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1 Introduction

Late last year, we witnessed the identification of the first examples of supersymmetry

preserving non-Abelian T-duality transformations [1–3] which, in one case [1], led to the

unexpected discovery of what may be regarded as a supersymmetric AdS6 doppelgänger

geometry in type II supergravity. To put this result into proper context, it is well over

a decade since the only solution in this class was identified [4] in massive IIA supergrav-

ity [5] and recent reports were veering slowly towards uniqueness statements [6].1 Against

1The absence of other supersymmetric vacua in the matter coupled theory [7] is touched upon in [8].
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this backdrop, the purpose of this note is to unmask our doppelgänger as simply the su-

persymmetric vacuum of Romans’ F(4) gauged supergravity [11], but in a less familiar

ten-dimensional guise.

To put Romans’ theory in a historical context, recall that Nahm’s 1978 classification

of simple superalgebras [12] acted as the catalyst for the quest to identify supergravity

theories with vacua invariant under the global symmetries of these algebras. Building on

successes in the identification of supergravities with vacua invariant under OSp(8|4, R) [13],

SU(2, 2|4) [14] and OSp(8∗|4) [15], one thread of this fascinating detective story ended in

1985 when the supergravity corresponding to the exceptional superalgebra F(4) was discov-

ered. Romans’ important observation was that a mass parameter for the two-index tensor

of the N = 4 theory [16] could be introduced leading to a gauged supergravity [11] with two

AdS6 vacua, one of which is supersymmetric. In a parallel development it was understood

that all these supergravities were simply ten and eleven-dimensional supergravity reduced

consistently on spheres [17–24].

In fact, as hinted at above, supersymmetry plays some rôle in consistent Kaluza-Klein

(KK) dimensional reductions. In general, there is often no fundamental guiding principle

in the construction of KK reduction ansätze and the only recourse can be trial and error.

However, sometimes a symmetry principle is at work, such as an existing symmetry of the

equations of motion, e.g. T-duality [25–27], the presence of a G-structure [28–34], or when

the internal space is a coset manifold [35–38]. These situations aside, the identification of

KK reductions remains a daunting exercise, but supersymmetry can offer valuable insights.

Generalising conclusions drawn in [39, 40] and through the elucidation of further examples,

it was conjectured in [41] that gauging R-symmetries always leads to consistent KK reduc-

tions to lower-dimensional supergravities admitting AdS vacua. To test this conjecture fur-

ther, [42] exhibited an elegant example of this conjecture by showing that the Lin, Lunin,

Maldacena (LLM) class [43] of geometries2 dual to SCFTs with R-symmetry SU(2)×U(1),

can be reduced to Romans five-dimensional SU(2)×U(1) gauged supergravity [44].

Through the benefit of hindsight, we can now view the consistent KK reduction of

massive IIA supergravity on S4 [17] to Romans’ F(4) gauged supergravity [11] through the

prism of this conjecture. Since the AdS6 × S4 is warped [4], the natural SO(5) isometry

is broken to SO(4) ∼ SU(2)× SU(2), where only a single SU(2) factor corresponds to the

R-symmetry. This particular SU(2) factor is then singled out through the writing of S3

in terms of left-invariant one-forms [17]. Then according to our conjecture [41], we should

expect that gaugings of the R-symmetry lead to a theory with an SU(2) gauge group and

presumably the mass parameter comes along for the ride, resulting in a lower-dimensional

massive gauged supergravity. Scouring the literature, one finds a single theory fitting this

billing, namely Romans’ F(4) gauged supergravity [11]. The point of this work is that

now we have a new supersymmetric AdS6 vacuum in type IIB [1] with the required SU(2)

R-symmetry manifest in an S2 factor, so we can gauge the S2 leading to the same result.

Together, the original reduction of Cvetič et. al [17], and the new embedding of

Romans’ theory in type IIB we present here, open up Romans’ theory to the string theory

2See [9, 10] for comments on the generality of the LLM geometries.
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Figure 1. The massive IIA reduction on S4 can be decomposed into a reduction on S3 (left arrow)

to D = 7 followed by a further reduction on the remaining angular coordinate of the S4. In this

paper we construct the alternative reduction from type IIB (right arrow) to D = 7 leading to an

embedding of Romans’ theory in type IIB.

community since it is technically easier to find solutions via ansatz in lower-dimensions

and then uplift. Indeed, in the past, we have seen supersymmetric domain walls [45],

solutions dual to twisted field theories [46], RG flows [47], various black holes [48, 49] and

more recently Lifshitz geometries [50–52] constructed directly in Romans’ theory, before

the connection to ten-dimensions was exploited. Here we emphasise that there is not just

one uplift, but two,3 so the number of uplifted solutions doubles.

Last year also marked a small resurgence of interest in the AdS/CFT within the scope

of five-dimensional theories. The strongly-coupled supersymmetric fixed-point theories pi-

oneered in [53–55] were revisited and quiver gauge theories dual to AdS6×S4/Zn were con-

structed [56]. Subsequently, the Higgs branch of the theories was probed by dual giants [57].

Localization techniques also featured prominently: addressing global symmetry enhance-

ment [58], an exact computation of the S5 partition function of SCFTs dual to AdS6 × S4

led to perfect agreement [59], and finally a study of half-bps Wilson loops [60] was shown to

match up with supersymmetric D4-brane probes at large N . In this setting, the question

of whether this new AdS6 solution has a bona fide CFT dual will be broached in [61].4

3In fact, there are three and counting as the Abelian T-dual of [17] will give another.
4In particular, we plan to make sense of the non-Abelian T-dual coordinate r which will need to be

compactified if one is to quantise fluxes and assign D-brane charges correctly. On the other hand, for small

r, the T-dual geometry smoothly approaches R3. This important point is a key prerequisite for further

discussion on the global properties of the uplifted IIB solutions which we have to yet show are globally well-

– 3 –
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However, back to the matter at hand. Key to our construction of a KK reduction

ansatz will be non-Abelian T-duality, a transformation which was initially studied in [62–

65] and has gone through a particular purple patch of late [1–3, 25, 66, 67] leading to a

greater understanding of solution generation in type II supergravity. To exploit this angle,

we will construct a consistent KK reduction ansatz from type IIB supergravity to Romans’

theory in two steps. We start by remarking that the original KK reduction from massive

IIA [17] can be broken up into an initial reduction on S3 to seven-dimensions, followed by

a subsequent reduction to six-dimensions. As non-Abelian T-duality simply transforms the

S3, we can view our construction as replacing the initial step of the massive IIA reduction

on S3 by an alternative reduction on the non-Abelian T-dual geometry, this time from type

IIB supergravity. Thus, once we show in seven-dimensions that the equations of motion

are the same, we can further reduce to six-dimensions to make the connection to Romans’

theory. This philosophy is encapsulated in figure 1.

The structure of the rest of the paper runs thus. After reviewing Romans’ theory in

section 2, in section 3 we rewrite the reduction ansatz of [17] in terms of seven-dimensional

equations of motion, which will serve as “target” equations. In section 4.1 we will deduce

the NS sector of the non-Abelian T-dual and remark that one can use non-Abelian T-

duality to derive this on the nose. We will at that point confirm that the dilaton equation

from type IIB reduced to seven-dimensions agrees with our target equations, providing

confirmation that we are on the right track to establish a connection at the level of the

equations of motion in seven-dimensions. In section 4.2, we will complete the KK reduc-

tion ansatz by deducing the RR fluxes from a knowledge of the NS sector generated in

section 4.1. Finally, plugging the ansatz into the type IIB equations of motion, we check

that we recover the same equations of motion as in section 3, telling us that at both the

seven-dimensional and six-dimensional level, i.e. Romans’ theory, the theories are the same.

In section 5 we focus our attention on uplifting various solutions to both massive IIA and

type IIB, and where they are supersymmetric, we comment on the supersymmetry, before

presenting our conclusions.

2 Review of Romans’ theory

We begin with a review of Romans’ D = 6 F(4) gauged supergravity [11]. More precisely,

the theory of interest to us will be Romans N = 4+ theory where both the gauge coupling

g and the mass parameter m are positive. This theory is then related to four other distinct

theories for different values of the gauge coupling and mass parameter. Note that these

are all described by the same Lagrangian and field content.

The theory consists of a graviton eαµ, three SU(2) gauge potentials Aiµ, an Abelian

potential Aµ, a two-index tensor gauge field Bµν , a scalar φ, four gravitini ψµi and four

behaved. We observe here that both the Abelian and non-Abelian T-dual of AdS6 × S4/Z2 have curvature

singularities at both end-points of the polar angle for S4/Z2 and are thus more singular than the original

geometry.
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spin-1
2 fields χi. The bosonic Lagrangian is

e−1 L6 = −1

4
R+

1

2
(∂φ)2 − 1

4
e−
√

2φ
(
H2 + (F i)2

)
+

1

12
e2
√

2φG2 + V

−1

8
εµνρστκBµν

(
FρσFτκ +mBρσFτκ +

1

3
m2BρσBτκ + F iρσF

i
τκ

)
, (2.1)

where the potential V is

V =
1

8

(
g2e
√

2φ + 4gme−
√

2φ −m2e−3
√

2φ
)
, (2.2)

and, in addition, e is the determinant of the vielbein, g is the SU(2) coupling constant

and m is the mass associated with Bµν . The field strengths in the action (2.1) may be

expressed as5

Fµν ≡ ∂µAν − ∂νAµ,
F iµν ≡ ∂µA

i
ν − ∂νAiµ + gεijkA

j
µA

k
ν ,

Gµνρ ≡ 3∂[µBνρ],

Hµν ≡ Fµν +mBµν . (2.3)

We observe that the Lagrangian enjoys a global symmetry of the form

φ→ φ+
√

2 logα, Aµ → αAµ, Aiµ → αAiµ, Bµν → α−2Bµν (2.4)

provided the parameters are also rescaled

g → α−1g, m→ α3m. (2.5)

This global symmetry may be exploited to set the scalar to zero whenever it is a constant.

