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1 Introduction

The study of Lie conformal superalgebras and their representations was ini-
tiated by V. Kac ([K2]) in view of their connections to the free fields re-
alizations in conformal field theory. A complete classification of simple Lie
conformal superalgebras of finite type was achieved in [FK]. The list consists
of current Lie superalgebras, Cur(G), where G is a simple finite dimensional
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Lie superalgebra; four series of Lie conformal superalgebras of Cartan type
and the exceptional Lie conformal superalgebra C Kj.

For classification of representations of finite type of current Lie superal-
gebras and Lie superalgebras of Cartan type see [BKLR], [BKL1], [BKL2],
[CK1].

In this paper we classify all conformal irreducible modules of finite type
over the superalgebra C'Kg. We use this classification and the results of
[MZ4] to classify conformal irreducible Jordan bimodules of finite type over
the Jordan superalgebra JC'K(6).

For a different approach to this classification see [BKL2].

2 Basic Definitions

Let A be an arbitrary (not necessarily associative) algebra over C. By a

formal distribution
a(z) =) _a(i)z™" € Al[2]]
i€Z
we mean a power series over A, which is infinite in both directions.
Two formal distributions a(z), b(z) are said to be mutually local if there
exists an integer N = N (a,b) > 0 such that a(z)b(w)(z—w)" = b(w)a(z)(z—
w)N = 0.

We will consider a countable family of operations:
a(z) o, b(2) = Resya(w)b(z)(w —2)", n >0, n € Z.

Here Res,, means the coefficient at w=".
If a(z), b(z) are mutually local then only finitely many products a o, b
may be different from zero.

Definition 2.1 A wvector space C C A[[z71,2]] is called a conformal al-
gebra of formal distributions if 0C C C, 0 = d%, Co,C CC for an arbitrary
n > 0 and every two elements from C are mutually local.

By Dong Lemma (see [K2]) if A is an associative or Lie algebra then for
an arbitrary collection C' of pairwise mutually local distributions the closure
of C' with respect to the action of 9 and to all operations o, , n > 0, is a
conformal algebra of formal distributions.
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Examples 2.1 (1) Let G be an arbitrary algebra and let A = G[t,t7] be
the algebra of Laurent polynomials over G. For an arbitrary element a € G
let & =Y ez(at’)z" "1 € A[z71, 2]].

Any two formal distributions a, b are mutually local.

(2) Let Vir =DerClt™1, t] be the (centerless) Virasoro algebra. The for-
mal distribution p
L= t""—2""2eVir[lz"", 2]
ez At
18 mutually local with itself.

(3) Let W =<t~ t, L > be the (associative) Weyl algebra of differential
operators on C[t7',t]. Let J,, = Yc,t'(£)*27""1, k > 0. Any two formal
distributions Jy, J; are mutually local.

In all three cases (1), (2) and (3) we can talk about the conformal algebras
Cur(G), Vir, W respectively, generated by them.

Now we are ready to introduce an abstract definition of a conformal al-
gebra.

Let C' be a module over a polynomial algebra C[0], which is equipped
with countably many binary bilinear operations C' o,, C'— C, n > 0.

Definition 2.2 We say that (C,0,0,) is an abstract conformal algebra
if for arbitrary elements a,b € C arbitrary n > 0, we have:

1) d(a o, b) =0dao, b+ ao, db,

2) 0a o, b = —na o, 1 b; for n =0 the condition turns into da og b = 0.

3) (Locality) There ezists an integer N = N(a,b) > 0 such that for an
arbitrary n > N we have a o, b = 0.

Every conformal algebra of formal distributions is an abstract conformal
algebra. The converse is also true: every conformal algebra can be realized as
an algebra of formal distributions over some algebra of coefficients. Moreover,
among these algebras of coefficients there is a universal one Coe ff(C).

Definition 2.3 We say that a conformal algebra C' is a Lie (resp. asso-
ciative, Jordan) algebra iff Coeff(C) is a Lie (associative, Jordan) algebra.



Now let C' be a Lie conformal algebra and let M be another C[0]-module.
Suppose that we have a family of bilinear maps C' o, M C M, n > 0.

Definition 2.4 We say that M is a conformal C-module if the null split
extension C' + M is a Lie conformal algebra.

As above, M can be realized as a space of formal distributions over
Coeff(M), where Coeff(M) is a universal (with this property) Lie mod-
ule over Coeff(C).

Important Remark If there is a natural (and standard) way to arrange
elements of a (super)algebra L in formal distributions then we will talk about
L and modules over L even if we have in mind their conformal counterparts.

3 The Cheng-Kac Superalgebra

The exceptional conformal superalgebra C'Kg was introduced in [CK2] and
in [GLS]. In [MZ1] we constructed, for an arbitrary associative commutative
superalgebra R with an even derivation d : R — R, a superalgebra C K (R, d)
so that CKg ~ CK(C[t™, t], ).

Lets recall the construction of CK (R, d) from [MZ1].

Consider the associative Weyl algebra W = 3,5 Rd', where the variable
d does not commute with a coefficient a € R, but da = ad + d(a). We will
realize the CK (R, d) as a superalgebra of 8 x 8 matrices over W.

The simple finite dimensional Lie superalgebra P(n — 1) is the superal-

“ kt , where a, h, k are n x n-
h —a

matrices over C, tr(a) = 0, k' = —k, h" = h. The superalgebras P(n), n # 3,
are centrally closed. However, P(3) has a nontrivial central cover PEB). Its
existence comes from the fact that the Lie algebra K,(C) of skew-symmetric
4 x 4 matrices is a direct sum of two ideals K4(C) = sl3(C) @ slo(C). For an
arbitrary element k£ € K,;(C) we consider its decomposition k£ = k&’ + k" and

let (k) = k' — k”. The universal central cover P(3) of P(3) can be realized
as a superalgebra of 8 x 8-matrices over the polynomial algebra Cld] of the

type

gebra of 2n X 2n matrices of the type

a k
< o(k)yd+h —ad ) +adls,
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where a, k, h are 4 x 4 matrices over C, tr(a) =0, k = —k', h=h', a € C
and Ig is the identity matrix.

The superalgebra CK (R, d) is a subsuperalgebra of 8 x 8 matrices over
W generated by P(3) and by all matrices ( eijéa) _62 (a) ) where a € R,
1<i#j<4

The Cartan subalgebra H of CK (R, d) consists of diagonal matrices

4
H = {h = diag(ai,...,a4,—a1,...,—as), a; € C, Y a; =0},
i=1

the even and the odd roots of the C K (R, d) with respect to the action of H
are:
A ={w; —w; |1 <i#j <4},

Aiz{wi—i—wj, 1§Z§£j§4, —w; — wy, 1§Z,j§4}

Notice that w;(a) = a;, 1 <i < 4.
Thus, the superalgebra CK (R, d) is graded by the abelian group

4
Z ZwZ/Z(wl -+ Wo —+ W3 —+ U)4),
=1
CK(Rv d) = ZaGAU{O} CK(Rv d)a-

Let us fix the notation for the following weight elements:

€ij 0 62“(@) 0
fum = < 0 —eji )’ ey (1) = ( 0 —eji(a) >’

() = ( e 6 o ej5(a) O—ez‘z‘(a) ) B

I

VR
D

&

+ o
Q)

.

S

o O
~—

D= o e ¢ “(steyment 0"
q—w;—w; = eij(a) + €ji(&) R Qu;+w; = Sp(eij — eji)d 0 )

a € R.



In [MZ3] it was shown that CK (R, d)w,—w; = €w—w,(R), 1 <i# j < 4
CK(R7 d)—2wi = q—2wi(R>; CK(R7 d>wi+wj = [qwri-wk? ewj_wk( )]_'_q—wk—wl(R)’
where {i,7,k, 1} ={1,2,3,4}.

For an arbitrary element a € R consider the element

[[6w4—w1 (a)a Qw3+w1]’ Qw2+w1] =

( er1(da) + ega(ad) + esz(ad) + eqq(ad) 0 )
0 611(6Ld) + €992 (da) + €33 (da) + €44 (da)

= Ig(ad) — en(d) 0 a' = la,d] =d(a
—[8( d) ( 0 —611(a/)—|—]4(a/) )7 [ ,d] d( )

We will denote the element on the right hand side as V'ir(a). The mapping
ad — Vir(a) from Rd — Vir(R) is and isomorphism of Lie algebras.

It was shown in [MZ3] that CK(R,d)o = H ® R+ Vir(R).
Consider the functional

1=

given by f(’ll)1> = 57 f(w2> = _37 f(w3> = 27 f(’ll)4) = —4.
Notice that f(Zw; & w;) # 0, unless £w; = w; = 0.
From now on we will denote L = CKq = CK(C[t™!,t], 4).

