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Abstract. Model checking is a powerful automated technique mainly used for the verification of 
properties of reactive systems. In practice, model checkers are limited due to the state explosion 
problem. Modular verification based on the assume-guarantee paradigm mitigates this problem using 
a “divide and conquer” technique. Unfortunately, this approach is not automated, for the reason that 
the user must specify the environment model. In this paper, a novel technique is presented for 
automatically generating component assumptions based on the behaviour of the environment (the 
remainder of components of the systems). In a first phase, the environment of the component is 
computed using state space exploration techniques, and then the assumptions are generated as 
association rules of the component environment interface. This approach presents a number of 
advantages. Firstly, user assistance to specify assumptions is not necessary and assumption discharge 
is avoided. Secondly, the component assumptions are more restrictive and real, and therefore reduce 
the resources needed by the model checker. The technique is applied to the specification of a steam 
boiler system.  

Keywords : assume-guarantee reasoning, model checking, modular verification, component 
verification. 

1 Introduction 

Model checkers are powerful and useful automated tools for the verification of finite state systems 
(Clarke et al., 2000). Given a property and a model of the system, the model checker performs an 
exhaustive state space exploration of the system and returns true if the property holds in the system or a 
counterexample (a scenario illustrating the violation of the property) otherwise. These techniques have 
traditionally been used in the verification of hardware devices. Recently, however, many researchers have 
started to apply model-checking techniques to software systems, ranging from specifications (Sreemani 
and Atlee, 1996; Chan et al., 1998) to source code (Chaki et al., 2004). However, the main drawback of 
these tools is the state space explosion problem: in general, the size of the state space that the model 
checker must handle grows exponentially with the number of processes and states that constitute it. This 
is the case of reactive systems, since they are composed of many parallel, concurrent processes and they 
maintain continuous interaction with the environment. By introducing techniques such as partial order 
reductions (Peled, 1994) and symbolic representation of states and transitions (McMillan, 1993) into 
model checking procedures, systems with large state spaces can be verified. However, these techniques 
still present limitations, and many realistic systems are not tractable.  

A promising natural approach to avoid the state explosion problem is to use “divide and conquer” 
techniques: the system is broken down into components and each of these is verified separately from the 
rest. Thus, the problem of verification of the global system is downsized to the analysis of its individual 
components (compositional or modular verification). However, there are several issues that make using 
modular verification difficult. First, deciding how to partition the system is not trivial and can have a 
significant impact on the resources needed for verification (Cobleigh et al, 2004). Second, when model 
checking a component in isolation, a model of the environment interacting with the component must be 
introduced. If this environment it is not supplied, the “universal environment” or the “most general 
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environment” is considered: i.e. the component can receive and send any event and in any order from the 
environment. Obviously, this approach is not real because components are designed to operate in a 
concrete environment. This approach is considered pessimistic (Alur et al., 1998; Giannakopoulou et al., 
2005). McMillan (McMillan, 2000) calls this problem the environment problem.  

This paper focuses on the second problem employing an assume-guarantee framework (Jones, 1983; 
Pnueli, 1984; Abadi and Lamport, 1995). This style of reasoning addresses the environment problem by 
specifying the environment using assumptions that are manually provided by the engineer. The property 
is first verified on the component with the assumptions, and then the environment must guarantee these 
assumptions, i.e. they must be verified on the remaining components of the system (the environment).  

Although modular verification based on assume-guarantee rules has been extensively studied, its 
application to large-scale problems is scarce (Shankar, 1997) due to the fact that it partly needs user 
guidance. In general, the assumptions are incorporated into the component based on user knowledge and 
the feedback obtained from the counterexamples (Giannakopoulou et al., 2005). Firstly, the component is 
checked without assumptions (with the universal environment). If the model checker returns an 
unrealistic counterexample or false positive, the user makes a number of attempts to define a set of 
appropriate assumptions that eliminate the false positive and which in turn reflect an adequate behaviour 
of the environment.  

This approach has various weaknesses. Firstly, although verification using the model checker is fully 
automatic, modular verification using the aforementioned process is not. The engineer must provide the 
assumptions, which is a difficult task, and moreover, these assumptions must be discharged onto the 
environment. Secondly, the process is error-prone because manual assumptions cannot sufficiently restrict 
the environment and thus produce false positives. In short, the approach is time-consuming in human 
effort and computational resources because of the manual specification of assumptions and their 
discharge onto the environment. 

In this paper, we develop a novel technique for providing automated support to modular verification 
based on the assume-guarantee reasoning of software specifications. Given a component P to verify, the 
state space of the environment is computed in the Composition step and the set of all possible 
configurations of the environment E is obtained. In a second step (Extraction), event relations between 
the component and its environment (assumptions) are computed using association rules. The component 
is then verified along wi th the assumptions obtained by a model checker. By applying this process to each 
component of the system, the system can be verified in a modular automatic fashion, substantially 
reducing the state space explosion and side-steeping user guidance (the user will only be required to 
partition the systems into components and local properties). Fig. 1 illustrates the approach. 

 

1) Composition 

Environment E 

Assumptions 

Model Checker 
True 

False + 
Counterexample 

2) Exraction 

Component P Property 

 
Fig. 1: Assumption Generation.  

The technique is applied to software specifications modeled as state transition systems synchronized 
by events whose semantics are based on two time levels: external interactions or macrosteps and internal 
interactions or microsteps (Harel et al., 1987; Leveson et al., 1994). 

The rest of the article is organized as follows. We present the underlying computational model in 
Section 2. The Composition and Extraction steps of our approach are presented in detail in Sections 3 and 
4, respectively. Section 5 is given over to showing the results obtained with the application of the method 
to various components in a steam boiler control program. These results and other topics relative to the 
applicability of the approach are discussed in Section 6. Related work is outlined in Section 7 and we 
present our conclusions in Section 8. 
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2 Background 

In this section, we describe the syntactic and semantic framework of the system on which our approach 
is based and review the foundations of modular verification based on assume-guarantee reasoning. 

We use finite state machines (FSMs) to model the individual processes of the system. An FSM 
contains the states that a process may reach and the transitions that it may perform. Formally, an FSM is a 
5-tuple (Σ,so,I,O,δ), where Σ is the set of states, so∈Σ is the initial state, I and O are the set of input and 
output events of the process, respectively, and δ⊆ Σ×I×O×Σ is the transition relation between states of the 
FSM. A transition τ=(s,c,a,s’)∈δ  (s→a

cs’) means that the process executes the transition when it receives 
the input event c, changing to state s’ and producing the set of events a⊂O. Each FSM implicitly has a 
control state π, which represents the local state of the process (initially π=so). A transition τ=(s,c,a,s’) is 
enabled if π=s and the evaluation of input events condition c is true. The set of enabled transitions in a 
state s is denoted by enabled(s). 

2.1 Composition of processes: synchronous reactive systems 

An FSM captures the basic behaviour of a process. However, a component in a reactive system is 
formed by a set of processes interacting in parallel. We will use Synchronous Reactive Systems (SRS) to 
model the behaviour of communicating components in a concurrent, reactive system. Intuitively, an SRS 
is a set of FSMs interacting with the environment over a set of external input and output events. The 
events that internally communicate FSMs are named internal events. Fig. 2 shows a simple system 
modelled as an SRS composed of two processes. P1 receives two external input events from the 
environment, INIT and FINISH, and sends the internal events Start and Stop to P2. Depending on its local 
state, P2 produces the external output events OPEN and CLOSE. 
 