As the theme of this paper is dimensional reductions from type II supergravity, it is

useful to re-express Romans’ theory in a form that permits an immediate uplift on S4 to

massive IIA supergravity [5]. The lower-dimensional theory in the language of differential

forms of [17] may be expressed as

L̃6 = R̃ ∗ 1− 1

2
∗ dφ̃ ∧ dφ̃− g̃2

(
2

9
e

3√
2
φ̃ − 8

3
e

1√
2
φ̃ − 2e

1
−
√
2
φ̃
)
∗ 1

−1

2
e−
√

2φ̃ ∗ F(3) ∧ F(3) −
1

2
e

1√
2
φ̃
(
∗F(2) ∧ F(2) + ∗F̃ i(2) ∧ F̃

i
(2)

)
(2.6)

−A(2) ∧
(

1

2
dA(1) ∧ dA(1) +

1

3
g̃A(2) ∧ dA(1) +

2

27
g̃2A(2) ∧A(2) +

1

2
F̃ i(2) ∧ F̃

i
(2)

)
,

where we have defined the field strengths

F(3) = dA(2),

F(2) = dA(1) +
2

3
g̃A(2),

F̃ i(2) = dÃi(1) +
1

2
g̃εijkÃ

j
(1) ∧ Ã

k
(1). (2.7)

5Throughout we use the notation ω2 ≡ ωi1...ipω
i1...ip and (ω2)µν = ωµσ1...σp−1ω

σ1...σp−1
ν for p-forms.
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Tildes have been added where necessary to differentiate fields from the earlier notation of

Romans (2.1). These two actions can then be reconciled through the following redefinitons

g̃µν = −gµν , φ̃− 2φ̃0 = −2φ,

e2
√

2φ̃0 = 3mg−1, g̃ =
1

2
(3mg3)1/4,

1

2
e1/
√

2φ̃0F̃ i(2) = F i,
1

2
e−
√

2φ̃0F(3) = G3. (2.8)

Observe here that the signature of the metric changes. The scalar also gets rescaled and

shifted by a constant while the single gauge coupling parameter g̃ of [17] may be recast in

terms of the two parameters of Romans’ theory. For brevity here we omit details of the KK

reduction ansatz [17] as the focus of the next section will be rewriting it in a D = 7 guise.

3 Reduction from IIA

As mentioned earlier, the main thrust of this work is to show that Romans’ F(4) gauged

supergravity can be embedded in type IIB supergravity so that the supersymmetric vacuum

in six-dimensions corresponds to the recently discovered supersymmetric AdS6 solution of

type IIB supergravity presented in [1].6 While we could work explicitly with the KK

reduction ansatz of [17], as expressions are involved and our interest is effectively a non-

Abelian T-duality transformation affecting only an internal S3, in this section we rewrite

the reduction of [17] in terms of the equations of motion defining a particular D = 7 theory.

This theory can be further reduced to D = 6 to recover the work of Romans.

Working in D = 7 also facilitates contact with the reduction ansatz of [25]. In [25]

the ansatz considered involved a round S3 without SU(2) gauging. So, the space-time is

assumed to be of the form

ds2 = ds2(M7) + e2Ads2(S3), (3.1)

where the warp factor A is a scalar living on M7 and we also have the following RR fluxes

F0 = m,

F2 = G2 , (3.2)

F4 = G4 +G1 ∧Vol(S3) ,

and an additional B-field with field strength that has only components on the space-time

M7. The dilaton Φ is, like A, simply a scalar which depends on the coordinates of M7.

Given a solution to massive IIA of the above form, we know that one can generate

a non-Abelian T-dual and since simultaneous consistent reductions to the same D = 7

theory exist from the both the original and T-dual geometries [25], we can deduce that

the equations of motion get mapped. The further observation then is that the reduction

ansatz of [17] fits into this template once we truncate out the SU(2) gauge-fields. Therefore,

6The supersymmetric AdS5 non-Abelian T-dual presented in [3] reduces using the ansatz of [39] to

minimal D = 5 gauged supergravity.
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any solution to Romans’ F(4) supergravity without SU(2) gauge fields can be uplifted to

type IIB supergravity on the non-Abelian T-dual. To stress this point further, this means

that the supersymmetric vacuum aside [1], a host of solutions, such as time-dependent D-

branes [68], AdS solitons [69, 70], holographic RG flows [8, 47], Kerr-AdS black holes [71–

73] and the non-supersymmetric vacuum of Romans’ theory [11] can be regarded as both

solutions to massive IIA and type IIB supergravity.

Now to reinstate the SU(2) gauge-fields and accommodate the full reduction ansatz

of [17], we simply have to make the following changes to the reduction ansatz

ds2 = ds2(M7) + e2A
3∑
i=1

(σi −Ai)2,

F0 = m,

F2 = G2

F4 = G4 +G1 ∧ h1 ∧ h2 ∧ h3 + hi ∧H i
3 +

1

2
εijkH

i
2 ∧ hj ∧ hk, (3.3)

where Ai, H i
2 and H i

3 are additional one, two and three-forms with legs on M7 and carrying

SU(2) indices, σi are left-invariant one-forms on S3 satisfying dσi = −1
2εijkσ

j ∧ σk and

hi = σi −Ai. An explicit expression for these one-forms is

σ1 = sinφdθ − cosφ sin θdψ, σ2 = cosφdθ + sinφ sin θdψ, σ3 = dφ+ cos θdψ.

In terms of the left-invariant one-forms, the metric on S3, normalised so thatRij = 2gij ,

takes the form:

ds2(S3) =
1

4

[
(σ1)2 + (σ2)2 + (σ3)2

]
, (3.4)

so comparison with our ansatz reveals that the internal space is normalised so that Rij =
1
2gij . The choice of normalisations follows [25, 67] and simplifies consistency checks. Im-

mediately, one can confirm that the original KK reduction ansatz [25] is recovered when

Ai = H i
3 = H i

2 = 0.

While we have not deformed the two-form field strength F2 and it is obvious that

one could consider greater generality, our choice of ansatz is motivated so that it the bare

minimum covering the KK reduction ansatz of [17], modulo one distinction that we are

working in string frame, so a rescaling of the metric is required.

To aid future consistency checks, we now relate the above fields to those appearing

in [17]. After rescaling the metric accordingly, direct comparison requires the following

– 7 –
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rewriting of our fields in terms of the notation of Cvetič et al.

ds2(M7) = X−
1
2 s−

1
3 ∆

1
8

[
∆

3
8ds2

6 + 2g̃−2∆
3
8X2dξ2

]
,

eA =
1√
2
g̃−1X−3/4s−1/6∆−1/4c,

Ai = g̃Ãi(1),

eΦ = s−5/6∆1/4X−5/4,

H = s2/3F(3) + g̃−1s−1/3cF(2) ∧ dξ,

G2 =
1√
2
s2/3F(2),

G4 = −
√

2g̃−1s1/3cX4 ∗6 F(3) ∧ dξ −
1√
2
s4/3X−2 ∗6 F(2)

G1 = −
√

2

6
g̃−3s1/3c3∆−2Udξ −

√
2g̃−3s4/3c4∆−2X−3dX,

H i
3 =

1√
2
g−2s1/3cF̃ i(2) ∧ dξ,

H i
2 = − 1

2
√

2
g−2s4/3c2∆−1X−3F̃ i(2), (3.5)

where

∆ = Xc2 +X−3s2,

U = X−6s2 − 3X2c2 + 4X−2c2 − 6X−2, (3.6)

are given in terms of the scalar X = e
− 1

2
√
2
φ̃

and we have employed the shorthand s ≡
sin ξ, c ≡ cos ξ. Note also that ∗6 denotes Hodge duality with respect to the six-dimensional

space-time. Later, we will be interested in seven-dimensional Hodge duals, denoted ∗7, and

ten-dimensional Hodge duals which will appear without subscripts as in appendix A. Our

conventions for Hodge duality follow [25, 67]

(∗DFp)µp+1...µD =
1

p!

√
gεµ1...µDF

µ1...µp
p , (3.7)

where for ten-dimensions we take the sign ε0...9 = +1.

At this point it is also useful to record the orthonormal frame

eµ = X−1/4s−1/6∆1/4ēµ,

e6 =
√

2g̃−1X3/4s−1/6∆1/4dξ,

ei =
1√
2
g̃−1X−3/4s−1/6∆−1/4c hi. (3.8)

We will employ this frame to perform checks on the derived equations of motion. In other

words, we can take our equations of motion and plug in (3.5) and verify that one recovers

the equations of motion of the theory (2.6), which may be explicitly found in [17]. We will

see that the KK reduction from massive IIA on S4 passes some non-trivial checks instilling

confidence that it has been performed correctly.

– 8 –
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3.1 Flux equations

Observe that as we have only changed the four-form flux F4, we simply have to ensure that

all Bianchi identities and flux equations of motion involving F4 are satisfied. We begin

with the Bianchi identities.

The Bianchi identities for H and F2 are unchanged leading to dH = 0 and

dG2 = mH. (3.9)

In contrast, imposing the remaining Bianchi involving F4 (A.10) leads to

dG4 − F i ∧H i
3 = H ∧G2, (3.10)

H i
3 = G1 ∧ F i + dH i

2 − εijkH
j
2 ∧A

k (3.11)

dG1 = 0, (3.12)

where we have defined F i = dAi+ 1
2εijkA

j∧Ak. More concretely, (3.10) comes from expres-

sions without σi, (3.11) comes from σi∧σj terms and (3.12) comes from terms proportional

to the volume of S3. The terms proportional to σi are simply the derivatives of (3.11). One

can check that the equations here are consistent with the known reduction (3.5).7 This

concludes discussion of the Bianchi identities.

Next we move onto the flux equations of motion (A.11), (A.12) and (A.13), making

use of the Hodge duals (D.1) as we go. We start with (A.12) as the result is less involved.

One encounters just two equations

d(e3A ∗7 G2) + e3AH ∧ (∗7G4) = 0, (3.13)

e2A(∗7G2) ∧ F i −H ∧ (∗7H i
3) = 0. (3.14)

As a consistency check one can confirm both of these against (3.5) and confirm that they

are consistent with the reduction ansatz of Cvetič et al. [17].