Note that Ly = H ® C[t™!,t] >1Vir(R) < Cur(sly) >Vir(R) < L.
The algebra L has a triangular decomposition L = L_ + Ly + L.,
L= Zf(a)<0 Lo, Ly = Zf(a)>0 Lq.

Let M be a conformal module of finite type over the Lie conformal algebra
CKg. Then the subalgebra sly C L acts on M and the action of sl; commutes
with the action of the polynomial algebra C[d]. Hence M decomposes into
a finite direct sum of eigenspaces with respect to the action of H,

M= M,

yeH*
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If M is irreducible, then there exists a unique highest weight \ € H*
such that M, # (0) and Ly o, M, = (0) for all n > 0; M, is an irreducible
conformal module over L.

We have mentioned above that Lo C Cur(sly) + Vir C L.

Let M’ be the Cur(sly) + Vir-module generated by M,. Let M" be
the largest submodule of M’ such that M” N M, = 0. Then M'/M" is an
irreducible C'ur(sly)+Vir-module and (M'/M")y = M,. Let V = Coeff(M)
be an L-module.

From the description of irreducible modules of finite type over
Cur(sly) >aVir(R) (see [CK1]) it follows that the module V) can be identi-
fied with C[t™!, ], say V), = C[t~1,t]. For arbitrary elements a,b € C[t™!, ],
h € H we have (h®a)b =< \, h > ab. Moreover, there exist scalars a, 3 € C
such that for arbitrary a,b € C[t™!,t] we have

Vir(a)b = —all + Ba’b + aab.

Denote this Ly-module as V(\, §,a). It is well known that, for an ar-
bitrary A € H*, given an irreducible Lyp-module W such that the elements
h € H act on W as scalar multiplications < A\, A >, there exists a unique
L-module with the highest weight A\ under the action of H, whose A-space
is isomorphic to W as Lg-module. If we consider the irreducible Ly-module
V(A, B, ), then the corresponding irreducible L-module will be denoted as
Irr(\ B, a).

It follows from the above that every irreducible conformal module over
C'Kg is isomorphic to Irr(A, 8, «) for some A € H*, 8, € C. This gives rise
to the question:

For which parameters A € H*, B,a € C, the irreducible conformal module
Irr(\, A, «) is of finite type?

Let A be an integral dominant weight, that is, < A\, w; — w3 >, < A\, w3 —
Wo >, < >\,w2 —wy > all lie in ZZO'

Theorem 3.1 The conformal module Irr(X, 5, «) is of finite type if and

only if
(1)< A, By~ >>2; Byav € C, or
(2)< A, hwl—wg >=1; <A, hwz—wg >=0,8=-1,aeC.
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These modules exhaust all conformal irreducible CKg-modules of finite
type.

Since V' (A, B, ) are known to be conformal modules of finite type over
Ly (see [CK1]), we can easily conclude that Irr()\, 5, «) is of finite type if
and only if it has finitely many weights with respect to the action of H. At
this point we can forget about conformal modules and address the question:

For which A € H*, B, € C, the L-module Irr(\, B, a) has finitely many
weights?

Lemma 3.1 Let a = w; — wj or —w; — w;. For an element a € R, let
Xaola) = ew;—w,;(a) or q_w,—w,;(a) defined as above. Suppose that o < 0 and
for any decomposition —a = ay+- - -+, into a sum of positive roots, for any
elements x; € L,,, 1 <1 < r,there exist an element h € H and an element
b € R such that [x1, [z, ... |2z, Xo(a)] -] = h® ab for an arbitrary a € R.
Then for an arbitrary element vy € V) we have X, (a)vy = X (1)(av)y.

Proof: It is sufficient to show that
U(Ly)(Xa(a)vy — Xo(1)(av)y) N VY = (0).

Otherwise there exists a decomposition —a = a3 + -+ 4+ «,, a; > 0 and
elements z; € L,, such that x; - - 2, (Xs(a)ve — Xo(1)(av)y) # 0.
But

x1- e Xa(a)vy = [21, [22, ..o, [0, Xo(a)] .. Jux = (h @ ab)vy =
h(abv)y = [x1, [T2, .. ., [T, Xa(D)] .. J(av)y = 21 ... 2. X0 (1) (av),,
a contradiction. The lemma is proved.

Lemma 3.2 The negative roots we — w3, wy — w3, —wy — We, —W1 — W3,
—w1 — Wy, Wy — Wy satisfy the assumptions of Lemma 3.1

Proof: We list all possible decompositions. The roots ws — wsy, wy + wy
and wy — w4 do not have nontrivial decompositions. Then, w; + wy = (wy +
'LU4) + (w2 — 'LU4), Wy + w3z = (wl +w2) + (wg — wg) = (w1 +w4) + (w2 — ’lU4) +
(w3 — wy) = (w3 — wy) + (wy + wy); wg —wy = (wy — wy) + (w3 — wo).

The condition of Lemma 3.1 is checked by a straightforward computation
in the superalgebra L. The lemma is proved.
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Lemma 3.3 For arbitrary elements a,b € R we have
[ a5 Cws =4 (@)] [ Gy 4, €34 (D) 4=y~ Gy —ws VA = Y(abv),
where 7 =< A, Ry —wy > (1= < A, gy —pg >)-
Proof: We have [qu; 1w, €uws—ws (0)]q—w; —ws@—wi—wsUx = (I) — (IT), where
(1) = Guntws€uws—wi (D) 4w —wG—wn —w5Vx =

Gui+ws d—wi —ws Cws—wy (b)q—wl—wgv)\ =
Qi +ws d—wy —wo [ewg—w4 (b)a q—wl—w3]v)\ + Qw1 +ws 4—w1 —w2 q—wl—w3€w3—w4(b)v)\ =
— Gyt ws Qw1 —wsd—w1 —ws (D) VN = =Gy 05 Gy w2 01 —ws (DV) 1

by Lemma 3.1.

(I[) = Cwy—wy (b)qw1+w4q—w1—wzq—wl—wgv)\ =
T Cuwz—wy (b)ew4—w2Q—W1—w3UA — Cwz—wy (b)Q—wl—wgQw1+w4Q—w1—w3UA =
—Cuws—wy (b)q—wl—w36w4—wzv)\ — J—wi—we Cwz—wy (b)Qw1+w4q—w1—w3U)\-

Now
Cws—ws (b)q—wl —wsCws—waUX =

(€514 (D) Gw; —ws) €ws—ws VX F Gy —ws Euws—ws (D) €y —wy V-
The second summand is 0 since f(ws—w,4) = 6 whereas f(w,—wsy) = —1.
The first summand is

—q—wi—w,4 (b) Cwg—wa UN =

~ (0w —wi Cus—ws VA = Cwrs—wa G~y (D)Vr =
—G—wy—wy (D)UN — €y — 1000wy —wy (D)UN =
~Qwy w3 (DV)X = Cury—wp Gy~ (DV),
by Lemma 3.2.
As for the other summand of (II),

4—wi—wy Cws—wy (b) Gui+wsd—wi —w3UX =
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q—w1 —ws [ews—w4 (b)7 [Qw1+w4, Q—w1—w3]]v>\ =
q—wl—wzhwg—w4 (b)U)\ = q—wl—wghwg—w4 (bv>)\-
We proved that
[qw1+w47 Cws—wy (b)]q—wl—wzq—wl—wgv)\ = P(bv),\,
where P is an operator that does not involve b. Choosing b = 1 we get
P = ad([QW1+W4> ewa—w4])ad(Q—w1—w2)ad(Q—UH—wa) =
ad(qw3+w1)ad(q—wl—wz)ad(q—wl—ws)‘
Now we have to consider the element
[qw1+w47 Cwo—wy (a>]qW3+w1 q—wi—wo d—wi —ws (bv)A‘

Remark that [[quw, +wss Cws—ws(@)]s Gustw, ]| € €wy—w, (R) and

Cwi—wy (R)Q—w1—w2Q—w1—w3 (bv))\ = [[ewl_w4 (R)a Q—w1—w2]a Q—w1—w4](bv)>\ = (0)

Hence our expression becomes

“Gwitws [qw1+w47 Cwy—wy (a)]q_wl_w2 q—wi—ws (bv>>\'
Denote X = [quytws Cws—w0,(@)], Y = Gewi—wy, £ = Gw,—ws- Then
XYZ=[X,Y],Z|-Y[X, Z|+YZX+Z[X, Y], [X,Y] = hyy—u, (a), [X, Z] =
Cws—ws (@), [[X, Y], Z] = q_w,—ws(a). By Lemma 2,

hwz—w1 (a)(b’ll))\ = h"w2_'w1 (ab’U))\, Cwo—ws (a)(b’ll))\ = Cwy—ws (abv)A

and
d—w;—w3 (CL) (bv>>\ = q—wy—w3 (CLZ)U))\.

