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Abstract—When estimating the electric field level in an indoor
environment, the usual complexity of the geometry and its large electric
size make it necessary to deal with asymptotic assumptions, also known
as high frequency techniques. But, even with these assumptions, the
computational complexity, and the CPU-time cost, can be very high.
Considering this drawback, this paper proposes the implementation of
a “Neural Networks System” for fast calculations of the Electric field
in 2D-indoor environments.

1. INTRODUCTION

When dealing with an indoor environment, the computational
complexity when using deterministic methods even if frequency
techniques are considered to calculate the field level in a given area,
can be extremely high. Because of it, this paper deals with the
implementation of fast methods using Artificial Neural Networks, for
the reduction of CPU-time and memory resources when calculating the
field coverage in an indoor environment. Artificial Neural Networks
(ANNs) are defined as intelligent knowledge based systems. This
means that, starting from a previous knowledge or any training
information, ANNs are able to solve certain complex mathematical
problems. Moreover, any ANN’s structures are assumed to be universal
function’s approximators, (as proved in [1] for Multilayer Perceptrons
MLP, and in [2] for Radial Basis Function Networks RBFN). Taking
into account these characteristics, it can be derived that an ANN
is able to link inputs and outputs in a problem, as accurate as we
want. if ANNs are Universal Approximators for known functions, why
to use them in this application? One reason is that the analytical
equations that describes the problems, are not known, in a general
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case the only information that may be available, is a set of pairs input-
output. The other and most important reason in this application,
is that the results using a trained ANN are obtained faster than
using asymptotic techniques and of course, faster than using full-
wave numerical methods. This paper is divided in five sections;
description of the theoretical basis for the field level estimation in
indoor propagation using high frequency techniques (GO-UTD); the
theoretical and operational basis of the Artificial Neural Networks; the
geometrical features to be treated; the obtained results and finally the
conclusions.

2. INDOOR PROPAGATION

When dealing with a source of electromagnetic field, placed in a
“free space” environment, the electric field (or the magnetic field)
can be computed using integral equations which relate current
densities and field magnitudes [14] derived from Maxwell’s equations.
However, in the case under study, with a complex environment with
obstacles, the boundary conditions imposed by that environment
must be taken into account, for solving the electric or magnetic
field in a defined position. In essence, all the contributions due
to the interactions among the elements of the environment must be
considered. These interactions with electrically large obstacles are
mainly described through asymptotic approximations like Physical
Optics (PO) [3] or Geometrical Optics (GO) [4], by means of the
reflection and the diffraction. In this paper, in order to train de
ANN, all the electromagnetic interactions will be modeled through
the Geometrical Optics, and its improvement for dealing with the
diffraction phenomenon, the Geometrical Theory of Diffraction (GTD)
[5] and its correction, the Uniform Theory of Diffraction (UTD) [6].
Originally, the GO was developed for analyzing light propagation, that
is, at a frequency high enough that the electromagnetic waves can be
considered as a ray that propagates in the shortest direction between
two points (Fermat’s principle). From this, the well known Snell’s
laws, which define the light behavior when it collides with an obstacle,
can be demonstrated. Taking into account this ray nature assumption
into the Maxwell’s equations, the equations for the reflection (1) and
the diffraction (2) due a flat surface and a wedge structure [14],
respectively, can be derived:

For reflection:

Er(s) = Er
0 · R̄ ·

√
ρ1 · ρ2

(ρ1 + s) · (ρ2 + s)
· e−jβs (1)
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where Er
0 is the incident electric field at the reflection point, ρ1 and ρ2

are the spatial attenuation factors that depend on the initial source,
R̄ is the Fresnell’s reflection coefficient, s is the distance from the
reflection point to the receiver and β is wavenumber.

For diffraction:

Er(s) = Er
0 · D̄ · A(ρc, s) · e−jβs (2)

where Er
0 is the incident electric field at the reflection point, A(ρc, s) is

the spatial attenuation factor that depends on the type of obstacle, on
the position where the field is calculated, s, and on the original source,
ρc, and D̄ is the diffraction coefficient of the obstacle.

3. RADIAL BASIS FUNCTIONS NETWORKS

When dealing with an indoor propagation problem, it is necessary
to compute non linear functions (in this case, those of the analysis
by using Geometrical Optics). These non linear functions must
be approximated by means of Artificial Neural Networks which
work as universal approximators, such as those architectures whose
discriminant functions are Volterra expansions, Splines, or Polynomial
Functions [15]. In this paper, Radial Basis Function Networks (RBFN),
which use symmetric functions as discriminant functions, have been
used. It is possible to demonstrate, starting from the Stone-Weierstrass
theorem, that an ANN, which uses these symmetric discriminant
functions, is a universal function’s approximator [2]. In the RBFNs,
these polynomial symmetric discriminant functions, have the shape of
Equation (3), and so, they are called Gaussian functions. Moreover,
these Gaussian discriminant functions are local, that is, their effect
on the approximation is only significant in the near environment of
the application point, so one discriminant function can be modified
in the expansion without producing any considerable effect on the
rest of the approximation. From a theoretical point of view, RBFNs
comply with the Chebyshev’s concept of best uniform approximation
(i.e., there is always a RBFN that provides the minimum desired error
when estimating a given function) [16]