O F F  

O N  

INIT /  S tar t  F I N I S H  /  S t o p  

P 1  P 2  

C L O S E D 

O P E N E D  

 S t a r t  /  O P E N  S t o p  /  C L O S E  

 
Fig. 2: An SRS example  

To describe the behaviour of an SRS, we adopt the step-based semantics described in the RSML 
language (Leveson et al., 1994) and in the statecharts tool STATEMATE in asynchronous mode (Harel 
and Naamad, 1996). A macrostep starts when external input events arrive. Internally, a macrostep is 
formed by a chain of microsteps. At each of these microsteps, the system reacts to the input events 
executing locally enabled transitions in the FSMs and producing external output events and internal 
events that may initiate another microstep. The macrostep is completed when no more transitions can be 
executed. At this point, the output events generated during the macrostep are sent to the environment at 
the same time. Fig. 3 depicts these concepts. 
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Input Events Output Events  

Macro Step 

No environment change  

Micro Steps 

Environment change Environment change  
Fig. 3: Macrosteps and microsteps  

For example, in the SRS in Fig. 2, supposing that both processes P1 and P2 are in their initial states, 
the environment produces the INIT external input event that starts a macrostep. The process P1 executes 
the local transition from OFF to ON and generates the internal event Start (first microstep), which 
initiates a second microstep executing the transition from CLOSED to OPENED in P2. No more 
transitions can be executed in this configuration and the macrostep finishes, sending the (external) output 
event OPEN to the environment.  

More specifically, an SRS Φ is a 5-tuple (∆,GE,IE,OE,→m) where ∆ is the set of FSMs, GE is the set 
of internal events that communicate each FSM, IE and OE are the external input and output events, 
respectively, and →m is the transition relation that describes the semantics outlined above and which we 
will define below. The initial state of an SRS is made up of the set of initial states of the FSMs. A (global) 
state is composed of the control states of the FSMs. We denote by C=(S,G,I,O) a configuration of the 
SRS, where S is the state of the SRS and G, I and O are the values of internal, external input and external 
output events of the system, respectively. The set of all possible configurations of Φ is denoted by 
Global(Φ). We provide the semantics for Φ on the basis of the definition of the transition relation 
→m⊆Global(Φ)×Global(Φ), using the following inference rules. 

Start Rule: This represents the commencement of the macrostep and the first microstep execution. 
The environment changes and new external input events enter the system. It applies to each FSM Mi if it 
has an enabled transition τ in a state si of the initial configuration of the macrostep. If Mi has multiple 
enabled transitions in its configuration, one of them is taken non-deterministically. If various FSMs have 
enabled transitions in the initial configuration of the macrostep, then each of them is executed 
simultaneously: 
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where  G1={e∈ai/e∈GE} and O1={e∈ai/e∈OE} are the internal and external output events, 
respectively, generated as a consequence of the first microstep execution.  

Advance Rule: This represents the execution of a microstep k (k=1) as a consequence of the internal 
events Gk-1∈GE generated in the previous microstep. As in the start rule, if various FSMs have enabled 
transitions, each of these is executed simultaneously: 
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Stuttering Rule: If an FSM Mi is a state in the current configuration of the microstep and it does not 
have any enabled transitions, then it consumes events but it does not produce events: 
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Stop Rule: This represents the end of the macrostep. Whereas the above rules apply to each FSM and 
show the SRS execution at a microstep level, this rule applies to the SRS and defines when the macrostep 
concludes. When every process can only execute the stuttering rule, the SRS has reached a stable 
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configuration and the macrostep ends, sending to the environment the output events O1∪O2∪…∪On 
produced in the chain of microsteps.  

2.2 Synchronous reactive components 

In order to perform modular verification, the global system must be broken down into components so 
that each one may be verified separately. From this point of view, a component is formed by a set of 
FSMs and is modeled as an SRS. However, when we perform local verifications in the components, 
internal events that communicate them must be treated differently from the rest because they can take any 
value in each microstep. We define a Synchronous Reactive Component (or component for short) as an 
SRS in which the set of internal events are divided into internal events of the component Γ⊂GE, input 
interface events Ψ⊂GE (internal events produced by other components) and output interface events 
Ω⊂GE (internal events used by other components). We denote by C=(S,G,IntI,IntO,I,O) the 
configuration of the component, where G, IntI and IntO are the values of the internal (Γ), the input (Ψ) 
and output interface events (Ω), respectively. Since a microstep can start when an input interface event 
reaches the component, the advance rule of an SRS must be slightly modified here to define the execution 
of a microstep in a component: 
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The rule states that a microstep k can be activated by either the values of the internal events Gk-1 
generated in the preceding microstep or the values of the input interface events IntIk-1 received in the 
preceding microstep. The remaining rules of the SRS are the same and can be directly translated to the 
component. 

2.3 Assume-guarantee modular verification 

As mentioned in the introduction, the main problem of automatic tools (i.e. model checkers) in the 
verification of realistic system is the state space explosion problem. A natural approach to solving this 
problem is to divide the system into components and to perform local verifications on separate 
components and then to deduce a number of global properties for the whole system (compositional or 
modular verification) (de Roever et al., 2001). 

Assume-guarantee reasoning handles modular verification using environment component assumptions 
that the environment must subsequently guarantee. In this paper, we use Abadi and Lamport’s 
compositional theorem (Abadi and Lamport, 1995): if P and Q are the components of the global system S, 
we can perform the verification of local properties ϕP and ϕQ for each component assuming some kind of 
behaviour for the other components. For instance, we can prove that ϕQ is true for component Q assuming 
a behaviour φP of the component P. Next, we must verify that the behaviour φP assumed for P is true 
(assumption discharge or commitment). If this process is applied in this way to property ϕP, we may 
conclude that (ϕP ∧ ϕQ) is true for the whole system S. 

In the context of the above computational model, the assumptions specified for a component are 
related to its input interface. For instance, suppose the system S is formed by two components P and Q 
and their respective input interface events are ΨP={e1, e2} and ΨQ={e3}. The assumptions for the 
component P will be formulated in terms of the events in ΨP and for the component Q in terms of the 
event in ΨQ, and will be specified using a first order logic formula. For example, the assumption “when e1 

occurs, e2 does not occur” relative to the component P can be encoded as (!(e1=1)∧( e2=0)). 

3 Composition step 

The goal of this stage is to obtain the set of all the configurations of the environment to be used in the 
next step for generating assumptions (Section 4).  
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Let S=[E||P] be the whole system, where P is the component to verify and E is the component that 
represents its environment. This step computes the set Global’(E)=Global(E)↑(ΩE∩ΨP), where the 
operator ↑ erases from Global(E) those references to output interface events of the environment E (ΩE) 
that are not part of the input interface with component P (ΨP). Using a reachability depth-first search  
algorithm and starting out from the initial configuration of the component E with each possible value in 
the input events, new configurations are generated using the microstep operator →m rules defined in 
Section 2.1  and Section 2.2. The process continues with each new reachable state and concludes when all 
the configurations are stable (no more microsteps can be executed from reachable states). Because the 
microstep operator (→m) is applied to each new microstep configuration generated, the approach 
contemplates non-deterministic situations, guaranteeing that all configurations are explored. 

