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Abstract
     −−−− Current regulators are a critical part of active power 

filters (APF's).  Design of current regulators capable of 
compensating high frequency harmonics created by non-linear 
loads is a challenging task.  Selective harmonic current 
compensation using harmonic regulators is a viable method to 
achieve this goal.  However, their design and tuning is not an 
easy task.  The performance –and even the stability– of harmonic 
current regulators strongly depends on implementation issues, 
with the tuning of the controller gains being critical.  
Furthermore, the presence of multiple current regulators 
working in parallel can create unwanted couplings with the 
fundamental current regulator, which can result in a 
deterioration of APF current control, i.e., oscillations and 
settling times larger than expected....  This paper addresses the 
design and tuning of selective harmonic compensators, with a 
focus on their stability analysis and transient behavior. 
 
Index terms −−−− Active filters, current control, selective harmonic 
compensation, digital control, resonant controllers 

I. INTRODUCTION 

Shunt active power filters (APF) are power electronic devices 

designed for the compensation of harmonic current from non-

linear loads, which also have the capability of compensating 

reactive power and unbalanced loads, see Fig. 1 [1−12,14−17].  

The current controller is a critical component of these APF's 

with the choice available of regulating either the line currents 

[1], Fig. 1 and the block diagram shown in Fig. 2a, or the active 

filter currents, the block diagram shown in Fig. 2b [1,5,8].  The 

first option has the advantage that only the line current needs to 

be measured.  The second option requires measurement of 

both the APF currents and the line currents, which are needed 

for determining the harmonics that need to be decoupled, but 

has the advantage of providing over-current protection for the 

APF.  From a dynamic point of view both solutions are 

similar and the first one will be used in this paper [1]. 

A number of current control strategies for APF have been 

proposed, including hysteresis, linear (PI), sliding and 

deadbeat controllers [6,7].  These methods normally have 

significant limitations eliminating harmonics injected by non-

linear loads.  Selective harmonic compensation was 

developed to address these concerns and is a control strategy 

in which several (normally linear) harmonic current regulators 

work in parallel, each canceling a specific harmonic injected 
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by the load [6−12,14−17].  An appealing property of these 

methods is that they can totally cancel the harmonics included 

in their design, including the ability to dynamically select the 

harmonics to compensate when the magnitude of the 

harmonic currents surpass the APF's capability. 

Concerns for the implementation of harmonic current 

regulators include their computational requirements, tuning, 

and circuit configuration.  While the first one is becoming 

less important thanks to fast and relatively cheap digital signal 

processors, selection of the gains for the controllers, as well 

as circuit configuration options, to guarantee stable operation 

and adequate dynamic performance is a challenge. 
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Fig. 1.- Block diagram of a parallel APF, including line current and DC bus 
voltage control. 
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Fig. 2.- Schematic representation of the APF qd current control shown in a 
synchronous reference frame (outer dc-link voltage control not shown). a) 
line current is regulated, b) active filter current is regulated. GFCR stands for 
fundamental current regulator transfer function, GF for the inductive filter 
transfer function and GLPF for the (optional) low-pass filter in the current 
feedback. 
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Fig. 3.- Current drawn by an electric drive during an acceleration transient.  
The drive was connected to the line through a diode rectifier. a) line 
voltages, b) diode rectifier (load) phase currents, c) harmonic content of the 
line voltage, in pu of the fundamental component (h=1), d) harmonic content 
of the load current, in pu of the maximum value of the fundamental 
component: h=1 

This paper analyzes the design, tuning and implementation 

of harmonic current regulators.  Continuous models will be 

developed first for this analysis, since they make it easier to 

present the concepts involved.  The effects due to a digital 

implementation of the harmonic current regulators will then 

be presented, with the goal of maintaining the stability and 

performance of the resulting discrete current regulators. 

II. PARALLEL ACTIVE POWER FILTER CONTROL 

An example block diagram of an APF is shown in Fig. 1.  

