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We study the generalization of the Ansatz of Galli et al. (2011) [1] for non-extremal black holes of
N = 2, d = 4 supergravities for a simple model of N = 2, d = 5 supergravity with a vector multiplet
whose moduli space has two branches. We use the formalism of Ferrara, Gibbons and Kallosh (1997) [2],
which we generalize to any dimension d. We find that the equations of motion of the model studied
can be completely integrated without the use of our Anstaz (which is, nevertheless, recovered in
the integration). The family of solutions found (common to both branches) is characterized by five
independent parameters: the mass M , the electric charges q0, q1, the asymptotic value of the scalar
at infinity φ∞ and the scalar charge Σ . The solutions have a singular horizon whenever Σ differs from
a specific expression Σ0(M,q0,q1, φ∞) (i.e. when there is primary scalar hair Σ − Σ0 �= 0). The family
of regular black holes interpolates between its two extremal limits. The supersymmetry properties of
the extremal solutions depend on the choice of branch: one is always supersymmetric and the other
non-supersymmetric in one branch and the reverse in the other one.

© 2011 Elsevier B.V. All rights reserved.
0. Introduction

In a recent paper [1] Galli et al. proposed a general Ansatz to
find non-extremal black-hole solutions of N = 2, d = 4 supergrav-
ity theories coupled to vector multiplets, that makes crucial use of
the formalism developed by Ferrara, Gibbons and Kallosh (FGK) in
Ref. [2].1 The Ansatz consists of a systematic deformation of the
corresponding supersymmetric (extremal) solutions to the same
model which has to be plugged into the equations of motion de-
rived by FGK to determine the values of the integration constants,
something that needs to be done for each particular model.

The Ansatz can be generalized to higher dimensions by using
the corresponding generalization of the FGK formalism, but it may
only work for N = 2-type theories for which the metric functions
of supersymmetric solutions are homogenous of a certain degree
in harmonic seed functions. In this Letter we want to study a gen-
eralization of Ref. [1]’s Ansatz for the N = 2, d = 5 supergravity
case, and we will generalize the FGK formalism and the results
obtained in Refs. [2,16] to arbitrary dimensions. We will then con-
struct the non-extremal black-hole solutions of a simple model

* Corresponding author.
E-mail addresses: meessenpatrick@uniovi.es (P. Meessen), Tomas.Ortin@csic.es

(T. Ortín).
1 For previous work on near-extremal and non-extremal solutions see e.g.

Refs. [3–11]. Another approach to the construction and study of black-hole solu-
tions is provided by the first-order formalism of Refs. [12–15].
0370-2693/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2011.12.006
of N = 2, d = 5 supergravity with just one vector multiplet (and,
therefore, one scalar field).

This Letter is organized as follows: Section 1 is devoted to the
generalization of the results of [2] to d � 4 dimensions. In Sec-
tion 1.1 we adapt the results of the previous section to the par-
ticular case of N = 2, d = 5 theories with vector multiplets. In
Section 2 we construct the general black-hole solutions of a simple
model of N = 2, d = 5 supergravity, studying first the supersym-
metric ones, which can be constructed using well-known recipes.
Section 3 contains our conclusions.

1. The FGK formalism in d ��� 4

In order to generalize the results of Ref. [2] to d � 4 we first
need to find a suitable generalization of their radial coordinate τ ,
a goal that can be achieved relatively easily2: consider the d-di-
mensional non-extremal Reissner–Nordström (RN) family of solu-
tions. If we normalize the d-dimensional Einstein–Maxwell action
as (see e.g. Ref. [17])

I[gμν, Aμ] = 1

16πG(d)
N

∫
ddx

√|g|
[

R − 1

4
F 2

]
, (1.1)

where G(d)
N is the d-dimensional Newton constant. Then, the metric

can be put in the form

2 Observe that the case d = 5 was treated in Ref. [11].
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ds2 = H−2W dt2 − H
2

d−3
[
W −1 dr2 + r2 dΩ2

(d−2)

]
, (1.2)