Fig. 4 summarizes this approach. The shaded nodes represent stable configurations (reachable states) 
and the rest are the configurations corresponding to a microstep. The arrows from a stable configuration 
represent the execution of a microstep with a combination of input event values using the start rule. The 
arrows that connect configurations represent the execution of microsteps using the start or advance rule, 
and the dashed arrows execution using the stuttering rule. The path between two stable configurations 
defines a macrostep. The graph is computed from top to bottom and then from left to right, so that the 
different macrosteps are constructed in their entirety. Fig. 5 shows an example for the component in Fig. 
2.  
 

... 

.....   
Fig.4: General Strategy to Compute Configurations 

 

OFF , CLOSED 

ON , CLOSED 

ON , OPENED 

OFF,OPENED 

Start 

FINISH 

Stop 

INIT 

 
Fig. 5: Sample Reachability Graph for Fig. 2 

3.1 Open systems  

The previous basic composition step considers the environment to be a closed component: the 
macrosteps are constructed on the basis of the set of values of the input events by means of a microstep 
sequence (Fig. 4). In a compositional framework, however, the components must be considered as open 
systems that interact with other components and with the (physical) environment. Hence, the reachability 
graph for each component of the system may be independently derived from the complete system (Graf et 
al., 1996; Cheung and Kramer, 1996). In terms of the semantics defined for a component (Section 2.2), 
this means that events from other components may arrive at any microstep due to the fact that in the 
global system these events are internal events. Thus, we do not alter the semantics of the complete system 
when we consider a system component in isolation.  

To illustrate how these observations affect the process of configuration generation, consider once more 
the component in Fig. 2 (with processes P1 and P2), subsequently modified in Fig. 6 with an input 
interface event Failure from another component (not shown in the figure) to process P2 and its 
reachability graph (Fig. 7). In order to compute all the configurations of the component, we must take into 
account the  fact that the event Failure may be present at any microstep. This produces new microstep 
configurations, as shown in the graph: a microstep corresponding to the execution of transition from the 
state <ON,OPENED> to <ON,CLOSED>, another from <OFF,OPENED> to <OFF,CLOSED> and the 
stuttering transitions in each state. 
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Fig. 6: An open component example  with two processes 
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Fig. 7: Reachability graph for Fig. 6 

The computation of configurations in open systems increments by one the length of all macrosteps and 
a new microstep is needed to decide whether it enables a transition. For example, consider the microstep 
configuration <OFF,CLOSED> corresponding to the ending of the macrostep in Fig. 7. Implicitly, a 
microstep exits from <OFF,CLOSED> to itself to check whether new transitions are enabled as a 
consequence of the appearance of the event Failure in the previous microstep. The new microstep is 
denominated a stabilization microstep because the transition is not executed, but rather is used to control 
the macrostep completion.  

3.2 Microstep counter 

In order to be able to reason about the instant at which the environment reacts and use this information 
in the assumptions, we made the microsteps visible. The aim is to make it possible to generate 
assumptions in the Extraction step about concrete and explicit microsteps for all macrosteps: for example, 
“in microstep 1, the event OPEN is always 0”. This explicit reference to the microsteps will enable us to 
obtain a more detailed and real view of the behaviour of the environment and hence a better performance 
of the model checker because it limits the values of the interface events. 

We include a new variable mS associated with each configuration that performs the function of a 
microstep counter: it is incremented in each microstep and reset at the beginning of a new macrostep 
(stable configuration) and the initial configuration. That is, if C and C’ are the configurations at the 
beginning and end of the microstep, respectively, we have (C,mS)→m(C’,mS+1). For example, in Fig. 7 
the configuration related to the transition from <OFF,CLOSED> to <ON,CLOSED> as a consequence of 
the appearance of external input event INIT is the following: 

 
(<ON;CLOSED>, Start=1;Stop=0 ,Failure=0; ∅, INIT=0;FINISH=0, OPEN=0;CLOSE=0, mS=1) 

The configuration reflects the first microstep execution by means of the microstep counter (mS=1) and 
the internal event Start=1. The rest of events take value 0. 

Since we think about the components as open systems, so as to be able to reason about the 
environment, compilation of the synchronous component cannot be carried out prior to its analysis in 
order to eliminate the microsteps and hence obtain a more compact state space (as in (Jajadeesan et al., 
1996)). This explicit representation of all microsteps allows us to state the adequate assumptions and 
prove them without any distortion of the semantics of the global model.  

Microstep visibility has been used in (Chan et al., 2001), though for different purposes that are not 
directly applicable to our approach. These authors use a microstep counter to optimise the analysis of 
statechart-like specifications, making every macrostep equal in length to prune backward searches in 
BBD-based model checking.  

3.3 Microstep short-circuiting 

Microstep visibility (the microstep counter) and the environment model as an open system could 
produce a similar effect to the state space explosion, which we call the configuration explosion. 
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To alleviate this potential problem, we take into account the following consideration. Given that the 
state space of configurations is computed sequentially following a depth-first search strategy for each 
reachable state, if a microstep configuration has already computed, the generation of the remaining chain 
of the microstep is interrupted from this configuration (microstep short-circuiting), due to the remainder 
of the microstep being equal to that computed in some previous macrostep. Fig. 8 illustrates this idea, first 
with two macrosteps without microstep short-circuiting and then with the resulting macrosteps after 
microstep short-circuiting optimisation. This substantially reduces the size of the state space of 
configurations. Obviously, the effect may be greater when the system executes a higher number of 
microsteps. 
 

C1 

C2 

C3 

C0 

C2 

C3 

Macrostep 1 Macrostep 2 

C4 C4 

 

 

C1 

C2 

C3 

C0 

C4 

Short-circuiting 

 
Macrostep 1: C1 → C2 → C3 → C4 
Macrostep 2 : C0 → C2 → C3 → C4 

Macrostep 1: C1 → C2 → C3 → C4 
Macrostep 2 : C0 → C2  

Fig. 8: Calculated macrostep without (left) and with (right) microstep short-circuiting 

The decision as to when to apply microstep short-circuiting is made in each microstep by comparing 
the generated microstep configuration and the previously computed configurations. To improve the 
configuration comparison process, we compare enabled transitions in a microstep configuration with a 
table indexed by the microstep counter, where each record stores the set of enabled transitions per 
microstep. Thus, when the enabled transitions are computed for a microstep, these are compared with the 
transitions stored in the record corresponding to the microstep. If both sets are equal, the microstep is 
short-circuited. Because all transitions are compared, and hence explored, all possible different 
configurations are also computed. In consequence, the microstep short-circuiting does not affect the non-
determinism.  

4 Extraction step 

The goal of this step is build the assumptions from the sets of configurations of a component computed 
in the previous stage. To do so, we will compute the assumptions as a set of association rules, adapting 
the Apriori algorithm (Agrawal and Srikant, 1994) used in the discovering of association rules. We will 
briefly describe this algorithm, to then go on to spell out the adaptations made for our purposes. 