As we did above, we can conclude that

[qw1+w47 Cwo—wy (a)][qﬂu-i-wu Cws—wy (b)]q—wl—wzq—wl—wsv)\ = P(abU)M

where P is an operator that does not involve a or b. Choosing a = b =1 we
get

P = ad(qwz-i-wl )ad(qws-i-wl )ad(q_wl_w2 )ad(q_wl_w?))'
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Now

P(abv) = Guy-twn [Gus+wr > G—wr—w2]Gwy —ws (abV) —
Gyt wy w1 —wa G 4wy G—wn —ws (ADV) A =
[Qus-+wrs [Qus+w1 s Qw1 —ws )5 Q1 —ws) | (@bV) A —
[Guatwr s Gwi —ws s [+ 5 = —ws ]| (abV) X =
— Py —10, (@DV) x — Py iy Py —10, (@bV) \ = 7y(abv)y,
Y=< A gy —wy > (1= < A, Ry —wy >). The lemma is proved.

Remark. In what follows [z1, ..., z,] denotes the left-normed commuta-
tor [...[I‘l, .]72], .]73], ce ,xn].

Lemma 3.4 [[[6w4—W1 (CL), [Qw1+w4> Cwz—wy (C)H> [Qw1+w4> Cwo—wy (b)“ =
Py —w, (ab'c) — Vir(abe).

Proof: Since [€y,—w, (@), Gu,+w,] = 0 the left hand side is equal to
[€ws—w1 (@)s €wy 104 (€)s Qun+wss Ews—w4 (D), Gur+ws] =

- [ewg—w1 (CLC), Gur+wyy Cwa—wy (b)a Qw1+w4]'

Furthermore, €y,—uw,(0) = —[quwi+wss T—w,—w,(b)]. Substituting this ex-
pression we get:

LHS = [6w3—w1 (CLC), qw1+w4> le—i-wga Q—wl—w4 (b)a Qw1+w4]+
[6w3—w1 (CLC), qw1+w4a q—wl—w4 (b)a Qw1+w2> qw1+w4] = ([) + (I[)

Recall that we use the notation [€w,—uw, (@), Gustw:, Guetws] = Vir(a).
Now,

[ewg—wl (CLC), Qw1 +wy > Qw1+w2] = - [6w4—w1 (CLC), e’LU3—’Ll)47 Qw1 +wyq > Qw1+w2] =

- [€w4—w1 (CLC), [ews—w4v Qw1+w4]7 le—i-wz]

since [€w4—w1 (CLC), Qw1+w4] C L2w4 = (0)
Using that [€ws—wss Guwy+ws] = —Guws+w,, OUr expression becomes

[ew4—w1 (ac), Guz+wi s Qw2+w1] = Vir(ac).
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Hence,

(I> = [€w3—w1 (CLC), Qui+wy s Qi +wz s [q_wl—w4 (b), Qw1+1l)4]] =
—[Vir(ac), hu,—w, (b)] = —hap,—w, (ablc).
On the other hand,
(II) = [ewg—wl (CLC)’ qw1+ll)47 q—w1—w4 (b)7 Qw1+w27 Qw1+w4] =

[€ws—w1 (@C), [quy+wss Gwi—ws (D)), oo +wn s G +s] =
[Cas—w1 (AC), Py 4 (D), Gury 4o s Guoy +wa) = [Cuws—r01 (ADC), Guory s Groy +wa] =
—[€ws—w, (ADC), Quy 4w s Guon+wy) = —Vir (abe),
as we have seen above. This proves the lemma.

Lemma 3.4 implies that

[le +was Cwz—wa (b)] [qwl +was Cwg—wa (C)]6w4_w1 (a)v)\ =

—[6w4_w1 (CL), [qw1+w4a Cwz—wy (C)]a [qw1+w4> €w2_w4(b)]]'ll)\ =
(—hupy —w, (al'c) — Vir(abe))vy =
— < A, gy oy > (abev”)y + ((poabe + pia’be + poab’c + pzabc )v)y,

here v is viewed as an element from R = F[t™' t]; ug, p1, po, p3 are scalars
from F.
Choosing a = 1 we get:

(G104 Cws—ws (0)] Qs +ws5 Cuws—w4 (€)]€wy—wy VA =
((pobe + pab'c + p3bc ) v)a— < A, Iy —wy > (b)) .
Hence, [qu, +uws, €wz—ws (0)][Guwr +wss €ws—w, (€)]€ws —wy (a0)x =
((poabe + pgab’c + pzabc )v)a— < A, hyyy —w, > ((abcv')y + (a'bev)y).

This implies

[Qw1+w4> 6w2—w4(b)] [qw1+w4a 6w3_w4(0)] (6w4—w1 (CL) ('U))\ — Cuwy—wy (CL'U))\ =

(1t < A, By —w, >)(d'bev)y. (%)
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4 The case < A, Iy —yy > > 2

In this section we will prove that if A is an integral dominant functional
and < A, hyy,—w, >> 2, then for arbitrary 8, € F' the irreducible module
V(A, B, «) has only finitely many weights with respect to the action of H.

Let v =< AN hw,—wy, > (1— < A hyy—ws >) (see Lemma 3.3). Since
wy —wy = (w; — ws) + (w3 — wy) and the root w3 — wy is positive, we
conclude that < A, hy, —w, >> 2 and therefore v # 0. Let £ = “1+<’\h+w4>
Lemma 4.1 ey, (@)vy — €w,—w, (a0)x — Eq 1) w3 G, —ws (V) x = 0.

Proof. Denote the left hand side of the above equality as w. In order
to prove that w = 0 we need only to check that Liw NV, = (0). From the
equality (*) and Lemma 3.3 it follows that

[Qw1+w4> Cwo—wy (b)] [qw1+w4a ew3—w4(c)]w = 0.

Consider the element q_y,—w, (b)w. We have  q_yy—uw, (0)€ws—w, (a)vr =
Q01 —ws (AD)UN = @1y, —wy(abv), by Lemma 3.2. The last expression is equal
also t0 ¢_wy—w, (b)€ws—w, (av). Furthermore,

Q—wg—w4(b)q—wl—umq—wl—wgv)\ = —wi—wo {—wi —w3d—wz—ws (b)UA = 07

since —ws — wy is positive.

We have shown that ¢, —w, (R)w = (0).
Similarly q_uy—w,(R)w = (0).

Let us show that e, —u, (R)w = (0). Indeed, f(w; —wy) =9, f(—w; —
wy) = —2, f(—w; —w3) = —7. Hence,

Cwi—wy (b)q—wl—wzq—wl—wgv)\ - [ewl—w4 (b)a q—wi—wo > q—wl—wg]v)\ = 0.
Now
Cwi—wy (b>w = Cwi—wy (b>€w4—w1 (CL)U)\ — Cwy—wy (b>€w4—w1 (QU)A =
Py —0, (@D)UN — By, —0, (D) (av)\ = 0.

Since [Luy+wys Ly +ws] € €w,—wy (R) it follows that for arbitrary elements
UES Lw1+w27 ye Lw1+w37 TYw = —yrw.
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We have Lw1+w2 = [qw1+w47 Cwy—wy (R>]+q—w3—w4 (R)7 Lw1+w3 = [qw1+w47 Cwz—wy (R)]+
G—wz—wq (1)

From what we proved above, it follows that L, tw, L, +wsw = (0). To-
gether with ey, —y, (R)w = (0) it implies that U(L)wNV, = (0) and therefore
w = 0. Lemma is proved.

Lemma 4.2 e,y (0)U) = €y, (AV)x — E@ro) w3 101 —w4 (@'V) .

Proof. By Lemma 2.5,
Covs w4 Cros—101 () UN = Covg—03 Ca0s—101 (V) F ECos—1w03 Aoy —103 G101 —105 (A V) 2
Since w3 — wy is positive, it implies
[Cas 104 Erog—w1 (@)X = [€rwg—wis Crg—wy ) (AV) A+

§q—wy—w, [61%—11}4’ Q—w1—w3](alv))\ = Cwz—w, (CLU))\ — &q—w1—wsQ—wy —ws (alv))\‘
This implies the result and proves the lemma.
From now on in this section, unless otherwise stated, we will assume that
< A, hagy—wy, >= 2. Our first aim is to show that e _,, Vi = (0).

Lemma 4.3 €y, _y,(a)ed, ., Ux = 6& ws—u, Gowi—wsw—w, (V).

