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Abstract

We develop a new methodology to measure conditional dependency between time
series each driven by complicated marginal distributions. We achieve this by using
copula functions that link marginal distributions, and by expressing the parame-
ter of the copula as a function of predetermined variables. The marginal model is
an autoregressive version of Hansen’s (1994) GARCH-type model with time-varying
skewness and kurtosis. Here, we extend, to a dynamic setting, the research that fo-
cuses on asymmetries in correlation during extreme events. We show that, for many
market indices, dependency increases subsequent to large extreme realizations. Fur-
thermore, for several index pairs, this increase is stronger after crashes. Our model
has many potential applications such as VaR measurement and portfolio allocation
in non-gaussian environments.
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1 Introduction

The measurement of dependency is a rather difficult task, for instance, the usual Pearson
correlation may be too restrictive a criterion as shown by Embrechts, Lindskog, andMcNeil
(2001). The aim of this paper is to present a new methodology to measure conditional
dependency. This methodological framework can be applied to various problems that
arise in finance. Our methodology builds on so-called “copula” functions. These functions
provide an interesting tool to link univariate models. The insight of this research is that
by expressing the parameter of the copula as a function of other variables as well as of its
own lagged values, one obtains a model with conditional dependency. We illustrate how
our methodology can be applied by investigating the impact of certain joint stock-return
realizations on the subsequent dependency of international markets.
Our research considers a univariate model for each stock index and joins these models

via a copula function into a conditional multivariate framework. Presently, we wish to
relate the various building blocks of this research to the existing literature. First, our
univariate model builds on Hansen’s (1994) seminal paper. In that paper, a so-called
skewed Student-t distribution is derived. This distribution, while retaining the desired
property of having a zero mean and unit variance, has two additional parameters con-
trolling asymmetry and fat-tailedness. By rendering these parameters conditional, it is
possible to obtain time-varying higher moments.1 This model, therefore, extends Engle’s
(1982) ARCH and Bollerslev’s (1986) GARCH model. In an extension to Hansen (1994),
Jondeau and Rockinger (2002a, b) determine the expression of skewness and kurtosis of
the skewed Student-t distribution, show how the cumulative distribution function (cdf)
and its inverse can be computed, as well as how to simulate associated data. They also dis-
cuss how the skewed Student-t distribution should get parametrized. A number of studies
have considered alternative skewed Student-t distributions. Harvey and Siddique (1999)
model the conditional skewness with a non-central Student-t distribution. Recent work is
by Adcock (2002) and Lambert and Laurent (2002).
Second, we use a copula function to link univariate models. Copulas have been intro-

duced to model a multivariate distribution when only marginal distributions are known.
Such an approach is particularly useful in situations where multivariate normality does
not hold.2 Given that most copula functions introduce an explicit parameter that may be
interpreted, intuitively, as a correlation, it is easy to render this parameter conditional.
In other words, our model allows marginal distributions to be conditionally dependent.
Our model, thus, provides an alternative approach to multivariate GARCH models. Some
recent papers focus on the multivariate skewed distributions, and in particular on the
skewed Student-t distribution (Sahu, Dey, and Branco, 2001, and Bauwens and Laurent,
2002). Copulas, however, offer the advantage of allowing more flexible marginal dynamics
and they also allow to model the dependence parameter rather easily.
Third, we apply our framework to investigate how, subsequent to joint realizations of

stock returns, dependency varies. An abundant literature has addressed the issue how

1Higher moments refer to the standardized third and fourth central moments.
2See Joe (1997) and Nelsen (1999) at textbook level.
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correlation between stock-market returns varies when markets become agitated. A first
strand of the literature focuses on the equality of linear correlation coefficients computed
over periods before and after a crash. For instance, Kaplanis (1988) and Ratner (1992)
cannot reject the assumption of the constancy of the correlation matrix. In contrast, Koch
and Koch (1991) find that correlation increases through time, while King, Sentana, and
Wadhwani (1994) object that this result is due to the 1987 stock-market crash. However,
Boyer, Gibson, and Loretan (1997) as well as Forbes and Rigobon (1999) have shown that
the correlation coefficient between two series is biased, when it is computed conditionally
on one of the series exceeding a threshold. Consequently, studies in which correlation
is computed on a subsample where one of the series exceeds a given level will find an
artificially high correlation.
On the other hand, in a multivariate GARCH framework, Hamao, Masulis, and Ng

(1990), Susmel and Engle (1994), and Bekaert and Harvey (1995) measure the interdepen-
dence of returns and volatilities across stock markets. More specifically, Longin and Solnik
(1995) test the hypothesis of a constant conditional correlation between a large number of
stock markets. They find that correlation generally increases in periods of high volatility
of the U.S. market. In addition, in such a context, tests of a constant correlation have
been proposed by Bera and Kim (1996) and Tse (2000). Recent contributions by Kroner
and Ng (1998) as well as Engle and Shepard (2001) develop GARCH models capable of
estimating and testing hypotheses of time-varying covariance matrices. Ang and Chen
(2002) document that dependency between U.S. stocks and the aggregate U.S. market
increases more during downside movements than during upside movements
As an alternative approach, Ramchand and Susmel (1998) and Ang and Bekaert (1999)

estimate a multivariate Markov-switching model and test the hypothesis of a constant
international conditional correlation between stock markets. They obtain that correlation
is generally higher in the high-volatility regime than in the low-volatility regime. These
papers, however, assume a joint normal distribution. Chesnay and Jondeau (2001) also
test for a constant correlation between stock returns in a Markov-switching context, but
while allowing for non-Gaussian innovations.
Some papers also consider how correlation varies when stock-market indices are simul-

taneously affected by very large (positive or negative) fluctuations. Engle and Manganelli
(1999) focus on the modelling of large realizations using quantile regressions. Longin and
Solnik (2001), using extreme value theory, find that dependency increases more during
downside movements than during upside movements. Poon, Rockinger, and Tawn (2000)
provide an alternative statistical framework to test conditional dependency between ex-
treme returns
Our research is strongly related to the persistence in the dependency between two

series. A few studies have proposed to model the correlation coefficient in a way similar to
the GARCH model for volatility. See, for instance, Kroner and Ng (1998), Engle (2002),
Engle and Sheppard (2001), Tse and Tsui (2002).
In the empirical part of this paper, we show that dependency between daily index

returns of major stock markets varies after movements in returns. More specifically, de-
pendency increases subsequently to a large joint stock-market movement. We also provide
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evidence that, for European countries, dependency increases over time. For the other mar-
kets, there is some evidence that dependency was maximal somewhere during the mid-80s
beginning 90s.
In the next section, we introduce copula functions and describe the three copula func-

tions used in the empirical application: Plackett’s (1965), the Gaussian, and the Student-t
copulas. In section 3, we first introduce our univariate model which allows volatility, skew-
ness, and kurtosis to vary over time. Then, we show how to link the univariate models
using a copula function. In section 4, we describe the data and discuss our results. Section
5 contains a conclusion and some guidelines for further research. Our model is very general
and the idea of capturing conditional dependency within the proposed framework can be
applied to many situations.