H = 1 + h

rd−3
, W = 1 − 2B

rd−3
, (1.3)

where dΩ2
(d−2)

is the metric of the unit (d − 2)-sphere and the

constant h and the non-extremality parameter B are given by3

B = 4πG(d)
N

(d − 2)ω(d−2)

√
M2 − 2

(d − 2)

(d − 3)
q2,

h = 4πG(d)
N

(d − 2)ω(d−2)

M − B. (1.4)

In the above expressions ω(d−2) is the volume of the unit (d − 2)-
sphere, M is the ADM mass and q the canonically-normalized elec-
tric charge.

The metric (1.2) describes the exterior of a RN black hole with
the (outer) event horizon being located at rd−3 = 2B � 0. The
(inner) Cauchy horizon would, in principle, be located at rd−3 =
−h � 0: this corresponds to a real value of r only for even d; for
odd d, the Cauchy horizon is not covered by these coordinates.

When B = 0 the function W effectively disappears from the
metric and we recover the extremal RN black hole in isotropic co-
ordinates. As is well-known, in this limit there are many other so-
lutions of the same form with H replaced by an arbitrary function
harmonic on Euclidean R

d−1. In this sense, the above non-extremal
metric can be understood as a deformation of the extremal one by
an additional harmonic function W (called Schwarzschild or non-
extremality factor) containing the (non-)BPS parameter B. This kind
of deformations have been used to find non-extremal solutions in
e.g. Refs. [5,11].4

If we perform the coordinate transformation

rd−3 = 2B
1 − e−2Bρ

, (1.5)

in the above metric we find that it takes the conformastatic form

ds2 = e2U dt2 − e− 2
d−3 U γm n dxm dxm, (1.6)

where the function e2U is given by

e2U = Ĥ−2e−2Bρ with Ĥ = h + 2B
2B

− h

2B
e−2Bρ, (1.7)

and the spatial background metric, γ , is given by

γm ndxm dxm =
[

B
sinh (Bρ)

] 2
d−3

×
[(

B
sinh (Bρ)

)2 dρ2

(d − 3)2
+ dΩ2

(d−2)

]
. (1.8)

The coordinate ρ is the higher-dimensional generalization of
the τ of Ref. [2] we were looking for. In fact, in d = 4 their re-
lation is ρ = −τ . The main difference with τ is that the event
horizon is at ρ → +∞ instead of −∞; furthermore, the Cauchy
horizon, which in d = 4 could be reached at τ → +∞, is not cov-
ered by ρ because, in general, it cannot take negative values due to
the fractional power in γ . In the extremal limit, i.e. when B → 0,
the background metric takes the form

3 In d = 4, B is usually called r0 or c.
4 As one can see from Ref. [11] the solution for non-extreme black holes that

we are going to construct, can, due to the special properties of supersymmetric
couplings, be coordinate-transformed to a solution with a Schwarzschild factor.
γm n dxm dxm = 1

ρ
2

d−3

[(
dρ

(d − 3)ρ

)2

+ dΩ2
(d−2)

]
, (1.9)

which is nothing but the Euclidean metric on R
d−1 as can be seen

by the coordinate change ρ = r3−d; needless to say, in the limit
B = 0 the function Ĥ becomes a harmonic function on R

d−1.
It is reasonable to expect that all static black-hole metrics

in d � 4 dimensions can be brought to the conformastatic form
Eq. (1.6) with the background metric (1.8). In the next section we
will also assume that the metric function e−2U of the non-extremal
black holes of N = 2, d = 5 supergravity can be obtained from
that of the extremal ones by replacing the harmonic functions H I

by hatted harmonic functions of the form Ĥ I = aI + bI e−Bρ and
adding an overall factor of eBρ as in Eq. (1.7).

Let us consider now the d-dimensional action

I
[

gμν, AΛ
μ,φi]

=
∫

ddx
{

R + Gi j∂μφi∂μφ j + 2IΛΣ F Λ
μν F Σ μν

}
, (1.10)

where the IΛΣ are given functions of the scalars φi and are sup-
posed to form an invertible, negative definite matrix.