From (A.13), we get the following equations, which are respectively terms proportional

to the volume of the S3 , σi ∧ σj and those without σi:

d(e3A ∗7 G4) = −H ∧G1, (3.15)

d(eA ∗7 H i
3) = εijke

A(∗7Hj
3) ∧Ak + e−A ∗7 H i

2 +H ∧H i
2 + e3A ∗7 G4 ∧ F i, (3.16)

d(e−3A ∗7 G1) = −e−A ∗7 H i
2 ∧ F i −H ∧G4. (3.17)

Again one finds that the omitted equation is not independent and is simply the derivative

of (3.16) when one uses (3.11) and (3.15). This is similar to what we noticed with the

Bianchi, namely that the σi conditions were implied. As a spot check of (3.17) one can

substitute (3.5) and using our conventions for the Hodge dual (3.7), one recovers the last

equation of (11) of [17].

Finally, we address the B-field equation of motion (A.11). Decomposing this equation

of motion we get the following two equations:

d(e−2Φ+3A ∗7 H) = e3AG2 ∧ (∗7G4) +G4 ∧G1 −H i
3 ∧H i

2 +me3A ∗7 G2, (3.18)

e−2Φ+3A ∗7 H ∧ F i = eAG2 ∧ (∗7H i
3)−G4 ∧H i

2 +
1

2
εijkH

j
3 ∧H

k
3 . (3.19)

7To confirm this (11) of [17] is useful.
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Once more there is an extra equation, but after some massaging involving (3.10), (3.11), (3.14)

and (3.18), one can show that this equation is simply the derivative of (3.19), so we can

ignore it.

The above equations constitute all the flux equations of motion for our KK ansatz and

lead to D = 7 equations of motion. As the reader can observe, amongst these equations we

also have various constraints such as (3.14) and (3.19) which it may be difficult to imagine

as arising from the process of varying an action. Indeed, we envisage that a more general

KK ansatz will lead to a completion of some of these equations, so here we do not attempt

to reconstruct the Lagrangian.

3.2 Einstein & dilaton equations

In this subsection we work out the equations of motion which require a knowledge of the

curvature. Choosing the natural orthonormal frame

eµ = ēµ, ei = eA(σi −Ai), (3.20)

where µ = 0, . . . , 6 and i = 1, 2, 3, using the spin connection (D.5) one can determine the

Ricci tensor

R11 =
1

2
e−2A −∇ρ∇ρA− 3∂ρA∂

ρA+
1

4
e2AF 1

ρµF
1ρµ, (3.21)

Rµ1 =
1

2
e−4ADρ

(
e5AF 1ρ

µ

)
, (3.22)

Rµν = R̄µν − 3 (∇ν∇µA+ ∂µA∂νA)− 1

2
e2AF iµρF

i ρ
ν . (3.23)

For simplicity we will just focus on a particular value for the SU(2) index with the others

following through a change of index. Here we have defined Dωi = dωi + εijkA
j ∧ wk as

in [17].

The Einstein equation is then

R11 + 2∂µA∂µΦ = e2Φ

[
1

4
e−6AG2

1 −
1

4

(
1

2
G2

2 +
1

4!
G2

4 +m2

)
+

1

3!
e−2A

[
(H1

3 )2 − (H2
3 )2 − (H2

3 )2
]

+2e−4A
[
(H2

2 )2 + (H3
2 )2 − (H1

2 )2
]]
. (3.24)

Observe that there is no H along the internal S3 so this drops out of (3.24). It is also worth

observing that since we get similar expressions for R22 and R33, the expected symmetry in

the index i implies the relationship

1

2!
e2A(F i)2 = e2Φ−2A

[
1

3!
(H i

3)2 − 1

2!
e−2A(H i

2)2

]
. (3.25)

Indeed, one can check that this is consistent with [17].

– 10 –



J
H
E
P
0
5
(
2
0
1
3
)
0
7
9

So we can write the Einstein equation along the S3 in the following way

1

2
e−2A−∇ρ∇ρA−3∂ρA∂

ρA+2∂µA∂µΦ = e2Φ

[
1

4
e−6AG2

1−
1

4

(
1

2
G2

2+
1

4!
G2

4 +m2

)
+

1

4

(
−1

3!
e−2A(H i

3)2+
1

2!
e−4A(H i

2)2

)]
. (3.26)

One can also check that (3.24) gives the scalar equation of motion of Romans’ theory.

This is a non-trivial check that this equation is correct.

We can now move onto the Einstein equation for the cross-terms. This necessitates

that we calculate ∇µ∇iΦ, a sketch of which can be found in the appendix for the simpler

case where we have a U(1) truncation of the SU(2). Combining all the necessary terms one

arrives at the equation

Dρ

(
e5A−2ΦF iρµ

)
=

[
−e−AG1ρH

i ρ
2µ + e3A 1

3!
H i

3ρσλG
ρσλ

4µ

+eAεijk
1

2!
Hj

2ρσH
kρσ
3µ

]
. (3.27)

Finally we work out the Einstein equation for M7. This takes the form

R̄µν − 3(∇ν∇µA+ ∂µA∂νA)− 1

2
e2AF iµρF

i ρ
ν + 2∇µ∇νΦ− 1

4
H2
µν

= e2Φ

[
1

2
e−6A(G2

1)µν +
1

2
(G2

2)µν +
1

12
(G2

4)µν +
1

2
e−4A(H i 2

2 )µν +
1

4
e−2A(H i 2

3 )µν

− 1

4
gµν

(
e−6AG2

1 +
1

2
G2

2 +
1

24
G2

4 +m2 +
1

2
e−4A(H i

2)2 +
1

3!
e−2A(H i

3)2

)]
. (3.28)

In deriving this equation one has to determine an expression for ∇µ∇νΦ which may have

a non-trivial dependence on the S3 when the gauging is taken into account. A calculation

reveals that all dependence on the S3 through the Christoffel symbols drops out so that

∇µ∇νΦ only depends on the seven-dimensional metric.

We can finally now work out the scalar curvature and determine the dilaton equation

in type IIA. Since this equation only involves the NS sector and not the RR fields, this

presents a convincing test for the corresponding KK reduction ansatz from type IIB. In

other words, after non-Abelian T-duality we should encounter the same dilaton equation.

We will comment on this in due course. For the moment, we contract the above Ricci

tensors (3.21) and (3.23) and deduce that the dilaton equation takes the form

0 = R̄+
3

2
e−2A − 6∇2A− 12(∂A)2 + 12∂A · ∂Φ

+4∇2Φ− 4(∂Φ)2 − 1

12
H2 − 1

4
e2AF iµνF

iµν . (3.29)

4 Reduction from IIB

In this section we perform the analogous reduction on the non-Abelian T-dual. Simply by

gauging the S2, we will show that one can reinstate the SU(2) gauge fields in a consistent
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way throughout. So the approach is this. Starting from the residual S2 of the non-Abelian

T-dual we gauge the S2 in the natural way (see for example [42]). This determines the

metric and the dilaton is unchanged from [25, 67] since it is not sensitive to the gauging.

The B-field follows from closure of the field strength H = dB and one can confirm the NS

sector is correct by reproducing the dilaton equation of the IIA reduction (3.29). Finally,

we use knowledge of the NS sector to piece together the RR fields in a fashion that recovers

the equations of motion of section 3.

4.1 NS sector

Recall from [25, 67] that, in the absence of SU(2) gauge fields, an SU(2) transformation on

S3 leads to an internal metric of the form

ds2
T-dual = e−2Adr2 +

r2e2A

r2 + e4A
ds2(S2). (4.1)

If one wants to further gauge this residual SU(2) isometry, the natural ansatz to consider

is presented in appendix B. Assuming one proceeds in this fashion, one can anticipate the

required form of the B-field from a knowledge of the B-field prior to gauging, namely

B̃ = B − r3

r2 + e4A
vol(S2) (4.2)

where tildes have been employed to differentiate the T-dual B-field from the original mas-

sive IIA one and we have flipped a sign from the B-field presented in [25, 67]. This sign

flip is important and depends on the whether one is using left-invariant or right-invariant

forms to parametrise the S3. To date, all examples of SU(2) transformations have assumed

right-invariant forms [25, 67], however here that choice is dictated by the ansatz of [17]

where left-invariant forms appear.

Now, we replace derivatives with gauge-covariant derivatives Dµi = dµi − εijkµjAk

and closure of the field strength H̃ = dB̃ leads to

H̃ = dB̃,

= H −
[
r2(r2 + 3e4A)

(r2 + e4A)2
dr − 4r3e4A

(r2 + e4A)2
dA

]
∧ vol(S̃2)

+
re4A

r2 + e4A
Dµi ∧ F i + µiF i ∧ dr, (4.3)

where H = dB, F i = dAi + 1
2εijkA

j ∧Ak and we can define the gauged S2 with unit radius

through the constrained variables µiµi = 1 as

vol(S̃2) =
1

2
εijkµ

iDµjDµk. (4.4)

Further details can be found in appendix B.

Note, in the non-Abelian dual only the one-forms dr,Dµi appear making this the only

choice and it is particularly easy to see this when one truncates the SU(2) gauge fields to the

Cartan U(1) gauge field. In other words, F i has to appear with the SU(2) index contracted
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and wedged with one of these forms. The transformed dilaton Φ̃ is unchanged from [25, 67],

so we now have determined the NS sector and simply need to determine the RR fluxes in

the next section 4. In fact, using the prescription for the SU(2) transformation outlined

in [3] it is possible to generate the NS sector using non-Abelian T-duality, a procedure

which we reproduce in appendix C.

So we can summarise the NS sector for the IIB KK reduction ansatz

ds2 = ds2(M7) + e−2Adr2 +
r2e2A

r2 + e4A
DµiDµi, (4.5)

B̃ = B − r3

r2 + e4A

1

2
εijkµ

iDµj ∧Dµk +Ai ∧ d(rµi) + r
1

2
εijkµ

iAj ∧Ak, (4.6)

e−2Φ̃ = e−2Φe2A(r2 + e4A). (4.7)

To gain confidence that we are on the right path, we are now in a position to show

that the dilaton equation using this KK ansatz for the NS sector reproduces the expected

dilaton equation (3.29). Making use of the later Ricci tensor terms in section 4.3, the field

strength (4.3), the dilaton expression (4.7), in addition to the orthonormal frame

Dµi =

√
r2 + e4A

reA
(Ki

φe
1 −Ki

θe
2), (4.8)

and appendix B where Ki
θ,K

i
φ are defined, a simple calculation is all that is required to

reproduce (3.29) on the nose. This is a non-trivial check and a strong indication that

the non-Abelian T-dual geometry can be gauged and reduced to give the same seven-

dimensional theory.