Proof. Taking into account that

[ —w3 (@), Cwrs—w1 > Cuws—w1 5 Covg—w1) = Cuy—ws (a)e?ﬂg—wl_

3€uws—wr Cwy —ws (a)e121}3—w1 + 36121;3—w16w1—w3 (@)€ws—wy — 6?u3—w16w1—w3 (a) =0

and

Cwi—ws (a)efug_wl = [Cun—ws (@), Cus—wy » Covg—wr )+

2€43—w; Cwy —ws (a)ewg—m - 612U3—w16w1—w3 (a) =
—2€uwg—w; (@) + 2€u5—w; Covy —w5 (A) Crvg w0y — 612113—1111 Cury—w3 (@),
we get

Cwi—ws (a)ei’us—mw\ = 3ew3—w1(_26w3—w1 (a) + 2ew3—w1ew1—w3( )ewg—m)w\_
Uy =

a
363}3—1111 Cw—ws (a)ews—ll)lU)\ = _6671)3—101 Cws—w1 (CL)U)\ + 363}3—&)1 hwl—w3 (CL
_6€w3—w1 (671)3—101 (Cw))\ - £Q—w1—w2q—w1—w4 (CL/U))\ + 66%03—101 (QU)A =
6 gewg—wl q—wi —wo d—wy —wy (a/’U))\.

The lemma is proved.
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Lemma 4.4 €y, _y,(a)ew, —w, (D)€l _,, v = 0.

Proof. By Lemma 4.3, the left hand side is equal to
6 ey —ws (@) €uwg—w1 Qw1 —ws -y —ws (V) 2.
We notice that
Cw; —ws (a)Q—w1—w2Q—w1—w4 (blv))\ = [ewl—wa (a), d—wi—wy» Q—w1—w4](blv))\ =0.
Hence> Cwi—ws (a)ewg—w1Q—w1—w2(J—w1—w4 (b/’l}))\ =
[ewl—ws (a)7 ew3—w1]q—w1—w2q—w1—w4 (b/v>>\ = hwl—w3 (a>q—w1—w2q—w1—w4 (b/v))\‘
From Lemma 3.2 it follows that the last expression is equal to
Py w5 (1) Gy s G —ws (@) x =
<A+ wg — Wi, hwl—wg(]-) > G—wi—wo—wi —wy (ab/'l}))\ = 0.
The lemma is proved.

Lemma 4.5 [Qw1+w37 €wy—ws (a)]ewg—w1Q—wl—wQQ—wl—w4UA =

Gy +wy Cws—w1 —wi —we d—wi —wy (CL’U))\ .

Proof. We have [qu, ;s €us—ws (@)] = Guy-+uws Cuws—ws (@) = €y —ws (@) Guon +uws -
Now, since the total weight of the expression G, +uwsCuws—wi d—w; —wsd—w; —w, 1S
3ws — w; that is positive, we only need to consider the expression

Qw1 +ws Cws—ws (a)ew3—w1Q—w1—w2Q—w1—w4v>\ =(I)+ (1)

where (/) = Qi +w3 Cws—wr (@) Gy — w2 Q=1 —wy U, and
(II) = Qw1 +ws Cwz—w1 Cws—ws (@) Gy — w2 Q=1 —ws V-

Let us consider these expressions separately.

(I> = Gui+wzd—w1 —w2 Cwg—wy (a)q—wl—w4v>\ =

Gy +ws §—wi —we §—w1 —ws Cws—wy (a)UA T Gui+wz §—wi —wo [€w4—1l)1 (CL), Q—w1—w4]v>\ :
1.1 1.2

(]1> = Qu;+w3 —w1 —we d—w1 —ws Cws—w1 (a)v,\ =
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Gui w3z —wi —wo d—wi —wy (€w4—w1 (CLU))\ + é-Q—wl—wz q—wi—ws (a/v),\) =
Gy +ws Qw1 — w2 1w —ws Cros—w; (AV) 2

because q—wi —wo d—w1 —wa d—wy —wy = O;

([2) = “Qui+wsd—wi—w2 4—2un (CL)U)\ =
q—w1 —ws Qi +wz —2w (G)U)\ - [le-‘rwga q—wl—wz]q—2w1 (G)U)\ = (]2]-) + (122)7

(121) = q—wi—ws [Qw1+w37 q—2w,; (a)]’U)\ = _2Q—w1—w2€w3—w1 (a)'U)\ =

_2q—w1—w2 (€w3_w1 (QU)A - gq—wl—w2q—w1—w4 (alv>>\) = _2Q—w1—w2€w3—w1 (QU)A;

([22) = Cuwz—wad—2w (CL)'U)\ = q—2u (a)em_mv}\ =0

since ws — wsy is positive.

(II) = w1 +ws Cws—wy Cws—ws (@) =) —wo Gy —ws U =
Qw1 +ws Cwz—w1 —w1 —w2 Cws—ws (@)q—w)—wsUx =

Gui+w3 Cws—w1 —wi —wo d—wi —w4 Cws—ws (a)v,\ +

111

Qw1 +w3 Cwz—w1 §—wi —wa [6w4—w3 (@), q—uw, —w4]v>\ .

11.2
But
(£1.1) = Guy s Covs—wn G101~ w2 w1 —w4 Cuog—ws () U =
Gun -+ w3 Cuvg —w1 G~ w3 G —w1 w3 Cuvg —w5 (AV) 3
by Lemma 3.2;

(I1.2) = —Guw +ws Cws —w1 §—w1 —wa §—wi —ws (a)vx =
— Guwr +ws Cws —w1 §—w1 —w2 §—w1 —w3 (av)x

again by Lemma 3.2.
To summarize, we have proved that

[Qw1+w3> Cws—ws (a)]ewg—un d—wi—w3d—w1—wsUN = P(av)y,

where P is an operator that does not involve a. Choosing a = 1, we get
P = ad(qu, 1w, ) ad(€ws—w, ) ad(q—1, -, )ad(q—1p, —w, ). The lemma is proved.
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3

Lemma 4.6 (i) [qwlﬂug,ew4_w3(a)]ews_w1

Vy =

_qw1+w46§ug—w1 (CL’U))\ -3 ge%l)g—u)l q—wi—ws (a'lv))\'

(”) [qw1+w37 Cwy—ws (CL)] [qw1+w37 Cwy—w3 (b>]6131}3—w1/U)\ =

3 £QW1+w4€3ug—w1 q—w1 —ws ((ab/ - a/b)v)k’

(11) [Guos +ws s €ws—ws (@)][Gur +ss Cws—ws (0)][Gus s Ews—ws (€)]€0y i, U1 = 0.

Proof. (i) The element ¢y, 1, commutes with e, ., and w; +ws is pos-
oy . 3 o .
itive. Hence, qu,4ws€py_w, U = 0. Furthermore, [€y, —w, (@), €ws—w, » Cws—w,] =
0. Hence,

Cwy—ws (a)eig—wlv>\ =3 e%vg—wl Cwg—ws (a)ews—ll)lU)\ -2 ei}g—wlew4—w3 (a)UA =

3 6303—1016104—101 (CL)U)\ + ef’ug_wl Cowy—ws (CL)'U)\ =

3 e%vg—wl (6w4—w1 (CLU))\ + §Q—w1—w2 q—wi—ws (a/v))\) + efug—wleuu—w3 (CLU))\.

3

We have proved that [qu, ws, Cwi—ws (@)]€4,

V) =
Gy 43 €w4—w3]6§u3—w1 (av)x + 3€Gu+ws 6121}3—w1 d—w1—wo d—w1—w3 (a/U)A =

~ s +11 €y (Q0)N B EC, 1y, Quor-twa G —w Gy~ (AV) 1 =
— Qs 4oy, (V)% — BEED 1y Crvg—wp Gy —ug (AV) 3 —
3 €31, G—un—wsGun +wsl—wn—us (AV) 1 =
~ G rws Cuy g (VA3 EC0, 1, o100 (V)N =3 E€0, 1, Gy s P~ (V) x =
P A N v P N
The assertion (i) is proved.
(ii) Let us apply (1) t0 [Gu+ws: €ws—ws (b)]€5,, _,, va and consider both sum-

mands of the right hand side of (i) separately.