The line current references are generated from an outer dc-link 

voltage control loop and the supply line voltages.  These current 

references are the ideal line currents, free of any high frequency 

harmonics demanded by the load and with the ability to provide 

any desired power factor, up to the limits of the APF.  Fig. 2a 

shows the schematic representation of the APF current control 

in a reference frame synchronous with the line voltage vector.  

It can be noticed from Fig. 2a that the plant dynamics included 

in this model represent the dynamic characteristics of the APF 

output filter.  An inductive filter, modeled as an RL load, is 

used for these purposes in Fig. 1 [3,5,7-11, 15], with the 

corresponding transfer function being (1).  It should be noted, 

however, that other options, like an LCL filter, can also be used 

with the appropriate changes in the plant model (1). 
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A.- Current harmonics due to non-linear loads 

The line voltages and load currents are disturbances to the 

system.  In a synchronous reference frame, the fundamental line 

voltage becomes a dc quantity and is, therefore, easily 

compensated by a synchronous frame current regulator.  On the 

other hand, some loads, e.g., diode rectifiers, create currents 

with a large content of high frequency harmonics.  Compensation 

of the load currents is therefore a much more challenging task. 

The current harmonics created by non-linear loads 

typically have orders of h=−5, 7, −11, 13, … in the stationary 

reference frame, with h=1 corresponding to the fundamental 

frequency, ωe.  These harmonics become h=±6, ±12, ±18 

 ... ,  when transformed to the synchronous reference frame 

[7,8].  Fig. 3 shows the experimentally measured currents 

drawn by an electric drive from the line during an 

acceleration transient, as well as the line voltage.  Fig. 3c 

shows the variation over the time of the harmonics in the line 

voltage, while Fig. 3d shows the harmonics created by the 

load, both calculated using the Short-time Fourier Transform.  

It can be observed from the figure that the harmonics in the 

currents can change relatively quickly, reaching noticeably 

large values (relative to the fundamental current).  The line 

voltage harmonics, on the other hand, show minimal change 

due to the transient currents created by the electric drive during 

its acceleration.  The APF current regulator, therefore, needs to 

be able to cancel current harmonics that can be at frequencies 

relatively large compared to the fundamental frequency and has 

to provide good dynamic response, since these harmonics can 

change relatively fast. 

B.- Synchronous frame PI current regulators 

Synchronous frame PI current regulators have been widely 

used for the control of three-phase power converters [13].  

The transfer function of a synchronous reference frame PI 

current regulator implemented in the synchronous reference 

frame is shown in (2).  A pole-zero notation will be used 

throughout the paper, with the notation using the proportional 

Kp and integral Ki gain being indicated in (2). 
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To evaluate and compare the performance of different current 

regulators designs, it is useful to use the command tracking, i.e., 

output−to−reference, (3), and the disturbance rejection, i.e. 

output−to−disturbance, (4), transfer functions, shown in a 

synchronous reference frame, with GFCR standing for the  
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Fig. 4.- Frequency response function (FRF) magnitude, shown in a 
synchronous reference frame, of the synchronous reference frame PI current 
regulator.  The line frequency is ωe = 50 Hz, the harmonic order h being 
used for the frequency axis. The current regulator was tuned for a 400 Hz 
bandwidth (8·ωe) with no low-pass filter.  a) Command tracking FRF (eq. 
(3)), and b) Disturbance rejection FRF (eq. (4)). 
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Fig. 5.- Time response of an APF with a synchronous reference frame PI 
current regulator (simulated): a) line-current command, b) load current, 
consisting of harmonics h=±6, ±12, ±18, ±24 and ±30, c) actual line current.  
All the currents are shown in the stationary reference frame. 

fundamental current regulator transfer function in a 

synchronous reference frame (2), GF (1) being the APF 

inductive filter transfer function and GLPF being the transfer 

function of the low-pass filter in the current feed-back, which 

can be optional depending on the current measurement strategy. 