4.1 Association rules and the Apriori algorithm 

The problem of discovering association rules between attributes in databases (in general, sets of 
transactions) was introduced in (Agrawal et al, 1993) and is a typical problem in knowledge discovery in 
databases. Given a set of transactions, in which each transaction is a set of items, an association rule is an 
implication with the form X⇒Y, where X and Y are sets of items. Two notions for establishing the 
strength of a rule are defined: the confidence of a rule is the fraction of transactions containing X that also 
contain Y, the support is the fraction of transactions that contain both X and Y. The goal is to find all the 
associations from large sets of transactions that satisfy user-specified minimum support (minsup) and 
user-specified minimum confidence (minconf). The initial idea is based on an itemset approach and is as 
follows. In an initial stage, all the combinations of items that have fractional transaction support above 
minsup are generated. All such combinations are denominated large itemsets. Next, given a large itemset 
S, generate rules of the type S-X⇒Y for each X⊂S. Once these rules are generated, only those rules above 
a minconf may be retained.  
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A fast and popular algorithm for determining large itemsets called Apriori is presented in (Agrawal 
and Srikant, 1994). This algorithm includes a number of passes over the database and each one finds the 
set of frequent itemsets that satisfy the minimum support requirement.  

4.2 Assumptions as association rules 

Let S=[E||P] be the system and assume that we are model checking the component P. The process to 
automatically generate assumptions of the component P from the environment E is a problem that can be 
re-formulated on the basis of the discovering association rules, considering as the set of transactions the 
set of all possible configurations of E computed in the composition phase, Global’(E), and the set 
(ΩE∩ΨP)∪{mS} as the items, where ΩE∩ΨP is the set of output interface events of the environment E 
that communicates with the component P and mS is the microstep counter. An assumption for P is an 
association rule between its input interface events and the instant (microstep), whichever occurs. The 
process to automatically derive assumptions can be stated as: 
• Large Eventsets: Determine in Global’(E) the set of events (eventsets) with support greater than 

minsup (large eventsets). We can do this using the Apriori algorithm. 
• Assumption Generation: Use the large eventsets to generate association rules with a confidence 

factor greater than minconf. These rules are the assumptions for the component P. 
 
The assumptions, as we conceive them, must explain behaviours that are ever-present in the 

environment, so that the minimum confidence factor (minconf) must be always 100%. Similarly, the 
minimum support (minsup) in an assumption is not significant; even though an assumption is obtained 
only for one configuration in the component, the assumption is valid. Thus, erasing minconf and minsup 
enables full automation and simplifies the assumption generation process. 

The above considerations have an important effect on the process of modular verification. If we obtain 
assumptions with respect to component Q from component P, it is not necessary to verify the obtained 
assumptions (assumption discharge) in P since these assumptions are generated as association rules with a 
confidence factor of 100%. That is, the obtained assumptions are guaranteed by their own generation 
method. We explain this process in detail in the next section. 

4.3 Assumption generation 

According to the method presented in the previous section, the first stage consists in computing the 
large eventsets, or sets of events with support above a threshold (minsup). However, we have shown that 
this factor is not significant in our process of assumption generation. Thus, all sets of events that occur in 
a configuration are large eventsets. A direct consequence of this consideration permits us to determine the 
large eventsets in just one pass over the set of configurations, thus avoiding the multiple explorations of 
the original algorithm (Agrawal and Srikant, 1994). Moreover, and more importantly, the counting of 
support in each eventset can be performed on the fly with the computation of the configurations. These 
ideas are summarized in the next algorithm. 

 
Input: A configuration Cj / (Ci,Cj) ∈→m for some Ci ∈ Global’(E) 
Output: Set Hj of eventsets (large eventsets) in Cj 
Procedure: 

Hj = SubSets (Cj)                                    //eventsets in the configuration Cj 
∀hk ∈ Hj, hk.support = hk.support + 1    //update eventsets support 

 

When a new configuration is created in Global’(E), the set of all possible subsets of events in this 
configuration Cj is computed (SubSets (Cj)). The SubSets(Cj) function can be defined as the power set of 
Cj excluding the empty set. At the same time, the corresponding support for each eventset is incremented. 
By applying the algorithm to each generated configuration in Global’(E), at the end of the process we 
have the set of eventsets (and its supports). To illustrate this approach, Table 1(a) displays the set of 
configurations of the component in Fig. 2, considering OPEN and CLOSE events as the output interface 
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events. The set of eventsets corresponding to configuration 2 (with their respective cumulative support) is 
given in Table 1(b). 

Table 1 (a) Configurations of the component in Fig.2      (b) Eventsets for the configuration 2 (H2) 

 Configuration OPEN CLOSE mS  EventSets Support (Cum.) 

 1) OFF,CLOSED 0 0 0  OPEN=0 5 
 2) ON,CLOSED 0 0 1  CLOSE=0 5 
 3) ON,OPENED 1 0 2  mS=1 2 
 4) ON,OPENED 0 0 0  OPEN=0 CLOSE=0 4 
 5) OFF,OPENED 0 0 1  OPEN=0 mS=1 2 
 6) OFF,CLOSED 0 1 2  CLOSE=0 mS = 1 2 
      OPEN = 0 CLOSE = 0 mS=1 2 

 
A similar observation can be made with respect to assumption generation. Since the confidence factor 

in an assumption is 100%, a necessary condition for two eventsets to form an assumption is that both have 
the same support. We thus avoid computation of the ratios between the support of eventsets and the test 
with minconf and the multiple phases to obtain rules with 1, 2...n events in the consequent (Section 4.1). 
The algorithm that produces assumptions starting from the set of eventsets is shown next. 

 
Input: Set of eventsets H of the environment E 
Output: Assumptions from E 
Procedure: 

∀hi,hj∈H, i≠j, | hi|≥2 
 if ( (hi.support = hj.support) ∧ (hj ⊂ hi) ) 
  generate assumption hj ⇒ (hi – hj) 

 
Table 2 displays the generated assumptions related to the first microstep obtained by applying the 

above algorithm to the set of eventsets in Table 1(b) . 

Table 2 Generated Assumptions from the eventsets in Table 1(b) 

Assumptions 

mS=1 ⇒ OPEN=0 
mS=1 ⇒ CLOSE=0 
mS=1 ⇒ OPEN = 0 CLOSE=0 

4.4 Macrostep normalization 

In general, the macrosteps computed in a component do not have the same number of microsteps 
(macrostep length). This situation can affect the assumptions generated, introducing false behaviours in 
the environment. Suppose that the component environment executes two macrosteps with a length of two 
and three microsteps, respectively, and the goal is to observe the behaviour of an output interface event a. 
Suppose also that the set of computed configurations is: 

Macrostep 1: (mS=1,a=0) → (mS=2,a=1) 
Macrostep 2: (mS=1,a=1) → (mS=2,a=0) → (mS=3,a=1) 
Direct application of the assumption generation algorithm produces the assumption mS=3⇒a=1, which 

indicates that in the third microstep, the environment produces the event a for all the macrosteps. 
However, it can easily be observed that this assumption is not real, because in the first macrostep, the 
event a does not take any value in the third microstep.  

The way to solve this problem is to impose the condition that all the computed macrosteps have the 
same length. We call this process macrostep normalization and it consists in generating stuttering 
configurations to fill the affected macrostep. The events in the stuttering configurations have the value 0, 
but the microstep counter has the actual value corresponding to the microstep. In the above example, the 
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first macrostep normalization consists in adding a stuttering configuration for the third microstep 
(mS=3,a=0). With this configuration in the first macrostep, the false assumption mS=3⇒ a=1 is not 
obtained. 