2 Copula distribution functions

2.1 Generalities

As mentioned by Nelsen (1999, p. 1), the study of copulas is quite a recent phenomenon
in statistics. Hence, it is not astonishing that copulas have only recently found their
way into empirical finance. In order to understand the usefulness of copulas, consider two
random variablesX and Y with marginal distributions, ormargins, F (x) = Pr[X ≤ x] and
G(y) = Pr[Y ≤ y]. In this paper, we assume that the cumulative distribution functions
(cdf) are continuous. The random variables may also have joint distribution function,
H(x, y) = Pr[X ≤ x, Y ≤ y]. All the distribution functions, F (·), G(·), and H(·, ·)
have as range the interval [0, 1]. In some cases, a multivariate distribution exists, so
that the function H(·, ·) has an explicit expression. One such case is the multivariate
normal distribution. In many cases, however, a description of the margins F (·) and G(·)
is relatively easy to obtain, whereas an explicit expression of the joint distribution H(·, ·)
may be difficult to obtain. This is where copulas are useful since they link margins into a
multivariate distribution function.
We now define copulas more formally and describe how to construct the Plackett’s

copula, which is useful for many applications in finance. We would like to emphasize from
the onset that many results developed in this paper extend to a higher dimensional frame-
work. Some of the results, however, hold in the bivariate framework only. In particular,
the ease of interpretation of the Plackett’s copula does not hold if there are more than two
margins.3

Definition 1 A two-dimensional copula is a function C : [0, 1]2 → [0, 1] with the three
following properties:

1. C(u, v) is increasing in u and v.

2. C(0, v) = C(u, 0) = 0, C(1, v) = v, C(u, 1) = u.

3The following definition and proposition may be found in Nelsen (1999, p. 8).

4



3. ∀u1, u2, v1, v2 in [0, 1] such that u1 < u2 and v1 < v2, we have C(u2, v2)−C(u2, v1)−
C(u1, v2) + C(u1, v1) ≥ 0.

Point 1 states that, when one marginal distribution is constant, the joint probability
will increase provided that the other marginal distribution increases. Point 2 states that if
one margin has zero probability to occur then it must be the same for the joint occurrence.
Also, if on the contrary, one margin is certain to occur, then the probability of a joint
occurrence is determined by the remaining margin probability. Property 3 indicates that,
if u and v both increase, then the joint probability also increases. This property is,
therefore, a multivariate extension of the condition that a cdf is increasing. Another
important property of the copula function is that, since the margins are the cdf F and G,
it is defined over variables uniformly distributed over [0, 1].
Furthermore, if we set u = F (x) and v = G(y), then C(F (x), G(y)) yields a description

of the joint distribution of X and Y . Having obtained this intuitive definition, we can now
propose the two following properties.

Proposition 2 If u and v are independent, then C(u, v) = uv.

Proof. The proof of this property follows immediately from the definition of indepen-
dent random variables.

Proposition 3 (Sklar’s Theorem for continuous distributions). Let H be a joint distrib-
ution function with margins F and G. Then, there exists a copula C such that, for all real
numbers x, y, one has the equality

H(x, y) = C(F (x), G(y)). (1)

Furthermore, if F and G are continuous, then C is unique. Conversely, if F and G are
distributions, then the function H defined by equation (1) is a joint distribution function
with margins F and G.

Proof. The proof of this theorem first appeared in Sklar (1959). A relatively simple
proof may be found in Schweizer and Sklar (1974).
This theorem justifies the importance of copulas for empirical research. In this work,

we use the “conversely” part of the proposition and construct a multivariate density from
marginal ones. Now, we show how to obtain a copula that is relevant for finance.

2.2 Construction of the estimated copula functions

An abundant taxonomy of copula functions has emerged in the literature, in order to fit
most situations that can be encountered in practice. In our case, we do not want to make
hypotheses on the dependence between variables. In particular, it is necessary to express
a positive and negative dependence between variables. Therefore, we construct a copula
which allows marginal distributions to be either positively or negatively dependent. An-
other important issue concerns the dependency of the copula in the tails of the distribution.
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We focus on how the dependency of international markets varies after some joint realiza-
tions. Yet, we do not want to put particular emphasis on extreme events. Such an issue has
been already addressed, using an alternative methodology, by Longin and Solnik (2001).
Therefore, we consider copula functions which have different characteristics in terms of tail
dependence. The Plackett’s and Gaussian copulas do not have tail dependence, while the
Student-t copula has such a tail dependence (see, for instance, Embrechts, Lindskog, and
McNeil, 2001). In addition, graphical evidence indicates that the Gaussian copula displays
more dependence for large joint realizations than the Plackett’s one. Finally, note that
the three copula functions are symmetric. Therefore, when the dependency parameter
is assumed to be constant, large joint positive realizations have the same probability of
occurrence than large joint negative realizations. In section 3.4, we relax this assumption
by allowing the dependency parameter to be conditional on past realizations. We begin
with a brief description of how the Plackett’s copula is constructed.4

Consider Figure 1, where we assume that we have two random variablesX and Y . Both
variables may take two discrete states, say high and low. As indicated in the figure, we
associate probabilities a, b, c, and d to the various simultaneous realizations. Intuitively, if
the probabilities are high along the 45o diagonal, then we would have a positive dependence
between the two random variables. Indeed, if one state is high, the other state will be high
as well. In contrast, if there are as many observations along the (a, b) diagonal as along
the (c, d) diagonal, then the random variables may be considered independent.
These observations suggest to define θ = ab/cd as a natural measure of dependency.

If θ = 1, there will be independence; if θ < 1, dependence will be negative; and if θ > 1,
dependence will be positive. Plackett (1965) then associated with the states ‘Low’ the
marginal cdf F (x) and G(y) in [0, 1]. Assuming that θ does not depend on x and y yields
the following expression for the joint cdf of X and Y

Cθ(u, v) =

 1
2(θ−1)

·
1 + (θ − 1)(u+ v)−

q
[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)

¸
if θ 6= 1,

uv if θ = 1,

defined for θ > 0. It is easy to establish the density of a Plackett’s copula as

cθ(u, v) ≡ ∂2Cθ(u, v)

∂u∂v
=

θ[1 + (u− 2uv + v)(θ − 1)]¡
[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)¢ 32 .