We have’ [Qw1+w3> Cwy—ws (a)]qw1+w4e131}3—w1 (bv)A =
—Guwr+wy [qw1+w37 Cwy—w3 (a)]eig—wl (bv))\ =
Qw1 +w,y (Qw1+w4 6’131}3—’11}1 (abU)A +3 5612%—11;1 d—wi—ws (a/bv)k) =
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3 ng1+w4€3ug—w1 q—wi—w; (a/bv)A>’

Acting on the second summand, we get

[qw1+w3 y Cwg—ws (a)]eijg—wl q—wi—w; (b/v>>\ =

_6121;3—w1 [Qw1+w3 y Cwy—ws (a)]q—wl—w (blv))\) +

2€w;—un [t 43> Cws—ws (@)1 Gy~ (V01 =
Crvg—wn [Guor-+3> Cuvs—ws (@)} 4o~ (V01 +
26— [Gun+s> €3 (@), s =01 |00~ (D0) 1 =
Crs—w (G143 Cus—3 (@), G ] (V)1 +
2€uw; w1 [Gur +ws s Cuws—wr (@)]q—wr—w (V)1 =
eig—wlewz;—wz(a)(b/v))\ + 2€u5—w; [Gur +ws > Cws—w: (@)]q—w; —ws (b/v)A-
The first summand of this sum is equal to €2, _,, €u,—w,(ab'v), by Lemma
3.2. As for the second summand,
ool s (@) 0 (002 =

€w3 — w1 le “+w3 6’LU4—U]1 (a)q—wl —w2 (blv))\ =
ewg—wl Qw1+w3 Q—w1—w2 €w4_w1 (a) (blv))\ =
Cws—w1 Gui +ws §—wi —ws Cwg—wy (ablv)k‘l'

171
é-ewg—wl Qui+ws 4—wi —wa {—w1 —we —w1—ws3 (CL b U))\ =
0

/
Cws—w1 Gui +wz §—wi —was Cwy—wy (ab'v)y.

We have shown that

[qw1+1U3> Cwy—ws (a)]ezzug—w1Q—w1—w2(blv))\ = P(ablv))\a

where P is an operator which does not involve a or b. Choosing a =1, b =1,
we get P = —ad(Gu, +uw,)ad(€ws 1w, )2ad(q_w, —u,) which finishes the proof of

(ii).
(iii) By using (ii) we need only to show that

(G +ws s Cura—w5 (@) Gun -+ 6121;3—11;1 q—wi—wyUx = 0.
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Since [Gu, +ws» Cws—ws (@)] and gy, 14, commute, the expression above is

—Guwy +wy [qw1+w37 Cws—ws (a)]eig_wl q—wi—wy UA-

We proved above that

[qw1+w37 Cwy—ws (a)]eig—wlq—wl—llnv)\ = _qw1+w46121;3—w1 q—wy —wo (QU)A’
Now multiplying this expression on the left by ¢y, +w, We get 0. This con-
cludes the proof of the lemma.

Lemma 4.7 [Gu; twss Cuwy—ws (R)]2€3 vy = (0).

w3 —w1

Proof. Apply ad(ey,—w,)’ to the equality [Gu, 1w, Cws—uws (R)]°€3, _ 0x =
(0) of Lemma 4.6(iii).

Since [ewz—w47Qw1+w3] = [6102—w47€w3—w1] = [€w4—w3(R)7er—w47€w2—w4] =
(0), we will get

[Qw1+w3’ [6w2—w4a 6w4_w3(R)]]3€i]3_w11))\ = (O)a

completing the proof of the lemma.

Lemma 4.8 ¢} _ v, =0.
Proof. If ef’ug_mv,\ = 0, then there exist positive roots oy, ..., as such

that (0) # La, - - - La,€3,_, Ux € Vi. Let s be the minimal number with this
property. Since we can move each L, to the right modulo shorter products,
we can assume that for each 7, 1 < i <'s, a; + w3 — wy is a root or 0 and
f(ay) < f(w; —ws) = 3. Among all positive roots, only w; — ws, wy + wo,
wy 4+ wy4 have this properties. Suppose that

(0) 7£ Lim—l—sz{m—l-wA;ewl—ws (R)ke?us—wlqb‘ < V)"

Then i(wy + we) + j(wy + wy) + (3 — k)(ws — wy) = m(wy + wq + w3 + wy);
0<i,j,k€Z, mel.

This implies ¢ = j = m, k =3 —m > 0. Hence, we have 3 options:
1) k =2 or 3. This contradicts Lemma 4.4.

2) k= 1. By Lemma 4.3

2 2 3 2 2
Lw1+w2 Lw1+w4ew1_w3 (R)ewg—’wl U g Lw1+w2 Lw1+w4 611}3_11}1 q—wl —wgq—wl—w4v)\~
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The factorsin L2, |, L2 ., on the right hand side anticommute, because
of the minimality of s and the fact that [Ly, +wys Lw,+ws] € €wy—ws(R), which

leads to the case 2).

Suppose that at least one of the two Ly, 14, factors lies in g, —w, (R).
Then

q—wo—ws (a)ewg—wl q—wi—ws §—wi—ws VN =

Cwz—w1 §—war—w3 (@) =y w2 = w1 —wa VA F G—wp—w1 (@) G—ro; w2 G—1 —ws V-

The first summand is 0 because —wy — w3 is positive. The second sum-
mand is equal to

q—wi—ws §—wi —ws d—wo—wy (a)v,\ = q—w,—wad—wi; —ws {—wo—w: (CLU))\

by Lemma 3.2. Now it remains to notice that q_., —w,q—w —wsq—wi—ws = 0.
Thus, we can assume that both factors from L., 4, are [Gu, +ws, Cuws—ws ()],
i=1,2.

By Lemma 4.5 we have
[Qw1+w3> Cws—ws (al)] [Qw1+w3> Cwy—ws (a2)]6w3—w1 d—w1—wod—w1—ws VN =

[Guoy 43 Cevs—w3 (A1) Qa1 Cuwrs — w1 Q-1 —wr T —ws (A2V) 2

The element [Gu, +wss Cws—ws(@1)] anticommutes with gy, +.,. Hence again
by Lemma 4.5

[le—l—wga Cws—ws (al)]Qw4+w1 Cwsz—w1 d—wi—wa d—wi —wy (CLQ/U))\ =
—Quwstwi Quatw Cws—w1 —wi —wo d—wi —wy (CLlCLQ’U))\ =0.

_ : 3 3 3
3) k = 0. We have to examine L, Ly |, €. o, Ur- As above, we con-

clude that factors from Ly, 4, and Ly, 44, anticommute module the previous
cases (k > 1).

From q_y,—uw, (R)?€5,,_,,vx = (0), it follows that no more than one factor

from Ly, 4, lies in gy, 1wy (R).

On the other hand, Lemma 4.6 (iii) implies that exactly one factor from
Ly, 4w, lies 0 gy (R). Similarly, ¢y, —w, (R)%€3, _, va = (0) and Lemma

4.7 imply that exactly one factor from Ly, 4y, lies in q_yy—w, (R).
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Now we need to show that

[qw1+w3 y Cwo—ws (a'l )] [qw1+w3 y Cwo—ws (&2)] [Qw1+w3> Cws—ws (bl )] [qw1+w3 y Cwy—ws (b2)]

d—w3—w, (Cl)q—wz—ws (02)6?113—1111 vy =0.

First notice that q_, w,(co)e3

w3 —w1 U\ =

36121;3—w1 [q—ws—ws (€2), Ewg—wy JUx =

3612U3—w1q—w1—w2 (02)’0)\ = 3612U3—w1q—w1—w2 (CQ'U))\
by Lemma 3.2. Hence, without loss of generality, we can assume that ¢, = 1

and similarly, ¢; = 1. Moreover,

3
q—w3—ws9—ws—w3 €w3 —wq U

66w3—w1 [q—wg—w47 ewg—w1] [q—wg—wgv ewg—wl]v)\ = 66w3—w1 q—w1—ws d—w1—wo UX-

Now,

[Guoy w3 Ceos—w3 (01)] [ G 13 > Cwvs—ws (02)]€ews—wy Ty w3 G-y —wpUx = 0

follows from Lemma 4.5. This concludes the proof of the lemma.
Lemma 4.9 1) (€4, _w,) Mws—w>Tly, =0,
2) (ew4_w2)<>\,hw27w4>+11})\ = 0.

Proof. The only positive roots o such that oo + w, — w3 is a root and
fla) < f(ws —wg) = 6 are wy — wy, Wy + Wo, W3 — Wy, Wy — Wy. SUPPOSE
that

(0) ?é Lil)l-‘,-u)QL‘ijU:g—wzL’]Lguz—wzlL’lwg—w;;e’quzl—w:sv)\ g V)\? q =< )\7 h'w3_'w4 > _I_l
Then i(wy + ws) + j (w3 — ws) + k(wy —wy) + (¢ — 1) (wg — w3) = m(wy +ws +
w3 + wy), where i, 5, k,l,m € Z.

This implies i = m,i —j+k=m,j—(¢q—1) =m, —k+ (g—1) =m.
Hence it =m=0,j=k=q—1>0.