5 Application 

In order to evaluate the approach and algorithms presented in this paper, we applied them to a non-
trivial case study frequently used in the formal methods literature in general, and in that of formal 
verification in particular, namely the steam boiler specification problem (Abrial et al., 1996). We first 
present the set of tools used in our experimentation to then go on to describe the case study and the 
components into which the system has been broken down. The automatically generated assumptions are 
then described in detail. Finally, the analysis and results of modular verification of components with these 
assumptions are given and compared with the verification without assumptions and with manual 
assumptions. 

5.1 Experimentation framework  

The basic common integrated environment for specification and modular verification that we use is 
specified in (Tuya et al, 1997a). We complete this below, including the new support for the automatic 
assumptions explained in this paper (Fig. 9).  
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Fig. 9: Tools Integration for Assumption Generation 

The specification of the system is divided into operational and declarative modes. The operational 
model is performed using a CASE tool. The declarative specification consists in the properties that the 
system must achieve. In order to perform modular verification, the system is broken down into separate 
parts and then compiled into synchronous reactive components (including the local properties) using a 
syntactic parser. The goal is to obtain an intermediate format independent of the CASE and model-
checking tool (de la Riva et al, 2000). The components and their properties are then translated into the 
language of the model checker using a semantic parser. Assumptions are generated automatically from 
the components by means of the techniques and the algorithms detailed in this paper and translated into 
the language of the model-checking tool. The component is then verified with respect to each local 
property with the automatically generated and/or manually specified assumptions. To debug the 
specification (in the case of false in any property), the counterexample may be visualized in the original 
graphical language of the component specification. The verification tool we use is the SPIN model 
checker (Holzmann, 2003) version 3.4.8.  
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5.2 The steam boiler system  

The Steam Boiler Specification Problem (Abrial et al, 1996) is a classical example used in the 
verification and specification literature with different notations and tools. The behaviour of the control 
program of the steam boiler is not trivial, as the requirements lay emphasis on a fault-tolerant behaviour 
of the system.  

The system (Fig. 10) consists of the following elements: the steam boiler with a valve to evacuate 
water, a device to measure the amount of water in the steam boiler, four pumps to inject water into the 
boiler, their respective controllers, a device to measure the output steam from the boiler, an emergency 
stop switch and the message transmission system between the steam boiler and the control program.  
 

Steam Boiler 

M1 

N1 

N2 

M2 

Steam 
Sensor 

Pump Controller 

Control Program 

Valve 

 
Fig. 10: The Steam Boiler 

The normal operating cycle of the control program consists in reception of the messages sent by the 
physical units, analysis and processing of these messages and transmission of the messages to the 
physical units, its main task being to maintain the water leve l between two levels, M1 and M2. Above M2  
and below M1, the system enters a fault state and the emergency stop must be activated by the desk 
operator. There are also two security levels, N1 (M1<N1) and N2 (N2<M2). When these are reached, the 
system must inject or evacuate water. Thus, the only way to control the water level in the steam is by 
opening or closing the pumps. The control program runs the following operational modes: initialisation, 
which represents the start-up of the control program; normal,  which is the standard operating mode 
maintaining the water level between N1 and N2 when all devices work correctly; degraded, the control 
program tries to maintain a satisfactory level in the boiler when a failure exists in any physical unit 
(except for water measurement devices); rescue, similar to the degraded mode, though the failure is 
detected in the water measurement unit; and emergency stop, when the water levels reach M1 or M2, or 
when a failure is detected in any vital unit.  

5.3 Specification and verification 

The high-level subsystem diagram is illustrated in Fig. 11. The external events (messages) sent and 
received by the control program are represented using uppercase labels. The remainder are internal events 
that communicate the subsystems. 
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Fig.11: Subsystems of the Steam Boiler Control Program 

The CONTROL subsystem maintains the different operational modes and launches the commands to 
initiate the opening or closing of pumps (events StartPump  and StopPump , respectively) in accordance 
with the water level (event LevelRange) detected. It also enables and disables the remaining processes 
using the events labelled E.process and D.process, respectively. The ALLPUMPS subsystem controls the 
behaviour of the four pumps and their corresponding controllers and is responsible for sending opening 
and closing messages to each physical pump. The WATER subsystem determines the amount of the water 
in the boiler (LevelRange) and detects internal failures in the unit (LevelRisk). Finally, the STEAM 
subsystem controls the steam output from the boiler. In turn, the behaviour of each component is detailed 
using a set of primitive processes (specified as FSMs).  

The declarative specification was obtained from the textual description of the system in (Abrial et al, 
1996), where the requirements are stated in relation to the operational mode of the steam boiler. We 
translated these requirements into properties and specify them in propositional logic1. In total, the 
declarative specification consists of 55 properties. 

As the four pumps are identical instances, we planned to perform the verification of all properties over 
the system in an incremental fashion. Firstly, we considered the system formed by one single pump to 
then go on to incrementally add a pump to the specification. However, verification was not possible for 
any property even considering the system composed of one pump (the system is composed of 26 FSMs). 
In fact, either SPIN produced an “out of memory” situation or was stopped when the verification time was 
greater than five days.  

5.4 Component verification and assumption generation 

To avoid the state explosion, we will divide the steam boiler specification into components and will 
perform local verifications over these using the assume-guarantee paradigm. Modular verification will be 
conducted by partitioning the system into four components, each one corresponding to a subsystem in the 
specification in Fig. 11. In turn, the global properties will be modularised in local properties, enabling 
each one to be verified over the proposed components. For example, consider the global property ϕ “in 

                                                             
1 The translation process from the component to the SPIN language (PROMELA) states that the properties are 

checked at the end of each macrostep. For this reason, even when SPIN supports LTL properties, it is not necessary 
to specify them in temporal logic. They will be encoded in SPIN with the PROMELA sentence assert (Tuya et 
al, 1997b). 
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the Normal mode, if the water level is not within the permitted limits, the control program must start an 
emergency stop mode” encoded as: 

((ControlRunMode == Normal) && (LEVEL==LessM1 || LEVEL==GreaterM2 )) → 
ControlModes==EmergencyStop 

This property references elements in the component CONTROL (the processes ControlRunMode and 
ControlModes) and the component WATER (the event LEVEL). This property can be broken down into 
the following: 

ϕ1: LevelRisk → (LEVEL == LessM1 || LEVEL == GreaterM2 ) 

ϕ2: (ControlRunMode == Normal && LevelRisk) → ControlModes == EmergencyStop 

It is clear that ϕ1∧ϕ2→ϕ and both properties can be analysed separately in each component. 
All properties of the original specification were modularised following the above procedure. Table 3 

shows the components along with the number of processes and properties for modular verification. 

Table 3: Components for modular verification 

Component Number of FSMs Number of Properties 

ALLPUMPS (one pump) 11 20 
CONTROL 5 19 

WATER 5 10 
STEAM 5 6 

 
We will first check each component assuming a “universal environment” (the environment model is 

not provided), then with manual assumptions based on the engineer’s knowledge and finally with 
automatically generated assumptions using the algorithms described in this paper. 