In d > 4 dimensions there could be higher-rank potentials in
the action, but they should not couple to black holes. Of course,
their consistent truncation from the action could place additional
constraints on the remaining fields, but this analysis has to be
made on a case by case basis and one could always impose those
constraints on the solutions to the above unconstrained action.
In odd dimensions there could also be Chern–Simons terms for
the 1-forms AΛ

μ . However, those terms will only contribute to
the equations of motion when we consider objects magnetically
charged with respect to the 1-forms, i.e. electrically charged with
respect to their dual (d − 3)-forms, but these would not be black
holes in d > 4. Therefore, we can conclude that the above action
is general enough to cover all or most of the possible (necessarily
electrically) charged black-hole solutions in d > 4. In d = 4 there
is an additional term involving only scalars and 1-forms related to
the fact that only in d = 4 dimensions black holes can have mag-
netic charges on top of the electric ones.

Plugging the assumptions of time-independence of all fields and
a metric of the form Eqs. (1.6), (1.8) into the equations of motion
resulting from the action, and using the conservation of the elec-
tric charges qΛ , we are left with a reduced system of differential
equations in ρ that can be derived from the so-called geodesic ac-
tion

I
[
U , φi] =

∫
dρ

{
(U̇ )2 + (d − 3)

(d − 2)
Gi jφ̇

iφ̇ j − e2U V bh

}
, (1.11)

where the black-hole potential is given by

V bh = α2 2(d − 3)

(d − 2)
IΛΣqΛqΣ, (1.12)

α being a constant related to the normalization of the charge to
be determined later; one also finds a relation between the Hamil-
tonian corresponding to the action (1.11) and the non-extremality
parameter B, namely

(U̇ )2 + (d − 3)

(d − 2)
Gi jφ̇

iφ̇ j + e2U V bh = B2. (1.13)

Assuming regularity of the fields at the horizon, it is possible
to derive generalizations of the theorems proven in Ref. [2]: for
extremal black holes, in the ρ → +∞ limit

eU ∼ 1

ρ

[
Ah

ω

]− (d−3)
(d−2)

, (1.14)

(d−2)
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where Ah is the area of the event horizon. Furthermore, this area
is given by

Ah = ω(d−2)

[−V bh
(
φi

h

)] (d−2)
2(d−3) , (1.15)

where the values of the scalars at the horizon, φ i
h, extremize the

black-hole potential

∂i V bh|φi
h
= 0. (1.16)

For general (extremal or non-extremal) black holes, defining the
mass M and the scalar charges Σ i by the asymptotic (i.e. ρ → 0)
behavior of the metric function and scalars as

U ∼ −Mρ, φx ∼ φx∞ − Σ xρ, (1.17)

we find from Eq. (1.13)

M2 + (d − 3)

(d − 2)
Gi j(φ∞)Σ iΣ j + V bh(φ∞,q) = B2. (1.18)

Finally, the entropy S = Ah/(4G(d)
N ) and temperature, T , of the

black-hole event horizon are related to the non-extremality param-
eter by generalization of the Smarr formula [16]

B = 16πG(d)
N

(d − 3)ω(d−2)

ST . (1.19)

Observe that the mass M defined above is identically to the
ADM mass if we set

8πG(d)
N

(d − 2)ω(d−2)

= 1, (1.20)

as we will do from now on,5 we have

S = 2π

(d − 2)ω(d−2)

Ah whence ST = (d − 3)

2(d − 2)
B. (1.23)

1.1. The FGK formalism for N = 2, d = 5 theories

The relevant part of the bosonic action of N = 2, d = 5 super-
gravity theories coupled to n vector multiplets [18,19] is, using the
conventions of Refs. [20,21]6

I
[

gμν, AI
μ,φx]