It is worth noticing that θ is only defined for positive values. In numerical applications,
this restriction is easily implemented by using a logarithmic transform of θ. In this case,
independency corresponds to a value of ln(θ) = 0. When ln (θ) is positive (negative), we
have positive (negative) dependency.
The Gaussian copula is defined by the following cdf and density

Cρ (u, v) = Φρ

¡
Φ−1 (u) ,Φ−1 (v)

¢
and

cρ (u, v) =
1p
1− ρ2

exp

µ
−1
2
ψ0
¡
Ω−1 − I2

¢
ψ

¶
4We follow the derivation of Nelsen (1999, p. 79—89).
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where ψ = (Φ−1 (u) ,Φ−1 (v))0 and Ω is the (2, 2) correlation matrix with ρ as correlation
between u and v. Φρ is the bivariate standardized Gaussian cdf with correlation ρ.
Similarly, the Student-t copula is defined by

Cρ (u, v) = Tρ,n
¡
t−1n (u) , t−1n (v)

¢
and

cρ (u, v) =
1p
1− ρ2

Γ
¡
n+2
2

¢
Γ
¡
n
2

¢¡
Γ
¡
n+1
2

¢¢2 ¡
1 + 1

n
ψ0Ω−1ψ

¢−n+2
2Q2

i=1

¡
1 + 1

n
ψ2i
¢−n+1

2

where ψ = (t−1n (u) , t−1n (v))
0. Tρ,n is the bivariate Student-t cdf with n degrees of freedom

and correlation ρ.
In Figure 2, we display examples of contour plots associated with the density of the

Plackett’s, Gaussian, and Student-t copula functions for the case of positive dependency
(ρ = 0.5) and of corresponding negative dependency (ρ = −0.5).

2.3 Conditional dependency

In practical bivariate situations, we observe a sample (xt, yt), t = 1, · · · , T . It is assumed
that xt gets generated by a continuous marginal distribution F (·, wx), where wx represents
a vector of parameters. Similarly, yt is generated by a continuous distribution, G(·, wy),
where wy is a parameter vector. For instance, F could represent the cdf of a residual, xt,
of a GARCH model.
For notational convenience, we set ut ≡ F (xt, wx) and vt ≡ G(yt, wy). We denote by

γ the dependency parameter. This is θ in the case of the Plackett’s copula, and ρ in the
cases of the Gaussian and Student-t copulas. The key observation of this research is that
the copula depends on an explicit parameter γ that can be easily conditioned. We define
γt as the value taken by the dependency parameter at time t. The conditioning can, thus,
be achieved by expressing γt as a function of explanatory variables, for instance lagged
values of ut and vt, or some other predetermined variable zt and even time, t, itself. The
most general specification for γt is

γt = Γ(ut−1, vt−1, zt−1, γt−1;wγ),

where Γ is a function depending on the parameter vectorwγ and ut−1 denotes {ut−1, ut−2, ...}.5
Note that various measures of dependence can be easily computed in terms of the

copula. In particular, as shown by Schweizer and Wolff (1981), the Kendall’s tau,

τ = 4

Z Z
[0,1]2

C (u, v) dC (u, v)− 1.

In addition, the Spearman’s rho, which corresponds to the correlation coefficient between
margins, is shown to be equal to

ρ = 12

Z Z
[0,1]2

u v dC (u, v)− 3.

5By using a Taylor-series expansion, it is also possible to introduce a large degree of non-linearity.
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Nelsen (1999) has shown that Kendall’s tau and Spearman’s rho satisfy conditions required
to be concordance measures. In contrast, the Pearson’s correlation coefficient cannot be
used, in general, to measure dependence.
Note that the Spearman’s ρ of the Plackett’s copula is simply derived from the depen-

dence parameter θ as

ρθ =
θ + 1

θ − 1 −
2θ

(θ − 1)2 ln (θ) . (2)

This relationship is used in section 3.4 to derive an alternative dynamics for the dependency
parameter.

2.4 Estimation of the model

In this section, we assume that γt = Γ(ut−1, vt−1;wγ). By, writing f and g as the marginal
densities, the joint density of an observation (xt, yt) is

l(xt, yt;wx, wy, wγ) = cΘ(F (xt−1,wx),G(yt−1,wy);wγ)(F (xt, wx) , G (yt, wy)) f (xt, wx) g (yt, wy) .

As a consequence, the log-likelihood of a sample becomes

L(wx, wy, wγ) =
TX
t=1

¡
ln
£
cΓ(F (xt−1,wx),G(yt−1,wy);wγ)(F (xt, wx) , G (yt, wy))

¤
+ ln [f (xt, wx)] + ln [g (yt, wy)]) . (3)

Ideally, one would like to maximize the likelihood simultaneously over all the parameters,
yielding the parameter estimates written as ŵx, ŵy, and ŵγ. In practical applications, this
estimation may be difficult. First, the dimension of the problem can be large. In such
a case, it may be necessary to help the estimation by providing starting values obtained
from the marginal estimations

w̃x ∈ argmax
TX
t=1

ln[f(xt, wx)], (4)

w̃y ∈ argmax
TX
t=1

ln[g(yt, wy)]. (5)

Second, the dependency parameter of the copula function may be a convoluted expression
of the parameters. In such a case, an analytical expression of the gradient of the likelihood
might not exist. Therefore, only numerical gradients may be computable, implying a
slowing down of the numerical procedure.
For complicated situations, it is therefore recommended to use the set (w̃x, w̃y) obtained

by estimating in a first step (4) and (5) before solving for

w̃γ ∈ argmax L((xt, yt), t = 1, · · · , T ; w̃x, w̃y, wγ).

Patton (2001) shows in his Ph.D. thesis that this two step estimation yields asymptot-
ically efficient estimates.
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3 A model for the marginal distributions

Our margin model builds on Hansen (1994).6 It is well known that the residuals obtained
for a GARCH model are generally non-normal. This observation has led to the intro-
duction of fat-tailed distributions for innovations. Nelson (1991) considers the generalized
error distribution, while Bollerslev andWooldridge (1992) focus on Student-t innovations.7

Engle and Gonzalez-Rivera (1991) model residuals non-parametrically. Even though these
contributions recognize the fact that errors have fat tails, they generally do not render
higher moments time-varying, i.e. the parameters of the error distribution are assumed to
be constant over time.

3.1 Hansen’s skewed Student-t distribution

Hansen (1994) is the first to propose a GARCH model, in which the first four moments are
conditional and, therefore, time-varying. He achieves this by introducing a generalization
of the Student-t distribution that allows the distribution to be asymmetric while main-
taining the assumption of a zero mean and unit variance. The conditioning is obtained
by defining parameters as functions of past realizations. Some extensions to this seminal
contribution may be found in Theodossiou (1998) and Jondeau and Rockinger (2002a).8

Hansen’s skewed Student-t distribution is defined by

d(z|η, λ) =

 bc
³
1 + 1

η−2
¡
bz+a
1−λ

¢2´−η+1
2

if z < −a/b,
bc
³
1 + 1

η−2
¡
bz+a
1+λ

¢2´−η+1
2

if z ≥ −a/b
(6)

where

a ≡ 4λ cη − 2
η − 1 , b2 ≡ 1 + 3λ2 − a2, c ≡ Γ

¡
η+1
2

¢p
π (η − 2)Γ ¡η

2

¢ .
If a random variable Z has the density d(z|η, λ), we will write Z ∼ ST (z|η, λ). Inspection
of the various formulas reveals that this density is defined for 2 < η <∞ and −1 < λ < 1.
Furthermore, it encompasses a large set of conventional densities. For instance, if λ = 0,
Hansen’s distribution is reduced to the traditional Student-t distribution, which is not
skewed. If, in addition, η =∞, the Student-t distribution collapses to the normal density.