Now we have to examine the expression L, ., L, Ll 0, €0 —ws0r,
where [ = q — J.
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Suppose that [ > 1. There exist rational numbers p, v such that for an
arbitrary element a € R,

)
Cwsz—ws (a)egm—wsv)\ = /1’6?1)4—71)36104—103( )UA + Vew4 wshws—w4v>\ =
-2
:uegm—wseﬂul ws(aU)A + V€w4 —wy < A, hws wy > (Cw))\
by Lemma 3.2.
This implies that

6w3_w4(a)6gu4—wgv)\ = ew3_w4ez}4—w3 (GU))\ = 0

since ¢ =< A, hyyg—w, > +1.
Now let [ = 0,7 = q. As above

Curn—ws (0)€L s Ux = G5 Ly (@)U = q€L L Cany s (AV) .

This implies that

q q q
ng —wy w4—w3V)\ - Lw3 —wo w2 w46w4—w3v)\

Lq

w3 —w3

and, similarly, this expression is equal to el
shown above that

q q
ws—wa Crg—wy Crog—ws V2. We have

q q — q
Cowo—ws Crwg—wz VN = q!ewg —w3UX-

Now €. w,€n_wsUx = 0 because ¢ =< A, Ry, > +1 >< X, Rypy—y > +1.
This proves 1). Let us prove now assertion 2). The only positive roots «
such that o+ wy — we is a root and f(«a) < f(we —wy) = 1 are wy — wy and
w1 + wy. If

( ) 7£ Lw1+w4 w2 —w4 w4—wzv>\ C V)w p =< >‘7 hwz—w4 > +1,

then z(w1 +wy) + (p — J)(ws — wa) = m(wy + we + w3 + wy), which implies

i = = 0, j = p. Arguing as above, we see that L, ., eb .,V =
efu2_w4efv —w, V2 = 0. This completes the proof of the lemma.

Lemma 4.10 Let M C L a subspace such that M"vy = (0), where
vn € V. Let 1 < i # j < 4 and e, _w, 0 = 0. Suppose further that
€w,—w,;s M, M) = (0). Then [M, ewi_wj]""”*"v/\ =

—~
(e
~—
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Proof. From [M, ey, —w;, €w,—w,] = (0) it follows that

(M, €,—, ™" = [M - - M€y - - -, Cani—u,)

m+n

m+n
where products on the left hand side and in M --- M are taken in the asso-
ciative algebra Endp(V'). Hence,
(M, ew,—u;]" 0 C > €l M---Me' .

Wi —Wj s Wi — Wy
s+r=m+4n

In each nonzero summand on the right hand side » < m — 1.
From [M, [M,[M,...[M,e}, _,]]---] = (0) it follows that

) Wi — Wy

r+1

M---Mel - > MPe! . M1
——

i—w; = Wi —w;
m+n ptg=m-+n,p<m

which implies that ¢ > n and therefore M9v, = (0).

Lemma 4.11 There exists m > 1 such that ey _, Vx = (0) for any
1<i#5<m.

Proof. By Lemmas 4.8 and 4.9 the elements €4 (4, —w;), €+ (ws—wa)> €+ (wz—ws)
act nilpotently on V). Now it remains to notice that those elements generate
sl(4) and to use Lemma 4.10.

Lemma 4.12 For an arbitrary root o the subspace L, acts nilpotently
on V)\.

Proof. Let a = w; —w;, 1 <1 # j < 4, w; — w, negative. We have
shown that €, VA = (0). Now, Luy,—w; = [Cw;—w; (1), Cw;—w;» Cwy—w,] and
[w;—w; (1), €w;—w; s Cwi—w; » Cw—w,;] = (0). This implies that

m m D m q
Lwi_wj o [ij—ww Cw—w;y -+ - 6wi_wj] < Z ewi_ij j—w; Cwi—w;-
p+q=2m

2m

If ¢ > m then e, _,, VA = (0). If ¢ < m — 1, then f(m(w; — w;) +
q(w; — wy)) > 0 and again Ly, e, V2 = (0). We have shown that
Ly . Va=(0).
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Let a be an odd root such that L, acts on V,, nilpotently, « is not of the
form —2wj,. Then for arbitrary 1 < i # j < 4 the subspace [Lq, €y, —w,] acts
on Vj nilpotently. Indeed, since a # —2w;, we have [Lq, €w;—w;, Cw,—w;] =
[ewi—e;> Loy La] = (0). Now the claim follows from Lemma 4.10.

Consider a root space Ly, 4w;, 1 < @ # j < 4. If one of i,j is equal
to 1, then w; +w; > 0. Let i # 1, j # 1. Then [Ly,1u,,€w,—w,] = (0),
but < w; + Wy, hw—w, >7# 0. Hence, Ly, 4w, = [[€wi—wi» Cwr—wi)s Lw4w;] €
[ewi_w17 Lwl"l‘wj]'

From what we proved above it follows that L, . acts on V) nilpotently.

Next, L_sw, = [[€w;—w;s Cwi—w;]s L—2w;] € [€w;—w;» L—w;—w;], Which implies
that L_o,, acts on V) nilpotently. This completes the proof of the lemma.

5 Tensor product of modules V (), 3, «)

In this section we will discuss a realization of modules V (53, «) and define a
tensor product in this class.

Let R be an arbitrary commutative F-algebra with a derivation d : R —
R. Recall that the Weyl algebra W is W = Y2°) Rd', da = ad + d(a). For
an arbitrary scalar 3 € F consider the vector space Ws(R,d) = {aod® +
a1d’~1 4+ ayd®~% + -+ a; € R}, the (infinite) sums are understood formally,
W(R,d) = Yser Ws(R, d). The rule dYa = 5232, (7)d’(a)d"~", where d'(a) is
the 7-th derivative of the element a, makes W(R, d) an associative algebra,
W C W(R,d). Moreover, for each 3 € F we have [Rd, Ws(R, d)] € Ws(R, d).
Hence Ws(R, d) is a module over the Virasoro algebra Rd.

Now consider the associative commutative algebra R = R + Rv, v? =
0. Extend the derivation d via d(v) = —av, a € F. Then the subspace
Ws(R,v,d) =32, Rud°~" C Ws(R, d) is an Rd-submodule of Wg(R,d).

The following proposition is streightforward.
Proposition 5.1 Ws(R,v,d)/Ws_1(R,v,d) ~ V (5, ).
The tensor product V(f1, 1) ®p V(B2,a2) can be identified with

W51+52(R7 U1U27d)/W51+52—1(R7 U1U27d)7 where R = F[tl_lvtlut2_1t2]7 d =
—d/dt, — d/dts.
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Since d(t; — t3) = 0 it follows that (¢; — t2)(V(B1, 1) ® V (B2, a2)) is a
submodule of V (51, a1) @ V(B2, aa).
Clearly, V (B, a1) @ V(B2, a0)/(t1 — t2) = V(B1 + P2, a1 + a).

Proposition 5.2 IfV()\;, i, ), i = 1,2 are conformal modules of finite
type, then so is V(A1 + A2, 51 + Pa, aq + ).

Proof. The L-modules V(\;, 5;, ;) have finitely many weight spaces
with respect to the Cartan subalgebra H of L. The tensor product V =
V (A1, b1, 1) @ V(g B2, az) also has finitely many weight spaces. The sub-
space of V of weight A; + Ay can be identified with V' (51, ) @ V(Ba2, a2).Let
M be the submodule of V' generated by (t; —t2)(V (81, a1) @V (B2, az)). Then
(V/M)x1a, = V(614 B2, 01+ z). The L-module V(A + Ag, 51+ B2, a1 + )
is a homomorphic image of the submodule of V/M generated by (V/M)x, 1, -
Hence V(A1 + g, 81+ B2, a1 +2) has finitely many weight spaces with respect
to H. This concludes the proof of the proposition.

Consider a copy of the algebra of Laurent polynomials F[t,¢~1] and make
it a W-module via ab = ab, db = —V, a,b € F[t~',t]. Then the space of
8-columns F[t,t‘l]8 becomes a left module over Mg(W), hence a C'K(6)-
module. It is easy to see that this C'K(6)-module is irreducible.

If we define the form (w;/w;) = &; on i, Fw; and view function-
als on H as elements of >} | Fw;, then the highest weight of the mod-
ule Ws is wi, (hw—w, ® a)(b,0,...,0)7 = (w; — w;j/wy)(b,0,...,0)".
Moreover Vir(a)(b,0,...,0)T = (—ab — a’b,0,...,0)T. Hence Ws ~
V(wy, —1,0).

Proposition 5.3 If A is an integral dominant functional and
< N hyy—wy >> 2, then for arbitrary B,a € F the irreducible module
V (A, B,«) has only finitely many weights with respect to the action of H.

Proof. Let < A hy,—w, >= k > 2. By Proposition 5.2 the module
V' = V(A= (k—2)wy, B+ (k—2), ) has finitely many H-weights. Tensoring

V! with F[t,t—1]8 ~ V(wy,—1,0) k — 2 times and using Proposition 5.2 we
get the result.
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6 The case < A, hy—y; >=1

The aim of this section is to prove the following

Proposition 6.1 Let A\ be an integral dominant weight, such that
<A by —wy >=1. Then V(\, B, «) has finitely many weights with respect to
H if and only if < A\, hyy—w, >=0 and f = —1.