=
∫

d5x

{
R + 1

2
gxy∂μφx∂μφ y − 1

8
aI J F I

μν F J μν

}
, (1.24)

where I, J = 0,1, . . . ,n and x, y = 1, . . . ,n. The scalar target spaces
are determined by the existence of n + 1 functions hI (φ) of the n
physical scalar subject to the constraint

C I J K hIh J hK = 1, (1.25)

5 With this choice, to have canonically-normalized charges in the black-hole po-
tential α must take the value

α = (d − 2)√
2(d − 3)

. (1.21)

This is not the most convenient normalization, though, because, with it, the relation
between mass and charge of an extremal RN black hole is

M2 = 2(d − 2)

(d − 3)
q2, (1.22)

and we will choose a different one in the next section.
6 Some previous work on N = 2, d = 5 attractors can be found in Refs. [22,23].
where C I J K is a completely symmetric constant tensor that deter-
mines the model. Defining

hI ≡ C I J K h J hK (
whence hIh

I = 1
)

(1.26)

the matrix aI J can be expressed as

aI J = −2C I J K hK + 3hIh J , (1.27)

and can be used to raise and lower the index of the functions hI .
We also define

hI
x ≡ −√

3∂xhI , hIx ≡ aI J h J = +√
3∂xhI , (1.28)

which are orthogonal to the hI with respect to the metric aI J . Fi-
nally, the target-space metric is given by

gxy ≡ aI J hI
xh J

y
which implies−−−−−−−−→ aI J = hIh J + gxyhI

xh J
y . (1.29)

Adapting the results of the previous section to these conven-
tions and definitions we get the effective action

I
[
U , φx] =

∫
dρ

{
(U̇ )2 + 1

3
gxyφ̇

xφ̇ y − e2U V bh

}
, (1.30)

and Hamiltonian constraint (1.13) becomes

(U̇ )2 + 1

3
gxyφ̇

xφ̇ y + e2U V bh = B2, (1.31)

where the black-hole potential with the choice of normalization
α2 = 3/32, is given by

−V bh = aI J qI q J = Z 2 + 3gxy∂x Z∂y Z, (1.32)

where we defined the central charge Z(φ,q) ≡ hI qI and used
Eq. (1.29) in order to obtain the last expression. The supersym-
metric black holes of these theories satisfy

∂x Z|φh = 0 whence−−−−→ ∂x V bh|φh = 0, (1.33)

i.e. the values the physical scalar fields take at the horizon ex-
tremize the central charge and the black-hole potential; in fact,
all extremal black-hole solutions of the theory satisfy the latter
equation but only the supersymmetric ones satisfy also the former.
Furthermore, the supersymmetric ones saturate the BPS bound

M = Z(φ∞,q). (1.34)

The supersymmetric, and therefore extremal, black-hole solutions
[24–26] are completely determined by n + 1 real harmonic func-
tions on Euclidean R

4

I I = I I∞ + qIρ. (1.35)

The fields of the supersymmetric solutions are related to these
function by

e−U hI (φ) = I I . (1.36)

These equations must be solved for U = Ususy(I) and the physical
scalars φx = φx

susy(I) using the constraints of real special geometry.
Galli et al.’s Ansatz [1] for the non-extremal black-holes solu-

tions is a deformation of the supersymmetric extremal solutions
Ususy(I), φx

susy(I), namely

U = Ususy( Î) − Bρ, φx = φx
susy( Î), (1.37)

where the functions Î I have the form

Î I = aI + bI e
−2Bρ. (1.38)
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2. A simple model of N = 2, d = 5 supergravity and its black holes

Let us consider a simple model with one vector multiplet de-
termined by C011 = 1/3;7 in terms of the physical, unconstrained,
scalar φ we find that the model has two branches, labeled by
σ = ±1:

h0
(σ ) = e

√
2
3 φ

, h1
(σ ) = σ e

− 1√
6
φ
,

h(σ ) 0 = 1

3
e−

√
2
3 φ

, h(σ ) 1 = 2

3
σ e

1√
6
φ
. (2.1)