5.4.1 CONTROL component 
This component maintains the operational modes of the control program on the basis of the events 

received from the component WATER (LevelRange and LevelRisk) while sending the corresponding 
events (StartPump and StopPump) to the component ALLPUMPS. In the initialisation mode, CONTROL 
enables the remainder of the components.  

We performed the verification of this component assuming a universal environment, i.e. the input 
interface events (LevelRange and LevelRisk) can take any value in any microstep. Four properties were 
found to be false. Two of these relate to the initialisation mode. The first one states that when the water 
level is high (LevelRangeHigh), the valve must be opened (VALVE=1) and the second, that when the 
level is low (LevelRangeLow), the component must send the stop event to the pumps (StopPumps). 
Analysis of the counterexamples returned by the model checker shows that the input interface events that 
indicate the water level could be received at the same time, and thus the component may react by opening 
the pumps, when in fact it should be opening the evacuation valve. Obviously, this environment’s 
behaviour is unrealistic and the error can be removed by performing the environment assumption that the 
water level events cannot be received at the same instant. After verifying the component once more with 
this manual assumption, the two properties are true and, after discharging the assumption, it is true over 
the environment (WATER component).  

A similar situation is produced in the third false property relative to the interface input events 
LevelRisk and LevelRange. The assumption that indicates that both events do not have the same value at 
the same instant resolves the problem and is true in WATER.  

Finally, the last false property indicates that when the control mode is normal and a failure water level 
event (LevelRisk) has been received in the preceding instant, the control program must immediately 
evolve to an EmergencyStop state. Yet again, a counterexample analysis can help us to determine the 
cause of the error. However, its interpretation is more difficult than in the previous cases and after several 
attempts and simulations, we were not able to fix the error and manually specify a correct assumption.  

To solve this situation and help us to decide whether the error is a false positive or whether it is 
effectively a specification mistake, we automatically generate assumptions (Table 4) to observe the 
behaviour of the input interface events (LevelRisk and LevelRange).  
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Table 4: Automatically generated assumptions for the CONTROL component from the WATER component 

1 LevelRangeLow ⇒ LevelRangeHigh=0 && LevelRangeMiddle=0 && LevelRisk=0 
2 LevelRangeHigh ⇒ LevelRangeLow=0 && LevelRangeMiddle=0 && LevelRisk=0 
3 LevelRangeMiddle ⇒ LevelRangeLow=0 && LevelRangeHigh=0 && LevelRisk=0 
4 LevelRangeRisk  ⇒ LevelRangeLow=0 && LevelRangeHigh=0 && LevelMiddle=0 
5 mS≤2 ⇒ LevelRangeHigh=0 && LevelRangeMiddle=0 && LevelRangeLow=0 && LevelRisk=0  

 
The four first assumptions are the same as those manually specified to solve the false positives. They 

indicate that input interface events are not sent at the same microstep. The last assumption states the 
behaviour of the environment in concrete microsteps: input interface events are not sent until the third 
microstep. After executing the model checker once more with these new assumptions, all the properties in 
the component CONTROL are true. Specifically, the fourth property, which returned false under the 
universal environment, is now true because of the introduction of the fifth assumption. We can thus 
conclude that the initial error was a false positive not caused by an incorrect system specification but by 
an incorrect specification of the component environment. Note that this assumption is very difficult to 
obtain manually, as it involves semantic concepts not easily accessible to the user.  

5.4.2 Other components 
The component ALLPUMPS maintains the state of the four pumps and their respective controllers, 

sending open and close orders to physical devices. It is related to the component CONTROL by means of 
the events StartPumps and StopPumps (Fig. 11). As the component environment is the same whether 
considering one or more pumps, for the moment we will take the component formed by one pump. 
Furthermore, we will provide additional considerations on verification with more pumps. 

As in the previous component, ALLPUMPS was first verified without assumptions and then with 
manually specified assumptions related to incompatible reception of the input interface events 
(StartPumps⇒StopPumps=0  and StopPumps⇒StartPumps=0 ). In both cases, one property was found to 
be false: “if the pump or its controller is in a failure state, the component does not send opening or 
closing orders to physical devices”. The counterexample shows that the pump is in a failure state and a 
close pump event is sent to the physical device. Initially, this result was surprising, because all the 
transitions in the process responsible for enabling the respective open and close orders are safeguarded by 
the condition PumpFailureStatus!=Failure. 

We automatically generate the assumptions for the component ALLPUMPS from the component 
CONTROL (Table 5). 

Table 5: Assumptions for ALLPUMPS component from the CONTROL component 

1 StartPumps || E.AllPumps ⇒ StopPumps=0 
2 StopPumps || E.AllPumps ⇒ StartPumps=0 
3 E.AllPumps ⇒ D.AllPumps=0 
4 D.AllPumps || StartPumps || StopPumps ⇒ E.AllPumps=0 
5 mS==1 ⇒ StopPumps=0 && StartPumps=0 
6 mS>1⇒ E.AllPumps=0 
7 mS>5 ⇒ StartPump=0 && StopPumps=0 && D.AllPumps=0 

 

Assumptions 1 to 4 show the incompatible reception at the same microstep in the component 
ALLPUMPS of the input interface events. The remaining assumptions are related to specific microsteps 
and indicate that in the first microstep the start/stop events cannot occur (Assumption 5), the enable event 
E.AllPumps is never sent after the first microstep (Assumption 6) and the start/stop events and the disable 
event are never sent after the fifth microstep (Assumption 7). The component ALLPUMPS was checked 
again using this set of generated assumptions and all the properties returned true. 

The WATER component determines the amount of water in the boiler and the STEAM component 
controls the amount of output steam. In both components, all the properties were true without 
assumptions and the automatic assumptions computed did not improve the result of the verification 
process. 



16 
 

5.5 Performance 

In this section we will show the results of the verification of each component of the system. For each 
one, we perform verification considering the universal environment (no assumptions), manual 
assumptions and automatically generated assumptions. All experiments were performed on a Compaq 
Proliant with 933 MHz. and 1 Gbyte of main memory using the SPIN model checker version 3.4.8. 

5.5.1 CONTROL component 
Table 6 displays the results of the SPIN performance in terms of time (column t, in seconds) and space 

(column mem, in Mbytes) during the verification of the local properties in the component CONTROL with 
the universal environment (no assumptions), manual assumptions and the automatically generated 
assumptions specified in Table 4. Shaded performance data represents a false (positive) property. The last 
rows present a summary of the total verification time (the improvement factor with respect to the 
universal and manual assumptions, respectively, is given in brackets in the case of automatic 
assumptions), the number of assumptions used, the number of false positives obtained and the CPU time 
of assumption discharge and assumption generation.  