A convenient way to analyze the performance of APF is 

through the use of frequency response function (FRF) 

analysis.  Since the APF variables are modeled using complex 

vector quantities, which can rotate both forward and 

backwards, both positive as well as negative frequencies need 

to be considered for the transformation s=jω.  Fig. 4-a and 4-b 

show the magnitude of the resulting FRF for (3) and (4), 

respectively.  The current regulator was tuned to achieve 

pole/zero cancellation with a bandwidth of 400 Hz.  The gains 

of the controller being Ti = Lf /Rf  and Kp = 400 2 π Lf. 

It can be observed from Fig. 4-a that the FRF has a gain 

equal to one at 0 frequency, i.e., dc, which means they APF 

will have zero error in the steady-state.  As for the disturbance 

rejection capability, current harmonics injected by non-linear 
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Fig. 6.- a) Harmonic current regulator consisting of n parallel-connected 
regulators, b) current regulator consisting of a fundamental current regulator 
GFCR and a harmonic current regulator GHCR with the input to both 
current regulators being the current error, c) current regulator consisting of a 
fundamental current regulator and a harmonic current regulator with the 
input to the harmonic current regulator being the measured current. 

 loads will have typically orders of h=±6, ±12, ±18, ... ,  in 

the synchronous reference frame [7,8].  Complete elimination 

of the harmonics injected by the load would require a gain 

equal to zero in (4) at the frequencies corresponding to those 

harmonics.  It can be observed from Fig. 4-b that synchronous 

reference frame PI current regulator provides perfect 

disturbance rejection at 0 frequency, i.e., the fundamental 

frequency but the disturbance rejection capability decreases 

rapidly as the frequency (harmonic order) increases.  Fig. 5 

shows an example of the simulated time response of this 

current regulator.  For this simulation, a constant line current 

reference consisting of a single component at a frequency ωe 

was commanded at t=0.01 s, Fig. 5-a, and a non-linear load is 

connected between t=0.05 s and t=0.15 s, Fig. 5-b.  From this 

figure, both its capability to follow without significant error 

the current command, (when the load does not create 

harmonics the line current in Fig. 5-c perfectly matches the 

reference of Fig. 5-a), as well as the impact of the current 

harmonics created by the load (when harmonics created by 

the load are present there is a noticeable difference between 

the commanded and the actual line current). 

III. HARMONICS CURRENT REGULATOR FOR ACTIVE POWER 

FILTERS 

The principles of synchronous reference frame current 

regulators can be extended for the cancellation of harmonics 

created by non-linear loads through the use of harmonic 

current regulators.  In this concept, several current regulators, 

each designed to cancel a specific harmonic, are connected in 

parallel, Fig. 6a.  Several different design approaches for the 

selective harmonic current regulators have been proposed [6-

15] and will be discussed in the following sub-sections.   

A.- Harmonic synchronous current regulators design 

While all harmonic synchronous current regulators designs 

place a pole on the imaginary axis at the frequency to be 

cancelled, different options have been proposed for the 

selection of the regulator’s zero placement.  The zero can be 



 

 

tuned to have the same imaginary component as the pole at a 

distance 1/Tih from the imaginary axis, with (5) being obtained 

(see Fig .7a-top).  A pure integrator can also be used (6), (Fig. 

7b top) [8, 15].  Finally, if the zero is placed on the real axis in 

the fundamental frequency reference frame, (7) is obtained (Fig. 

7c top) [8, 15].  It should be noted that the gain Kph in (5)-(7) is 

normalized by dividing by the gain of the fundamental current 

controller Kp.  This was done for convenience in the root locus 

analysis presented later in the paper. 
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As already mentioned, non-linear loads typically create 

harmonics of order h=±6, ±12, ±18, … in a synchronous 

reference frame, [7,8].  Implementing the current regulators in 

a fundamental synchronous reference frame has the advantage 

of allowing simultaneous cancellation of positive and 

negative sequence harmonics, i.e., ±h, with a single regulator  

(Fig. 6-a).  Eq. (8)-(10) show the regulators that result from 

(5)-(7) when simultaneous cancellation of the positive and 

negative sequence components is implemented, with the 

corresponding pole-zero mapping being shown in the subplots 

at the bottom of Fig. 7. 
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While all the three designs shown in Fig. 7 have the same 

harmonic rejection capability in the steady-state, differences 

exist in their transient response due to the different zero 

placement [8, 15].  Due to space restrictions, the analysis 

presented in this paper will be limited to the design in Fig. 7a 

but the following results were found as part of this research.  