The scalar metric gφφ and the vector field strengths metric aI J take
exactly the same values in both branches:

gφφ = 1, aI J = 1

3

⎛
⎝ e−2

√
2
3 φ 0

0 2e

√
2
3 φ

⎞
⎠ , (2.2)

and, therefore, the bosonic parts of both models and their clas-
sical solutions are identical. Since the functions hI

(σ )(φ) differ,
the fermionic structure will be different. In particular, the central
charge in the σ -branch is

Z(σ ) = q0e

√
2
3 φ + σq1e

− 1√
6
φ
. (2.3)

The black-hole potential, being a property of the bosonic part
of the theory, is identical in both branches:

−V bh = 3

2

[
2q2

0e2
√

2
3 φ + q2

1e−
√

2
3 φ]

. (2.4)

The black-hole potential is extremized for

φh = −
√

2

3
log

(
±σ

2q0

q1

)
. (2.5)

Since ±σ2q0/q1 > 0, the upper sign (which corresponds to the
supersymmetric case in the σ -branch, as it extremizes the cen-
tral charge) requires the following relation between the signs sI

(≡qI/|qI |) of the charges qI

s0 = σ s1, (2.6)

while the lower one (non-supersymmetric in the σ -branch) re-
quires

s0 = −σ s1. (2.7)

The same bosonic solution will be supersymmetric in the σ -
branch and non-supersymmetric in the (−σ)-branch. We are going
to construct the supersymmetric solutions of the σ -branch next;
the non-supersymmetric solutions of the (−σ)-branch will be con-
structed at the same time.

2.1. Supersymmetric and non-supersymmetric extremal solutions

According to the general prescription, the extremal solutions
are given by two real harmonic functions of the form Eq. (1.35),
and are related to U and φ by Eqs. (1.36), which in this case take
the form

I0 = 1

3
e−Ususy e−

√
2
3 φsusy , I1 = 2

3
σ e−Ususy e

1√
6
φsusy

. (2.8)

Solving for Ususy and φsusy we get

7 This model can be obtained by dimensional reduction of minimal d = 6, N =
(1,0) supergravity.
e−Ususy =
(

33

22
I0 I2

1

)1/3

, φsusy = −
√

2

3
log

(
σ

2I0

I1

)
. (2.9)

The regularity and well-definedness of these fields impose some
restrictions on the harmonic functions, to wit

(i) They should not vanish at any finite value of ρ: this require-
ment relates the signs of qI and I I .

(ii) sign(I0) = σ sign(I1) everywhere for φsusy to be well-defined
in the σ -branch. This implies, in particular, that s0 = σ s1
which is the relation we found for the supersymmetric critical
points. There are therefore for each branch two supersymmet-
ric cases which are disjoint in charge space: s0 = +1, s1 = σ
and s0 = −1, s1 = −σ .

(iii) For Ususy to be well-defined (e−U > 0) only I0 > 0 seems to
be allowed. However, if we take into account that the spatial
metric Eq. (1.9) is odd in ρ , we can compensate the wrong
sign in e−U with a change of sign in ρ .

In principle we have to consider the two aforementioned cases
separately, but in the end both can be written in a unified way,
with the harmonic functions given by

I0 = 1

3
e−

√
2
3 φ∞ + |q0|ρ, I1 = σ

{
2

3
e

1√
6
φ∞ + |q1|ρ

}
, (2.10)

and the mass and scalar charge are given by

M = ∣∣Z(σ )(φ∞,q)
∣∣, Σ = 3∂φ Z(σ )(φ∞,q). (2.11)

Studying the near-horizon, i.e. ρ → ∞, behavior we find that

φsusy|h = −
√

2

3
log

(
σ

2q0

q1

)
, (2.12)

Ah

2π2
=

√
33

22
|q0|q2

1 = [−V bh(φh,q)
] 3

4 = ∣∣Z(σ )(φh,q)
∣∣ 3

2 . (2.13)

These field configurations solve the same equations of motion
all values of σ , but they are only supersymmetric in the σ -branch
of the theory.