6The literature concerning GARCH models is huge. Several reviews of the literature are available, e.g.,
Bollerslev, Chou, and Kroner (1992), as well as Bollerslev, Engle, and Nelson (1994).

7For a definition of the traditional Student-t distribution, see, for instance, Mood, Graybill, and Boes
(1982).

8Harvey and Siddique (1999) have proposed an alternative specification, based on a non-central
Student-t distribution, which allows higher moments to vary over time. This distribution is designed
so that skewness depends on the non-centrality parameter and the degree-of-freedom parameter. How-
ever, differences between the two models are noteworthy. On one hand, Hansen’s distribution has a zero
mean and unit variance, and the two parameters controlling asymmetry and fat-tailedness are allowed to
vary over time. On the other hand, in Harvey and Siddique, innovations are non-standardized, skewness is
directly rendered conditional and is therefore time-varying, while kurtosis is not modeled. Note also that
the specification of the skewed Student-t distribution adopted by Bauwens and Laurent (2002) corresponds
to the distribution proposed by Hansen, in which asymmetry is differently parameterized.
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It is well known that a traditional Student-t distribution with η degrees of freedom
allows for the existence of all moments up to the ηth. Therefore, given the restriction
η > 2, Hansen’s skewed Student-t distribution is well defined and its second moment
exists. The higher moments are not directly given by the parameter η, although formulas
exist for these moments.

Proposition 4 If Z ∼ ST (z|η, λ), then Z has zero mean and unit variance.

Proof. See Hansen (1994).

Proposition 5 Introduce m2 = 1 + 3λ2, m3 = 16c λ(1 + λ2)(η − 2)2/[(η − 1)(η − 3)],
defined if η > 3, and m4 = 3(η − 2)(1 + 10λ2 + 5λ4)/(η − 4), defined if η > 4. The higher
moments of Z are given by:

E[Z3] = [m3 − 3a m2 + 2a
3]/b3, (7)

E[Z4] = [m4 − 4a m3 + 6a
2m2 − 3a4]/b4. (8)

Proof. See Jondeau and Rockinger (2002a).
Since Z has zero mean and unit variance, we obtain that skewness (Sk) and kurtosis

(Ku) are directly related to the third and fourth moments: Sk[Z] = E[Z3] and Ku[Z] =
E[Z4].
We emphasize that the density and the various moments do not exist for all parameters.

Given the way asymmetry is introduced, we must have−1 < λ < 1. As already mentioned,
the distribution is meaningful only if η > 2. Furthermore, careful scrutiny of the algebra
yielding equation (7) shows that skewness exists if η > 3. Last, kurtosis in equation (8) is
well defined if η > 4.9

In the continuous-time finance literature, asset prices are often assumed to follow a
Brownianmotion combined with jumps. This translates into returns data with occasionally
very large realizations. Our model captures such instances since, if η is small, e.g. close
to 2, not even skewness exists.

3.2 The cdf of the skewed Student-t distribution

The copula involves marginal cumulative distributions rather than densities. For this rea-
son, we now derive the cumulative distribution function (cdf) of Hansen’s skewed Student-t
distribution. To do so, we recall that the conventional Student-t distribution is defined by

f(x) =
Γ(n+1

2
)

Γ(n
2
)

1√
π n

µ
1 +

x2

n

¶−n+1
2

where n is the degree-of-freedom parameter. Numerical evaluation of the cdf of the con-
ventional Student-t is well known and procedures are provided in most software packages.
We write the cdf of a Student-t with n degrees of freedom as

A(t;n) =

Z t

−∞
f(x)dx.

9In the empirical application, we only impose that η > 2 and let the data decide for itself if, for a given
time period, a specific moment exists or not.
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The following proposition presents the cdf of the skewed Student-t distribution.

Proposition 6 Defining GT (t) = Pr[Z < t], where Z follows the density (6), yields

GT (t) =


(1− λ)A

³
bt+a
1−λ
q

η
η−2 , η

´
if t < −a/b

(1 + λ)A
³
bt+a
1+λ

q
η

η−2 , η
´
− λ if t ≥ −a/b.

Proof. Set w/
√
η = (bz+a)/[(1−λ)

√
η − 2]. The result follows then from the change

of variable in equation (6) of z into w.

3.3 A GARCHmodel allowing for conditional skewness and kur-
tosis

Let rt, for t = 1, · · · , T , be the returns of a given series. Hansen’s margin model, that
allows volatility, skewness, and kurtosis to vary over time is defined by

rt = µt + zt, zt = σtεt, (9)

σ2t = a0 + b+0 (z
+
t−1)

2 + b−0 (z
−
t−1)

2 + c0 σ
2
t−1, (10)

εt ∼ GT (εt|ηt, λt). (11)

Equation (9) decomposes the return of time t into a conditional mean, µt, and an innova-
tion, zt. The conditional mean can be modelled as involving past returns and day of the
week dummies. Equation (9) then defines this innovation as the product between condi-
tional volatility, σt, and a residual, εt. The next equation (10) determines the dynamics
of volatility. We use the notation z+ = max(z, 0) and z− = max(−z, 0). Such a specifi-
cation has been suggested by Glosten, Jagannathan, and Runkle (1993) and by Zakoïan
(1994). In a similar spirit, one may mention Campbell and Hentschel (1992), Gourieroux
and Monfort (1992), or Engle and Ng (1993). Equation (11) specifies that residuals follow
a skewed Student-t distribution with time-varying parameters ηt and λt.
Many specifications could be used for ηt and λt. To ensure that ηt and λt remain

within their authorized range, we consider an unrestricted dynamic that we constrain via
a logistic map.10 A discussion what type of functional specification should be retained
is provided by Jondeau and Rockinger (2002a). The general unrestricted model that we
estimate is given by

η̃t = a1 + b+1 z
+
t−1 + b−1 z

−
t−1 + c1 η̃t−1, (12)

λ̃t = a2 + b+2 z
+
t−1 + b−2 z

−
t−1 + c2 λ̃t−1. (13)

Various restrictions of these specifications will also be considered in the empirical section
of the paper.