The design in Fig. 7-c was found to have similar dynamics 

response to the design in Fig. 7-a, while the design in Fig. 7b 

showed slower dynamic response. 
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Fig. 7.- Pole-zero configurations for the harmonic current regulators, shown 
in a fundamental frequency synchronous reference frame 
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Fig. 8.- Root locus, shown in a synchronous reference frame, when the 
harmonic current regulator GHCR is fed by the current error (Fig. 6b). 
GHCR consisting of five regulators to compensate harmonics ±6 to ±30 
(±300 2 π rad·s−1 to ±1800 2 π rad·s−1). It should be noted that the real and 
imaginary axis are scaled differently. 
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Fig. 9.- FRF shown in a synchronous reference frame, when the harmonic 
current regulator GHCR is fed by the current error, Fig. 6-b. The rest of 
conditions are as described in Fig. 8.  The dashed line corresponds to the 
FRF for thee case of only a PI current regulator being used shown in Fig. 4.  
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Fig. 10.- Time response of APF with harmonic current regulators 
(simulated): line current response to the current command and load current 
shown in Fig. 5 a and b. respectively, when the harmonic current regulator 
GHCR is fed by the current error (Fig. 6b). The rest of conditions are as 
described in Fig. 9. 

The command tracking and disturbance rejection transfer 

functions when the fundamental current regulator and the 

harmonic current regulator are combined (Fig. 6b) are (11) 

and (12), respectively. 

i
e

l_qd

i
e∗

l_qd

 = 
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1+(GFCR+GHCR) GF GLPF
 (11) 

i
e

l_qd

i
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load_qd

 = 
1

1+(GFCR+GHCR) GF GLPF
 (12) 

Fig. 8 shows the root locus of (11) as a function of Kp, 

with the pole-zero pairs due to the harmonic current 

regulators being readily observable.  The root locus will be 

used later for the analysis of the discrete form of the harmonic 

current regulators.  Fig. 9-a and 9-b show the command 

tracking and disturbance rejection FRF's for this controller.  It 

can be observed from Fig. 9-b that it fully rejects each of the 

harmonics included in its design (gain equal to zero).  It can 

also be observed from Fig. 9-a that including the harmonic 

current regulator results in a modification of the command 

tracking FRF compared to the PI current regulator case (3), 

with a significant increase of the magnitude at frequencies 

different from dc.  Fig. 10 shows the simulated time response 

of this current regulator.  It can be observed that a dramatic 

improvement in the cancellation of the distortion introduced 

by the load current is achieved when compared to the case of 

no harmonic current regulator shown in Fig. 5. 

B.- Harmonic current regulator using synchronous PI 

current controllers placed in the feedback path 

Since the harmonic current regulators are mainly intended 

for disturbance rejection, they could be placed in the feedback 

path, Fig. 6-c.  The resulting command tracking transfer 

function for this controller is (13), with the corresponding 

FRF being shown in Fig. 11-a. 

i
e
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i
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 = 
GFCR GF

1+(GFCR+GHCR) GF GLPF
 (13) 

It can be observed from this figure that this controller has 

a dc gain equal to one, and therefore no error regulating the 

fundamental current.  However, a noticeable decrease of the  
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Fig. 11.- a) Command tracking FRF shown in a synchronous reference 
frame, when the harmonic current regulator GHCR is fed by the measured 
line current (Fig. 6c). b) Time response of APF with harmonic current 
regulators (simulated): line current response to the current command and 
load current shown in Fig. 5-a and -b respectively (Fig. 6c). The rest of 
conditions are as described in Fig. 9. 
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Fig. 12.- Frequency response function (FRF) shown in a synchronous 
reference frame, when the controllers forming the harmonic current regulator 
GHCR include damping. The rest of conditions are as described in Fig. 9. 