2.2. Non-extremal solutions

The most general solution can be obtained by observing that
the geodesic Lagrangian is separable: by defining

x ≡ U +
√

2

3
φ, y ≡ U − 1√

6
φ, (2.14)

the effective action Eq. (1.30) takes the form

I[x, y] =
∫

dρ

[
1

3
(ẋ)2 + 2

3
( ẏ)2 + 3q2

0e2x + 3

2
q2

1e2y
]
, (2.15)

and its equations of motion can be integrated immediately. We do
not need to make any particular Ansatz, but should rather be able
to recover it from the general solution, which is8

e−3U = 33

22

∣∣q0q2
1

∣∣( sinh (Bρ + D)

B

)2( sinh (Aρ + C)

A

)
, (2.16)

φ = −
√

2

3
log

{∣∣∣∣2q0

q1

∣∣∣∣
(

B

sinh (Bρ + D)

)(
sinh (Aρ + C)

A

)}
,

(2.17)

8 Please observe that this solution could also have been obtained by using the
results obtained by Mohaupt and Vaughan in Ref. [11].
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where A, B , C and D are (positive) integration constants. Their val-
ues are constrained by the requirement of asymptotic flatness and
related to the non-extremality parameter B by the Hamiltonian
constraint Eq. (1.31)

2B2 + A2 = 3B2. (2.18)

There are, then, three independent integration constants that
must correspond to the three independent physical parameters
that are not the electric charges: the mass M , the asymptotic value
of the scalar φ∞ and the scalar charge Σ (according to Eq. (1.18)
B is a function of these three). As the scalar charge is not an at-
tribute of point-like objects, we do not expect the existence of
regular black holes with Σ �= 0 (scalar hair). However, we know
that regular black holes with Σ �= 0 exist when Σ is a function
of the other physical parameters Σ0(M,q, φ∞) (see e.g. the super-
symmetric case studied in the previous section). This kind of hair
is known as secondary hair [27], while �Σ ≡ Σ − Σ0 is called pri-
mary hair and its presence is generically associated to singularities.

In order to make contact with Galli et al.’s Ansatz, we rewrite
Eqs. (2.16) as

e−U = e−Ususy( Î)e(A+2B)ρ/3, (2.19)

φ = φsusy( Î) −
√

2

3
(B − A)ρ, (2.20)

where e−Ususy(I) is given in Eqs. (2.9) and

φsusy(I) = −
√

2

3
log

(
2I0

I1

)
, (2.21)

so there is no distinction between the branches. The hatted “har-
monic” functions are given by

Î0 = 1

3
e−

√
2
3 φ∞(2A)−1

{(
A + M +

√
2

3
Σ

)

+
(

A − M −
√

2

3
Σ

)
e−2Aρ

}
, (2.22)

Î1 = 2

3
e

1√
6
φ∞

(2B)−1
{(

B + M − 1√
6
Σ

)

+
(

B − M + 1√
6
Σ

)
e−2Bρ

}
, (2.23)

and the constants A and B are given by, taking the positive roots,

A =
√(

M +
√

2

3
Σ

)2

− 32q2
0e2

√
2
3 φ∞ , (2.24)

B =
√(

M − 1√
6

Σ

)2

− 32

22
q2

1e−
√

2
3 φ∞ . (2.25)

A necessary condition for the solutions to become a product
spacetime in the ρ → +∞ limit, thus signaling the occurrence of
a horizon, can be read off from Eq. (2.19): A + 2B = 3B. This con-
straint together with the Hamiltonian constraint (2.18) implies not
only A = B = B ≡ B0, but also Σ = Σ0 with9

Σ0 = −√
6

{
M −

√
M2 + 3q2

0e2
√

2
3 φ − 3

4
q2

1e−
√

2
3 φ

}
. (2.26)

9 Only one of the solutions of the second degree equation for Σ0 is valid, i.e.
gives rise to regular black holes.
In that case, the form of the non-extremal solution is the one
proposed by Galli et al. as a deformation of the supersymmetric
one. In what follows we will only consider the regular solutions
with no primary scalar hair Σ = Σ0, B = B0. It is useful to express
these constants in terms of the asymptotic values of the central
charges of the two branches of the supersymmetric theory Z(+)

and Z(−):