4.2 RR fluxes

In this subsection we will infer the rest of the KK reduction ansatz since, as we have

witnessed in the last subsection, we can now have full confidence in the NS sector. Recall

that we inherit the mass m, fluxes G1, G2 and G4 from [25], so we simply have to find the

correct place for the fields H i
2 and H i

3 to enter. One subtlety is that as we started with left-

invariant forms and not the usual right ones, even when Ai = H i
2 = H i

3, we will not recover

exactly the reduction ansatz of [25], but one with some signs flipped. We have identified

which signs to change by resorting to our knowledge of non-Abelian T-duality, where the

change in SU(2) factor results in a flip in relative sign in the Lorentz transformation matrix

Ω which acts on the spinors [25, 67].

While the RR fluxes can be generated via non-Abelian T-duality (we sketch this cal-

culation in appendix C), since we have to check the equations of motion regardless, here

we opt to use information about the NS sector KK reduction ansatz to piece together

the missing parts. We begin with the one-form flux. Closure of this term, i.e. satisfying

the Bianchi (A.2), suggests strongly that this term does not change, modulo the sign flip

imposed by the change of SU(2) factor. This leads to

F1 = −G1 +mrdr. (4.9)
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We now move onto the three-form flux and consider the following form, again with

some sign changes to account for the change in SU(2) factor,

F3 = e3A ∗7 G4 + rdr ∧G2 +
r2

r2 + e4A

[
rG1 +me4Adr

]
∧ vol(S̃2)

−rµiH i
3 − (rDµi + µidr) ∧H i

2. (4.10)

As an initial test of consistency, one can confirm that (up to signs) we recover the three-

form presented in [25] when we set the fields Ai, H i
2, H

i
3 to zero. Essentially the original

field content can be found in the upper line and the lower line is constructed so that (3.11)

is reproduced from the Bianchi identity (A.2), dF3 = H̃∧F1, where H̃ can be found in (4.3).

In addition, the Bianchi leads to the equations (3.9), (3.12) and (3.15). Interestingly, even

though our ansatz changes when we decide to do an SU(2) transformation on a different

SU(2) factor, certain equations of motion such as (3.9) and (3.15) do not change, meaning

the the sign changes we have imposed have the correct structure. This is expected as we

have used non-Abelian T-duality to confirm the required sign changes.

Now that we have discussed the one-form flux and found a three-form flux that re-

produces some of the equations of motion exactly, it makes sense now to check this is

consistent with (A.4) since this is the remaining equation that couples these two flux

terms. The respective Hodge duals are recorded in the appendix (D.7) and plugging these

into the equation of motion we get the equations (3.14) and (3.17).

In deriving these expressions, it is useful to employ relationships such as

(
µ2

2 + µ2
3

)
vol(S̃2) = µ3Dµ1 ∧Dµ2 + µ2Dµ3 ∧Dµ1,

µ1µ2 vol(S̃2) = µ1Dµ3 ∧Dµ1, (4.11)

and related cyclic expressions.

Finally, we come to the self-dual five-form flux. We start by changing the appropriate

signs to account for the change in SU(2) factor and then one can write down the correct

ansatz using just a knowledge of the three-form, the B-field and the Bianchi identity for

F5. This determines the third line in the following expression by ensuring that terms

proportional to derivatives of the warp factor A vanish and the terms in the second line

follow largely from the required self-duality of the five-form flux:

F5 =
r2e3A

r2 + e4A

(
−r ∗7 G4 + eAdr ∧G2

)
∧ vol(S̃2)− e3A ∗7 G2 + rdr ∧G4

−(rDµi + µidr) ∧ eA ∗7 H i
3 − rµie−A ∗7 H i

2 − rH i
3 ∧ dr ∧ εijkµjDµk

+
r3

r2 + e4A
µiH i

2 ∧ dr ∧ vol(S̃2)− µi r2e4A

(r2 + e4A)
H i

3 ∧ vol(S̃2). (4.12)

In addition to those identified earlier, the Bianchi identity for F5 then leads to the

following equations: (3.10), (3.13) and (3.16). In deriving these equations, the following
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identities and their cyclic forms are useful

Dµi ∧ vol(S̃2) = 0,

d(µ2Dµ3 − µ3Dµ2) = 2µ1 vol(S̃2)− µ1
∑
i

µiF i + F 1

−(µ2Dµ1 − µ1Dµ2) ∧A2 − (µ3Dµ1 − µ1Dµ3) ∧A3.

Last but not least, one can confirm that the remaining RR flux equation of motion (A.5)

offers nothing new and reproduces the equations we have identified above.

We now have expressions for all the RR fluxes and have determined our KK reduction

ansatz from type IIB. Despite this, we still need to check the remaining equations of motion,

namely the B-field equation of motion (A.3) and the Einstein equation (A.7). We begin

here with the B-field and in the next subsection we discuss the Einstein equation to show

that the reduction is consistent. Plugging in our new B-field (4.6), one recovers the two

equations (3.18) and (3.19), and as is common for T-duality where one has mixing between

cross-terms in the metric and B-fields, one is unsurprised to find the Einstein equation

cropping up. Making use of µiDµi = 0 and the relationship

e2A 1

2!
F iµνF

jµν = e2Φ−2A

[
1

3!
H i

3µνρH
jµνρ
3 − 1

2!
e−2AH i

2µνH
jµν
2

]
, (4.13)

which one can check is consistent with the reduction of Cvetič et al. using (3.5), one recovers

the Einstein equation along S3 (3.26) and the equation corresponding to cross-terms in the

metric (3.27). Observe also that (4.13) is simply a generalised version of (3.25).

4.3 Einstein equation

At this stage we have checked the dilaton equation and flux equations and found perfect

agreement with the equations of motion resulting from the massive IIA reduction on the

gauged S3 presented in section 3. Therefore, it would be most surprising if the Einstein

equations did not also conform. To check these we introduce a natural orthonormal frame

for the metric (4.5)

eµ = ēµ,

er = e−Adr,

e1 =
reA√
r2 + e4A

(dθ + cosφA1 − sinφA2), (4.14)

e2 =
reA√
r2 + e4A

(sin θdφ− cos θ sinφA1 − cos θ cosφA2 − sin θA3).
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Using the derivatives (D.9) and the spin-connection (D.10) reproduced in the appendix,

one can then calculate the Ricci tensor

Rrr = ∇ρ∇ρA+
(r2 − 3e4A)

(r2 + e4A)
(∂A)2 +

6e6A

(r2 + e4A)2
, (4.15)

Raa = −(r2 − e4A)

(r2 + e4A)
∇ρ∇ρA−

(r4 − 12r2e4A + 3e8A)

(r2 + e4A)2
(∂A)2

+
(r4 + 3r2e4A + 6e8A)

e2A(r2 + e4A)2
+

r2e2A

4(r2 + e4A)
Ki
aF

i
µρK

j
aF

jµρ, (4.16)

Rµν = R̄µν −
(r2 − 3e4A)

(r2 + e4A)
∇µ∇νA−

3(r4 − 18r2e4A + e8A)

(r2 + e4A)2
(4.17)

− r2e2A

2(r2 + e4A)
Ki
aF

i
µρK

j
aF

j ρ
ν ,

R12 =
1

4

r2e2A

(r2 + e4A)
Ki
θF

i
ρσK

j
φF

j ρσ, (4.18)

Rra = 0, (4.19)

Rrµ = − 12re5A

(r2 + e4A)2
, (4.20)

Raµ =
reA

2
√
r2 + e4A

[
−Ki

a∇ρF i ρµ +Ki
a

(5e4A − 3r2)

(r2 + e4A)
F i ρµ ∂ρA

+εabKi
bF

i ρ
µ

1

sin θ

(
sinφA1

ρ + cosφA2
ρ

)]
(4.21)

where we have introduced a = 1, 2 (respectively θ, φ directions) and the repeated index on

the r.h.s. of (4.17) is summed, whereas the indices in (4.16) are not.

We now comment on the Einstein equations and confirm that they also get mapped

as expected. From both the diagonal Err and Eaa components of the Einstein equation

we recover the Einstein equation along S3 (3.26). To make this connection we find that

we have to use (4.13) and that the respective Einstein equations are related through the

relationship

Eaa = −(r2 − e4A)

(r2 + e4A)
Err. (4.22)

Moving on, one can check that the Era component of the Einstein equation is satisfied.

In contrast to the situation presented in [25] where the S2 is not gauged, here a cancellation

is required. While both the Ricci tensor Rra and the term ∇r∇aΦ̃ are zero, (4.13) is

required so that the flux terms disappear. The E12 component of the Einstein equation

is also satisfied for similar reasons, but here R12 is not zero and has to combine with the

contraction of the H̃ field strength in the correct fashion.

The Erµ component of the Einstein equation, making use of (4.20), is satisfied through

various cancellations. In addition, one needs to make use of the identity

F iρσH
ρσ
µ = e2Φ−3A

[
H i

2 ρσ(∗7G4) ρσ
µ + eAG2 ρσH

i ρσ
3µ

]
. (4.23)
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One can check this is consistent with the KK reduction of [17] by plugging in (3.5). Finally,

a lengthier calculation reveals that various terms of the Eaµ Einstein equation conspire to

reproduce (3.27), where again one has to use (4.23).

Summary. In this section we have illustrated how the KK ansatz comprising

of (4.5), (4.6), (4.7) and the one-form (4.9), three-form (4.10) and five-form fluxes (4.12),

when plugged into the equations of motion of type IIB supergravity, leads to the same

equations of motion of the Cvetič et al KK reduction ansatz in D = 7. More importantly,

as we also check that non-Abelian T-duality leads to the same result in appendix C, we

can confirm that non-Abelian T-duality is a symmetry of the equations of motion for a

reasonably general ansatz.

From D = 7 using (3.5) we can further reduce to D = 6 to recover the equations

of motion of Romans’ theory. So, we can safely conclude that any solution to Romans’

F(4) gauged supergravity can be uplifted to type IIB supergravity using our KK reduction

ansatz.