FRF gain at frequencies near dc can be observed, resulting a 

serious deterioration of its command-tracking characteristics 

due to the poles of GHCR being placed in the feedback path.  

The disturbance rejection is the same as for the design in Fig. 

6b, i.e., (12), Fig. 9-b.  Fig. 11-b shows the time response for 

this controller.  As expected, this configuration rejects the 

harmonics injected by the load but has poor command 

tracking properties, which would severely limits it use. 

C.- Harmonic current regulator using synchronous reference 

frame PI current regulators with damping 

To alleviate stability concerns seen during the digital 

implementation of harmonic current regulators, harmonic 

current regulators with damping were developed [10-12].  

The transfer function in the continuous domain is shown in 

(14), where a new term has been added to the denominator 

that is tuned through the selection of the quality factor, Q. 

GHCR_h = 2·Kph 
(s2 + 1/Tih s + (h ωe)2)

s2 + (h ωe/Q) s + (h ωe)2
 (14) 

The corresponding FRF's are obtained substituting (14) in 

(11) and (12) and are shown in Fig. 12.  The new term added 

in the denominator of the current regulator transfer function 

moves the poles from the imaginary axis towards the left 

(stable) half of the “s” plane, Fig. 8.  This results in a more 



 

 

well damped system, but at the price of not fully cancelling 

harmonics created by the load, Fig. 12-b. 
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Fig. 13.- Root locus current control using harmonic current regulator.  
Sampling period T=0.1ms. a) sampling delay of T and b) sampling delay T/2 
(synchronous sampling), no LPF in the current feedback, harmonics 
decoupled h=±6, ±12, ±18, ±24 and ±30. (zooms in next figure). 

IV. DISCRETE IMPLEMENTATION OF THE HARMONIC CURRENT 

REGULATOR 

All the discussion and analysis presented in the previous 

section was for the continuous time domain, this section 

analyzes the issues that are relevant to the digital 

implementation of harmonic current regulators, and provides a 

criteria for the selection of the harmonic current regulator 

gains in the discrete domain. 

A.- Discretization methods 

Harmonic current regulators are designed to accurately 

control specific, well defined frequencies.  It is therefore 

mandatory to use discretization methods that exactly match the 

frequencies interest from the continuous to the discrete domain.  

Detailed discussion on the principles and performance of 

discretization methods can be found in [14], the Tustin 

transform with pre-warping, will be used in this paper. 

B.- Current measurement and sampling 

Current measurement and sampling is critical for the 

implementation of harmonic current controllers due to the 

relatively high frequency of the harmonics being 

compensated.  The current feedback path in a digital current 

regulator consists of a sensor, an optional low-pass filter, Fig. 

2, and a sampling & A/D conversion device that introduces a 

delay in the control [10].  The current sensors normally have 

bandwidths greater than tens of kHz and, therefore, have 

reduced impact.  Different configurations for the LPF and 

sampling are discussed in the next subsection. 

C.- Analysis of discretized harmonic current regulators 

This section analyzes the discrete harmonic regulators that result 

from the discretization of the continuous designs from Section III.  

The Tustin transform with pre-warping was used in all the cases, 

with a sampling period of T=0.1 ms (except when stated 

otherwise), which coincides with the switching period of the 

experimental setup.  In the analysis presented in this section only 

the gains Kp and Kph are initially changed, with  Kp =Kph.  The 

rest of gains of the fundamental and harmonic current regulators 

are kept constant, with Ti = Lf /Rf  implemented for pole-zero 

cancellation, Tih = Ti /5 and Kph/Kp=1, (8).  The effects of 

changes in these gains are studied by the end of this section. 
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a) Sampling delay=T, no LPF 
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b) Sampling delay=T/2 (synchronous sapling), no LPF 
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c) Sampling delay=T/2 (synchronous sapling), LPF of bandwidth 5.0 kHz 
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d) Sampling delay=T/2, damping with Q factor = 500 

Fig. 14.- Zoom of the branches of the root locus corresponding to harmonics 
h=6 (left) and h=30 (right), for three different configurations of the 
harmonics current regulator. 

