,
and 4C); IL-rules produces about half the number
of rules with half the number of antecedents than
C4.5-rules. On the other hand, IL-rules is slower
than C4.5-rules; on average our system employs
1.55 second per dataset, while C4.5-rules only re-
quires 0.52, nevertheless, the difference is only sta-
tistically significant at a confidence level of 92.67%.

6.1. Hybrid systems: the influence of the tree
generation process

The aim of the next step in our experiments is
to gain insight into the reasons that allows IL-rules
obtain these results with respect to C4.5rules. So,

let us recall that IL-rules generates rules from trees
built using the impurity level for test selection.
Bearing this in mind, a question arises: do the dif-
ferences appear at the stage of tree generation or
later?

To answer this question, we have analyzed the
results achieved just before the decision trees are
transformed into rules, realizing that the treebuild-
ing process based on the impurity level usually in-
duces bigger trees than the process based on the
information gain ratio, although the difference in
accuracy (in favor of IL) is not statistically sig-
nificant. Hence, given that the induced trees are
different, a deeper investigation needs to be done
in order to clarify how much of the success of our
rule generation process depends on the trees. For
this reason, we have experimented with two hybrid
systems consisting of:

– A tree-building process based on the informa-
tion gain ratio followed by an impurity level
based pruning to generate rule sets. We call
this GR tree+IL pruning.

– A tree-building process based on the impurity
level together with an MDL rule generation,
IL tree+MDL.

Table 3 shows the results of these hybrid sys-
tems; the experiment was likewise a ten-fold 5-
times stratified cross- validation carried out under
the same conditions of randomness as the previous
series comparing the “pure” systems.

If we now analyze the results of the hybrid and
pure systems with their stages of tree generation
and rule pruning, we realize that neither the ex-
clusive use of the impurity level in the decision
tree building nor the exclusive use of our prun-
ing mechanism yield significant improvement in
accuracy. However, the best average accuracy is
attained when both ingredients are combined in
IL-rules. Table 4A corroborates this observation,
showing that the differences in accuracy are only
significant among IL-rules and any of the other
systems in the comparison.

On the other hand, when we compare the size of
the knowledge learned (it does not matter whether
this is the number of rules or the number of an-
tecedents, see Tables 4B and 4C), the systems with
an impurity level pruning clearly obtain smaller
sizes. This is especially interesting in the case of
IL-rules since it is also the most accurate in the
comparison.
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Table 2

Experimental results obtained with a 10-fold 5-times strat-

ified cross-validation. For each dataset and algorithm, we
report the average values of: classification errors, number

of rules induced, and number of antecedents of these rules.

IL-rules C4.5-rules Ripper

Dataset Error # Rules # Ant. Error # Rules # Ant. Error # Rules # Ant.