5 Uplifted solutions

Having identified a consistent reduction from type IIB supergravity to Romans’ F(4) gauged

supergravity, in this section we generate some examples of new type IIB solutions. We

start by considering examples with supersymmetry, notably a domain wall [45] and the

“magnetovac” identified originally by Romans [11], which also serves as one end-point of

the supersymmetric flows discussed in [46]. While the former does not excite SU(2) gauge

fields, its inclusion here is motivated by the fact that it is an example of a supersymmetric

geometry with a non-trivial scalar and may be regarded as an immediate generalisation of

the supersymmetric AdS6 vacuum, where the scalar is constant. Later in this section, we

present the uplift of a geometry that fits into the class of Lifshitz geometries [74], which

is itself a non-supersymmetric deformation of the magnetovac, before presenting a simple

charged black hole first presented in [17], but here in its alternative type IIB setting.

Recall that the striking result of [1] was that one had the freedom to perform a non-

Abelian T-duality on the warped AdS6×S4 solution of massive IIA to generate a solution

of type IIB. From the lower-dimensional perspective, this discovery means that starting

from the AdS6 vacuum, we can either uplift to massive IIA or type IIB and supersym-

metry remains unaffected. Since we are working in the context of ten-dimensional type II

supergravity and the AdS6 vacua require the presence of a geometric SU(2) R-symmetry,

it could be expected that the supersymmetric structures of both uplifts are the same.

Through studying the uplifts of supersymmetric solutions in subsection 5.1 and 5.2 we

will produce evidence to support this claim. Naturally, the reduction of the Killing spinor

equations would help to confirm our suspicions, but such an act falls outside of the scope

of this work and we leave it to future work.

5.1 Supersymmetric domain wall

In addition to non-supersymmetric domain walls interpolating between the supersymmetric

and non-supersymmetric AdS6 vacua of F(4) gauged supergravity [8, 47], supersymmetric
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domain walls also exist [45]. Though the solution does not excite the SU(2) gauge fields

and is supported solely through the scalar field, it provides a less-trivial example of a

supersymmetric solution.

Taking into account a flip in metric signature from the conventions of Romans and an

appropriate rescaling of the scalar φ, the solution [45] reads

ds2
6 = e2Bηµνdx

µdxν + e6Bdu2,

φ =
1√
2

log u,

e−3B =
3

2
√

2
mu−1/2 − 1

2
√

2
g u3/2. (5.1)

Using the Killing spinor equations of Romans [11], it is easy to check that this domain wall

solution preserves half the original supersymmetry and that the Killing spinors εi satisfy

εi = e
1
2
Bε0i , γuγ7ε

0
i = ε0i , (5.2)

where ε0i denotes a constant spinor and i is a USp(4) vector index.

We now would like to uplift this solution to ten-dimensions. Since our interest here is

supersymmetry, and in particular how it survives the uplifting process, it is instructive to

first uplift the solution to massive IIA supergravity using [17], before later repeating the

process to get a type IIB solution. As we will observe, despite the ease at which one can

identify supersymmetries in the lower-dimensional theory, here for the uplifted solution the

task becomes a lot less tractable, suggesting that the Killing spinors of Romans’ theory (5.2)

are related to those of massive IIA in a rather complicated fashion. So, for simplicity, we

will make a particular choice for g and m by adopting

g = 3m = 2
√

2. (5.3)

En route to performing the initial uplift to IIA, we take the opportunity to identify various

fields which are common to both IIA and IIB KK reduction ansätze through (3.5):

X = u1/2,

∆ = u1/2∆̃ = u1/2
[
c2 + u−2s2

]
,

U = u−3s2 − 3uc2 + 4u−1c2 − 6u−1,

eA =
∆̃−1/4s−1/6c

2u1/2
,

G1 = − 1

12
s1/3c3u−1∆̃−2Udξ − 1

4
s4/3c4∆̃−2u−3du. (5.4)

Proceeding, following [17] and employing the rewriting (2.8), one arrives at the uplifted

solution in massive IIA

ds2
10 = s−1/3∆̃1/2

[
ds2

6 + udξ2 +
1

4u
∆̃−1c2(σi)2

]
,

F4 = −
[

1

12
s1/3c3u−1∆̃−2Udξ +

1

4
s4/3c4u−3∆̃−2du

]
σ1 ∧ σ2 ∧ σ3,

eΦ = s−5/6∆̃1/4u−1/2, (5.5)
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and one can check that this is indeed a solution, thus again confirming that the ansatz

provided in [17] does what it claims to do. In checking the equations, it should be borne in

mind that the mass parameter of massive IIA is related to the gauge coupling [17] through

the relationship

m̃ =

√
2

3
g̃ =

(3mg3)1/4

3
√

2
, (5.6)

where m, g are now the original parameters in Romans’ theory. Throughout this section we

will use m̃ to denote the mass parameter of massive IIA supergavity on the understanding

that it is not independent and is related to the gauge coupling of [17] through (5.6).

Since the lower-dimensional solution breaks half the supersymmetry of the AdS6 vac-

uum and we are also assuming that supersymmetry is preserved in the uplift to IIA, we

anticipate that the solution (5.5) preserves eight supersymmetries. To test this claim we

evaluate the dilatino variation, which takes the form8

δλ = Mη,

=

[
1

12

(
−5c+ 2(1− u−2)s2c

)
∆̃−3/2Γ6 +

1

2

(
− s
u

+
sc2

2u∆̃

)
∆̃−1/2(1− u2)Γ5

+
5

12
σ1 − 1

12
s∆̃−3/2UΓ6789σ1 − 1

4
c s2∆̃−3/2(u−2 − 1)Γ5789σ1

]
η. (5.7)

Owing to the inherent complexity of the dilatino variation, explicitly showing supersymme-

try and extracting the projection conditions would appear to be a difficult task. Instead,

as supersymmetry is expected, we may check that the determinant of M is zero, which im-

plies that zero is an eigenvalue, i.e. there is some unbroken supersymmetry. Furthermore,

one can show that there are eight zero eigenvalues corresponding to the eight expected

supersymmetries. While, we have not solved the Killing spinor equations of massive IIA,

and do not claim that we have, through looking at the dilatino variation we have observed

that it is consistent with our expectation that eight supersymmetries are preserved.

We now move onto the non-Abelian dual and the uplift to type IIB. Taking note of

the above expressions (5.4), the uplifted string frame IIB solution is

ds2
10 = s−1/3∆̃1/2

[
ds2

6 + u2dξ2
]

+ e−2Adr2 +
r2e2A

r2 + e4A
ds2(S2),

B = − r3

r2 + e4A
vol(S2), eΦ =

∆̃1/4

s5/6u1/2eA
√
r2 + e4A

,

F1 = −G1 + m̃rdr,

F3 =
r2

r2 + e4A

[
rG1 + m̃e4Adr

]
∧ vol(S2). (5.8)

This bears a strong resemblance to (11) of [1], but on closer inspection, one will see that

G1 and eA now have a dependence on the coordinate u.

We can now check supersymmetry of the non-Abelian T-dual relatively quickly. From

earlier work [1, 25] it is known that in the absence of the SU(2) gauge fields, which is the

8We follow the supersymmetry conventions of [75] and use the explicit gamma matrices in the appendix

of [76].
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case here, that the additional Killing spinor equations of the non-Abelian T-dual can be

whittled down to a single expression[
1

2
/∂AΓr −

e−A

4
Γα1α2σ3 − eΦ

8

(
m̃iσ2 + e−3A /G1Γrα1α2σ1

)]
η = 0, (5.9)

where αi refer to directions on the two-sphere. Note here again that the change in the

SU(2) factor utilised in T-duality leads to a change in some signs. As explained in [25],

the non-Abelian T-dual will now preserve the eight supersymmetries of the original geom-

etry provided this condition breaks no further supersymmetries. So one has to make sure

that the supersymmetries corresponding to zero eigenvalues of the above matrix agree with

the eight Killing spinors of the original background. One finds that (5.9) preserves sixteen

Killing spinors, eight of which can be mapped to the preserved supersymmetries of the orig-

inal massive IIA solution. As such, the background preserves eight supersymmetries and

we see that non-Abelian T-duality preserves the supersymmetry of the original domain wall

solution. So we have seen that even with a non-trivial scalar profile that supersymmetry

is preserved in the uplifts. In the next subsection we turn on a U(1) gauge field.

5.2 Supersymmetric magnetovac

One of the simplest supersymmetric solutions to Romans’ theory with SU(2) gauge fields

excited was identified by Romans in his original paper [11] and corresponds to the direct

product AdS4 ×H2 where the field strength supporting the geometry is purely magnetic

leading to a so-called “magnetovac” solution. This solution also appeared as a fixed-point in

the supersymmetric flows identified in [46] and forms the basis of the Lifshitz solutions pre-

sented in [51], since the latter may be regarded as deformations of the AdS4 space-time with

dynamical exponent z. As the relativistic AdS4 solution is recovered when z = 1, these solu-

tions are intimately related and we will discuss the Lifshitz solution in the next subsection.

We begin by identifying the original supersymmetric AdS4 ×H2 solution of Romans’

theory and its massive IIA supergravity uplift. In the original notation of Romans [11] the

solution may be expressed as

ds2
6 =

1

m2

[
2(dt2 − dx2

i − dr2)

r2
− dx2 + dy2

y2

]
,

F 3
(2) =

1

2m

dx ∧ dy
y2

, φ = 0, (5.10)

where the signature of the metric follows from the mainly minus signature employed by

Romans [11] and (x, y) parametrise the hyperbolic space H2. In addition, we have employed

a global symmetry of Romans’ theory to set the scalar to zero. This in turn means that

gauge coupling g and the mass m are then related through g = 2m. If one chooses not

to rescale φ to zero, more generally one finds the analysis in [46] where m and g are

independent.9

9In [46] the parameter a in (25) is not free and for the Einstein equation to be satisfied for the solution

presented here we require a−1 = 2m.
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To perform the uplift from Romans’ theory one again has to employ (2.8) to bring it

to a form consistent with [17]. In the notation of [17] we now have

X = e
− 1

2
√
2
φ̃

=

(
2

3

) 1
4

, (5.11)

where we have used g = 2m.