Table 6: Results of the verification of the CONTROL component 

 Universal Environment Manual Assumptions Automatic Assumptions 
(Table 4) 

Property t mem t mem t mem 

1 135 3.6 30 2,3 9 1.9 

2 135 3.6 30 2.3 9 1.9 

3 21 2.0 19 2.0 13 2.2 

4 135 3.6 30 2.3 9 1.9 

5 135 3.6 30 2.3 9 1.9 

6 196 3.9 41 2.5 12 2 

7 154 3.6 34 2.3 10 1.9 

8 135 3.6 30 2.3 9 1.9 

9 135 3.6 30 2.3 9 1.9 

10 154 3.6 34 2.3 9 1.9 

11 154 3.6 34 2.3 10 1.9 

12 139 3.6 30 2.3 9 1.9 

13 178 3.8 40 2.5 12 2.1 

14 150 3.6 35 2.3 9 1.9 

15 139 3.6 30 2.3 9 1.9 

16 139 3.6 30 2.3 9 1.9 

17 23 2.1 51 3 16 2.4 

18 14 2.0 82 3.8 27 2.9 

19 16 2.0 12 2.0 34 3.5 

Total Verification (sec.) 2 017 592  229 (8.4) (2.4) 

Number of Assumptions 0 4 5 

Number of False Positives 4 2 0 

Assumption Discharge (sec.)  664  

Assumption Generation (sec.)   804 

 

In general, the CPU time and memory use of the model checker decreases with the incorporation of 
new assumptions in the verification of each property. This result is to be expected a priori. It is actually 
due to the fact that the environment is limited by the assumptions and the model checker will handle 
smaller state spaces. For example, in the verification with the universal environment, the model checker 
must explore all possible combinations of the interface events LevelRange and LevelRisk in all the 
microsteps and in any order. The introduction of assumptions in these events will limit all the possible 
values, the order of these and even the microsteps in which they can occur.  
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The automatically generated assumptions substantially improved the performance of the model 
checker for up to a factor of 8.4 with respect to the universal environment and of 2.4 with respect to 
manually specified assumptions. In the latter case, this is due to a greater number of assumptions and the 
fact that they represent the real behaviour of the environment better. Moreover, it is only possible to 
verify all the properties in the component without producing false positives using the automatically 
generated environment. This result will be more important if the number of properties to verify is 
incremented or if we perform a regression verification over previously verified component. This is 
because if a new property is added, it is not necessary to compute the environment again (except when the 
environment is also changed). 

It should also be noted that the “manual time” of assumption specification is not included (in the case 
of the manual approach). Obviously, this effort is difficult to measure and the discovery of an adequate 
assumption by the engineer is a complicated task that requires significant mental effort. From this point of 
view, the automatic approach is a useful tool that reduces computational resources and user guidance.  

5.5.2 Other components 
We now perform the same experiments for the component ALLPUMPS (with one pump) summarized 

in Table 7.  

Table 7: Summarized results of the ALLPUMPS component with one pump 

 Universal Environment Manual Assumptions Automatic Assumptions 
(Table 5) 

Total Verification (sec.) 157 60 13 (12.1) (4.6) 
Number of Verified Prop. 19 19 19 
Number of Assumptions 0 2 7 
Number of False Positives 1 1 0 
Assumption Discharge  (sec.)  828  
Assumption Generation  (sec.)   140 

 

As in the component CONTROL, the model checking time of all properties is lower with the automatic 
environments (an improvement factor of 12.1 and 4.6 with respect to the universal environment and 
manual assumptions, respectively) and all the properties were verified without false positives.  

In order to check how our approach affects the performance of the model checker in the verification of 
systems that are greater in size and complexity, we scaled up the component ALLPUMPS by 
incrementing the number of pumps in the specification. The summarized results with two pumps are 
given in Table 8. 

Table 8: Summarized results of the ALLPUMPS component with two pumps 

 
To verify the component without assumptions and with manual assumptions, we need a machine time 

of approximately 78 and 59 h, respectively. With the automatic approach, this time is reduced to 5 hours 
approximately. That is, the speed-up obtained was a factor of 12.3 and 10.7, respectively.  

Another important consideration is related to the number of properties verified. With the automatically 
generated assumptions, all the properties can be verified. However, with universal and manual 
approaches, one property returns an out of memory SPIN message. This property was verified with the 
automatic approach in approximately 2 h. 

The component with three and four pumps cannot be verified: for all properties, the model checker 
returns an out of memory response (a different partition into components would be performed in order to 

 Universal Environment Manual Assumptions Automatic Assumptions 
(Table 5) 

Total Verification (sec.) 246 044 213 087 19 891 (12.3) (10.7) 
Number of Verified Prop. 18 18 19 
Number of Assumptions 0 2 7 
Number of False Positives 1 1 0 
Assumption Discharge (sec.)  828  
Assumption Generation (sec.)   140 
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verify each component). This result is expected if we consider the results obtained from one (Table 7) and 
two pumps (Table 8) due to the combinatorial state explosion. 

In the case of the WATER and STEAM components, the resource consumptions of the model checker 
were small (<1 s, <1.5 Mbyte) and similar with respect to the universal environment, manual and 
automatic assumptions. This is due to both these components having a reduced input interface (only 
enable and disable events) and consequently the obtained assumptions do not contribute to restricting the 
component environment.  

6 Discussion 

The approach presented in this paper enables assumptions to be obtained automatically over a 
component making feasible assume-guarantee modular proofs. Owing to the fact that we perform an 
exhaustive exploration of all the microsteps in the environment computation (including those derived 
from non-determinism), the obtained assumptions explain environment behaviours of the input interface 
events, some of which are difficult for the engineer to guess, thus avoiding the need for their manual 
specification. The following results of this approach may be noted: 
• The main advantage of our technique is that it removes the time-consuming and error-prone task of 

the manual specification of assumptions that is always necessary in modular verification.  
• Consequently, it is not necessary to perform assumption discharge onto the environment, thus 

reducing the effort needed in the verification process. 
• An important feature is that it permits the discovery of false positives, or properties that, though in 

fact true, are returned as false by the model checker due to an incorrect or unrealistic specification of 
the environment. Because the technique does not generate all possible assumptions, we cannot ensure 
that it detects all possible false positives, and hence it is not totally complete. However, the technique 
is sound because the assumptions do not insert additional behaviours and hence ensure that every 
component errors appear. 

• As a result, the state space that the model checker must deal with is smaller and hence its 
performance is improved. In all the cases analysed, the performance of the model checker using 
automatic assumptions is superior in a number of factors with respect to the assumptions specified by 
the engineer or when a universal environment is considered (no assumptions). This is because there 
are more assumptions and they represent the behaviour of the environment more exactly, limiting the 
arrival of interface events in certain microsteps, avoiding the reception of inconsistent combination of 
events and reducing non-determinism in the component to verify. 

 
The problem of assumption generation is also addressed in a recent approach to automated assume-

guarantee procedures (Giannakopoulou et al., 2005). However, the method employed is not independent 
of the component and the property to verify. Our approach computes assumptions independently from the 
component and property under analysis. That is, if the component or property change or if we add new 
properties to verify, it is not necessary to calculate the assumptions again. From this point of view, our 
method is especially adequate in incremental and regression verification practices. In fact, it is normal 
during component verification for any property to be false because of an incorrect component 
specification. In this case, the component is adequately modified and all properties are once more verified 
(regression verification). It is not necessary to compute the assumptions again for each property 
verification because they are the same as the ones obtained in the first verification. A similar observation 
can be made for the case when new properties are added or completed in an interactive and incremental 
fashion. If the environment has been previously computed, no new assumptions are needed for each new 
property.  