Σ0 = −√
6{M − √

C} and

B2
0 = 5M2 − 3Z(+)∞Z̃(−)∞ − 4M

√
C . (2.27)

where

C ≡ M2 + 3

16

(
3Z 2

(+)∞ + 3Z 2
(−)∞ + 10Z(+)∞Z(−)∞

)
. (2.28)

Further conditions for regularity of the bh’s are the reality and pos-
itivity of B2

0 , which is the case if

M2 � Z 2
(+)∞ and M2 � Z 2

(−)∞. (2.29)

B0 vanishes only when one of the bounds is saturated, so there are
in a given σ -branch two extremal limits: one is supersymmetric
and the other non-supersymmetric.

At the horizon, the scalar goes to the finite, yet φ∞-dependent
value

φh = φ∞ −
√

2

3
log

(
B0 − M + 2

√
C

B0 + 2M − √
C

)
. (2.30)

The area of the horizon is easily found to be

Ah

2π2
=

√
(B0 − M + 2

√
C)(B0 + 2M − √

C)2, (2.31)

and the entropy can be computed from Eq. (1.23) S = Ah/3π . Also,
using Eq. (1.23) the temperature is just T = B0/(3S) and vanishes
in the extremal limits.

Let us end this section with a quick word on the extremal so-
lutions: as we found in the previous section the general family of
non-extremal solutions has two extremal limits, namely one given
by M = |Z(+)∞| and the other one by M = |Z(−)∞|; the super-
symmetry properties of the limiting solution will depend on the
choice of branch. In order to study them we have to take into
account that when one of the extremality bounds Eq. (2.29) is sat-
urated, the other one still holds. In other words: if (the absolute
values of) the two supercharges are different, the first bound that
becomes saturated when we vary the mass, will correspond to that
of the largest supercharge. Which supercharge is largest depends
on the signs of the charges:

s0 = s1 ⇒ |Z(+)∞| � |Z(−)∞|,
s0 = −s1 ⇒ |Z(−)∞| � |Z(+)∞|. (2.32)

As in the 4-dimensional examples studied in Ref. [1], the values of
the charges determine completely the extremal limit. Taking this
into account is easy to see that we recover the extremal solu-
tions found before, whose supersymmetry properties depend on
our choice of branch.

3. Conclusions

In this Letter we have studied the generalization of the formal-
ism of Ferrara, Gibbons and Kallosh [2] to higher dimensions and
we have applied it to the construction of the non-extremal solu-
tions of a simple model of N = 2, d = 5 supergravity with just
one modulus to check a proposal for a generalization of the Ansatz
of [1] to higher dimensions.
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Instead of using this Ansatz directly, we have been able to in-
tegrate directly the effective equations of motion of the model
and we have found a general solution with an independent scalar
charge parameter Σ . Only when Σ is related to the mass, elec-
tric charges and asymptotic value of the scalar by a given formula
Σ = Σ0(M,q0,q1, φ∞) the solutions are regular, i.e. black-hole so-
lutions and not naked singularities. We can interpret these regular
solutions as not having primary scalar hair in the sense of Ref. [27]
and their form fits perfectly in [1]’s Ansatz.

Only a few examples of general families of solutions includ-
ing singular solutions with and regular solutions without primary
scalar hair are known [28]. Most of the solutions known have
only secondary hair: their scalar charges are related to the masses,
charges, and asymptotic values of the moduli by certain expres-
sions. In the supersymmetric cases these expressions are related
to the asymptotic values of the derivatives of the central charges
(or to the matter central charges)10 but in the general case it is
not known how to determine them before finding the explicit so-
lutions. This is an important problem for which no solution has
been proposed.

Here we have dealt with an extremely simple model. It is
clear that to confirm (or refute) the validity of [1]’s Ansatz
more examples need to be studied. Work in this direction is in
progress.
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