Fig. 13-a shows the root locus of the resulting digital 

implementation of the controller presented in Sub-Section III-

A, with the corresponding continuous root locus shown in Fig. 

8.  The currents were sampled at the beginning of the switching 

period, resulting in a delay of one switching period T before the 

voltage command is updated.  The pole-zero pairs lying on the 

imaginary axis in the Fig. 8 are seen to lie on the unit circle in 

Fig. 13-a.  Fig. 14-a shows a zoom of the branches in Fig. 13-a 

corresponding to the harmonics h=6 and h=30, respectively. 

Some facts can be observed form Fig. 13-a and 14-a.  A 

significant portion of the branch corresponding to h=30 lies 

outside the unit circle, meaning that the system will be 

unstable for small values of Kp.  On the other hand, it can be 

observed from Fig. 13-a that, for large values of Kp, there are 
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Fig. 15.- Stability limits for gain Kp vs. the number of harmonics pairs being 
decoupled (1→h=±6; 2→h=±6, ±12; …; 2→ h=±6 to ±36;) for different 
configurations of the harmonic current regulator: T stands for sampling 
period, which is equal to the switching period, SD stands for sampling delay 
(T/2 corresponds to synchronous sampling, T for a complete sampling period 
delay), and LPF for the low-pass filter in the current measurement.  In all the 
cases, the harmonics current regulators were discretized using Tustin with 
prewarping, and Kph=Kp. 

two branches that lie outside of the unit circle.  It can be 

concluded, therefore, that there is a limited range of gains 

Kpmin<Kp<Kpmax for which the harmonic current regulator 

is stable.  Fig. 15 (�) shows the values of Kpmin and Kpmax 

that provide stable operation as a function of the number of 

harmonics being compensated.  It can be observed from the 

figure the range of gains for Kp that provide stable operation 

reduces as the number of harmonics being compensated 

increases, with this reducing practically to zero, i.e.,  Kpmin 

≈Kpmax, for the case when 5 harmonics are included in the 

current regulator design.  This limits the number of harmonics 

that can be compensated to 4. 

Fig. 13-b and 14-b show the root locus when the sampling 

delay is reduced from T to T/2 by sampling the currents in the 

middle of the switching period.  Although only slight 

differences are observed between the root locus in Fig. 13-b 

and Fig. 13-a, noticeable differences exist when the trajectory 

of the branch corresponding to h=30 is zoomed in Fig. 14b, 

which shows a significantly increased range of values of Kp 

that provide stable operation.  The benefits of reducing the 

sampling delay can also be seen in Fig. 15 (�) through the 

increased range of Kp values that allow stable operation, 

including compensation up to the 6
th

 harmonic. 

In the two cases discussed so far, there was no low-pass 

filter in the current feedback.  The effects of a low-pass filter 

can be observed from the root locus in Fig. 14-c.  The filter 

can be seen to have an effect similar to the delay analyzed in 

Fig. 14-a, due to the filter’s lag characteristic.  Fig. 15 shows 

the range of gains that provide stable operation for the case of 

two different bandwidths for the low-pass filter, 2.5 kHz (�) 

and 5 kHz (�).  It can be noticed from this figure that a low-

pass filter with a bandwidth as high as 5 kHz (half of the 

switching frequency) has a visible impact on the stability 

limits of the harmonic current regulator. 
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a)  εtrak b) εdist 

Fig. 16.- Simulation results. a) command tracking and b) disturbance 
rejection errors as a function of Tih.and Kph.gains, for the case of a 
harmonic current regulator using resonant controllers (8) to compensate for 
harmonics h=±6 up to h=±30, with a sampling delay of T/2 and no low-pass 
filter.  The fundamental current regulator gains Kp and Ti were tuned for 
pole-zero cancellation and a bandwidth of 400 Hz. 