G(x) = exp

(
− x2

2σ2

)
(3)

Therefore, when approximating a non linear function, the procedure is
based on establishing a collection of Gaussian functions, with means,
variances and locations, dependent on the ANN’s input parameters. A
graphical example is showed in Fig. 1, where a non linear function is
approximated by an addition of Gaussian functions.
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Figure 1. Function approximation by combination of Gaussians.
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Figure 2. Analyzed rooms.

4. TRAINING’S PROCEDURE

In the development of this work, two different canonical scenarios have
been tested. The first one is a simple corridor in a two dimensional
space, with two walls, one opposite to the other, and a constant
distance between them. In the second scenario, a corridor with a ninety
degrees’ corner is considered (Fig. 2). The geometrical parameters
of these two different structures and the position of the transmitter
which generates the electric field in the structure will be ANN’s input
parameters. For simplicity in the computations, the transmitter is
considered to be an elemental dipole (Hertz dipole) of magnetic current
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density. Moreover, any other arbitrary radiating source could be
modeled using a set of this type of elementary dipoles, according to
the surface equivalence theorem, known as Huygens’s principle [7].
By means of such principle, actual electromagnetic sources, such as
an antenna, are replaced by equivalent sources, and as defined in the
Love’s principle [8], these sources can be magnetic currents. For the
ANN’s trainings, a set of points in a plane transversal to the corridor
will be selected, and the electric field will be computed on, using the
Geometrical Optics routines. These points will work as ANN’s input
parameters, and another set of points in another plane transversal to
the corridor will be considered as the output parameters. This sort
of training, imply a very expensive training’s procedure (in terms of
CPU-time and memory cost), but it is only necessary to run it once,
making worth the overall improvement.

5. RESULTS

First of all, the field level inside all the domain of the proposed scenarios
has been computed using the GO techniques as a reference result for
the goal of later comparisons. The whole set of trainings and final
results have been developed in 2.4 GHZ, the frequency used in wireless
computer’s networks, WIFI. These results are shown in Fig. 3 and
Fig. 4. For the ANN’s trainings, the variation of the geometrical

Figure 3. Field level in a straight corridor, computed using GO
[dBµV/m].
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Figure 4. Field level in a corridor with a corner, computed using GO
[dBµV/m].

parameters of the scenarios, such as the separation between walls (d),
or the walls’ length (L) has been considered. In the case of the corridor
scenario the separation between walls (d) has been varied between 8
and 24 wavelengths (λ) with a fixed length (L) of 17λ.

For this case, the original source has been centered between walls.
For the second scenario, the separation between walls before the corner
(da) has been varied from 8 to 24λ for a fixed length (La) of 10λ, and
the separation between walls after the corner (Lb) has been varied from
8 to 24λ, for a fixed length (Lb) of 10 λ. Along the training process,
the separation between field points and the step for the variation of
the geometrical parameters of the scenario, have been varied in order
to minimize the error parameters, those are, the Electric field level
difference between that obtained by GO and that obtained by the
trained ANN. Once the ANN has been trained, the ANN’s response at
other points than those of the training, but in between the parameters
rank has been evaluated (Fig. 5 and Fig. 6). As it can be seen, the
complementary figures are extremely similar. Indeed, the differences
between the GO results and the ANN results keep under 1 dBµV/m
(EGO [dBµV/m]−EANN [dBµV/m] ≤ ±1 dB) when the maximum
variations for the separation between field points and step for the
variation of the geometrical parameters of the scenario are λ/5 and
λ/4 respectively. One last result, probably the most important one,
is that the CPU-time spent in the evaluation of field level along the
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Figure 5. Field level in a straight corridor, using a trained ANN
[dBµV/m].

Figure 6. Field level in a straight corridor, using a trained ANN
[dBµV/m].



254 Martinez, Las-Heras, and Ayestaran

simple corridor (scenario 1) using ANN proposed method, is less than
ten percent of that spent when GO techniques is used. This result
has been obtained averaging the execution time’s costs over a lot of
different executions. Time consumption’s reduction is bigger than one
magnitude’s order for the presented examples.

6. CONCLUSIONS

From the obtained results with the proposed ANN method and their
comparison with standard GO technique results, it can be stated that
using ANNs in this kind of problems, the computations of the electric
field in a complex environment can be accelerated of the order of ten
times for the proposed scenarios. On the other hand, it is necessary a
very hard training procedure, with a very high computational cost if
simulations are the base of the training procedure. However, the use
of ANNs leaves it opened to other interesting options such as the use
of measurements for the training procedure. In such case, the ANN’s
results would be as accurate as measurements could be.
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