10The logistic map, g]L,U [(x) = L+ (U − L)(1 + e−x)−1 maps R into the interval ]L,U [. For practical
purposes, we use for η the constaints L = 2, U = 30 and for λ we use L = −1, U = 1.
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3.4 Restrictions of the general model

This general model encompasses several models. A model obtained under the assumption
of a constant volatility could be obtained as in

rt = µt + σεt, εt ∼ ST (εt|η =∞, λ = 0), Normality, (14)

rt = µt + σεt, εt ∼ ST (εt|η, λ = 0), Student-t, (15)

rt = µt + σεt, εt ∼ ST (εt|η, λ), Skewed Student-t. (16)

In the conditional mean, we include 10 lags of rt and day-of-the-week dummies. If the
model is well specified, we would expect that

ut = ST

µ
rt − µt

σ
|η, λ

¶
is uniform iid. This assumption may be tested using the methodology developed by
Diebold, Gunther, and Tay (1998). An extension to the general model, allowing for a
skewed Student-t distribution with time-varying parameters may be tested in the same
way by replacing the (η, λ) pair by (ηt, λt) and also by allowing for a time-varying volatility
equation. In that case we obtain the model

rt = µt + σtεt, εt ∼ ST (εt|ηt, λt) Time-varying skewed Student-t. (17)

3.5 Alternative specifications for the conditional dependency pa-
rameter

As suggested above, the dependency parameter γ may be rendered time-varying. Several
studies have shown the correlation parameter to vary over time (Longin and Solnik, 1995,
Ramchand and Susmel, 1996) in models where the dynamic of returns is simpler than ours.
Many different specifications of the dependency parameter are possible in our context. As
a first approach, we follow Gourieroux and Monfort (1992) and adopt a specification in
which γt depends on the position of past joint realizations in the unit square. This means
that we decompose the unit square of joint past realizations into a grid. The parameter
γt will be constant for each element of the grid. More precisely, our basic model is

ln(γt) =
16X
j=1

dj I[(ut−1, vt−1) ∈ Aj], (18)

where Aj is the jth element of the unit-square grid. To each parameter dj, an area Aj is
associated.11 For instance, A1 = [0, p1[×[0, q1[ and A2 = [p1, p2[×[0, q1[.12 The choice of 16
11Figure 6 illustrates the position of the areas dj . How the figure is constructed is discussed in detail

below.
12In the figures, we have set equally spaced threshold levels, i.e. p1, p2, and p3 take the values 0.25, 0.5,

and 0.75. The same for q1, q2, and q3. In the empirical part of the paper, we will use as thresholds the
values 0.15, 0.5, and 0.85. The reason for this choice is that we want to focus on rather extreme values.
If we had used 0.25, 0.5, and 0.75, the results would have been rather similar.
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subintervals is somewhat arbitrary. This choice of parameterization has the advantage to
provide an easy testing of several conjectures concerning the impact of past joint returns
on subsequent dependency while still allowing for a large number of observations per
area. In the empirical section, we test several specification hypotheses for the dependency
parameter.
It should be recognized that this specification does not allow the measurement of

persistence in γ. The difficulty is to derive an adequate model to capture the dynamic
of the dependency parameter. We adopt an approach close to the one proposed by Tse
and Tsui (2000) in their modelling of the Pearson’s correlation in a GARCH context. We
assume that the dynamic of the Spearman’s rho is given by

ρt = (1− α− β) ρ+ αψt−1 + β ρt−1 (19)

where ψt =
¡Pm−1

i=0 ut−ivt−i
¢
/
¡Pm−1

i=0 u2t−i
Pm−1

i=0 v2t−i
¢1/2

represents the correlation be-
tween the margins over the recent period. We impose that 0 ≤ α, β ≤ 1 and α + β ≤ 1.
In the empirical application, we set m = 5, so that the correlation is computed over one
week of data. For Plackett’s copula, once a time series of ρt is obtained, it is possible
to compute the dependency parameter θt by solving equation (2) numerically. Therefore,
this approach provides an alternative to model dependency while focusing on persistence.13

The null hypothesis α = β = 0 can be tested using a standard Wald statistic.

4 Empirical Results

4.1 The data

We investigate the interactions between five major stock indices. The labels are SP for the
S&P 500, NIK for the Nikkei stock index, FTSE for the Financial Times stock index, DAX
for the Deutsche Aktien Index, and CAC for the French Cotation Automatique Continue
index. Our sample covers the period from January 1st, 1980 to December 31st, 1999.
All the data are from Datastream, sampled at a daily frequency. To eliminate spurious

correlation generated by holidays, we eliminated from the database those observations
when a holiday occurred at least for one country. This reduced the sample from 5479
observations to 4578. Note that such an observation would not affect the dependency
between stock markets during extreme events. Yet, it would affect the estimation of the
return marginal distribution and, subsequently, the estimation of the distribution of the
copula. In particular, the estimation of the copula would be distorted to account for the
excessive occurrence of null returns in the distribution. To take into account the fact that
international markets have different trading hours, we use once lagged U.S. returns. This
does not affect the correlation with European markets significantly (because trading times
are partially overlapping), but increases the correlation between the S&P and the Nikkei
from 0.1 to 0.26. Preliminary estimations also revealed that the crash of October 1987
was of such importance that the dynamics of our model would be very much influenced by

13We did not obtain satisfactory results when we combined the square with its 16 areas and persistence.
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this event. For the S&P, on that date, the index dropped by −22%. The second largest
drop was −9% only. For this reason, we eliminated the data between October 17th and
24th. This reduces the sample by 6 observations to a total of 4572 observations.
Table 1 provides summary statistics on market-index returns. Returns are defined as

100×ln (Pt/Pt−1), where Pt is the value of the index at time t. Statistics are computed after
holidays have been removed from the time series. Therefore, the number of observations
is the same one for all markets, and the series do not contain days when the market was
closed. We begin with the serial dependency of returns. The LM(K) statistic tests whether
the squared return is serially correlated up to lag K. This statistic clearly indicates that
ARCH effect are likely to be found in all market returns. Also, when considering the Ljung-
Box statistic, QW (K), after correction for heteroskedasticity, we obtain that in most cases
returns are serially correlated. We obtain clear indication of such autocorrelation for the
SP, the FTSE, and the CAC.
Presently, we consider the unconditional moments of the various series. All the stan-

dard errors have been computed with the GMM procedure. We notice that for all series,
except the Nikkei, that skewness is negative. Moreover, considering excess kurtosis, XKu,
we observe a significant parameter for all the series. This indicates that all the series
display fatter tails than the Gaussian distribution. The Wald statistics of the joint test of
significance of skewness and excess kurtosis corroborates this finding.14

Finally, the unconditional correlation matrix indicates that rather large dependency
is likely to be found between market returns. The correlation is the smallest between the
Nikkei and the CAC, and the largest between the DAX and the CAC.