Suppose at first that A is an integral dominant weight such that
< A hupy—wy >= 1 and V(A 8, @) has finitely many H-weights.

Lemma 6.1 For arbitrary elements a € R, vy € V), we have
Cwz—w (CL)'U)\ = Cwz—w, (Cw))\'

Proof. Since V(A 5, «) is a finite sum of eigenspaces with respect to the
H it follows that the element e, ,, acts on V) nilpotently. The standard

argument shows that e2__, Vy = (0). Now for an arbitrary a € R we have

0= ew—uy(a)e;

wg—wlv>\ =

[ewl—ws (a)7 Cwsz—w1 > 6w3_w1]v>\ + 26w3—wlewl—w3 (a)ews—wlv)\ =
—2€u; w5 () VA + 2€u5 1w Py —w3 (@) U3 = —2(Cug—wy (@) VA — €uy—wy(aV) ).
This concludes the proof of the lemma.

Lemma 6.2 = —1.
Proof.

[qwl +ws ) Cwa—ws (b>] [qwl +ws s Cwy—ws (C>]ew3—w1 (a)UA =

qul-l—wsv Cwr—ws (b)]v [[qﬂu-l—wsv Cwy—ws (C>]7 Cwz—w; (CL)]]UA =
(—Papy—ws (ab'c) + Vir(abe))vy,
as in Lemma 3.4. This element is equal to (—ab’cv—abcv'+ B (abe) v+aabev) .

On the other hand, by Lemma 3.1 we have

[qw1+w37 Cwy—ws (b>][qw1+w37 €w4—w3( ) Cws— wl( )UA =

]
(G145 €= (0)] [ 41w s €ws w3 (€)] €y —wy (@V) 1 =
(=N, —ws(b'c) + Vir(be))(av)y = (—ab'cv — (be)(av) + B(bc) (av) + aabev),.

Comparing these two expressions we see that fa’bcv = —bca'v, so = —1.
This finishes the proof of the lemma.
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Lemma 6.3 < A, hyy_qy, >= 0.
2 _
Proof. We have qu, 1w, Gu; +wiq—ws—ws Q—ws—ws iy, VA = 0. Now,
2 =2 =2
q—wz—w3€w3_wlv)\ = 4Cyz—w; [q—wz—wgu 6w3—w1]v)\ = 2€wz—w §—w1 —wa UA-
Hencev 0= Gui4ws Qui +ws d—ws —ws Cws—wi —wi —wa UX =
Gy +ws §—ws—ws Qw1 +wz Cws—w1 d—w1 —wa UX =

Gy +ws Qw3 —wa [Gus +ws » Coo—wy |§—wy —w VAT
G +ws Q1w —ws Cws—wy [Gun +wss G—wn —ws |UN =
G +ws D—ws —ws Qs tws T—wr —wr VAT < A Py —wy > oy +ws Qs —ws Crog—wy Ux =
Qw1 +wy [Q—wg—w4a quiz—i-ws]Q—wl—sz)\ — Gy +ws Qwr+ws —ws —ws d—w1 —ws VAT
< Py —wy, > [ Qo tws s [ 4w —wss Covg—uwy ][N =
—Qur+ws Q—wy—ws UAT < A, Ry —py >< N, Ry gy > VN =
<A gy —wy > (=14 <A By —y >) U

Since < A, Ry —wy >>< A, hyyy—wy >= 1 it follows that < A, hyy—yy >=1
and therefore < A, hy,—q, >= 0. This concludes the proof of the lemma.

Now we will assume that A\ is an integral dominant weight such that
< MNhy—ws >= 1, < X\ hyy—, >= 0. Let § = —1. We will prove that
V (A, B, ) is a finite sum of eigenspaces with respect to H.

Lemma 6.4 Under the assumptions above, €yy—uw, (@)Uy = €ypy—w, (aV)A
for arbitrary a € R, vy € V).

Proof. The computations of Lemma 6.3 show that for < A, Ay, —yw, >=1,
£ = —1 we have

[ +ws s €ws—ws (F)][Quoy +aws > Curg—ws (1) (Cug—uwry (@)U — €ug—wy (@V))x = 0.
AISO, d—w3—wy (R> (€w3_w1 (a)w\—ew?)_wl (Cw))\) = q—wy—w3 (R)(6w3_w1 (a)UA_
Cws—w, (aV)x) = (0) by Lemma 3.2 . This implies that U(L4)(€wy—uw, (@)vy =

Cuws—w, (aV) ). Lemma is proved.

Lemma 6.5 e, , (a)vy = €y, _w, (av)y for an arbitrary a € R.

27



Proof. Denote w = €y, —w, (@)Ux — €uy—w, (av)y. Clearly, ey, —w, (R)w =
(0). Since f(ws — wq) > 0, it follows that e€yy—w, (D)W = €uy—w, (ab)vy —
€ws—w, (b)(av)y = 0 by Lemma 6.4.

From [qu, 4w, €ws—w, (R)] = (0) we conclude that ¢, 4, w = 0. Hence,
(G 104> €ws—1w0, (R)]w = (0). AlSO, ¢_py—w, (R)w = (0) by Lemma 3.2 applied
to the root —w; — we. We proved that L, 1w,w = (0).

If w+# 0 then U(Ly)w NV, # (0).

It means that there exist positive roots as,...,a, such that a; +--- +
as+ws—wp € Z(wl +wso + w3 +w4) and, moreover, «; +w4 —w; is a negative
root or 0 for any 7. If «; is an even root and «a; + wy — w; is one of the roots
of Lemma 3.2 or 0 then e,,(b)w = 0 again by Lemma 3.2. By Lemma 6.4 o;
is not supposed to be ws — wy4 as well. This rules out all even roots except
Wo — Wy.

Of odd roots, we have to examine w; + wo and w; + w3, but the latter
one has been ruled out above. Hence, i(wy — wyg) + j(wy + ws) + (wy —w3) =
k(wy + we + w3 + wy); 4,5,k € Z; i,57 > 0. This equation does not have a
solution. Hence w = 0. This finishes the proof of the lemma.

2 _
Lemma 6.6 ¢;_ _, vy =0.

Proof. For an arbitrary element a € R we have e, _w,(a)es, _,, v =

[ewl—w3 (a)7 Cwg—w1 ) ew3—w1]v>\ + 2€w3—w1 hwl_w3 (a)UA = _2671)3—101 (a)UA_'_
2€45—wy, My —ws (@)vy = 0 by Lemma 6.5.

Now, as in Section 4 we see that

vy N V)\ = L2 L2 62 Ux-

w1 w2 w1 Fws w3 —wi

U(L+)

2
ewg—wl
We have Lw1+w4 = [qw1+w37 Cws—ws (R)] + q—wy—ws (R)

Claim 1: [qw1+w37€w4_w3(a)]€i}3—wlv>\ = [qw1+w37€w4_w3]€i}3—w1 (Cw))\ for
an arbitrary a € R.
Indeed, [Luy, 1w,y Cws—w, s Cws—w,] = (0) implies

[qwl w3z s Cws—ws (CL)]e%l)g,—wl U\ = 26w3—w1 [[qw1+w37 Cwy—ws (CL)], ew3—w1]v>\ =

2€w3—w1 qw1+ll)3ell)4—w1 (a)'U)\ - 2€w3—w1 Qw1+w3€w4—w1 (CL'U))\

by Lemma 6.5. This proves the claim.

Claim 2: q_y,—u,(0)€2, 1 Ux = Gows—wsCop—w; (AV) -
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Indeed7 d—wy—ws (CL)e%uz—wl vy = 26w3—w1 [q—wz—ws (a)7 ew3—w1]v>\ =

2€05—wy 1wy —ws (A)UN = 2€45 10 @0y —w, (aV)x by Lemma 3.2. This proves
the claim.
These claims and the similar assertions for L, .,v) show that

L? L? 2 Vi =

witw2 T witwe Tw3z—wi

(F(Jw1+w2 + FQ—wg—w4)2(FQw1+w4 + FQ—wz—w3)2612ug—w1V>\ =
Qe +wz Qu +ws —ws —ws d—wa—ws V-

The computations of Lemma 6.3 show that, under the assumption
< A\, hyyy—s >= 0, this expression is equal to 0. This finishes the proof
of the lemma.

Lemma 6.7 e,,_,,v) = 0.

Proof. If e,,_,,vx # 0 then there exist positive roots aq,...,as such
that ag + -+ - + a, = w3 — wsy, for each oy the sum «; + we — ws is a negative
root or 0 and Ly, - -+ Lo, €wy—wsVx 7# (0).