For the purposes of the uplift it would certainly simplify expressions if one could set

X = 1 by choosing a different constant for the scalar φ of Romans’ theory. Indeed, Romans

originally chooses φ = 0, but we know from the work of [46] that more generally we have

e2
√

2φ =
2m

g
(5.12)

at the supersymmetric fixed-point. A short calculation then shows that g and m generically

drop out and X always takes the value (5.11). Therefore, no matter what form we take

for the AdS4 ×H2 solution of Romans’ theory, the uplift will involve unsightly factors of

X being retained.

In addition to X, the following functions appear in the KK reduction ansatz

g̃ = X−1m,

∆ =
1

(233)
1
4

[
2 + s2

]
=

1

(233)
1
4

∆̃,

U =

√
3

2
√

2

[
c2 − 9

]
=

√
3

2
√

2
Ũ . (5.13)

Putting everything together we determine the form for the IIA solution in string frame

ds2
10 =

1√
2m2

s−1/3∆̃1/2

[
2ds2(AdS4)+ds2(H2)+

4

3
dξ2+∆̃−1c2

(
(σ1)2+(σ2)2+

(
σ3− dx

y

)2)]
eΦ = 31/42−1/2s−5/6∆̃1/4, B = 0,

F2 = 0,

F4 =−m−321/43−3/4s1/3c3∆̃−2Ũdξ ∧ h3 ∧ σ12 (5.14)

+m−32−3/43−3/4 vol(H2) ∧ (2s1/3ch3 ∧ dξ − 3s4/3c2∆̃−1σ12).

Again when checking the equations of motion, it is good to recall (5.6).

As for supersymmetry, we again expect that supersymmetry is respected in the up-

lifting process. Here we confirm that the dilatino variation is consistent with unbroken

supersymmetry. Plugging in the above solution into the dilatino variation one arrives at[
−c23/2[5 + s2]

5∆̃3/2
Γ6σ1 −

√
3

5
∆̃−3/2ŨsΓ6978 +

√
3

5
s∆̃−1/2Γ4596

− 3

5
s2∆̃−1Γ4578 + 132

]
η = 0. (5.15)

As noted in the previous subsection, the extraction of projection conditions from here looks

involved, so we simply check that the determinant of the above matrix vanishes and that it
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supports eight zero eigenvalues corresponding to the expected eight supersymmetries. So,

here again we recognise that a lower-dimensional supersymmetric solution when uplifted

to massive IIA leads to a solution which is consistent with preserved supersymmetry.

We can now turn to the task of reading off a new AdS4 × H2 solution to type IIB

supergravity by determining the various components of the dual geometry. In terms of our

notation, one identifies the following

eA = 2−1/4m−1s−1/6∆̃−1/4c,

A3 =
dx

y
,

G1 = −m−321/43−3/4s1/3c3∆̃−2Ũdξ. (5.16)

Substituting these into our KK reduction ansatz from type IIB we find the full solution

ds2 =
1√
2m2

s−1/3∆̃1/2

[
2ds2(AdS4) + ds2(H2) +

4

3
dξ2

]
+ e−2Adr2

+
r2e2A

r2 + e4A

[
dθ2 + sin2 θ

(
dφ− dx

y

)2
]

eΦ =
31/4∆̃1/4

21/2s5/6eA
√
r2 + e4A

,

B = − r3

r2 + e4A
vol(S̃2)− dx

y
∧ d(r cos θ)

F1 = −G1 + m̃rdr,

F3 =
r2

r2 + e4A

[
rG1 + m̃e4Adr

]
∧ vol(S̃2) (5.17)

+m−32−3/43−3/4s1/3c vol(H2) ∧
[
2r cos θdξ − 3sc∆̃−1d(r cos θ)

]
,

F5 = (1 + ∗)
[
rm−321/43−3/4s1/3c sin2 θ vol(H2) ∧ dξ ∧ dr ∧

(
dφ− dx

y

)
+

r2 cos θs1/3c

23/433/4m3(r2 + e4A)
vol(H2) ∧ vol(S̃2) ∧

(
3rsc∆̃−1dr + 2e4Adξ

)]
.

As before, we would now like to get some confirmation that supersymmetry is pre-

served. The expectation is that eight supersymmetries will survive the uplift to type IIB

and an analysis of the dilatino variation of the geometry (5.17) reveals that the determi-

nant of the dilatino variation vanishes and eight zero eigenvalues exist,10 indicating that

supersymmetry remains unbroken in the uplift to type IIB.

5.3 Lifshitz

Along with [77–79], one of the earliest examples of string theory manifestations of ge-

ometries with Lifshitz symmetry [74] was presented in [51]. Setting it apart from direct

constructions in higher-dimensions [51, 77–79] searched for Lifshitz configurations in lower-

dimensional massive supergravities and isolated a particular class of solutions to Romans’

10The complexity of the solution meant that in performing this check we simply sampled the variation

for particular values of the coordinates (r, ξ, θ).
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theories both in five and six-dimensions. Here we review the six-dimensional solution,

discuss the uplift to massive IIA and present an analogous solution to type IIB super-

gravity. As shown explicitly in [51] these solutions are not supersymmetric, so stability

is always going to be a concern, and, indeed, preliminary studies hint at the existence of

instabilities [52] whose physical significance has yet to be properly investigated.

But returning to the solution, in the notation of Romans (2.1), the six-dimensional

Lifshitz solution may be written as

ds2
6 = L2

[
r2zdt2 − r2(dx2

1 + dx2
2)− dr2

r2
− a2ds2(H2)

]
,

F 3 = eφ0/
√

2Lγ
[√
z − 1 rz−1dt ∧ dr + a2 vol(H2)

]
B =

1

2
e−
√

2φ0L2
√
z − 1 r2dx1 ∧ dx2, (5.18)

where for simplicity we have performed the rescalings of (2.17) and (2.18) of [51] directly

on the solution and dropped hats. Our un-hatted parameters are simply the hatted ones

of [51]. Above z is the dynamical exponent, φ0 is a constant value of the Romans’ scalar

field, γ, a are parameters we will define below, and L is a scale corresponding to the AdS4

radius when z = 1. While the supersymmetric AdS4×H2 solution of section 5.2 is naturally

recovered when z = 1, more generally one can have z 6= 1 solutions where the parameters

depend on the dynamical exponent [51]

γ2 =
(2 + z)(z − 3)± 2

√
2(z + 4)

2z
,

g2 = 2z(4 + z),

m2

2
=

6 + z ∓ 2
√

2(z + 4)

z
,

a−2 = 6 + 3z ∓ 2
√

2(z + 4). (5.19)

As explained in [51], this solution can be uplifted to massive IIA using the KK reduction

ansatz of [17].11 Alternatively, using our reduction ansatz the six-dimensional solution can

be uplifted leading to a new solution of type IIB supergravity. The ten-dimensional metric

exhibiting Lifshitz symmetry may be written as

ds2 = X−1/2s−1/3∆1/2

[
−ds2

6 + 2g̃−2X2dξ2

]
+ e−2Adr2 (5.20)

+
r2e2A

r2 + e4A

(
dθ2 + sin2 θ

(
dφ+ eφ0/

√
2Lγ

[
z−1
√
z − 1 rzdt− a2dx

y

])2
)
,

where X = eφ0/
√

2(g/3m)1/4 and eA is defined in (3.5). We omit details of the rest of the

solution but it can be pieced together from section 4.

11In the uplifted solution presented in [51] a notable typo concerns the RR two-form F2 which cannot be

zero, since otherwise the Bianchi identity is not satisfied.
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5.4 Black Holes

To the extent of our knowledge, the most general black hole solution to Romans’ theory was

presented in [48]. The solution corresponds to a non-extremal charged rotating black hole

with five parameters: a mass parameter m, two angular rotation parameters a, b describing

motion in orthogonal two-planes, a single charge parameter δ, and lastly the SU(2) gauge

coupling g. All of the charged solutions are supported solely through the excitation of a

single U(1) gauge field from the SU(2) gauge group, so none of the charged black holes

may be regarded as truly non-Abelian in nature, and as a direct consequence only the

charge δ appears. Within this class of solutions one also finds supersymmetric solutions

with expected zero temperature [48].

This general solution [48] threads together multiple strands of the literature and simpler

solutions are recovered when various parameters are set to zero. For example, without

charge, the solution reduces to the Kerr-AdS solution [71–73], while minus the gauging,

g = 0, the solution corresponds to the Cvetič-Youm two-charge solution [80]. Finally, in

the absence of rotation, a = b = 0, one finds the static solution of [17] which, neglecting the

supersymmetric AdS6 vacuum [4, 11], was the first solution to be uplifted to massive IIA

using the KK reduction ansatz of [17]. Given the parallels of our work to that of Cvetič et

al., here we focus on the same solution and present an alternative uplift to IIB, though we

point out that there is no obstacle to also uplifting the most general solution [48].

In the notation of the action (2.6), the six-dimensional solution takes the form12

ds2
6 = −H−3/2fdt2 +H1/2

(
f−1dr2 + r2dΩ2

4

)
,

φ̃ =
1√
2

logH, Ã3
(1) =

√
2(1−H−1) cothβdt,

f = 1− µ

r3
+

2

9
g2r2H2, H = 1 +

µ sinh2 β

r3
. (5.21)

To perform either the uplift to massive IIA or type IIB, one just needs to employ the ansatz

of [17] or our ansatz presented in section 4 with X = H−1/4. The string frame metric for

the IIB solution takes the form

ds2 = H1/8s−1/3∆1/2
[
ds2

6 + 2g̃−2H−1/2dξ2
]

+ e−2Adr2 (5.22)

+
r2e2A

r2 + e4A

[
dθ2 + sin2 θ

(
dφ−

√
2(1−H−1) cothβdt

)2
]
.

The rest of the solution can be worked out using the expressions in section 4.

6 Concluding remarks

In this work we have identified a recently discovered supersymmetric AdS6 solution of type

IIB supergravity [1] as the IIB uplift of the supersymmetric vacuum of Romans’ F(4) gauged

supergravity [11]. While this observation could have been made in the light of the results

of [25], here we have completed the KK reduction ansatz to include the characteristic SU(2)

12Here we take k = 1 for simplicity.