4.2 Estimation of the marginal model

In a preliminary step, we consider several restrictions of the general model, see (14) to
(17), as possible candidates for adjusting the empirical return distribution. Table 2 reports
the test of goodness of fit for these distributions. We follow Diebold, Gunther, and Tay
(1998), DGT, who suggested that, if the marginal distributions are correctly specified,
the margins ut and vt should be iid Uniform(0, 1). The test is performed in two steps.
First, we evaluate whether ut and vt are autocorrelated. For this purpose, we examine
the autocorrelations of (ut − ū)i, for i = 1, ..., 4.15 We thus regress (ut − ū)i on 20 lags of
the variable. The LM test statistic is defined as (T − 20)R2, where R2 is the coefficient
of determination, and is distributed, under the null, as a χ2 with 20 degrees of freedom.
We find that the LM tests for autocorrelation of margins generally do not reject the null
hypothesis of no autocorrelation. In particular, even if the general model is restricted
to model (14), i.e. residuals are supposed to be Gaussian, the first four moments are
found to be non-autocorrelated for the SP, the Nikkei, and the FTSE. For the DAX, we
reject the non-autocorrelation of the first moment, while for the CAC we reject the non-

14When the 1987 crash is not removed, the SP distribution is characterized by a very strong asymmetry
(with a skewness equal to −2.55) and fat tails (with an excess kurtosis as high as 57). Yet, due to
uncertainty around higher-moment point estimates, the Wald test does not reject normality.
15Zero correlation is equivalent to independence, only under gaussianity. The correlogram is, therefore,

only suggestif of possible independence.
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autocorrelation of the second moment. Note that the non-autocorrelation of the moments
mainly comes from the introduction of lagged returns in the mean equation.
Second, we test the null that ut and vt are Uniform(0, 1). For this, we cut the em-

pirical and theoretical distributions into N slices and test whether the two distributions
significantly differ on each slice. An advantage of the approach suggested by DGT is that
it permits a graphical representation which can be used to identify areas where the theo-
retical distribution fails to fit the data. The test statistic is distributed as a χ2 with N − 1
degrees of freedom. Table 2 reports the test statistic for various distributions as well as
the p-value computed with N − 1 degrees of freedom. We consider the case where N = 20

bins. We notice that the normal distribution is strongly rejected for all markets, at any
significance level. The standard Student-t distribution is not rejected for the SP and the
CAC, suggesting that asymmetry may not be a major feature for these indices. When we
consider the skewed Student-t distribution, we obtain that it allows to fit the data, except
for some numbers of bins, for the DAX. Finally, when skewness and kurtosis are allowed to
vary over time, we only reject the null hypothesis that the theoretical distribution provides
a good fit of the empirical distribution for the DAX return, and this only marginally, at
the 10% level.
Table 3 presents the results of the general model in which asymmetries in the impact

of past good and bad news on conditional volatility are allowed and skewness and kurtosis
are time varying.16

We can summarize our empirical evidence for margins as follows. First, a negative
return has a stronger effect on subsequent volatility than a positive return of the same
magnitude. This is the well-known leverage effect, documented by Campbell and Hentschel
(1992), Glosten, Jagannathan, and Runkle (1993), as well as Zakoïan (1994).17

Second, the impact of extreme returns on the subsequent distribution is measured via
λt and ηt. The unrestricted dynamics of λ̃t and η̃t gets mapped into λt and ηt with the
logistic map. The estimations show that there is quite a large persistence in the dynamics
of the degree-of-freedom parameter ηt. For most markets, we obtain an estimate of the
persistence parameter c1 ranging between 0.4 and 0.65, but the FTSE. The negative sign of
b+1 suggests that subsequent to large positive realizations, tails thin down. In contrast, we
do not obtain significant estimates of b−1 , although the point estimate is generally positive.
The asymmetric impact of extremes on returns is measured by the dynamics of λt.

We find that, in general, past positive returns enlarge the right tail while past negative
returns enlarge the left tail. The effect of positive returns is slightly larger than the effect
of negative returns, although not always significantly. Furthermore, for the FTSE, the
DAX, and the CAC, we find persistence in the asymmetry parameter.
Figures 3 and 4 display the evolution of the ηt and λt parameters for the SP and the

CAC, respectively. As far as the asymmetry parameter, λt, is concerned, we recall that λt
16See Jondeau and Rockinger (2002b) for more details on the estimation method.
17These findings cannot be directly compared with Harvey and Siddique (1999). Their model strongly

differs from ours in the choice of error distribution and of model specification. They also use data
that differs from ours. In our estimations, the introduction of time-varying skewness does not alter
the asymmetry of news on volatility, while in Harvey and Siddique (1999), the result depends on the
series used.
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is constrained to the range −1 and 1. We observe that the distribution of the SP return
is characterized by large movements in the asymmetry. The estimate of the parameter λt
ranges between −0.4 and 0.5 for the SP, while it ranges between −0.3 and 0.25 for the
CAC.

4.3 Estimation of the multivariate model

4.3.1 The model with constant dependency parameter...

Now, we present for each stock-index pair the estimates of the multivariate model. Firstly,
we present in Figures 5a and 5b scatterplots of the marginal cumulative distribution func-
tions ut and vt for the SP-NIK and for the FTSE-CAC respectively. We notice that except
for the regions where one margin is large and the other small, the unit square is rather
uniformly filled with realizations. From a modeling point of view, these scatterplots sug-
gest that, even if we introduce 16 areas for the conditioning, each one will contain enough
observations so as to yield good estimates. In both figures, there is, in addition, a higher
concentration in the corners, along the diagonal. This clustering corresponds to the ob-
servation that correlation is higher in the tails. Some studies have focused on the strength
of correlation in the tails, see Longin and Solnik (2001), or Ang and Chen (2002). These
figures corroborate such studies. This is not, however, the scope of this research. We will
investigate whether, subsequent to some joint realization, a similar joint realization can
be expected. It should be emphasized that these scatterplots are unable to tell anything
about temporal dependency. To establish whether a temporal dependency exists, it is
necessary to estimate a dynamic model as given by equations (18) or (19).
In Table 4, Panel A, we report several statistics on the estimation of the copula with

constant dependency parameter. We compare three copula functions: The Plackett’s, the
Gaussian, and the Student-t copulas. First, we report the parameter estimates of the cop-
ula function: ln (θ) and the associated implied Spearman’s rho for the Plackett’s copula.18