BC 27.63 4.60 7.74 30.84 8.20 17.08 28.54 2.82 5.46

CH 2.10 9.80 36.42 0.97 26.78 99.98 1.36 17.36 69.24

G2 18.31 6.20 11.42 21.87 8.10 21.04 20.06 4.34 9.04

GL 30.57 8.68 26.36 32.22 14.10 50.78 34.21 9.48 26.28

HD 17.73 7.14 17.50 20.98 13.26 35.76 20.36 4.34 10.96

HE 19.33 5.58 15.34 20.43 7.92 20.46 19.78 2.96 5.68

HO 15.82 3.82 10.08 17.45 6.00 11.42 15.11 3.82 8.94

HY 0.99 4.58 10.64 0.78 6.34 13.10 0.81 2.18 3.76

IR 5.07 3.28 4.20 4.40 4.02 6.08 5.20 3.08 5.02

LA 17.80 3.64 7.24 17.00 3.98 5.78 14.87 3.78 6.34

LY 22.85 7.78 14.94 23.25 10.58 23.56 23.21 6.54 14.70

MU 1.52 4.70 3.86 0.03 17.66 26.38 0.00 8.84 20.00

SE 2.25 4.54 13.98 2.35 12.68 41.72 2.33 4.50 15.06

SO 0.00 4.00 4.00 2.90 4.00 5.90 2.10 4.08 6.18

VO 4.78 2.32 4.26 4.37 6.10 13.76 4.27 4.68 4.80

V1 10.71 4.34 11.38 10.16 11.20 29.30 10.89 2.74 14.82

Av. 12.34 5.31 12.46 13.13 10.06 26.38 12.69 5.35 14.14

Table 3

Hybrid systems comparison. 10-fold 5-times stratified cross-validation carried out on identical training and test sets pairs

than the experiments described at Table 2.

GR tree+IL pruning IL tree+MDL

Dataset Error # Rules # Ant. Error # Rules # Ant.

BC 27.35 3.94 6.64 30.11 6.72 12.92

CH 1.88 9.82 36.40 1.17 25.08 98.42

G2 21.12 6.94 15.64 18.68 9.64 25.98

GL 32.04 11.90 37.52 29.47 11.84 40.90

HD 18.09 6.92 16.02 21.89 11.42 30.02

HE 19.84 5.46 14.54 18.46 5.66 12.88

HO 18.05 2.14 2.96 15.38 6.80 13.76

HY 0.83 4.62 12.18 0.97 6.68 14.22

IR 4.80 3.18 4.16 4.67 3.98 5.94

LA 16.93 2.62 5.00 17.20 3.52 4.04

LY 24.89 7.62 14.84 24.97 9.98 21.16

MU 1.11 5.00 5.94 0.01 16.94 26.28

SE 2.26 5.14 16.54 2.31 13.70 42.92

SO 2.90 4.00 5.90 0.00 5.00 7.00

VO 4.87 2.46 4.46 4.96 6.12 14.16

V1 10.56 3.96 9.59 10.95 9.90 25.52

Av. 12.97 5.36 13.02 12.58 9.56 24.76
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Table 4

Tables A, B and C show the average error, number of rules and antecedents under column Avg. The rest of these tables

should be interpreted as follows: a number means that the system in the column has a smaller error, number of rules or
antecedents, respectively, than the system in the corresponding row; the difference is statistically significant and the number is

the confidence level, using a one-tail paired t-test. A label n.s. means that the values compared are not significantly different.

Avg. IL-rules IL-tree+MDL Ripper GR-tree+IL-rules

IL-rules 12.34 · · · · · · · · · · · · · · · · · · · · · · · ·
IL-tree+MDL 12.58 n.s. · · · · · · · · · · · · · · · · · ·
Ripper 12.69 n.s. n.s. · · · · · · · · · · · ·
GR-tree+IL-rules 12.97 97.02% n.s. n.s. · · · · · ·
C4.5-rules 13.13 95.65% n.s. n.s. n.s.

A) Accuracy comparison.

Avg. IL-rules Ripper GR-tree+IL-rules IL-tree+MDL

IL-rules 5.31 · · · · · · · · · · · · · · · · · · · · · · · ·
Ripper 5.35 n.s. · · · · · · · · · · · · · · · · · ·
GR-tree+IL-rules 5.36 n.s. n.s. · · · · · · · · · · · ·
IL-tree+MDL 9.56 99.93% 100.00% 99.92% · · · · · ·
C4.5-rules 10.06 99.95% 100.00% 99.95% n.s.

B) Number of rules comparison.

Avg. IL-rules Ripper GR-tree+IL-rules IL-tree+MDL

IL-rules 12.46 · · · · · · · · · · · · · · · · · · · · · · · ·
GR-tree+IL-rules 13.02 n.s. · · · · · · · · · · · · · · · · · ·
Ripper 14.14 n.s. n.s. · · · · · · · · · · · ·
IL-tree+MDL 24.76 99.64% 99.58% 99.57% · · · · · ·
C4.5-rules 26.38 99.83% 99.80% 99.82% n.s.

C) Number of antecedents comparison.