Fig. 14-d shows the branches corresponding to the 

harmonics h=6 and h=30 for the case of the harmonic 

regulator with damping described in Section III-C.  The 

effects of using damping are evident in the branch for the case 

of h=30, which always lies within the unit circle, meaning that 

there is no risk of instability due to the gains being too small.  

The range of values of Kp that allow stable operation being 

shown in Fig. 15 (⊳). 

Finally, the range of gains that allow stable operation, and 

consequently, the number of harmonics that can be 

compensated, can be increased by decreasing the sampling 

period T.  Fig. 15 (�) shows an example of the improvement 

that is obtained when T is reduced from 1 to 0.08 ms (the 

switching frequency increases from 10 to 12.5 kHz).  It should 

be noted, however, that increasing the switching frequency can 

have important implications on the inverter losses, as well as on 

the inductive filter design, that need to be carefully considered. 

E.- Delay compensation 

It has already been shown in the previous sections that the 

delay intrinsic to the digital implementation of the current 

controllers has an adverse impact on their performance.  The 

importance of this effect becomes more relevant as the 

regulator harmonic order increases, and also depends on the 

current regulator design [8] and discretization method [14], 

which eventually depends of the placement of the zeros of the 

discrete current regulator. 

Delay compensation has been widely analyzed in the 

literature, and is not addressed in this paper.  Proposed 

methods include advancing the angle of the current regulator 

output voltage [17], as well as, modifications to the discrete 

current regulator [14,16].  Selection of the exact delay amount 

to compensate is often made ad hoc, e.g., two sampling 

periods compensation is recommended in [16] and [17], 

however, no clear criteria for this selection is given.  It should 

finally be noted that compensation methods normally assume 

steady-state operation, where it is possible to calculate the 

phase shift that the delay will produce for each harmonic.  

However, effectiveness of the compensation will be reduced 

Kp max 

Kp min 



 

 

during transients [16]. 

F.-Harmonic current regulator gain selection 

In the previous analysis, the controller’s gains Tih, Ti and 

Kph were either kept constant or had a fixed relationship to Kp, 

which was varied for the controller tuning.  The influence of 

changes in these parameters on the performance of the 

harmonic current regulators is discussed in this subsection. 

The integral time constant of the fundamental current 

regulator, Ti, is often selected to cancel the inductive filter 

dynamics (or near that value), with the proportional gain, Kp, 

selected to obtain the desired closed-loop bandwidth.  Using 

these criteria, the gains, Kph and Tih, of the harmonic current 

regulators still need to be selected.  Given the high order of the 

resulting transfers functions involved, it is not possible to obtain 

metrics for the dynamic response (settling time, overshoot, …) 

from analytical solutions.  Numerical evaluations were used 

instead.  Two metrics were defined to evaluate the dynamic 

performance of the command tracking and disturbance 

rejection, (15) and (16).  In these equations, it was assumed that 

the system was excited at t=0, with ∆t being a time large enough 

so that the line current has reached steady-state in all the cases. 

The metric  εtrack integrates over a time ∆t the difference 

between the response to changes in the fundamental current of 

the harmonic current regulator (11) minus the ideal response 

(3), i.e., the line current for the case that no harmonic current 

regulator is present.  This metric measures the impact that the 

harmonics current regulator has on the command tracking 

properties of the APF.  The metric εdist integrates the line current 

over a time ∆t, after the load starts creating harmonics at t=0. 

 εtrak = 
1

∆t
 ⌡⌠0

∆t (ilqds−ilqds ideal)2 dt (15) 

εdist  = 
1

∆t
 ⌡⌠0

∆t ilqds2 dt (16) 

Fig. 16 shows  εtrak and  εdist as a function of gains Kph 

and Tih.  Both metrics were normalized by dividing by the 

largest value.  The following conclusions can be reached form 

the figure. 

• The gain Tih has a small impact on the command tracking 

error (Fig. 16a and 17), but has a noticeable impact on the 

disturbance rejection capability.  This suggests using 

smaller values of Tih. (increase of Ti/Tih).  Values too 

small of Tih can make the harmonic current regulator too 

sensitive to noise, values of Tih ≈Th/5 were found adequate. 