We also report the Spearman’s ρ for the Gaussian copula, for the Student-t copula we
report in addition the degree-of-freedom parameter ν. For all market pairs, the estimate
of the dependency parameter is found to be positive and significant. For the Plackett’s
copula, this result is confirmed by the value of the implied Spearman’s rho obtained from
equation (2). It can be compared with the empirical value of the correlation between mar-
gins reported in the last row of the table. The two estimates of the Spearman’s rho are
very close one to the other, suggesting that the copulas chosen provide a rather good
description of the dependency between markets under study.
To provide further insight on the ability of the chosen copulas to fit the data, we report

the log-likelihood, the AIC and SIC information criteria. We also present the LRT statistic
for the null hypothesis that the degree-of-freedom parameter of the Student-t copula is
infinite, so that the Student-t copula reduces to the Gaussian copula. For all market
pairs, we obtain that the log-likelihood of the Gaussian copula is larger than the one of
the Plackett’s copula. Since the two functions have the same number of parameters to be
estimated, the Gaussian copula would be selected on the basis of information criteria. As

18The standard error of the implied rho is computed with the delta method, using the relation (2).
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regards the Student-t copula, comparison with the Gaussian one can be based both on the
information criteria and on the LR test. In the two cases, we select the Student-t copula.
As will be shown later on, this result is consistent with the finding that the dependency
is stronger in the tails of the distribution than in the middle of the distribution.
Since the Gaussian copula is better than the Plackett one, and the Student-t better

than the Gaussian one, we focus from now on only on the Student-t copula. Notice that
we performed the same estimations as the ones reported with the other copulas under
investigation.19

4.3.2 ...and the model with conditional dependency parameter

Parameter estimates. We first turn to the discussion of the estimation of the model in
which the Spearman’s rho ρ is rendered conditional on past realizations. The conditional
model (18) is used. Due to the large number of parameters, we do not report the estimates
for all market pairs. Instead, we display in Figures 6 and 7 the unit-square with parameter
estimates of the various dj and their standard errors, for the SP-NIK as well as the FTSE-
CAC. These two pairs can be viewed as two polar cases. The first pair has a very low
dependency parameter (ρ = 0.25), while the second one has the largest Spearman’s rho
(ρ = 0.49). Inspection of the figures indicates that the extreme diagonal elements for the
FTSE-CAC take the values 0.638 and 0.535 that compare with 0.340 and 0.250 for the
SP-NIK. Inspection of the figures, and comparison with the off-diagonal elements shows
that, subsequent to dissimilar events, i.e. one market goes up and the other down, the
likelihood to find a similar event is small. This observation holds also for most of the
country pairs under investigation.

Formal tests of conditional dependency. In Table 5, we report the results of the
tests for conditional dependency. The top line reminds the value of the unconditional
dependency measure ρ. We next present those parameters which are located along the
diagonal, corresponding to the level of the Spearman’s rho when lagged realizations of
both markets belong to the same quartile. Observation of these estimates reveals that the
dependency involving two European indices behaves differently than estimates where one
index is either the SP or the Nik. Indeed, for the last three columns of the table, we observe
that the estimates, along the diagonal, tend to take higher values than the unconditional
ρ presented in the first row. For instance, for the DAX/CAC pair, the unconditional ρ
takes the value 0.465 whereas the elements along the diagonal take the values 0.519, 0.576,
0.525, and 0.530. This suggest that subsequent to similar realizations, e.g., both markets
crash, in Europe, one may expect further joint large negative realizations. The row labeled
H0,1 presents a formal test if the elements along the diagonal tend to be larger than the off
diagonal ones. The hypothesis tested is H0,1 : d1 = d6 = d11 = d16 = d13 = d9 = d14 = d3
= d4 = d8 versus d1 = d6 = d11 = d16 > d13 = d9 = d14 = d3 = d4 = d8. This formal test
confirms our intuition and reveals also that the SP/NIK and the NIK/DAX pairs display
this feature of greater dependency subsequent to similar realizations.

19Results are available upon request from the authors.
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Next, we consider a test of asymmetry in the persistence of extreme events. Whereas
Longin and Solnik (2001) and Ang and Chen (2002) focus on the contemporaneous corre-
lations in the tails, finding that correlation is stronger in downside markets than in upside
markets, we question whether the dependence between markets is stronger subsequent to
downside markets than subsequent to upside markets. Therefore, we compare the mag-
nitude of parameters d1 and d16. The value d1 measures the dependence subsequent to
downside markets, while d16 measures the dependence subsequent to upside markets. We
notice first that, for most pairs, the difference d1−d16 takes a positive value, meaning that
joint downside movements create stronger dependence than corresponding upside move-
ments. A formal test of the null hypothesis, H0,2, that d1 = d16 versus d1 > d16, reveals
that the difference is significant for four market pairs only, the NIK-FTSE, NIK-DAX,
NIK-CAC, and the FTSE-CAC. Therefore, we find that a crash or a boom of a similar
magnitude have generally a similar effect on subsequent correlation. In a conditional set-
ting the asymmetry between negative and positive realizations appears to be weakened.
These findings extend the results of Longin ad Solnik (1995) Ramchand and Susmel (1996),
as well as Chesnay and Jondeau (2001).

4.3.3 The model with time-varying Spearman’s rho

The last issue we address in this paper is the persistence of the dependency parameter. Es-
timations presented above have shown that, in many circumstances, past joint realizations
affect the international dependency. We now measure the extent to which the persistence
in dependency is likely to attenuate this link. We, thus, estimate relation (19) for the
Student-t copula. Results are reported, in Table 6, with m = 5 lags in the computation of
ψt. Notice that the results are not altered when we select m = 10 or 20. We notice that
the persistence parameter, β, ranges between 0.44 for the NIK/FTSE and 0.99 for the
SP/CAC. Persistence is very strong for all market pairs except those involving the NIK
and an European index. The effect of the past short-term correlation between margins,
measured by α, is in general significantly positive. Inspection of the persistence measure
(α + β) suggests that persistence in dependency is large between European stock mar-
kets, but also between the SP and other markets. In Figure 8, we display the evolution
of the parameter ρt for the SP-NIK and the FTSE-CAC pairs. These figures suggest that
the persistence is much more pronounced for the latter than for the former. We therefore
conclude that dependency is not only strongest but is also the most persistent between
European markets.
The LR test for the null hypothesis that α and β are jointly equal to zero (so that the

model with time-varying Spearman’s rho reduces to the model with constant rho) is also
reported in the table. The model with constant dependency parameter is rejected for all
market pairs, except for the SP-FTSE, the NIK-FTSE, and the NIK-CAC. This confirms
our previous result that dependency depends on lagged realizations.
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5 Further research topics

In this paper, we developed a framework, based on copulas, with conditional dependency.
We have also shown how this model can be used to measure dependency subsequent to
certain types of events. Presently, we wish to discuss other fields where our model can be
useful. First, this framework may be used to investigate the spillover of large realizations
in emerging markets. The volatility spillovers among such markets have been investigated
for instance in Bekaert and Harvey (1995) and in Rockinger and Urga (2001). The focus
on extreme realizations may provide further insights.
Another application of our model is the conditional asset allocation in a non-gaussian

framework. Such a model has been developed by Rubinstein (1973). Kraus and Litzen-
berger (1976) provide a first empirical test of this model. Barone-Adesi (1985) shows how
a model involving higher moments can be obtained with the assumption of a quadratic
market model. Ingersoll (1990) treats the topic at textbook level. Harvey and Siddique
(2000) provide tests of these models. Further theoretical elements are brought forward by
Jurczenko and Maillet (2001). To implement asset allocation, in a non-gaussian world,
it is necessary to compute expressions involving higher moments. Such expressions will
typically involve computations such as

mi,j,t =

Z
xt∈R

Z
yt∈R

xity
j
t cθt(F (xt, wx) , G (yt, wy))f (xt, wx) g (yt, wy) dxt dyt.