– 24 –



J
H
E
P
0
5
(
2
0
1
3
)
0
7
9

gauge fields and shown that this ansatz, via the type IIB equations of motion, leads to the

equations of motion of Romans’ theory. Therefore, any solution to Romans’ theory can

now be uplifted not just to massive IIA using the original ansatz of [17], but also to type

IIB. Neglecting isolated examples, since we have worked with a reasonably general ansatz,

this work also constitutes a general check of the expectation that non-Abelian T-duality is

a symmetry of the equations of motion of type II supergravity.

We have also seen that the correct KK reduction ansatz follows as a result of simply

gauging the S2 associated to the SU(2) R-symmetry in the non-Abelian T-dual geometry.

Closure of the type IIB field strength H then determines the accompanying B-field and the

RR sector follows from a requirement that both the original reduction of [17] and our new

reduction give the same theory in seven-dimensions. We have independently noted that

one can perform an SU(2) non-Abelian T-duality transformation following [3] to generate

the ansatz. Indeed, if this consistent reduction did not exist, we would be most surprised

since it would fly in the face of the conjecture of [41]. Having identified the expected KK

reduction in this paper and through it provided another example, steps towards a proof

of this conjecture would be welcome. It is possible that the reduction of the fermions (for

example [81, 82]) may be useful in this regard.

Using this new connection between Romans’ theory and type IIB supergravity we

have presented some sample uplifted solutions. Building on the observation that the AdS6

vacuum uplifted to either IIA or IIB is supersymmetric, here we perform similar uplifts

for more involved supersymmetric solutions to F(4) gauged supergravity. We begin by

uplifting a domain wall solution without SU(2) gauge fields but supported through a non-

trivial scalar, before moving onto a supersymmetric AdS4×H2 fixed-point corresponding to

a twist of the theory where a U(1) gauge field is excited. Though it is widely assumed that

supersymmetry is preserved when one uplifts, here we have taken steps to show that the

uplifted solutions are consistent with this expectation. Again the reduction of the Killing

spinor equations would help us confirm that the supersymmetric structure is the same.

Finally, one may wonder if the two known reductions from type II supergravity to

F(4) gauged supergravity are the whole story? Certainly we are aware that F(4) gauged

supergravity can be coupled to vector multiplets [7], so one may expect that there is a

more general reduction from massive IIA where additional scalars and vectors from the

coset SL(5,R)/SO(5) are retained. It would be interesting to address this possibility as

it may serve as a stepping stone to the construction of gravity duals where conformal

symmetry is broken.
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A Type II supergravity EOMs

For completeness here we record the equations of motion of both type IIB supergravity [83]

and massive IIA [5]. We follow the conventions of [25].

Type IIB. The field content of type IIB supergravity includes a metric gMN , a scalar

dilaton Φ, an antisymmetric tensor B-field, a zero-form C0, a two-form C2 and four-form

Ramond potential C4. The corresponding field strengths are

H = dB, F1 = dC0, F3 = dC2 − C0H, F5 = dC4 −H ∧ C2, (A.1)

leading to the following Bianchi identities

dH = 0, dF1 = 0, dF3 = H ∧ F1, dF5 = H ∧ F3. (A.2)

The field strength (flux) equations of motions are

d(e−2Φ ∗H)− F1 ∧ ∗F3 − F3 ∧ F5 = 0, (A.3)

d ∗ F1 +H ∧ ∗F3 = 0, (A.4)

d ∗ F3 +H ∧ F5 = 0, (A.5)

d ∗ F5 −H ∧ F3 = 0 (A.6)

The self-duality condition on F5, i.e. F5 = ∗F5, means that (A.6) simply reproduces the

Bianchi identity.

Finally, the Einstein equation is

RMN + 2∇M∇NΦ− 1

4
H2
MN (A.7)

= e2Φ

[
1

2
(F 2

1 )MN +
1

4
(F 2

3 )MN +
1

96
(F 2

5 )MN −
1

4
gMN

(
F 2

1 +
1

6
F 2

3

)]
,

and the dilaton satisfies the equation

R+ 4∇2Φ− 4(∂Φ)2 − 1

12
H2 = 0. (A.8)

Massive IIA. The field content of massive IIA supergravity is the same as the above

except that the Ramond potentials are now odd-forms, C1 and C3, and the theory has a

mass parameter m. The field strengths are now

H = dB, F2 = dC1 +mB, F4 = dC3 −H ∧ C1 +
m

2
B ∧B (A.9)
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with Bianchi identities

dH = 0, dF2 = mH, dF4 = H ∧ F2. (A.10)

The flux equations of motions are then

d(e−2Φ ∗H)− F2 ∧ ∗F4 −
1

2
F4 ∧ F4 = m ∗ F2, (A.11)

d ∗ F2 +H ∧ ∗F4 = 0, (A.12)

d ∗ F4 +H ∧ F4 = 0, (A.13)

and the Einstein equation becomes

RMN + 2∇M∇NΦ− 1

4
H2
MN (A.14)

= e2Φ

[
1

2
(F 2

2 )MN +
1

12
(F 2

4 )MN −
1

4
gMN

(
1

2
F 2

2 +
1

24
F 2

4 +m2

)]
.

As the dilaton equation does not involve the Ramond potentials it is unchanged.

B Gauging the S2

In this section we give some details about the process through which one may gauge the

two-sphere to introduce SU(2) gauge fields. We adopt the usual choice for the metric on

S2, ds2 = dθ2 + sin2 θdφ2 and proceed to introduce µi, i = 1, 2, 3 satisfying µiµi = 1 which

parametrise the two-sphere. Given our choice of the metric, the three Killing vectors on

the S2 are

K1 = − cosφ∂θ + cot θ sinφ∂φ,

K2 = sinφ∂θ + cot θ cosφ∂φ,

K3 = ∂φ. (B.1)

One can check that these Killing vectors satisfy the commutation relations of the SU(2)

Lie algebra, i.e. [Ki,Kj ] = εijkKk. We now introduce the usual frame for the S2

eθ = dθ, eφ = sin θdφ, (B.2)

allowing us to define the dual vectors

eθ = ∂θ, eφ =
1

sin θ
∂φ. (B.3)

The Killing vectors above are written with respect to coordinates, but we can rewrite them

in terms of the dual vectors as

Kθ
1 = − cosφ, Kφ

1 = cos θ sinφ,

Kθ
2 = sinφ, Kφ

2 = cos θ cosφ,

Kφ
3 = sin θ. (B.4)
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One can check that these satisfy the following relationships:

KiaKj
a = δij − µiµj , Ka

i K
b
i = δab. (B.5)

We can now define the metric on the original S2 as

ds2(S2) = dµidµi, (B.6)

where dµi = εabKi
be
b.13 This then leads to an explicit representation for dµi and µi:

µ1 = sin θ sinφ, µ2 = sin θ cosφ, µ3 = − cos θ. (B.7)

One can confirm that 1
2εijkµ

idµj ∧ dµk = vol(S2). We are now in a position to introduce

a gauging of the S2 through

Dµi = εabKi
b(ea −Kk

aA
k) = dµi − εijkµjAk, (B.8)

where we have introduced SU(2) gauge fields Ak. It is useful to document the following:

d

(
1

2
εijkµ

iDµj ∧Dµk
)

= Dµi ∧
[
dAi +

1

2
εijkAj ∧Ak

]
,

= Dµi ∧ F i. (B.9)

C Non-Abelian T-duality

In this section we show that a non-Abelian T-duality transformation of the NS sector of

the original ansatz (3.3) leads to the T-dual NS sector quoted in the text on the nose.

Recall that the NS sector of our original massive IIA space-time is of the following form

ds2 = Gµνdx
µdxν + 2Gµidx

µσi + gijσ
iσj ,

B =
1

2
Bµνdx

µ ∧ dxν , (C.1)

where σi denote the left-invariant one-forms as before and of course, we have an additional

dilaton. Comparison with (3.3) reveals that

Gµν = gµν + e2AAiµA
i
ν , gij = e2Aδij , Gµi = −e2AAiµ, Bµi = 0, (C.2)

where gµν denotes the metric on M7.

As explained in detail in [3, 67], a generic SU(2) transformation depends on a matrix

of the form

Mij = e2Aδij − εijkxk, (C.3)

where xk is a Lagrange multiplier, or alternatively a dual coordinate once one does the

SU(2) transformation, and the minus sign appears above as we are doing a transformation

with respect to left-invariant one-forms. The inverse matrix is then

M−1
ij =

1

e2A(r2 + e4A)

 e4A + x2
1 x1x2 + e2Ax3 x1x3 − e2Ax2

x1x2 − e2Ax3 e4A + x2
2 x2x3 + e2Ax1

x1x3 + e2Ax2 x2x3 − e2Ax1 e4A + x2
3

 , (C.4)

13We take εθφ = 1.
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where we have introduced a natural radial coordinate, r2 = xix
i.

Then, defining the following

Qµν = Gµν +Bµν , Qµi = Gµi +Bµi, Qiµ = Giµ +Biµ, (C.5)

the non-Abelian T-dual can be read off from

Q̃µν = Qµν −QµiM−1
ij Qjν , Q̃µi = QµjM

−1
ji , Q̃iµ = −M−1

ij Qjµ. (C.6)

This leads to the metric (4.5) and the B-field (4.6) quoted in the text once one rewrites

xi = rµi in terms of the constrained coordinates on the S2.

RR fluxes. To complete the ansatz we have to perform the accompanying transforma-

tion for the RR fluxes. Here we simply sketch the calculation and refer the reader to [3]

for further details. After constructing the flux bispinor for the original solution P , one

operates with Ω−1 to get the T-dual bispinor P̂ and then extracts the various components

of the fluxes:

P̂ = P · Ω−1 = P · Γ11
e2AΓ789 + xiΓ

i

√
r2 + e4A

, (C.7)

where i = 7, 8, 9 denote S3 directions and for concreteness we take Γ11 = Γ0123456789. In

defining the bispinors we use

P =
eΦ

2

5∑
n=0

/F 2n, P̂ =
eΦ̃

2

4∑
n=0

/̃F 2n+1, (C.8)

where /F = 1
p!Fµ1...µpΓ

µ1...µp for a p-form flux. In reconstructing the T-dual forms one has

to make use of the appropriate frame [3]

êi = e−Aµidr +
e−A

r2 + e4A

[
re4ADµi − r2e2Aεijkµ

jDµk
]
. (C.9)

In addition, we find the following relations useful

xiê
i = e−Ardr, eAêi + e−Aεijkx

j êk = µidr + rDµi. (C.10)

With a little care one can show that the RR fluxes for type IIB presented in the text are

simply the non-Abelian T-dual of the massive IIA fluxes using the above prescription for

the transformation.