6.2. Comparison with Ripper

The scores of IL-rules and Ripper, in accuracy
and size of the induced knowledge, are similar (see
Tables 2 and 4). The most obvious difference be-
tween Ripper and IL-rules is that our system uses
a partial matching mechanism or distance-based
evaluation method. The results obtained by IL-
rules and by C4.5-rules, and specially those ob-
tained in the hybrid systems comparison, suggest
that this kind of rule evaluation permits our prun-
ing mechanism to induce fewer rules, since we do
not need to cover all the attribute space. Let us re-
call that one of the stages of our rule selection pro-
cess drops some rules when their covered examples
can be correctly classified by other rules in the sur-
roundings. To analyze this, we have computed how
many examples are not covered by any rule in the
experiments with Holte’s datasets. Table 5 reports

the average percentage of test examples classified
by rules at distance greater than zero, i.e. uncov-
ered examples. In general, our system induces rule
sets that do not cover the whole attribute space
for almost any dataset, except for the MU and SO.

However, when comparing with Ripper, we ob-
serve that Cohen’s algorithm induces nearly the
same number of rules (in average) as IL-rules.
Therefore, the use of partial matching is not the
only way to obtain compact rule sets. The differ-
ences between partial and full matching arise in
datasets whose examples are described mostly by
continuous attributes. Additionally, the conditions
of Ripper rules can be interpreted as regions par-
allel to the axes. Then, both systems have com-
pletely different geometrical tools to separate in
classes the regions of attribute space. Thus, to in-
vestigate the consequences of these facts in terms
of accuracy, we have carried out some additional
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Table 5

Percentage of examples not covered by rules; i.e. examples that must be classified by rules at distances greater than zero.

The average is 8.23%

Dataset BC CH G2 GL HD HE HO HY

Uncov.(%) 11.33 0.74 0.87 18.82 13.44 10.99 21.41 1.55

Dataset IR LA LY MU SE SO VO V1

Uncov.(%) 2.93 9.53 13.83 0.00 2.37 0.00 7.43 16.50

experiments with Ripper and IL-rules, selecting
those problems in the Holte’s collection with con-
tinuous attributes (G2, GL and IR), together with
other datasets downloaded from the UCI reposi-
tory. The results of this comparison are shown in
Table 6, where we have observed that Ripper in-
duces more compact rule sets at the price of ac-
curacy. The results are statistically significant, in
number of rules (in favor of Ripper) and in accu-
racy (in favor of IL-rules), with confidence levels
in a one-tail paired t test of 98.26% and 98.85%,
respectively.

Other dimensions to compare the behaviour of
learning systems are the presence of irrelevant at-
tributes and noise. Therefore, we have made ad-
ditional experimentation to study the behaviour
of IL-rules and Ripper in this environment. For
this purpose we have used a well-known artificial
domain generator, which simulates the status of a
seven LED (Light-Emitting Diodes) display when
representing each of the ten decimal digits. This
generator is able to perturb the correct value of
each attribute with a given probability, as well as
to add irrelevant features to predict the class. We
have used this generator to carry out two different
experiments:

– Noisy attributes: we generated 30 datasets
with 1000 examples each one. For every
dataset, we progressively increased the noise
probability from 0% to 30% for each of the 7
attributes.

– Irrelevant attributes: for a given noise proba-
bility (10%), we generated 30 datasets increas-
ing the number of irrelevant attributes; thus,
the last dataset had 37 attributes: 7 relevant
(although noisy), and 30 irrelevant.

To isolate the effect of irrelevant attributes in
the second experiment we have modified the code
of the led generator to use two different random
generators, one for the seven relevant attributes

and another for the rest. This modification guar-
antees that the values of the relevant attributes are
exactly the same in the 30 datasets. For this pur-
pose we have used the random number generator
called Mersenne Twister [23].

The results of these experiments (five tenfold
stratified cross-validations with every dataset) are
graphically depicted in Figure 4, and suggest that
IL-rules is slightly more robust than Ripper in the
presence of noise and irrelevant attributes.