• Values of Kph close to Kp provide a good trade-off 

between command tracking and disturbance rejection 

errors.  Increasing the value of Kph improves the 

disturbance rejection capability, but at the price of an 

increased command tracking error and making the current 

regulator more sensitive to noise. 

In all the previous analysis, the same gains, Kph and Tih, 

were used for each individual harmonic current regulator 

(8)−(10).  It is also possible to use different gains for each 

harmonic being compensated.  If this option is chosen, Kph 

should increase proportionally to harmonic compensated, as 

higher harmonics require higher gains to get into the stable 

region of the z-plane.  However, from the analysis carrier out, 

no relevant differences were observed using different Kph and 

Tih gains with respect to the case of using the same gains for 

all controllers. 

V. EXPERIMENTAL RESULTS 

This section presents experimental results for the analysis 

from this paper.  The test bench uses 75 A IGBT's with a 

switching frequency of 10 kHz (T=0.1 ms) and a DC bus 

voltage of Vdc=700 V.  An RL inductive filter was used, with 

Lf = 2.5 mH, Rf = 100 mΩ, and a maximum current of 30 A 

(rms).  The APF is connected to a line voltage of 50 Hz, 400 

V (rms line-line).  The APF control was implemented on a 

TMS320F28335 DSP.  Synchronous sampling was used, with 

a sampling delay of T/2.  Due to noise problems, a first-order, 

low-pass filter, with a cut-off frequency of 2.5 kHz, was used.  

According to the analysis presented in this paper, harmonics 

h=±6, ±12, ±18 and ±24 could be compensated, Fig. 15. 
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Fig. 17.- Command tracking response to a step un the q-axis line current 
commend.  Harmonic current regulator consisting of h=±6, ±12, ±18 
harmonics. 
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Fig. 18.- Line currents when the load is an uncontrolled rectifier, the 
harmonic current regulator being connected at t=0.75 s.  Harmonic current 
regulator compensates for h=±6, ±12, ±18 and ±24 harmonics. 
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Fig. 19.- Line currents when the APF was active when an uncontrolled 
rectifier is connected at t=0.3.  The harmonic current regulator is configured 
as described in Fig. 18. 

The fundamental current was tuned for a 400 Hz 

bandwidth.  The gains used for the harmonic current regulator 

were Kph=0.7Kp and Tih=Ti/5 (see Fig. 16). 

Fig. 16 shows the command tracking response to step of 5 

A in the q-axis (reactive current) line current command, with 

the harmonic current regulator consisting of four harmonic 

controllers at h=±6, ±12, ±18 and ±24.  It can be observed 



 

 

from the figure that the APF shows fast response with the 

system being perfectly stable. 

Fig. 18 shows the disturbance rejection capability of the 

HCR when the load is an uncontrolled rectifier and the APF is 

connected.  Stable operation and good dynamic behavior are 

observed, confirming the correctness of the gains tuning. 

Finally, Fig. 19 shows the disturbance rejection capability 

of the HCR when it is active and an uncontrolled rectifier is 

connected to the line, the APF is seen to react the to the 

distortion restoring nearly sinusoidal line currents. 

V. CONCLUSIONS 

The design and tuning of harmonic current regulators for 

APF has been discussed in this paper.  Harmonic current 

regulators are a good solution to perfectly cancel selected 

harmonics injected by non-linear loads.  However, selection of 

the gains for the controllers, to guarantee stable operation and 

adequate dynamic performance is a challenge, being often 

made ad hoc.  Furthermore, it can strongly depend on circuit 

configuration options. 

Stability analysis of harmonic current regulators has been 

presented in this paper.  From this analysis, the impact that 

different implementation issues like the sampling strategy, 

switching period and use of filters, has on the maximum 

number of harmonics that can be cancelled by the harmonic 

current regulator, as well as the range of gains that can be used 

to guarantee the stability of the system, have been established.  

Experimental results have been provided to support the 

analysis. 
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