D Details of some calculations

Massive IIA reduction. Here we record some useful expressions. The Hodge duals of

the fluxes are

∗ F2 = e3A(∗7G2) ∧ h1 ∧ h2 ∧ h3, (D.1)

∗ H = e3A(∗7H) ∧ h1 ∧ h2 ∧ h3,

∗ F4 = e3A(∗7G4) ∧ h1 ∧ h2 ∧ h3 + e−3A(∗7G1)

−1

2
eAεijk(∗7H i

3) ∧ hj ∧ hk + e−A(∗7H i
2) ∧ hi. (D.2)
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Making use of the orthonormal frame (3.20) one can work out the spin connection from

derivatives of the vielbein. One first determines cMNP from

deM = −cMNP eN ∧ eP (D.3)

and then calculates ωMNP (lowering appropriate indices)

ωMNP =
1

2
(cMNP + cNMP − cPMN ) . (D.4)

The spin connection one-form is then ωNP = ω N
M P e

M . We can thus determine the spin

connection for the above orthonormal frame (3.20) and get

ω1
2 = −A3

µe
µ − 1

2
e−Ae3,

ω2
3 = −A1

µe
µ − 1

2
e−Ae1,

ω3
1 = −A2

µe
µ − 1

2
e−Ae2,

ω1
µ = ∂µAe

1 − 1

2
eAF 1

µνe
ν ,

ω2
µ = ∂µAe

2 − 1

2
eAF 2

µνe
ν ,

ω3
µ = ∂µAe

3 − 1

2
eAF 3

µνe
ν ,

ωµν = ω̄µν +
1

2
eAF iµνe

i, (D.5)

where ω̄ denotes the spin connection purely on M7. For consistency one can check these

satisfy deM + ωMNe
N = 0. In calculating the Ricci tensor it is good to use

deµ = −ω̄µνeν ,

dei = ∂µAe
µi − eAF i − εijk

(
1

2
e−Aejk + ejAk

)
. (D.6)

IIB reduction. In deriving the equations of motion we have made use of the following

Hodge duals

∗F1 =
eAr2

r2 + e4A

[
− ∗7 G1 ∧ dr −mre2A vol(M7)

]
∧ vol(S̃2),

∗F3 =
e3Ar2

r2 + e4A

[
−eAG4dr−r ∗7 G2

]
∧ vol(S̃2)

+re−3A ∗7 G1 ∧ dr −me3A vol(M7)− r3eA

r2 + e4A
µi ∗7 H i

3 ∧ dr ∧ vol(S̃2)

+µi ∗7 H i
2

r2e3A

r2 + e4A
vol(S̃2) + re−A ∗7 H i

2 ∧ dr ∧ εijkµjDµk. (D.7)

As we are now in type IIB, the five-form flux is self-dual, ∗F5 = F5, so we do not need the

Hodge dual for F5. For certain terms it is good to use the identity

∗2 Dµi = −εijkµjDµk, (D.8)
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where ∗2 refers to Hodge duality on the S2.

Here we record various derivatives of the vielbein (4.14) presented in the text

deµ = −ω̄µνeν ,
der = −∂µAeµr,

de1 =
(r2 − e4A)

(r2 + e4A)
∂µAe

µ1 +
e5A

r(r2 + e4A)
er1 − 1

sin θ
e2
(
sinφA1 + cosφA2

)
− reA√

r2 + e4A
Ki
θF

i,

de2 =
(r2 − e4A)

(r2 + e4A)
∂µAe

µ2 +
e5A

r(r2 + e4A)
er2 +

1

sin θ
e1
(
sinφA1 + cosφA2

)
− reA√

r2 + e4A
Ki
φF

i + cot θ

√
r2 + e4A

reA
e12. (D.9)

Making use of these above expressions, one can determine the spin connection:

ωµν = ω̄µν +
1

2

reA√
r2 + e4A

Ki
aF

iµ
νe
a,

ωrµ = −∂µAer,

ωar =
1

r

e5A

(r2 + e4A)
ea,

ωaµ =
(r2 − e4A)

(r2 + e4A)
∂µAe

a +
1

2

reA√
r2 + e4A

Ki
aF

i
ρµe

ρ,

ω1
2 = −

√
r2 + e4A

reA
cot θe2 − 1

sin θ

(
sinφA1 + cosφA2

)
. (D.10)

where we have used a = 1, 2.

Miscellaneous. Here we present some details for the calculation of∇i∇µΦ. By definition

this is

∇i∇µΦ = ∂i∂µΦ− Γνiµ∂νΦ, (D.11)

where the i = 1, 2, 3 index refers to orthonormal frame and since Φ only depends on the

coordinates on the M7 the first term disappears so we only need determine the second

term. Specialising to the case where the SU(2) gauge fields are truncated to retain a U(1),

we can introduce the vielbein

e1 = eAdθ,

e2 = eA sin θdφ,

e3 = eA(dψ + cos θdφ−Aµēµ),

eµ = ēµ, (D.12)
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and invert it to get the inverse vielbein

e1 = e−A∂θ,

e2 = e−A
(

1

sin θ
∂φ −

cos θ

sin θ
∂ψ

)
,

e3 = e−A∂ψ,

eµ = Aµ∂ψ + ∂̄µ. (D.13)

We clearly see from these that the first term in (D.11) disappears. Now, as ΓMPQ =
1
2g
MN (gPN,Q + gQN,P − gPQ,N ), where gMN is the ten-dimensional metric, we need to

determine the inverse metric. Doing so, we find the following matrix

gMN =


e−2A 0 0 0

0 e−2A 1
sin2 θ

−e−2A cos θ
sin2 θ

0

0 −e−2A cos θ
sin2 θ

gµνAµAν + e−2A 1
sin2 θ

gµνAν
0 0 gµνAν gµν

 . (D.14)

Once we have the inverse metric and the inverse vielbein we can calculate the Christoffel

symbols in orthonormal frame. One finds that

Γν3µ∂νΦ = eAF νµ∂νΦ. (D.15)

is non-zero. Though more involved, the generalisation to include the SU(2) gauge fields is

straightforward and leads to expression on the l.h.s. of (3.27).
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[65] E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, On nonAbelian duality, Nucl. Phys. B 424

(1994) 155 [hep-th/9403155] [INSPIRE].

[66] Y. Lozano, E. O Colgain, K. Sfetsos and D.C. Thompson, Non-abelian T-duality, Ramond

Fields and Coset Geometries, JHEP 06 (2011) 106 [arXiv:1104.5196] [INSPIRE].

[67] K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes,

Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].

[68] M. Minamitsuji and K. Uzawa, Cosmological brane systems in warped spacetime, Phys. Rev.

D 87 (2013) 046010 [arXiv:1207.4334] [INSPIRE].

– 35 –

http://dx.doi.org/10.1016/j.physletb.2005.03.050
http://dx.doi.org/10.1016/j.physletb.2005.03.050
http://arxiv.org/abs/hep-th/0412221
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412221
http://dx.doi.org/10.1007/JHEP05(2012)122
http://arxiv.org/abs/1203.0576
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0576
http://dx.doi.org/10.1007/JHEP12(2010)047
http://arxiv.org/abs/1009.3445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3445
http://dx.doi.org/10.1088/0264-9381/28/22/225028
http://dx.doi.org/10.1088/0264-9381/28/22/225028
http://arxiv.org/abs/1108.3067
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3067
http://dx.doi.org/10.1016/S0370-2693(96)01215-4
http://arxiv.org/abs/hep-th/9608111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9608111
http://dx.doi.org/10.1016/S0550-3213(96)00592-5
http://arxiv.org/abs/hep-th/9609070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609070
http://dx.doi.org/10.1016/S0550-3213(97)00279-4
http://arxiv.org/abs/hep-th/9702198
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702198
http://dx.doi.org/10.1007/JHEP07(2012)171
http://dx.doi.org/10.1007/JHEP07(2012)171
http://arxiv.org/abs/1206.3503
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3503
http://dx.doi.org/10.1007/JHEP12(2012)047
http://arxiv.org/abs/1210.0589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0589
http://dx.doi.org/10.1007/JHEP10(2012)142
http://arxiv.org/abs/1206.6781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6781
http://arxiv.org/abs/1207.4359
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4359
http://arxiv.org/abs/1212.1202
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1202
http://dx.doi.org/10.1016/0550-3213(93)90041-M
http://arxiv.org/abs/hep-th/9210021
http://inspirehep.net/search?p=find+EPRINT+hep-th/9210021
http://dx.doi.org/10.1016/0550-3213(94)90230-5
http://arxiv.org/abs/hep-th/9308154
http://inspirehep.net/search?p=find+EPRINT+hep-th/9308154
http://dx.doi.org/10.1103/PhysRevD.50.2784
http://arxiv.org/abs/hep-th/9402031
http://inspirehep.net/search?p=find+EPRINT+hep-th/9402031
http://dx.doi.org/10.1016/0550-3213(94)90093-0
http://dx.doi.org/10.1016/0550-3213(94)90093-0
http://arxiv.org/abs/hep-th/9403155
http://inspirehep.net/search?p=find+EPRINT+hep-th/9403155
http://dx.doi.org/10.1007/JHEP06(2011)106
http://arxiv.org/abs/1104.5196
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5196
http://dx.doi.org/10.1016/j.nuclphysb.2010.12.013
http://arxiv.org/abs/1012.1320
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.1320
http://arxiv.org/abs/1207.4334
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4334


J
H
E
P
0
5
(
2
0
1
3
)
0
7
9

[69] G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy

conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

[70] F.M. Haehl, The Schwarzschild-Black String AdS Soliton: Instability and Holographic Heat

Transport, Class. Quantum Grav. 30 (2013) 055002 [arXiv:1210.5763] [INSPIRE].

[71] S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS / CFT correspondence,

Phys. Rev. D 59 (1999) 064005 [hep-th/9811056].
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