The only positive roots with the properties above are ws—wsy and wy +wy.
But

Cavg—ws (@) g — s Ux = Nupg—y (@)U =< A\ w3 — wy > (av)y = 0.

Hence, all o; have to be equal to wy + wy, L3, |, Cuws—ws¥x 7# (0). But
[Luvy +wss [ Loy +wss Ewa—ws)] = (0), which leads to a contradiction and finishes
the proof of the lemma.

Lemma 6.8 e, ;(a)vy = €y, _w,(av).
We have ey, w3 (a) = [€w,—w, (@), €w,—w,;]. Hence
Cws—ws (a) = —Cuw;—w3Cws—w (CL)U)\ =

Cwy —w3 Cwy—w (QU)A = [ew4—w17 €w1_w3](av))\ = Cwy—ws (Cw))\
by Lemma 6.5.

A wz— 1
<A\, w3—wa>+ vy = 0

Lemma 6.9 ¢, ;> .
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Proof. As in the proof of Lemma 6.7, if the assertion is not true, then
there exist positive roots aq, ..., ag, such that ag +- - -+ as+ (< A, wg —wy >
+1)(wg — w3) € Z(wy + - -+ + wy), ; + wy — ws is a negative root or 0. In
fact, 0 is also excluded, because

<A w3z—wsg>+1 . <\ ws—wqg>+1 -
6w3_w4 (a)ell)4—w3 Uy = 6w3_w46w4_w3 (a',U))\ - O

by Lemma 6.8.
The only such positive roots are: ws — wsy, Wy — Wy, W1 + Wo, —2wWy.

Hence, there exist i, j, k,l € Z>o, p € Z, such that i(ws — wsy) + j(wy —
’UJ4) + k(w1 + UJQ) — 2[’(1]4 + m(w4 — wg) = p(w1 + we + w3 + w4), where
m =< A\, w3z —wy > +1. It means, that k =p, —i+j+k=p,i—m =p,
—j — 2l = p. The first two equalities imply that p =k € Z>y, ¢ = 7. Now,
adding the last two equalities we get —m — 2] = 2p, where the left hand side
is negative, whereas the right hand side is positive. This concludes the proof
of the lemma.

The element €4 (u, —ws), €4(wo—ws)s C(wi—ws) generate sl(4) and act on V),
nilpotently. Arguing as in the proof of Lemmas 4.11 and 4.12 we get

Lemma 6.10 (1) There exists m > 1 such that ey, _,, Vx = (0) for any
1<i#j <4
(2) There exist m > 1 such that L2'Vy = (0) for an arbitrary root «.

This implies that for an integral dominant weight A such that 1 =
< N Ry —wy >3 0 =< A, huyy—w, >, the module V(A,—1, @) is a finite sum
of weights spaces with respect to the action of H.

7  The case < A,y —yy >=0
We have

[[6w4_w1 (a)’ qw3+w1]’ qw2+w1] = _Hew3—w1 (a)’ qw1+w4]’ qw2+w1] = Vz'r(a).

If < A hy,—w; >= 0 and nevertheless V (A, 5, ) is of finite type, then
Cws—w, Va = (0). This implies that
1

Cwz—w (a)V)\ = _5[6w1—w3 (a)a Cwz—w s 6w3—w1]V)\ = (O)
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Hence

Qs +w1 Gur +ws Cwz—wr (a)Vy = [Qw2+w1a [Qw1+w4a Cwz—w (a)“V)\ = Vir(a)Vx = (0).

Since H C [H ® R,Vir(R)] it follows that HV, = (0), A = 0. Then V
is a 1-dimensional module with zero multiplication, which is not viewed as
irreducible.

This concludes the proof of Theorem 3.1.

8 Jordan bimodules

Let V' be a Jordan bimodule over a unital Jordan (super)algebra J. Then V
can be represented as a direct sum V = Vo @ Vy 2 @ V3, where JV; = (0), Vi)o
is a one-sided Jordan bimodule (see [MZ2] ), V; is a unital Jordan bimodule.

In [MZ2] it was shown that the universal associative enveloping algebra
of JCK(R,d) is My(W(R,d). It means that one-sided Jordan JCK(R,d)-
bimodules are left modules over M, (W (R,d)) or, equivalently, 4-tuples U?,
where U is a left module over W (R, d).

Now suppose that R = F[t71t], d = %, and the one-sided Jordan bi-
module over JOK(6) is conformal. Then the left module M over W(R,d)
is a unital conformal module. Such modules correspond to left unital C[d]-
modules. Irreducible C[d]-modules are one-dimensional and parametrized by
scalars o € F. Indecomposable conformal modules of finite type correspond

to Jordan blocks.

Let’s be more precise. let N be a left C[d]-module. Then N[t7! t] =
{Snit',n; € N,i € Z} is a conformal left W (F[t~!,¢], £)-module. It is of
finite type if and only if dimgN < oo. The space of 4-tuples N[t ¢]* is
a left associative conformal module over My(W), hence a one-sided Jordan

conformal module over JCK (6).

Proposition 8.1 (1) Every one-sided Jordan conformal bimodule over
JCK(6) is of the type N[t7', ¢]*;

(2) The module N[t~ t]* is irreducible if and only if N is one-dimensional,
N =Cv,vd=av, a € F;

(3) N[t~ t]* is an indecomposable module of finite type if and only if N
15 a Jordan block.
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Now let V' be a unital irreducible conformal Jordan bimodule of finite type
over J = JCK(6). In [MZ4], [Z] it was shown that the Tits-Kantor-Koecher
construction K(V') is a Lie conformal module of finite type over the TKK-
algebra K(J) = CK(6). In [MZ4] we proved that: (1) the reduced module
K (V) is irreducible over K(J) and uniquely determines the J-bimodule V;
(2) the action of the Cartan subalgebra H on K (V) is diagonalizable, all
weights of K(V) belong to the set {+w; & w;,1 < i,j < 4}. Let A be the
highest weight of K (V). Since the Weyl group of sl is the permutation
group Py and f(\) > f(o(\)) for all o € Py, the only possibilities for A are :
2wy, wy — wy, w1 + ws, —2w,4. The last two cases are ruled out by Theorem
3.1. The modules V (2wy, 3, ), B, € F; and V(w; — wy, —1,a), « € F
indeed have Jordan structures.

Proposition 8.2 Unital irreducible conformal Jordan JC K (6)-bimodules
of finite type form two parametric families, which correspond to V (2wy, 5, «),
B,a € F and V(wy —wy, —1,a), a € F.

Proof. We need to show that V(2wy, 8, a), V(w1 —wy, —1,0), a, 8 € F
are reduced Tits-Kantor-Koecher modules of the form K (V') for some unital
Jordan bimodules V' over J = JCK(6).

As in section 5 consider the associative commutative algebra R = R+ Ruv,
R = C[t™',t], v* = 0 with the derivation d, d(t) = —1, d(v) = av. Consider
the algebra W (R, d) = Y ger Wa(R, d), Wa(R,v,d) = 37°) Ruvd°~". The Lie

superalgebra L = CK(6) is embedded into Mg(W), hence into Mg(W).

Consider the subspace (Wg(R,v,d)),5 of matrices having Ws(R,v,d)
at the intersection of the 1st row and 5th column and 0 elsewhere. It is
easy to see that [Li, (Ws(R,v,d))15] = (0) and for an arbitrary element
u € (Ws(R,v,d))15, arbitrary 1 < i # j < 4, we have [hy,—w,,u] =
(2w /w; — wj)u. Let Us = U(L)(Ws(R,v,d))15 be the L-submodule gen-

erated by (Wgs(R,v,d))15 in Mg(W). Clearly, 2w; is the highest weight of
this submodule and (Ug)aw, = (Ws(R,v,d))1 5.

The L-submodule Ug_; of Ug is generated by (Ws_1(R,v,d))15, Us/Us_1 =
U(L)(WB(Ra U, d)/WB—l(R? v, d))a hence UB/UB—l = U(L)(Uﬁ/Uﬁ—l)wa and
(UB/U5—1)2w1 = V(ﬁa a)'

Hence V(2wy, 5, ) is a homomorphic image of the module Uz/Up_;.
Then all weights of V' (2w, 8, @) belong to the set {+w; + w;.1 <1, j < 4},
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which implies that V (2w, 8, ) ~ K (V) for some irreducible unital Jordan
J-bimodule V.

Now let’s turn to bimodules V(2wy, 8, ). Consider the Cheng-Kac su-
peralgebra CK (R, d) and the subspace €., _,,(Rv). This subspace generates
the L-submodule which is isomorphic to V(w; — w4, —1, ). This concludes
the proof of the proposition.
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