Such integrals may be efficiently evaluated using a change in variables ut = F (xt, wx),
vt = G (yt, wy). With this change, we get

mi,j,t =

Z
ut∈[0,1]

Z
yt∈[0,1]

(F−1(ut))i(G−1(vt))jcθt(ut, vt)dut dvt.

Once the model is estimated, these moments can be computed.
Still another application may be found in Value-at-Risk applications. There it is nec-

essary to compute the probability that a portfolio exceeds a given threshold. Again, once
the marginal models are known, the exceedance probability may be numerically computed
as a simple integration, using the fact that, if the pair (Xt, Yt) has some joint distribution
function C(F (xt, wx) , G (yt, wy)), then

Pr[δXt + (1− δ)Yt > γ] =

Z
δxt+(1−δ)yt>γ

dCθt (F (xt, wx) , G (yt, wy)) .

Again, this expression is easy to implement numerically. Similarly, one could compute
expected shortfall.
Furthermore, a straightforward extension of our framework could yield a model for the

joint distribution of returns, volume, and duration between transactions. For instance,
Marsh and Wagner (2000) investigate the return-volume dependence when extreme events
occur. For this purpose, one could use a trivariate copula or proceed in successive steps:
First, one could model the dependency between volume and duration using a first copula.
Then, in a second step, one could link this copula to the return series through another
copula. Hence, our model may be adapted to settings where the data of each margin is
not of the same nature.
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Captions

Table 1: This table reports summary statistics on market returns. Mean, Std, Sk,
and XKu denote the mean, the standard deviation, the skewness, and the excess kurtosis
of returns, respectively. Standard errors are computed with GMM. Wald Stat. is the Wald
statistic which tests the null hypothesis that skewness and excess kurtosis are jointly equal
to zero. It is distributed, under the null, as a χ2 with 2 degrees of freedom. Min and Max
represent the minimum and maximum of centered and reduced returns, while q1, q5, q95,
and q99 represent the 1, 5, 95, and 99 percentiles. The 1%, 5%, 95%, and 99% percentiles
for a normal distribution are −2.3263, −1.6449, 1.6449, and 2.3263. The LM(K) statistic
for heteroskedasticity is obtained by regressing squared returns on K lags. QW(K) is the
Box-Ljung statistic for serial correlation, corrected for heteroskedasticity, computed with
K lags. Since international markets have different trading hours, we have used once lagged
U.S. returns to compute the correlation matrix. Significance is denoted by superscripts at
the 1% (a), 5% (b), and 10% (c) levels.

Table 2: This table reports goodness-of-fit statistics for several marginal restrictions
of the general univariate model. These restrictions are given by models (14) to (17). The
first part of each panel contains the LM test statistic for the null of no auto-correlation of
moments of the ut. It is defined as (T − 20)R2, where R2 is the coefficient of determination
of the regression of (ut − ū)i on 20 of its lags, for i = 1, ..., 4. Under the null, the statistic
is distributed as a χ2 with 20 degrees of freedom. Following Diebold, Gunther, and Tay
(1998), DGT, the table also reports the Kolmogorov-Smirnov test statistic for the test
that the cdf of residuals is Uniform(0, 1). Under the null, the statistic is distributed as a
χ2 with 20 degrees of freedom. Finally, the table presents the log-likelihood (lnL).

Table 3: This table reports parameter estimates and residuals summary statistics for
the model with a skewed Student-t distribution and time-varying higher moments. Para-
meters are those given by equations (10), (12), and (13). Summary statistics include the
LM(K) statistic for heteroskedasticity, obtained by regressing squared returns on K lags,
and the QW(K) statistic for serial correlation, corrected for heteroskedasticity, computed
with K lags. lnL is the sample log-likelihood of the model.

Table 4: This table reports parameter estimates for the copula functions when the
dependency parameter is assumed to be constant over time. Parameters are ln (θ) for the
Plackett’s, ρ for the Gaussian, and ρ and ν for the Student-t copula. We also report the
log-likelihood (lnL) as well as the AIC and SIC information criteria (divided by T ). For
the Student-t copula, LRT1 is the LRT statistic for the null hypothesis that 1/ν = 0.
Finally, empirical ρ is the sample correlation between the margins.

Table 5: This table reports parameter estimates and test statistics for the Student-t
copula when the Spearman’s rho depends on the position of past joint realizations in the
unit square. ρ is the Spearman’s rho under constancy. d1, d6, d11, and d16 correspond to
the Spearman’s rho when ut and vt belong to the same quartile along the diagonal.

25



Table 6: This table reports parameter estimates for the Student-t copula when the
Spearman’s rho is allowed to be time varying. Parameters are those given by equations
(19). We also report the log-likelihood statistics LRT2 for the null hypothesis that α =
β = 0. It is distributed as a χ2 with 2 degrees of freedom.

Figure 1: This figure displays a (2, 2) contingency table.

Figure 2: This figure displays contour plots of Plackett’s, Gaussian, and Student-
t copula functions for the case of positive dependency (ρ = 0.5) and of corresponding
negative dependency (ρ = −0.5). In all instances, the marginal distributions are assumed
to be N (0, 1).

Figure 3: This figure displays the evolution of the degree-of-freedom parameter ηt
and the asymmetry parameter λt for the SP.

Figure 4: This figure displays the evolution of the degree-of-freedom parameter ηt
and the asymmetry parameter λt for the CAC.

Figure 5: This figure displays scatterplots of the marginal cumulative distribution
functions ut and vt for the SP-NIK and for the FT-CAC respectively.

Figure 6: This figure displays the unit-square with parameter estimates of the various
dj and their standard errors, for the SP-NIK pair.

Figure 7: This figure displays the unit-square with parameter estimates of the various
dj and their standard errors, for the FTSE-CAC pair.

Figure 8: This figure displays the evolution of the parameter ρt for the SP-NIK and
the FTSE-CAC pairs as estimated by the model (19).
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The University of Geneva, originally known as the Academy of Geneva, was founded in 1559 by Jean Calvin 
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