The reduced average number of rules and an-
tecedents induced by Ripper in the first (noise)
experiment are due to the low number of them in-
duced above the threshold of 23% of noise, where
Ripper induces sometimes even fewer rules than
the number of classes. All differences in accuracy
are statistically significant (> 99.99%) if favor of
IL-rules, as well as the differences in the number
of rules and antecedents for the second experiment
(irrelevant attributes).

6.3. WRAcc-rules

Additional work has been carried out trying to
find out to what extent the impurity level is a key
in the overall performance of our proposed prun-
ing method. For this purpose we built an algo-
rithm on top of the same template used for IL-
rules, but replacing the impurity level with the
weighted relative accuracy mentioned in Section 3,
we call it WRAcc-rules. The average classification
error in Holte’s datasets was 14.34%, far from the
12.34% achieved with IL-rules. On the other hand,
we obtained the lower average number of rules
(3.08) and antecedents (4.76) with this measure,
which is probably due to its bias to penalize too
specific rules. These results corroborate those ob-
tained by Todorovski et al. in [34], which conclude
that WRAcc reduces considerably the size of the
rule sets at the expense of accuracy.
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Figure 4. Ripper vs. IL-rules in LED problems. Left column shows the performance with different percentage of noisy data.
The effect of adding irrelevant attributes, with a fixed 10% of noise, is depicted in the right column. From top to bottom,
these graphics show the evolution of classification errors, number of rules, and number of antecedents, all with their trend

lines.
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Table 6

Cross validation scores reached by Ripper and IL-rules in a collection of datasets described only by continuous attributes.

IL-rules Ripper

Dataset Error # Rules # Ant. Error # Rules # Ant.

BREAST (Winsconsin) 3.83 4.98 10.60 4.41 6.00 15.10

G2 18.31 6.20 11.42 20.06 4.34 9.04

GL 30.57 8.68 26.36 34.21 9.48 26.28

HEART 18.44 8.18 21.42 19.41 4.18 10.14

IONOSFERE 10.60 5.98 13.26 10.88 5.22 10.66

IR 5.07 3.28 4.20 5.20 3.08 5.02

PIMA 25.94 8.74 19.64 24.72 3.64 9.76

VEHICLE 29.50 19.84 68.44 32.66 14.50 48.62

WAVEFORM-21 20.08 36.70 173.02 20.50 27.70 156.04

WAVEFORM-40 19.79 31.06 143.94 20.88 30.00 158.86

WINE 5.29 4.38 9.04 6.75 4.38 9.10

Av. 17.04 12.55 45.58 18.15 10.23 41.69

7. Conclusions

We have presented a heuristic measure that tries
to capture the classification quality of a rule when
it is applied by means of a minimum-distance cri-
terion. We call it impurity level, and it was used
in [9,10,20,21,27,28,29] to build different machine
learning algorithms with the common property of
producing a very small set of accurate rules. In
this paper we have studied the possibility of us-
ing the impurity level to drive both a decision tree
generation algorithm, and a pruning method to in-
duce classification rule sets. For this purpose, we
built a learning algorithm, IL-rules, entirely based
on our measure using the structure of Quinlan’s
C4.5-rules.

The experiments reported in the previous sec-
tion endorse the ability of our pruning method to
obtain more concise rule sets than C4.5-rules. Fur-
thermore, these rule sets are also slightly more ac-
curate in the collection of Holte’s datasets used for
experimentation.

In fact, the scores of IL-rules are quite similar
to those reached by Cohen’s Ripper. The differ-
ences between our algorithm and Ripper can be
explained by the use of partial (IL-rules) and full
matching (Ripper). We have illustrated this point
experimentally, comparing the accuracy and size
of rule sets induced from datasets whose examples
are described by continuous attributes. Addition-
ally, we studied the performance of both systems
with respect to the presence of noisy data and ir-
relevant attributes.
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