Though the method is applied to the SPIN model checker, it is can be easily adapted to other finite 
state verification tools. As the assumption generation is made independently of the verification tool, the 
only changes are those related to the component and assumption coding in the target tool  

Although, we focus on state transition systems, assume-guarantee reasoning may be applied to other 
formalisms such as for example, process algebras (Rahanabu and Rehof, 2001). In the context of our 
approach, the only imposed restriction is that the underlying finite state model is specified in terms of 
reactive semantics. 
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The experiments and experience gained with automatically generated assumptions and their 
application to assume-guarantee reasoning opens up interesting lines of research and improvements to our 
technique. We cite a few below. 
• The main bottleneck of the approach is to be found in the composition phase, due to a possible 

configuration explosion and computational resources consumptions. Although we proposed a 
heuristic to reduce the state space, the adoption of new methods of state space coding, for example 
using BDD (Bryant, 1986), and/or state space exploration, for example using partial order reductions 
(Peled, 1994), would be useful.  

• The method was applied to the verification of safety properties. In general, our approach is also 
appropriate for liveness properties due to the independence of the component and property. However, 
greater expressive power is needed in the assumptions in order to apply the method to the verification 
of certain types of liveness properties such as livelocks. So as to be able to detect this undesired 
behaviour, we need to generate assumptions in such a way that an interface event appears only once, 
at most, in the same microstep. Within the same context, an interesting line of research would be to 
search for new methods for coding the assumptions; for example with temporal logic where the 
expressive power is greater than in association rules. 

• Automatic reduction of the generated assumptions: in general, some assumptions produced could be 
redundant, in the sense that certain assumptions are included or can be derived from others. In the 
extraction step, these could be detected using similar methods to those used in association rules 
techniques (Aggarwal and Yu, 1998). 

7 Related work 

The modular or compositional approach is a natural and effective technique for solving the problem of 
verification of large complex systems. In recent decades, various authors have proposed theoretically 
well-founded and sound frameworks for the modular reasoning of reactive systems.  

Traditionally, much of the work on compositional or modular analysis and verification has been 
carried out in compositional minimization, i.e. to obtain a reduced version of the environment in each 
component that exactly characterized the visible behaviours of the component under analysis (interface 
process) so as to then perform the composition between the component and the interface process. As the 
interface process is less complex than the concrete (removed) component, verification may be feasible by 
minimizing the state space explosion.  

In the work of Clarke et al. (Clarke et al., 1989), the interface process is constructed removing those 
transitions in the component that are not present in the alphabet of the environment component. Graff et 
al. (1996) develop a method that includes said technique, and in which the interface process is specified 
by the user. Both methods produce large state spaces if most of the states of the systems are not 
equivalent. This approach is further developed and partially automated in (Cheung and Krammer, 1996) 
by means of an algorithm to automatically construct the interface process. However, the automatically 
generated environments must be completed by the user with stubs because they do not sufficiently limit 
the behaviour of the environment. Grumberg and Long (1994) describe a framework for compositional 
verification for temporal model checking based on assume-guarantee reasoning in which environmental 
assumptions are explicitly and manually provided to the component. Since we do not have sufficient 
space to describe all the other pertinent studies equitably, we refer the reader to the book by de Roever 
and colleagues (de Roever et at., 2001), which provides an excellent introduction to the state of the art in 
the compositional methods for verification.  

The practical use and application of these techniques has not, however, evolved at the same speed as 
the underlying theories. As Shankar observes (Shankar, 1997), the inference systems for compositional 
verification have been studied more than applied. From our point of view, this is due to the lack of an 
adequate automated support for this style of reasoning. 

Recent developments in OO-design and in component-based software engineering have provided new 
advances in automated formal techniques for specification and verification. In this respect, the studies by 
de Alfaro and Henzinger (2001a,b); Alur et al. (1999) contribute to automating the modular verification. 
Some of these theories and techniques have been implemented in the MOCHA toolkit (Alur et al, 1998), 
which provides automated support for modular reasoning with specifications in temporal logic.  
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When using assume-guarantee modular reasoning, a way is needed to specify the more adequate 
environment assumptions (Henzinger et al, 1998) that sufficiently limits the environment while not 
producing false violations (false positives). For this reason, research in techniques and methods to 
automatically generate the component environment is very helpful. However, although the problem is not 
novel (it is in fact as old as assume-guarantee reasoning), the work in automated assumption generation is 
very limited and very recent.  

An approach to assumption generation is presented in (Inverardi et al, 2000), though it is restricted to 
checking the compatibility between components and modular checking of deadlock freedom properties. 
In the field of shared-memory communication models, Henzinger et al (2003) have presented a 
framework for thread-modular abstraction refinement in which thread assumptions are refined in an 
iterative fashion and applied to the detection of race conditions. The work of Flanagan and Qadeer (2003) 
also focuses on programs that communicate through shared variables, but does not use abstractions. 

The closest to our work is the approach described in (Giannnakopoulou et al, 2005), in which an 
algorithm to automatically generate the weakest assumption is presented. The method restricts the 
environment no more and no less than is necessary for a component to satisfy a given property. More 
specifically, the proposed technique returns one of following results: the component satisfies the property 
for all environments, the component violates the property for any environment or an assumption is 
returned that precisely characterizes those environments in which the component satisfies the property. A 
framework for performing assume-guarantee in an incremental and fully automatic fashion is presented in 
(Cobleigh et al, 2003). The assumptions are computed using a learning algorithm. Initially, the obtained 
assumptions are approximated, but become progressively more precise by means of the analysis 
information in the obtained counterexamples. The main difference with respect to the previous approach 
is that if the computation runs out of memory (due to the state space of the component being too large), 
the assumptions computed at that moment are valid. Automated support for this incremental framework is 
described in (Tkachuk et al. 2004). The work of Barriger et al (2003) extends the previous approach 
employing symmetric assume guarantee rules. Chaki et al. (2005) have applied a similar learning 
paradigm to automate assumption-guarantee reasoning for simulation conformance between finite 
systems and their specification. The relation between system decomposition and modular verification is 
addressed in (Cobleigh et al. 2004), where the authors examine the advantages of assumption-based 
verification over monolithic verification in all two-way decompositions of the system using this 
assumption generation technique. 

Unlike our approach, the above methods are dependent on the property and the component to verify. 
For this reason, the algorithms must be applied to each property to verify, and any change in the 
component (or property) needs a new verification. However, the approaches are very interesting when the 
environment is not given or is unknown. 

8 Conclusions 

In this paper we present a method for model-checking components based on assume-guarantee 
reasoning with automatically generated assumptions. Our approach generates a set of environmental rules 
that explain the behaviour of interface events and which can be used as assumptions of the components, 
thus avoiding their manual specification and consequently reducing the user guidance needed in modular 
verification. The technique is especially relevant in detecting false positives, due to there being more 
obtained assumptions. 

This ability to generate assumptions also significantly affects the performance of the model checker. 
The assumptions reflect the behaviour of environmental events more precisely and so the number of states 
related to these events that the model checker must explore is also limited.  

Due to the way in which assumptions are generated on the basis of the environment behaviour, if the 
component or property changes, the assumptions do not need to be computed again. This aspect is 
important in regression verifications, as the environment must be computed only once.  

Application to a non-trivial system shows the viability of the approach in detecting false positives and 
in reducing the consumption of resources of the model checker in particular, and of the complete 
verification process in general. This experience opens up possible improvements to the approach, 
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particularly as regards the expressivity of the generated assumptions and those aimed at reducing blow-up 
in the computation of environment configurations. 
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